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Abstract

Context: The goal of specification pattern catalogs for real-time requirements is to mask the complexity of specifying such require-
ments in a timed temporal logic for verification. For this purpose, they provide frontends to express and translate pattern-based nat-
ural language requirements to formulae in a suitable logic. However, the widely used real-time model checking tool UPPAAL only
supports a restricted subset of those formulae that focus only on basic and non-nested reachability, safety, and liveness properties.
This restriction renders many specification patterns inapplicable. As a workaround, timed observer automata need to be constructed
manually to express sophisticated requirements envisioned by these patterns. Objective: In this work, we fill these gaps by pro-
viding a comprehensive specification pattern catalog for UPPAAL. The catalog supports qualitative and real-time requirements and
covers all corresponding patterns of existing catalogs. Method: The catalog we propose is integrated with UPPAAL. It supports
the specification of qualitative and real-time requirements using patterns and provides an automated generator that translates these
requirements to observer automata and TCTL formulae. The resulting artifacts are used for verifying systems in UPPAAL. Thus,
our catalog enables an automated end-to-end verification process for UPPAAL based on property specification patterns and ob-
server automata. Results: We evaluate our catalog on three UPPAAL system models reported in the literature and mostly applied
in an industrial setting. As a result, not only the reproducibility of the related UPPAAL models was possible, but also the validation
of an automated, seamless, and accurate pattern- and observer-based verification process. Conclusion: The proposed property
specification pattern catalog for UPPAAL enables practitioners to specify qualitative and real-time requirements in a pattern-based
way—without directly using a temporal logic—and to verify them in UPPAAL while supporting a comprehensive set of patterns.
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1. Introduction

Since the fundamental results by Alur et al. [1, 2] on de-
cidability of model checking for real-time systems, a number
of tools for automatic verification of hybrid and real–time sys-
tems have emerged [3, 4, 5]. Among those, the model checker
UPPAAL [4] has been applied successfully to several case stud-
ies [6] to verify reachability, safety, and liveness properties of
real-time systems [7]. Nevertheless, the formal specification of
real-time requirements using a timed temporal logic is still con-
sidered an error-prone and time-consuming task (cf. [8]). Often
practitioners are not familiar with the particular logic and re-
gard it as too difficult to use a timed temporal logic to specify
requirements. An example of a timed temporal logic is Timed
Computation Tree Logic (TCTL) [9, 10], a subset of which is
supported by UPPAAL [7].

Property specification patterns have been used to bridge
this gap between practitioners and model checking [11, 12].
Such patterns provide “general rules that help practitioners to
qualify order and occurrence, to quantify time bounds, and to
express probabilities of events” [13, p. 620] when specifying
properties to reason about events in reactive systems. As typical

for patterns, the property specification patterns are organized in
a catalog [12, 13, 14, 15]. According to Dwyer et al. [11], a
property specification pattern catalog comprises the “best prac-
tices” in system specification and represents an attempt to cap-
ture proven solutions in a single framework. To align differ-
ent formalities behind various specification pattern catalogs and
the required knowledge to formalize system properties by non-
experts, Autili et al. [13] have proposed a comprehensive pat-
tern catalog that unifies qualitative [11], real-time [14], and
probabilistic [15] properties in a structured natural language in-
terface. Each pattern of this catalog is expressed in a structured
natural language and mapped to compatible temporal logic for-
malisms. This mapping enables an automated translation of
properties expressed in the structured natural language to a tem-
poral logic, which eases the formal specification of require-
ments. The unified catalog comprises 58 patterns exploiting
the full expressive power of temporal logic formalisms.

From a theoretical perspective, the expressive power of a
temporal logic is high, for instance, because modal operators
can be nested to express sophisticated requirements and ex-
tended by time bounds to express real-time requirements. How-
ever, from a practical perspective, existing model checkers of-

Accepted Manuscript. Information and Software Technology.
Available online at ScienceDirect since 1 November 2022.
https: // doi. org/ 10. 1016/ j. infsof. 2022. 107100

License: CC BY-NC-ND 4.0

ar
X

iv
:2

21
1.

03
81

7v
1 

 [
cs

.S
E

] 
 7

 N
ov

 2
02

2

https://doi.org/10.1016/j.infsof.2022.107100
https://creativecommons.org/licenses/by-nc-nd/4.0/


ten support only a subset of a temporal logic to realize an effi-
cient model checking. Particularly, UPPAAL does not support
the nesting and timed extensions of modal operators. Thus,
only a subset of TCTL properties can be expressed and veri-
fied by UPPAAL, especially basic reachability, safety, and live-
ness properties where timing aspects are restricted to clock con-
straints in state formulae [7, 16]. Consequently, there exists a
gap between the property specification pattern catalog [13] that
uses the full expressive power of temporal logic formalisms and
the popular model checker UPPAAL that supports only a sub-
set of such formalisms. Notably, the pattern catalog contains
18 patterns for qualitative and 19 patterns for real-time prop-
erties, each in five variants because of five different scopes,
which results in a total of 185 pattern variants. Out of these
185 variants, only four variants can be directly expressed with
UPPAAL, which focuses on (but is not limited to) verifying
real-time systems. Thus, UPPAAL does not support the major-
ity of the property specification patterns.

To mitigate the limited support of TCTL by UPPAAL,
Havelund et al. [16] use a workaround. They sketch man-
ual techniques to annotate the system model and to define ob-
server automata, which have to be concretized for the property
at hand. Particularly, new variables or communication actions
are added to the system model, which are either referenced in
the temporal logic formula to be verified or synchronized with
an added observer automaton that monitors the system model
during verification. For the latter, the observer reaches a certain
state if the property is violated in the system model, which is
checked by a new formula to be verified that refers to the corre-
sponding state of the observer. Thus, the added variables or the
observer encode those aspects that cannot be expressed by the
subset of TCTL supported by UPPAAL. However, Havelund
et al. [16] do not automate and connect these techniques to
property specification patterns.

In this context, only a few approaches exist. Gruhn and
Laue [12] recognized the gap between real-time property spec-
ification patterns and existing model checkers, and presented
a catalog of such patterns each mapped to observer templates.
However, this catalog does not support all real-time patterns
collected by Autili et al. [13] and it is not connected to a timed
model checker by an automated generation of observers from
the proposed templates. André [17] also proposes observer tem-
plates for real-time patterns that are a subset of the real-time
patterns collected by Autili et al. [13], although with an auto-
mated generation of observers for the IMITATOR verification
tool. Afterwards, André and Petrucci [18] specify these patterns
in a dedicated language and define their semantics by Time Petri
Nets, however, without extending the set of real-time property
patterns. Consequently, existing work does not bridge the gap
between all property specification patterns and existing model
checkers considering real-time requirements by leveraging an
automated approach to generate observers. Thus, a reconcili-
ation between practitioners’ expectations and real-time model
checking tools is still required.

To close this gap, we propose a comprehensive property
specification pattern catalog for UPPAAL. The catalog supports
qualitative and real-time properties that are specified using pat-

terns and provides a generator that automatically translates the
specified properties to observer automata and UPPAAL’s re-
stricted TCTL formulae. To achieve this translation, we have
concretized and automated the manual techniques by Havelund
et al. [16] for each pattern of our catalog. Thus, our cata-
log leverages the benefits of property specification patterns to
the widely-used UPPAAL by enabling practitioners to specify
properties in a pattern-based way, that is, without using a tem-
poral logic, and to verify these properties in UPPAAL. Particu-
larly, we make the following contributions in this paper: (1) As
a theoretical contribution, our catalog comprises observer tem-
plates for all specification patterns for qualitative and real-time
properties collected by Autili et al. [13]. The catalog is pub-
licly available.1 (2) As a practical contribution, our catalog is
integrated with UPPAAL [4]. It comes along with a generator
that leverages the observer templates to automatically translate
any property based on a pattern of our catalog to an observer
automaton and TCTL formula used for the verification of sys-
tems modeled as timed automata in UPPAAL. Thus, the cata-
log and the generator enable an end-to-end verification process
based on property specification patterns and observer automata.
(3) We evaluate our catalog and generator on three real-time
systems from literature [19, 20, 21], two of which have been
applied in an industrial setting. These systems have been orig-
inally verified with UPPAAL using manually created observer
automata. Applying our catalog and generator to these systems,
we demonstrate that we can express the properties of interest
and generate automatically corresponding observer automata
and formulae. Using these generated observer automata and
formulae, we were able to reproduce the verification results re-
ported in literature for these systems, which provides evidence
for the validity of our catalog and generator.

The rest of the paper is organized as follows. We intro-
duce a running example in Section 2 and the theoretical back-
ground in Section 3. In Section 4 we discuss our catalog and its
methodology to automatically build observer automata based
on property specification patterns. We evaluate our catalog on
three real-time systems in Section 5 and discuss related work
in Section 6. Finally, we conclude and point out future work
directions.

2. Running Example: Body Sensor Network

To illustrate our approach, we use the Body Sensor Net-
work (BSN) [21] as a running example throughout this paper.
The main objective of the BSN is to keep track of a patient’s vi-
tal signs through three sensors and classify the patient’s health
status into low, moderate, or high risk. In the case of high risk,
the BSN sends an emergency signal to a central unit. For this
purpose, an electrocardiogram sensor, an oximeter, and a tem-
perature sensor are connected to a patient and send their mea-
surements to a central node (BodyHub) that persists and ana-
lyzes the data to determine the overall health status based on
given thresholds for the measurements. Moreover, each sensor

1https://github.com/hub-se/PSP-UPPAAL/wiki
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Table 1: Requirements of the Body Sensor Network (BSN).

ID Requirement

BSN-P01 The BSN is deadlock free.
BSN-P02 If a scheduler cycle is started, the BodyHub will be executed before the scheduler cycle ends.
BSN-P03 If a scheduler cycle is started, the three sensors will be executed before the scheduler cycle ends.
BSN-P04 If a sensor reports a health status of high risk, an emergency will be detected before one scheduler cycle elapses.
BSN-P05 If a sensor reports a health status of high risk, an emergency will be detected within 250 ms.
BSN-P06 If the patient’s health status is on high risk, the corresponding number of scheduler cycles for high emergency risk status has not been

exceeded.
BSN-P07 If the patient’s health status is on moderate risk, the corresponding number of scheduler cycles for moderate emergency risk status has not

been exceeded.
BSN-P08 If the patient’s health status is on low risk, the corresponding number of scheduler cycles for low emergency risk status has not been

exceeded.
BSN-P09 If data has been collected by the sensor node, the BodyHub will eventually process it.
BSN-P10 If data has been collected by the sensor node, the BodyHub will eventually persist it.
BSN-P11 If data has been sent by the sensor node, the BodyHub is able to process it as low, moderate or high risk vital sign data.
BSN-P12 If the BodyHub has processed data, it will eventually detect the patient’s new health status.

controls its sampling rate based on the health status locally de-
termined from the sensor’s own measurements. The sampling
rate of a sensor effects also the rate of sending measurements to
the BodyHub.

The BSN is further equipped with a scheduler that realizes
the deterministic execution of the sensors and BodyHub using
a first-come first-served (FCFS) strategy. Thus, the scheduler
exclusively commands a sensor or the BodyHub to execute by
sending fixed-period release signals.

Rodrigues et al. [21] have modeled the sensors, BodyHub
and scheduler of the BSN as a network of timed automata in
UPPAAL2 and verified the requirements listed in Table 1. To
enable verification, the BSN model contains a manually cre-
ated observer.3 The first requirement states that the BSN should
be deadlock free (BSN-P01). BSN-P02 and BSN-P03 relate
to fairness that all modules (the BodyHub and three sensors)
will be executed in a scheduling cycle. BSN-P04 and BSN-P05
specify that an emergency should be detected within 250 ms
in a single scheduler cycle if the patient’s health status is on
high risk. BSN-P06, BSN-P07, and BSN-P08 prescribe the be-
havior with respect to the sensor frequency at which data will
be collected from the patient depending on the patient’s health
status (e.g., a more severe status implies a shorter sensing fre-
quency). BSN-P09 and BSN-P10 state that the information col-
lected from the sensor node is processed and respectively per-
sisted by the BodyHub. Moreover, BSN-P11 prescribes that the
sensor data sent to the BodyHub is in a certain range so that the
BodyHub is able to classify the patient’s health status as low,
moderate or high risk. Finally, the requirement BSN-P12 pre-
scribes that if the BodyHub has processed the collected data, it
will detect the patient’s latest health status.

2https://github.com/rdinizcal/SEAMS18/tree/master/uppaal
3We modified the original requirements to exclude any reference to the

manually created observer used in the BSN model [21], and refined two re-
quirements, each into two requirements for simplification.

3. Background

In this section, we discuss the background of our work: UP-
PAAL and its limited support of full TCTL, property specifi-
cation patterns [13], and manual techniques to cope with the
limited support of TCTL by UPPAAL [16].

3.1. TCTL and its limited support by UPPAAL

Timed Computation Tree Logic (TCTL) is a variant of the
Computation Tree Logic (CTL) to express real-time proper-
ties [10]. Such properties are specified and verified for systems
modeled by timed automata [22]. Like CTL properties, TCTL
properties comprise state and path formulae. A state formula is
an expression over the atomic propositions of a model and can
be evaluated for each state of a system. A path formula quan-
tifies over the paths of a model by referring to some path (E)
or to all paths (A) and uses temporal operators to determine the
states, for which the state formula should hold. Typical opera-
tors are G for globally (i.e., now and forever in the future) and
F for finally (i.e., eventually in the future). To express real-time
properties, TCTL extends CTL with clock constraints over the
clocks in the timed automaton that can be used in state formu-
lae. Moreover, it extends CTL with time intervals for temporal
operators to narrow the operator to a specified time window, for
instance, G[l,u] and F[l,u] where l and u are the lower and upper
bounds of the time interval.

Independent of the TCTL extensions, typical properties that
can be formulated are safety properties of the form AGϕ and
EGϕ, and liveness properties of the form AFϕ and EFϕ, where
ϕ is a state formula. To specify elaborate properties, the opera-
tors together with the path quantifiers can be nested. Examples
are AGAFϕ and AG(ϕ → AFψ), where ϕ and ψ are state for-
mulae and→ denotes the logical implication. Additionally, all
such formulae can use the TCTL extensions to express real-time
properties. To verify a property for a system, a model checker
checks for a given timed automaton TA and TCTL formula φ
whether TA satisfies φ (i.e., TA � φ) [22].
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Table 2: Types of TCTL formulae supported by UPPAAL [7].

TCTL
formula

UPPAAL
formula

Description

AG ϕ A[] ϕ ϕ should be true in all reachable states, i.e., for all paths ϕ is always true.
EG ϕ E[] ϕ There should exist a maximal path for which ϕ is always true, i.e., in every state of this path.
AF ϕ A<> ϕ For all paths, ϕ should be eventually true.
EF ϕ E<> ϕ There should exist at least one path, for which ϕ is eventually true.
AG(ϕ→ AF ψ) ϕ --> ψ For all reachable states, whenever ϕ is true, then eventually ψ will be true.

A popular model checker to verify TCTL properties on real-
time systems is UPPAAL [4]. A system is modeled as a net-
work of timed automata that synchronize over channels, and
properties are specified in a query language that supports a sub-
set of TCTL [7]. Table 2 lists the types of TCTL properties
supported by UPPAAL. It can be seen that UPPAAL does not
support the nesting of path quantifiers and temporal operators
(i.e., path formulae), except of the so-called response property
shown in the last row of Table 2. Concerning the real-time ex-
tensions of TCTL, UPPAAL does not support timed temporal
operators (e.g., G[l,u] and F[l,u]), restricting the specification of
timing aspects to clock constraints in state formulae.

Thus, UPPAAL’s query language to specify properties is
less expressive than TCTL, and not every TCTL formula can
be expressed in UPPAAL.

3.2. Property Specification Patterns
The goal of property specification patterns is to ease the for-

malization of properties in a temporal logic for practitioners by
capturing the knowledge of experts in formal methods [11]. The
first patterns were proposed by Dwyer et al. [11] for qualitative
properties and the occurrence and order of states or events. An
occurrence pattern describes that a state/event should or should
not occur, while an order pattern describes the relative sequence
in which multiple states/events should occur during system exe-
cution. Each pattern has an intent and mappings to templates in
different temporal logics such as CTL.4 Thus, practitioners se-
lect patterns based on the intents of the properties they want to
formalize, and use the corresponding templates to create formal
specifications.

Additionally, Konrad and Cheng [14] proposed new pat-
terns for real-time properties. Besides an intent for each pat-
tern, they provide a specification in Structured English that is
defined by a grammar as well as mappings to templates in dif-
ferent real-time temporal logics such as TCTL. Practitioners
can use the Structured English grammar to express a property,
and the corresponding mapping to obtain a formal specification
of the property. Moreover, Bellini et al. [8] extended the pat-
terns for real-time properties by providing real-time extensions
for the qualitative properties by Dwyer et al. [11].

In addition to the qualitative and real-time patterns, Grunske
[15] proposed patterns for probabilistic properties expressed in
a Structured English grammar and mapped to templates in Con-
tinuous Stochastic Logic (CSL).

4https://matthewbdwyer.github.io/psp/

Unifying these previous patterns [8, 11, 14, 15] and propos-
ing new ones, Autili et al. [13] developed a comprehensive pat-
tern catalog for qualitative, real-time, and probabilistic proper-
ties. The catalog provides a natural language interface in Struc-
tured English and mappings of each pattern to suitable temporal
logics such as CTL, TCTL, and CSL.5 Since the focus of this
paper is on qualitative and real-time properties, we consider the
corresponding patterns while neglecting the patterns for proba-
bilistic properties.

As proposed by Dwyer et al. [11], each of these patterns
have a scope to define the fraction of the system execution
for which the property must hold. Five different scopes ex-
ist: (1) Globally: the entire system execution, (2) Before R:
the execution up to the first occurrence of the state or event R,
(3) After Q: the execution after the first occurrence of the state
or event Q, (4) Between Q and R: any fragment of the execution
beginning with the occurrence of state or event Q and ending
with the occurrence of state or event R, and (5) After Q until R:
any fragment of the execution as defined by the Between scope,
but the state or event R does not need to occur.6

Example. To exemplify the formalization of a property with
a pattern, we use the property BSN-P05 of the Body Sensor
Network from Table 1:

“If a sensor reports a health status of high risk, an
emergency will be detected within 250 ms.”

A suitable pattern to formalize this property is the Response,
in the real-time variant because of the time constraint of detect-
ing the emergency within 250 ms, and with the scope Globally
because the extent of the system execution is not limited. For
this pattern, Autili et al. [13] provide a template in Structured
English to specify a Response property as well as a mapping to
a TCTL template formalizing the property:

Structured English template: Globally, if {P} [has
occurred] then in response {S} [eventually holds]
within tS

u ms.

TCTL template: AG(P→ AF[0,tS
u ](S ))

The time constraint of the real-time response pattern is de-
fined by tS

u , which is the upper time bound for S to occur after

5http://ps-patterns.wikidot.com
6Similar to Dwyer et al. [11], we ignore nested fragments of Q and R.
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P has occurred.7 Filling the placeholders P, S, and tS
u of the

template for the given property we obtain:

Globally, if {a sensor reports a health status of
high risk} then in response {an emergency will be
detected} within 250 ms.

Based on the mapping of the Structured English template to
the TCTL template, we automatically translate the specification
to a TCTL formula:

AG({a sensor reports a health status of high risk} →
AF[0,250]({an emergency will be detected}))

Thus, patterns support users in formally specifying prop-
erties by leveraging a natural language interface and automati-
cally translating specification in Structured English to a tempo-
ral logic such as TCTL.

However, the resulting TCTL formula of the example can-
not be expressed in UPPAAL without introducing auxiliary for-
mula clocks in the model. Though UPPAAL supports the (qual-
itative) response property (see last entry in Table 2), it does not
support timed temporal operators such as F[u,l]. This observa-
tion holds for most patterns of the catalog by Autili et al. [13].
Given the 18 pattern variants for qualitative and 19 variants
for real-time properties, there exist 37 pattern variants. Each
variant can be further configured by the scope, for which five
options exist. This amounts to a total of 185 pattern variants.
Out of these 185 variants, only four variants can be directly
expressed in UPPAAL. This drastically limited support of UP-
PAAL for the patterns is mainly caused by two issues. First,
the four scopes apart from Globally and the order patterns in-
dependently lead to formulae with nested temporal operators.
Second, the real-time property patterns require timed tempo-
ral operators. Nested temporal operators and timed operators
cannot be expressed with the query language of UPPAAL to
formalize TCTL properties (cf. Section 3.1).

3.3. Techniques to cope with the limited support of TCTL by
UPPAAL

Havelund et al. [16] have proposed conceptional and man-
ual techniques to cope with the limited support of TCTL by UP-
PAAL (cf. Section 3.1). These techniques annotate the system
model, define observer automata, and adjust the formulae for
verification, which together encode those aspects that cannot
be expressed by the query language of UPPAAL. Being con-
ceptual, the techniques need to be concretized for the property
at hand. In the following, we discuss these techniques, namely
the flag, debt, and observer techniques.

7Besides an upper time bound resulting in a time interval [0, tSu ], Autili
et al. [13] further consider a lower time bound resulting in an interval [tSl ,∞) as
well as a combination to a time interval [tSl , t

S
u ] for the occurrences of states or

events in all real-time patterns.

3.3.1. The flag technique
This technique adds a boolean flag variable to the automata

modeling the system, which is initialized to false and set to
true if a designated state (in terms of a node in an automaton)
is reached. The variable is then used in a formula to check
whether the designated state has been reached while checking
for the occurrence of another state. Thus, we can check for oc-
currences of paths from the designated to the other state, which
would otherwise require a nested (T)CTL formula.

An example by Havelund et al. [16] is to consider an au-
tomaton with, amongst others, two states a and b, and to verify
that there is a path from a to b. This property formalized in
(T)CTL is EF(a ∧ EFb), which cannot be expressed in UP-
PAAL due to the nesting of modal operators. Adding the flag
variable a reached to the automaton that is assigned the value
true when state a has been reached (the assignment can be made
on all incoming or outgoing transitions of state a), we can for-
mulate the property as EF(b ∧ a reached) and correspondingly
in UPPAAL as E<>(b and a reached). Thus, we check if
there is a path where a has been traversed before b is reached.

3.3.2. The debt technique
This technique extends the flag technique. It uses the

metaphor of debt to specify that if a certain state a is reached on
the path to a target state b, then in-between a designated state x
should be passed. Thus, we get into debt when reaching state
a and clear the debt when reaching state x. The debt is repre-
sented by a boolean variable added to the automata.

An example given by Havelund et al. [16] is to consider an
automaton containing, amongst others, three states, a, b, and
x and to verify that every path from a to b must pass through
x. Note, that the property is only concerned with paths that
contain an a before an occurrence of a b. This property for-
malized in (T)CTL is AG(a → (¬b W x))—with W being the
weak until operator—which cannot be expressed in UPPAAL
due to unavailability of the W operator in UPPAAL and the
nesting of operators. Adding the variable debt to the automa-
ton, whose initial value is false, set to true when reaching state
a (i.e., we get into debt), and set again to false when reach-
ing state x (i.e., we clear the debt), we can formulate the prop-
erty as AG(b → ¬debt) and correspondingly in UPPAAL as
A[] b imply not debt. Thus, we check that if at any time
state b is reached, then there should be no debt because other-
wise it would mean that state a had been reached but not after-
wards state x.

3.3.3. The observer technique
This technique provides more flexibility than the other tech-

niques as it does not limit the number of states whose reacha-
bility should be checked in particular orders. To achieve this, it
adds communication actions to the automata modeling the sys-
tem that synchronize with an added observer automaton.8 Such

8Since a transition of a timed automaton in UPPAAL can perform at most
one communication action, adding such actions to the automaton typically re-
quires adding transitions and corresponding states (nodes) to interact with the
observer automaton.
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actions notify the observer when designated states are reached.
Thus, the observer monitors the system execution and particu-
larly the order of designated states being reached while measur-
ing time if needed.

An example by Havelund et al. [16] is to consider an au-
tomaton with, amongst others, two states, a and b, and to verify
that whenever state a has been reached, then state b must be
reached from state a within tb

u time units. This property for-
malized in TCTL is AG(a → AF[0,tb

u](b)), which cannot be ex-
pressed in UPPAAL due to the lack of timed operators such
as F[tl,tu]. Using the observer technique, we add two commu-
nication actions to the automaton. When reaching state a, a
begin! signal is sent to the observer, and when reaching state
b an end! signal is sent. After receiving the begin? signal,
the observer automaton resets its local clock to measure time
and moves to another state to wait for the end? signal. If the
end? signal arrives before tb

u time units, the observer moves
to a “good” state, otherwise it moves to a “bad” state after tb

u
time units have passed. Accordingly, the original property can
now be formalized as a property of the observer as AG ¬bad
in TCTL and correspondingly as A[] not bad in UPPAAL.
Thus, we check that the observer will never reach state bad, in
other terms, the signal end? will be always received within tb

u
time units after receiving the signal begin?.

4. A Property Specification Pattern Catalog for UPPAAL

In this section, we discuss our property specification pat-
tern (PSP) catalog for the verification of real-time systems with
UPPAAL. The catalog comprises the patterns for qualitative
and real-time properties collected by Autili et al. [13], and au-
tomatically generates observer automata and related TCTL for-
mulae from pattern-based specifications of properties. Using
the catalog eases the specification of properties since practi-
tioners specify properties in a pattern-based way without us-
ing a temporal logic or having to specify observer automata.
Moreover, the catalog is seamlessly integrated with UPPAAL.
The generated observer automata are UPPAAL-based timed au-
tomata with their related UPPAAL-compatible TCTL formulae.
This enables the verification of the designated properties with
UPPAAL. Consequently, our comprehensive catalog bridges
the gap between theoretical property specification patterns and
practical model checking with existing tools, particularly the
widely-used UPPAAL.

4.1. Overview
Figure 1 shows an overview of the verification process of

our catalog. Particularly, the catalog provides observer tem-
plates for the patterns, which are automatically instantiated to a
given property defined in a pattern-based way. For each prop-
erty, the generated observer and related formula to be verified
are automatically composed with the user-defined UPPAAL
model of the system (timed automata specification models de-
scribing the target-system behavior) in order to perform the ver-
ification in UPPAAL. Thus, our catalog with its integration to
UPPAAL enables a verification process from the pattern-based
specification to the model checking in UPPAAL.

Figure 1: Overview of the end-to-end verification process of our pattern cata-
log.

Following Figure 1, the verification process of our pat-
tern catalog is comprised into three major steps: (i) Formula
Construction, (ii) System Model Adjustment, and (iii) Observer
Construction. In each step, we apply a particular technique to
be able to verify properties based on the patterns of the PSP
catalog for UPPAAL.

In the Formula Construction step, we translate the PSP for-
mula into the UPPAAL property specification language by in-
stantiating the corresponding template in the Formula Template
Catalog (Figure 1). We further explain how this process is car-
ried out in our approach and present our Formula Template Cat-
alog in Section 4.2. In the System Model Adjustment step, we
apply both the flag and the debt techniques [16] to the original
system model M after the adequate formula is instantiated from
the Formula Template Catalog (Figure 1). Given that the debt
technique is an extension of the flag technique, we will refer to
the application of the flag technique in the System Model Ad-
justment step for simplicity. We further delve into the System
Model Adjustment step in Section 4.3. Finally, in the Observer
Construction step, the observer template is instantiated. When-
ever applicable, there is a corresponding observer in the Ob-
server Template Catalog for each property pattern of the PSP
catalog of Autili et al. [13]. We further discuss the Observer
Construction step in Section 4.4.

Indeed the major process of our approach is to have all three
aforementioned steps towards constructing timed observer au-
tomata, namely the Observer process. However, some property
patterns may be verified in UPPAAL with the Formula Con-
struction step either alone, namely the Formula-Only process,
or followed by the System Model Adjustment step, namely the
Flag process, without requiring to go further into the Observer
Construction step. These three sub-processes are depicted on
top of Figure 1. The decision on which process to apply de-
pends on the feasibility of expressing the property specifica-
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Table 3: Schematic view of the process applied in our approach to the property classification according to the catalog by Autili et al. [13].

Type # Pattern Name Scope Name Qualitative Real-time

O
cc

ur
en

ce

Absence
Globally Formula Formula

1 After Flag Observer
All the others Observer Observer

Universality
Globally Formula Formula

2 After Flag Observer
All the others Observer Observer

Existence
Globally Formula Formula

3 After Flag Observer
All the others Observer Observer

4 Bounded Existence All scopes Observer N/A
5 Minimum Duration All scopes N/A Observer
6 Maximum Duration All scopes N/A Observer
7 Recurrence All scopes Observer Observer

O
rd

er

8 Precedence All scopes Observer N/A
9 Precedence ChainN−1 All scopes Observer N/A

10 Precedence Chain1−N All scopes Observer N/A
11 Constrained Precedence ChainN−1 All scopes Observer N/A
12 Constrained Precedence Chain1−N All scopes Observer N/A

13 Response
Globally Formula Observer

All the others Observer Observer
14 Response ChainN−1 All scopes Observer Observer
15 Response Chain1−N All scopes Observer Observer
16 Constrained Response All scopes Observer Observer
17 Constrained Response ChainN−1 All scopes Observer Observer
18 Constrained Response Chain1−N All scopes Observer Observer

19 Response Invariance
Globally Flag Observer

All the others Observer Observer
20 Until All scopes Observer Observer

tion pattern directly in UPPAAL’s TCTL formula. In Table 3
we summarize how each of those processes maps to the corre-
sponding property pattern and scope. We should note that out
of the 185 combinations of patterns (18 qualitative and 19 real-
time patterns) and scopes (five scopes) we investigated9, only
four apply the Formula-Only process. The Flag process was
applied to four combinations of patterns and scopes for qual-
itative, i.e., untimed, properties. All of the remaining combi-
nations applied the Observer process. We also highlight the
fact that the real-time variants of the Precedence, Precedence
Chain, and Constrained Precedence Chain patterns are not ap-
plicable in UPPAAL (Table 3), which results in 160 combina-
tions of patterns and scopes that we realized for our catalog.
Using the Structured English Grammar [13], the Precedence
pattern is described as:

Scope, if {P} [holds], then it must have been the
case that {S} [has occurred] [Interval(0)] before
{P} holds.

Simply stated, the reason behind is that any instance of S
would have to be taken into consideration when evaluating an
instance of P. UPPAAL, however, cannot handle arbitrary many

9A real-time variant of the Bounded Existence pattern and qualitative vari-
ants of the Minimum and Maximum Duration patterns do not exist in general
(Table 3).

variables, states, or arrays with arbitrary length. We should note
that if the maximum number n of occurrences of S for any given
point in time is known a priori, then n observers can be used in
parallel to express the property.

4.2. The Formula Construction Step

In this first part of the process, we fetch the provided prop-
erty and instantiate the corresponding UPPAAL formula tem-
plate from Autili et al. [13]10. Most of our templates are ex-
pressed as safety properties. This means that during the veri-
fication step, it is sufficient for UPPAAL to show that an un-
wanted state, mostly identified as an ERROR location, is not
reachable. Some properties, however, are expressed as liveness
properties, for instance, the Response pattern. In this case, the
observer is used to check whether the specified response hap-
pens eventually. A violation of the specification is detected as
a counterexample when the observer can reach such an ERROR

location. We will further delve into the observer automata for
the patterns in Section 4.4.

Our UPPAAL formula template catalog includes 18 qualita-
tive and 14 real-time patterns. Additionally, each pattern must
use one of five scopes. Therefore, our formula catalog amounts

10As previously mentioned, in this work we focus only on qualitative and
real-time properties as UPPAAL does not support probabilistic quantifiers.
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to 160 formula templates11.
Out of those formula templates there are only four that can

be directly verified without the need of observer automata or
any system model adjustments. We call this special case the
Formula-Only process as only the formula is needed for veri-
fication. It can be applied for the Globally scope paired with
the Absence, Universality, and Existence patterns, both in qual-
itative and real-time variants. Furthermore, the qualitative ver-
sion of the Globally scope paired with the Response pattern can
be expressed with a formula using UPPAAL’s leads-to (-->)
operator. The reason behind this is that the formulae of such
patterns are the only ones that are not nested (considering the
catalog by Autili et al. [13]), except for the Response pattern.
For real-time properties, we automatically add a global clock
gc to the system. Afterwards, UPPAAL’s reachability analysis
can be performed.

4.3. The System Model Adjustment Step

The next step in the process is called the System Model
Adjustment, where we apply both the flag and the debt tech-
niques (henceforth referred only as flag, for short) proposed
by Havelund et al. [16]. To enable the interaction between
the system model and an observer, the system model has to be
adjusted. For this purpose, we apply the System Model Ad-
justment step where not only we make traceable the states that
ought to be verified as part of the property but also make trace-
able the paths in which the state, or set of states, of interest is
passed through. In Figure 1, the adjusted model is represented
by M′. Once the pattern type and scope have been identified
from the user’s input, there are only two steps required: one
to fetch the location in the system model M that represents the
state of interest and the other to apply the flag technique to that
location.

The core of our System Model Adjustment step is presented
in Algorithm 1. We explain this algorithm as follows in tan-
dem with Figure 2 to help the reader depict the intricate System
Model Adjustment step. In Figure 2, we illustrate the effect
of applying the applyFlag() method of Algorithm 1 into a
certain state P12. The original model excerpt regarding P is pre-
sented in Figure 2a, while the outcome of the applyFlag()

into that excerpt is illustrated in Figure 2b.
To be able to trace incoming and outgoing paths of P, we

add synchronizations P reached and P left. Since P can be
entered or left as a result of a synchronization (e.g., s AP or
s PC) and UPPAAL only allows a single synchronization per
transition, we add locations as pseudo-states before and after P.
We use UPPAAL’s committed locations to ensure that time can-
not pass while the system is in a state containing such a location
and that the system model’s execution is not altered by the ad-
dition of these locations. If one of the system’s automata is in a

11For the sake of readability of all those 160 formula templates, we re-
fer the reader to our Github repository at: https://github.com/hub-se/

PSP-UPPAAL
12Note that P must be a traceable location of the original model M. Oth-

erwise, one must refactor M by manually adding P prior to the System Model
Adjustment step.

Algorithm 1 applyFlag()
Require: System model M, Location P
Ensure: Adjusted model M’
1: for all Transition T in M do
2: T.addGuard(mayFire == 0);
3: end for
4: addLocation(P ENTER);
5: P ENTER.setCommitted();
6: P ENTER.setInvariant(P.invariant);
7: addTransition(P ENTER, P);
8: P ENTER.getTransition(P).setSynchronisation(P reached!);
9: P ENTER.getTransition(P).setUpdate(P holds = 1, P held once = 1);

10: for all Location S in P.predecessors do
11: S.getTransition(P).adjustTransitionTo(P ENTER);
12: end for
13: for all Location T in P.successors do
14: addLocation(P LEFTTO T);
15: P LEFTTO T.setInvariant(T.invariant);
16: P.getTransition(T).adjustTransitionTo(P LEFTTO T);
17: addTransition(P LEFTTO T, T);
18: P LEFTTO T.getTransition(T).setSynchronisation(P left!);
19: P LEFTTO T.getTransition(T).setUpdate(P holds = 0);
20: P LEFTTO T.setCommitted();
21: end for
22: for all Transition T in M do
23: T.addGuard(!nxtCmt);
24: end for
25: return M’

committed location, a transition exiting the committed location
must be taken immediately upon entering it. The committed lo-
cation of the incoming transitions to P is named P ENTER, cmp.
lines 4-7, Algorithm 1. The newly added location P ENTER

is connected to P by a transition which synchronizes with the
observer via the P reached channel, line 8 of Algorithm 1.
We use UPPAAL’s ability of broadcast channels since these are
non-blocking, i.e., an observer does not have to synchronize in
order for the system model to use the transition. Furthermore,
multiple observers could synchronize with the one sender; in
fact every observer that can synchronize, must do so.

Using synchronizations when a state of interest is entered
enforces progress in the observer. Sometimes, however, the
observer cannot synchronize immediately but instead needs to
know later on if a certain state had been reached before. There-
fore, we use the added locations representing pseudo-states
to update boolean flags with these information: P holds and
P held once. Essentially, P holds when the system is in state
P, and P held once holds whenever the state P was reached
at least once. As such, both are set to 1 when P is entered,
cmp. line 9, Algorithm 1. This update does not block or alter
the system’s behavior, as long as no such variable is used by
the system originally. The first variable (P holds) follows the
principle of a debt variable (Section 3) and is a paramount vari-
able that comprises a great number of our observer templates to
check whether the paths passing through P have been traversed.
Additionally, the P held once variable applies the principle of
a flag variable (Section 3). This flag is mostly used by our for-
mula templates that compose the After scope in tandem with
the Occurrence patterns to trace those paths that have reached
P once. All transitions entering P will then be redirected to
P ENTER, as can be seen in lines 10-12 of Algorithm 1. Be-
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(a) (b)

Figure 2: Illustration of the System Model Adjustment step. (a) The model prior to applying the applyFlag() algorithm. (b) The outcome of the algorithm with
the extended location P following the flag and debt techniques (Section 3). Moreover, the model is also adjusted to interact with an observer, thus supporting the
observer technique (Section 3).

tween P and each of its outgoing state such as C, we need to add
another pseudo-state represented by the location P LEFTTO C

and copy its corresponding invariant (e.g., inv C). Otherwise,
the transition into the pseudo-state may be enabled while the
transition out of the P LEFTTO C pseudo-state may be disabled,
which could render a deadlock. When leaving the pseudo-state,
we can again provide a broadcast synchronization for the ob-
server, i.e., P left, and an update, i.e., P holds = 0 (cmp.
also lines 13-21 of Algorithm 1).

We should note that, to ensure that no other system transi-
tion may be enabled while M′ is in a pseudo-state, we add a
semaphore variable mayFire, cmp. lines 1-3 of Algorithm 1.
Every transition in the model is updated with a guard condition
to disable it while the system is in a pseudo-state. We decided
to use an integer instead of a boolean value for the semaphore
because the system may enter multiple locations all represent-
ing pseudo-states in one step. Using an integer enables us to
increment it for each pseudo-state that is entered and decre-
ment it for each pseudo-state that is left. Additionally, to al-
low the observer to prioritize its own transitions, we add an-
other semaphore: nxtCmt, cmp. lines 22-24 of Algorithm 1.
For this purpose, the observer sets nxtCmt = true, which dis-
ables every system transition extended with the guard condition
!nxtCmt. Furthermore, for the timed patterns we add a global
clock variable to the system that we use in our formulae and in
their corresponding observers.

As previously mentioned in Section 4.1, some patterns may

go into the Formula Construction step, followed by the System
Model Adjustment step. We call this the Flag process in our
approach, where the application of the flag technique suffices
and no observer construction is needed. This is the case for the
patterns of Absence, Universality, and Existence combined with
the scope After.

4.4. The Observer Construction Step

The third and final step in our approach is the Observer pro-
cess. Intuitively, observers (represented as O in Figure 1) run
in parallel with the model under verification, in our case, the
adjusted model M’ as an outcome of the previously explained
System Model Adjustment step.

Following from Figure 1, the observer automaton that will
compose with the adjusted model M’ is an instantiation from
our Observer Template Catalog based on the property pattern
of interest and its corresponding scope. Therefore, each com-
bination of pattern and scope holds a unique observer template
in our catalog, except for those that follow the Formula-Only or
Flag processes, as previously explained.

The principle behind the design of each observer tem-
plate follows initially the observer technique by Havelund et
al. [16], where the synchronizations P reached and P left

follow their principle of the begin and end channels, respec-
tively. In addition, considering (1) the property pattern intent,
(2) the scope, and (3) the pattern category (i.e., qualitative or
real-time), we designed each observer template to represent

9



Figure 3: Observer of P state for the Timed Existence pattern with the scope After Q.

those three elements that comprise the synthesis of the observer
from the template.

All in all, the instantiation of the appropriate observer tem-
plate for its corresponding property can be briefly described
in two steps: (1) fetching the corresponding observer template
from the catalog and (2) replacing the template’s variables with
actual system states and values for time bounds and integers.

As described earlier, our properties consist of safety and
liveness properties. For safety properties, the observed au-
tomata must reach a safe location in the reachability analysis
process. A violation of a specification is detected when an un-
wanted location can be reached in the observer, identified as an
ERROR location. A violation of the specification is detected as
a counterexample when the observer can reach such a location.
As for liveness properties (e.g., “every occurrence of P is fol-
lowed by an occurrence of Q”), we use acceptance conditions
for this purpose: some locations in the observer are marked as
accepting locations. Reasoning about infinite runs is also nec-
essary. For infinite runs, a counterexample is detected if there
is any run that never satisfies the accepting location.

To illustrate that principle, suppose we want an observer for
the model illustrated in Figure 2b for the timed Existence prop-
erty pattern with the scope After, described with the Structured
English Grammar [13] as follows:

After Q, P holds eventually Time(P)

This property pattern aims at describing a portion of a sys-
tem’s execution during time interval t1 ≤ Time(P) ≤ t2 that
contains an instance of certain state P after another state Q hap-
pened. The observer template that models this expected pattern
behavior is shown in Figure 3, where the observer will only start
to observe once the event Q reached has been triggered by the
adjusted model M’ of interest. At that moment, the clock c

is reset to start counting elapsed time. The final states of the
observer are either P happens or ERROR for the wanted and
unwanted behaviors, respectively. P happens will be reached
in two cases: Either when P already holds when opening the
time interval (timed scope), or when P is reached after the in-
terval has opened, but before it closes. In the case that the time
bound has been violated, the ERROR state will be reached show-
ing that the property has been violated. The verification with
such an observer requires simply the following liveness prop-
erty: SCOPEOPEN --> P happens, expressing that whenever
SCOPEOPEN holds, it is always the case that P happens will
eventually hold within the time bound [t1,t2]. Finally, once the
actual system property with its instantiated values for P and Q

are known, the observer model will be then automatically in-
stantiated replacing all the variables and channels related to P

and Q accordingly.

4.5. Illustrating the Approach

To exemplify our application on the BSN example, let us
follow property BSN-P04 from Table 1. It specifies that at most
one scheduler cycle ends before an emergency is detected if the
patient’s health status is at high risk. We mapped this prop-
erty to the Bounded Existence pattern, investigating if at most
one scheduler cycle elapses within the two events “health status
being high” and ”detecting an emergency”. We use these two
events to set the Between scope:

Between the bodyhub status is high and emer-
gency is detected, the scheduler cycle is finished
holds at most 1 times.

The first step in our application is to load the formula corre-
sponding to the pattern and scope. This formula is instantiated
by replacing placeholders with the actual system states and, in
this case, the variable n with the concrete value 1.

Afterwards, the system model is loaded and adjusted. The
locations in the model that represent the system states used in
the property are annotated with synchronizations and flags, as
described previously in the context of Figure 2 and Algorithm
1. Figures 4a and 4b display the system automaton of the sched-
uler before and after the annotations were added.

Furthermore, the template for the observer automaton is
loaded and instantiated, similarly to the formula. Placeholders
are replaced with corresponding synchronizations and values
for variables. The resulting observer automaton is depicted in
Figure 4c.

In Figure 4c, the property of interest is broken down with an
observer. The formula for the Bounded Existence pattern with
the Between scope directly transcribed from the PSP catalog by
Autili et al. [13] is as follows:

AG(Q → ¬E[¬RU(¬P ∧ ¬R ∧ EX(P ∧
E[¬RU(¬P ∧ ¬R ∧ EX(P ∧ E[¬RU(¬P ∧ ¬R ∧
EX(P ∧ ¬R ∧ EF(R)))]))]))])

Given the fact that the CTL formula obtained from the PSP
catalog contains many nested temporal operators, it cannot be
directly checked in UPPAAL as it is. Our observer, however,
encodes information about the different parts of the formula into
states. Consider, for example, the first implication: It expresses
that Q opens the scope. In the example, HIGH is a concrete

10



(a)

(b) (c)

Figure 4: The BSN UPPAAL automata for property BSN-P04 and its observer: the automaton prior to (Figure 4a) and after (Figure 4b) the Observer for property
P04 (Figure 4c) was generated through the Observer process of our approach.

state of the system that substitutes Q. It encodes the informa-
tion that the patient’s health status was detected as high. In the
observer’s initial state, the transition can only be enabled once
the state HIGH is reached in the system resulting in a synchro-
nization between the adjusted system model and the observer
over the channel HIGH reached. Then, if DETECTED holds is
evaluated to 1, the scope is considered to be closed, because
DETECTED holds depicts the variable R, representing that an
emergency has been detected. Only if DETECTED holds is
evaluated to 0, meaning no emergency has been detected yet,
the scope is finally open and a counter is being reset. Ev-
ery occurrence of DONE, meaning a scheduler cycle has fin-
ished, increments the counter. If the emergency is detected,
the scope will be closed again. If, however, the scheduler cycle
ends repeatedly, i.e., more than once, the observer reaches the
state ERROR.

5. Evaluation

We evaluate our catalog together with its generator for
UPPAAL-based observers and formulae on three real-time sys-
tems from literature [19, 20, 21], two of which have been ap-
plied in an industrial setting. These systems have been origi-
nally verified with UPPAAL using manually created observer
automata. Applying our catalog to these systems, we demon-
strate that our catalog can express the properties of interest and
generate corresponding observer automata and formulae. Us-
ing these generated observer automata and formulae, we were
able to reproduce the verification results reported in literature
for these systems, which provides evidence for the validity of
our catalog. The major goal of this experiment is to assess the
ability of our framework to empirically demonstrate that the
generation of our observers is both feasible and preserves the
behaviors of interest in an existing UPPAAL model. By do-
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ing so, we are able to leverage not only the ability to automati-
cally generate observers from pattern-based properties but also
to benefit from an observer-based verification process as well
as the property specification pattern approach.

To conduct our experimentation, we hypothesize that our
automated approach yields the same behavior by satisfying the
same properties as those obtained by manually formulating UP-
PAAL queries. To assess our hypothesis, we perform an exper-
imentation with three UPPAAL systems reported in the litera-
ture: the Body Sensor Network [21], the Audio/Video Proto-
col [20] and the Gear Controller [19]. In particular, those sys-
tems were chosen as we could replicate their UPPAAL models
as provided in their respective work. We follow a technology-
oriented experiment [23] and the results and the UPPAAL mod-
els presented in this section are publically available13.

5.1. Experimental Setup
For the evaluation we used UPPAAL in version 4.1.20 beta

3. To build the generator for observers, we used Apache Maven
3.6.3. The tool is publicly available in the project’s repository14.
All dependencies are loaded automatically during the build with
Maven to ensure reproducibility. The generator is implemented
in Java version 1.8.0 301.

The experiments were conducted on a 3,1 GHz Quad-Core
Intel Core i5 and 16 GB memory. For each experiment, we
recorded the time it took our tool to analyze and modify the
system model and the number of locations and transitions that
were added. An extensive report of our results can be found
in our repository, where we list the experiments’ data and the
number of added locations and transitions.

Note that our approach only handles requirements speci-
fying information of locations in the UPPAAL model but not
of variables. This is due to the fact that we need to enforce
progress in the observer if the intended behavior manifests in
the model. We do this in UPPAAL with synchronizations of
locations (i.e., UPPAAL states) which is not feasible via vari-
ables. Therefore, we had to manually refactor the systems when
variables were specified in the requirements so that the prop-
erty specification could be expressed by means of locations in
the UPPAAL model instead. Information about the changes we
conducted can be also found in the repository. Furthermore,
note that, when applicable, the timed versions are indicated ex-
plicitly in each system property.

5.2. Experiments with the UPPAAL Systems
In this section, we present the informal description of prop-

erties of the selected UPPAAL systems, followed by their de-
scription using the structured English grammar by Autili et
al. [13]. Then we describe which process of our approach we
followed to verify each property based on its according pattern.

5.2.1. Body Sensor Network
The Body Sensor Network (BSN) has been previously ex-

plained in Section 2. The models as well as a list of require-
ments for the BSN are further described in [21]. Disregarding

13https://github.com/hub-se/PSP-UPPAAL/wiki/Case-Studies
14https://github.com/hub-se/PSP-UPPAAL/

requirement BSN-P01, which is only the check for deadlock-
freedom, we verified all the remaining eleven requirements
listed in Table 1. The corresponding descriptions of those re-
quirements in structured English as well as their property pat-
terns and scopes are presented in Table 4. The BSN system
model consists of 27 locations and 40 transitions.

From the properties described in Table 4, one can notice
that both Occurrence and Order patterns are applied. While
BSN-P02 and BSN-P03 are Existence properties with a Be-
tween scope, property BSN-P04 is a Bounded Existence with a
Between scope. As such, those three properties follow our Ob-
server process. BSN-P05 also follows the Observer process as
it uses the time-constrained Response Globally pattern. Proper-
ties BSN-P06 to BSN-P12 are all Untimed Response properties
with a global scope (Response Globally for short). Therefore,
they go through the Formula-Only process.

5.2.2. Audio/Video-Protocol
Havelund et al. [20] used UPPAAL to locate errors in an

audio/video-protocol used in industry by Bang & Olufsen. This
protocol features a set of senders that send frames over a single
bus. Naturally, collisions may happen here. The industry part-
ner complained that there were faults in the system that they
were not able to locate. Using the UPPAAL model checker to
help them, Havelund et al. [20] modeled the system as timed
automata. The model consists of two senders, each modeled
with four automata, and another automaton for the bus. To lo-
cate the faults, the authors hand-built an observer automaton
that observes the system. Seventy-one locations and 133 tran-
sitions are used in the model, including the original observer.
Through our approach, we were able to discard their hand-built
observer automaton and instead, use the observers we gener-
ated automatically from our approach based on the correspond-
ing property pattern. Verifying the adapted models located the
same faults that were found and discussed by Havelund et al.
[20]. In Section 5.3 we report the outcome of our experiments
on the Audio/Video-Protocol in detail.

We describe in Table 5 the property patterns applied to the
Audio/Video-Protocol system. It can be noticed that we only
needed to apply the Response pattern with the Between scope.
As such, AV-P01(a), AV-P01(b), and AV-P02 follow our Ob-
server process. Note, that while the properties may appear simi-
lar, we adapted the underlying system model separately for each
property.

5.2.3. Gear Controller
Lindahl et al. [19] modeled and verified a gear controller

with UPPAAL. The model consists of five automata: a gear-
box, an engine, an interface, a clutch, and a controller. The
largest automaton, the controller, consists of 24 locations. In
total, there are 50 locations and 65 transitions in the model.
Lindahl et al. specified a set of 14 properties that they verified
with UPPAAL. Unfortunately, it was not possible to semanti-
cally map a property pattern to ten out of those 14 properties in
the Gear Controller system [19]. Following the results reported
by Filipovikj et al. [24], this might indicate that the property
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Table 4: Properties of the BSN.

ID Structured English Description Property Pattern and Scope

BSN-P02 Between Scheduler.Done and Scheduler.Idle, Bodyhub.Idle eventually holds. Existence Between

BSN-P03 Between Scheduler.Done and Scheduler.Idle, Sensornode.Idle eventually holds. Existence Between

BSN-P04 Between Sensornode.HIGH and Bodyhub.DETECTED, Scheduler.DONE holds at
most one time.

Bounded Existence Between

BSN-P05 Globally, if Sensornode.HIGH has occurred, then in response Bodyhub.DETECTED
holds within 250ms.

Time-constrained Response Globally

BSN-P06 Globally, if Sensornode.Request has occurred, then in response Sensornode.Reply
eventually holds.

Response Globally

BSN-P07 Globally, if Sensornode.Request has occurred, then in response Sensornode.Reply
eventually holds.

Response Globally

BSN-P08 Globally, if Sensornode.Request has occurred, then in response Sensornode.Reply
eventually holds.

Response Globally

BSN-P09 Globally, if Sensornode.COLLECTED has occurred, then in response Body-
hub.PROCESSED eventually holds.

Response Globally

BSN-P10 Globally, if Sensornode.COLLECTED has occurred, then in response Body-
hub.PERSISTED eventually holds.

Response Globally

BSN-P11 Globally, if Sensornode.SENT has occurred, then in response Bodyhub.PR correctly
eventually holds.

Response Globally

BSN-P12 Globally, if Bodyhub.PROCESSED has occurred, then in response Body-
hub.DETECTED eventually holds.

Response Globally

Table 5: Properties of the Audio/Video Protocol.

ID Informal Description Structured English Description Property Pattern and
Scope

AV-P01 (a) When a failure occurs during a frame’s
sending, it has to be resolved before the
frame is sent completely.

Between Frame Generator A.start and
Frame Generator A.EOFReset, if Sender A.Failure
has occurred, then in response Sender A.Fail Resolved
eventually holds.

Response Between

AV-P01 (b) When a failure occurs during a frame’s
sending, it has to be resolved before the
frame is sent completely.

Between Frame Generator A.start and
Frame Generator A.EOFReset, if Sender A.Failure
has occurred, then in response Sender A.Resolved
eventually holds.

Response Between

AV-P02 If one sender detects a collision, then
every other simultaneously transmitting
sender should detect it before finishing
sending.

Between Frame Generator A.start and
Frame Generator A.EOFReset, if obs.Failure has
occurred, then in response obs.Resolved eventually
holds.

Response Between

patterns need extensions, as there appear to be requirements that
cannot be expressed with any of the patterns.

From the properties described in Table 6, one can notice
that from all those properties where the property patterns were
applicable, only the time-constrained Response Globally spec-
ification pattern was needed (GC-P01 to GC-P04) in the Gear
Controller system. Therefore, the matching properties followed
the Observer process of our approach.

5.3. Results

The results of our experiments are reported in Table 7. First
and foremost, we can notice that all the properties originally
specified are satisfied, except for the properties AV-P01(a), AV-
P01(b), and AV-P02. These results are exactly as reported by

the corresponding papers reporting these system and proper-
ties, especially by Havelund et al. [20]. Due to the failed prop-
erties, Havelund et al. [20] re-modeled the Audio/Video sys-
tem including fixes for the bugs they identified. Applying the
fixes in the model proposed by Havelund et al. [20], we were
able to verify the model’s correctness through the properties
AV-P01’(a), AV-P01’(b), and AV-P02’15.

From the quantitative perspective, the highest number of lo-
cations introduced by our approach was in the UPPAAL model
for the Audio/Video system while verifying property AV-P02’,
i.e., ten (10) locations. Regarding the number of transitions,

15In their original paper, Havelund et al. identified a protocol error and pro-
posed its correction. These renamed properties refer to those originally reported
by Havelund et al.
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Table 6: Properties of the Gear Controller.

ID Informal Description Structured English Description Property Pattern and
Scope

GC-P01 If the clutch encounters an error while
closing, within 200ms the gear control
detects this error.

Globally, if Clutch.ErrorClose holds, then in response
GearControl.CCloseError eventually holds within 200ms.

Time-constrained Re-
sponse Globally

GC-P02 If the clutch encounters an error while
opening, within 200ms the gear control
detects this error.

Globally, if Clutch.ErrorOpen holds, then in response
GearControl.COpenError eventually holds within 200ms.

Time-constrained Re-
sponse Globally

GC-P03 If the gearbox encounters an error while
being idle, within 350ms the gear control
detects this error.

Globally, if Gearbox.ErrorIdle holds, then in response
GearControl.GSetError eventually holds within 350ms.

Time-constrained Re-
sponse Globally

GC-P04 If the gearbox encounters an error while
being in neutral gear, within 200ms the
gear control detects this error.

Globally, if Gearbox.ErrorNeu holds, then in response
GearControl.GNeuError eventually holds within 200ms.

Time-constrained Re-
sponse Globally

Table 7: Summary of the results for the BSN system while applying our property-pattern oriented process, where: S+ = states added, T+ = transitions added,
UMem = resident memory to verify the property of interest, Ovh = overhead introduced by our approach compared to the baseline, PTime = time required by our
automated flag and/or observer processes accordingly, UTime = time required by UPPAAL to verify the property, Sat? = whether the property was satisfied in
UPPAAL. Highlighted are the worst-case scenario for each metric.

ID S+ T+ UTime (s) PTime(s) UMem(MB) Ovh Sat?

BSN-P02 7 16 77.3 0.660 2.6 x103 0.90 yes
BSN-P03 7 0 101.4 0.702 3.4 x103 1.51 yes
BSN-P04 6 18 92.9 0.707 2.6 x103 0.87 yes
BSN-P05 0 5 172.1 0.632 2 x103 0.42 yes
BSN-P06 0 0 51.8 0.640 1.3 x103 -0.07 yes
BSN-P07 0 0 50,1 0.649 1.3 x103 -0.07 yes
BSN-P08 0 0 52.4 0.653 1.3 x103 -0.07 yes
BSN-P09 0 0 55.3 0.658 1.4 x103 -0.04 yes
BSN-P10 0 0 55.3 0.631 1.4 x103 -0.03 yes
BSN-P11 0 0 57.8 0.636 1.4 x103 -0.03 yes
BSN-P12 0 0 54.1 0.646 1.4 x103 -0.03 yes
AV-P01(a) 9 16 0.7 0.827 9.8 0.13 no
AV-P01(b) 9 15 0.7 0.722 9.7 0.11 no

AV-P02 10 17 1.1 0.775 10.8 0.24 no
AV-P01’(a) 9 16 6.3 0.662 91.9 9.5 yes
AV-P01’(b) 9 16 6.2 0.733 91.1 7.86 yes

AV-P02’ 10 17 9.6 0.677 128.5 11.5 yes
GC-P01 5 5 0.5 x10−2 0.618 5.9 -0.15 yes
GC-P02 5 5 0.2 x10−2 0.660 6 0.05 yes
GC-P03 5 5 0.4 x10−2 0.629 6.1 0.04 yes
GC-P04 5 5 0.3 x10−2 0.641 6 -0.26 yes

eighteen more transitions were introduced in the verification of
property BSN-P04 in the worst-case scenario. The BSN sys-
tem model also reached the highest verification time, but afford-
ably below two minutes (BSN-P03). Regarding the time intro-
duced by our tool to apply the Flag and Observer processes, it
was quite negligible as it was below one second: 0.827s in the
worst-case scenario. Memory consumption to run the BSN in
UPPAAL was also the highest among all systems: the upper
limit was around 3.4GB for property BSN-P03. However, the
property already required a quite high resident memory peak
as the overhead introduced by our approach was 1.51 times the
original memory consumption. Last but not least, the highest
overhead introduced was in the verification of property AV-P02’

which was in the order of 11.5 times compared to the baseline
system. However, the nominal memory consumption for that
property after applying our approach is quite affordable, i.e.,
130MB.

Considering the outcomes of our experiments, we come to
the conclusion that our approach is validated since all the prop-
erties originally reported in our experiments were satisfied after
applying our approach. Therefore, the experiments show that
we have preserved the original behavior of the UPPAAL sys-
tems. In addition, the computational feasibility of our approach
has also presented itself as quite affordable by the metrics ex-
tracted from running our experiments and reported in Table 7.
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5.4. Threats to Validity

Given the nature of our experiments, some threats could
have compromised the validity of our results. In the first place,
two out of the three systems upon which we conducted our ex-
periments did not have their original UPPAAL models avail-
able. While Rodrigues et al. [21] already provided the UPPAAL
models and properties for the BSN, the other two systems in our
experimentation [19, 20] did not provide a repository for the
original UPPAAL models. Nevertheless, it was possible to re-
produce all those examples in UPPAAL and check whether our
approach could handle their property requirements. In this case,
we had to re-build the UPPAAL models based on the models’
descriptions provided in their corresponding manuscripts, as
previously reported. To overcome the threat, we made it evident
that not only the models were correctly modeled and executed
in UPPAAL, following the expected behavior, but also that the
same original system properties were satisfied. Given that we
reached the same results as those reported in the original paper,
we argue that this threat has been properly dealt with. The ex-
ception, however, was in the Gear Controller system, where we
could not replicate all the reported results. We were not able to
replicate properties (1) and (2) of the original Gear Controller
system, as it was not possible to identify in their work how non-
atomic propositions should be handled with the time-annotated
leads-to operator introduced in their paper.

Concerning the ability to draw the correct conclusion from
our results, it relies on the correct mapping between the sys-
tems’ properties originally reported and the property pattern we
apply. First and foremost, prior solid knowledge of property
patterns must be assured. We make that evident, as the appro-
priate and sound mapping between the property specification
pattern and its corresponding observer automata has been ex-
tensively reported in our comprehensive PSP catalog. Then, to
go through the corresponding observer for each system prop-
erty of our experiments, we went through a peer-review process
after a careful analysis of (i) the informal description provided
in the original paper, (ii) the formal description of the original
properties in TCTL, and (iii) the reproduction of the UPPAAL
models. Once there was a clear understanding of the systems’
behavior and their specified properties, it was straightforward
to map them to the corresponding property pattern. In addition,
for each analyzed property there is its corresponding UPPAAL
model, which makes clear that each property is individually an-
alyzed and its results are individually reported by the model
checking tool.

Regarding the reliability of our measures, we have reported
the UPPAAL models, properties, and results of our experiments
in the public repository. All this information can be reproduced,
following the runtime environment described in Section 5.1.
Moreover, the consistency of the results whether the verified
properties are satisfied is assured by the maturity of the UP-
PAAL model checker.

Regarding our approach and experiments, we are aware of
the following limitations. Our experiments are limited to the
three UPPAAL systems reported and we cannot generalize our
results. A limitation of our approach is that properties can

only refer to traceable states in terms of locations in the sys-
tem model. When this limitation became apparent in one of our
experiments, we had to manually refactor the UPPAAL model
and property to be analyzed to make the application of our ap-
proach feasible. Although we have managed to overcome this
limitation in our experiments, there may be cases where this
refactoring procedure may be hindered. Another limitation of
our approach is that we can only express properties that follow
a pattern from our catalog. On the one hand, we rely on a com-
prehensive catalog collected by Autili et al. [13] that is based
on the catalogs by Dwyer et al. [11] and Konrad and Cheng
[14] for qualitative respectively real-time requirements. On the
other hand, we still encountered some properties that cannot
be mapped to patterns of our catalog (cf. Gear Controller in
Section 5.2.3). This observation is in line with the results by
Filipovikj et al. [24], who investigated how sufficient the pat-
terns by Dwyer et al. [11] were to express requirements gath-
ered from industry. They reported that most but not all of them
were expressible. Likewise, Post et al. [25] conducted a case
study in the automotive domain at Bosch and reported that the
majority of requirements but not all of them could be refor-
mulated using the patterns by Konrad and Cheng [14]. They
further state that the sufficiency of such a pattern catalog can-
not be proven. Therefore, not only the comprehensiveness of
a pattern catalog but also its ability to reformulate all sorts of
requirements is still an open question in the literature and re-
quires further investigation to either refute or confirm the com-
prehensiveness of such a catalog. Naturally, the same holds for
the catalog we propose. However, the purpose of the presented
work is not to analyze the sufficiency of an existing catalog and
to extend the catalog if needed. In contrast, our goal was to
leverage existing patterns in UPPAAL, thereby relying on the
most comprehensive catalog [13].

Finally, additional scalability studies should be performed
to investigate the space/time overhead introduced during the
model augmentation phase for a more thorough conclusion.

6. Related Work

In this section, we discuss related work according to the
topics covered in this paper. The first one is about theoretical
foundations for observer-based model checking. The second
topic concerns practical work that provides generative observer-
based approaches where transformation processes were ap-
plied. In the third topic, we present related work on model
checking with specification patterns.

6.1. Theoretical Observer-based Approaches

The approach of observer timed automata to real-time sys-
tem verification might have been first suggested in the literature
by Havelund et al. [20]. This approach has been used to model
check in practice real-life systems such as the B&O power
controller and some timed safety instrumented systems [26].
In [16], Havelund et al. apply the three techniques, i.e., flag,
debt, and observer, to annotate their system model by adding
new variables or communication actions, and then observe
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these. They do this either by mentioning the variables in the
formulae to be verified (the first two techniques) or by letting
the new communication actions synchronize with a furthermore
added observer automaton (the third technique). Case studies
thereof indicate that the approach is effective.

Further on, observer automata were used by Aceto et
al. [27] for model checking temporal properties specified in
safety model property language (SBBL) on timed automata.
Their automata construction encodes a temporal logic formula.
The approaches by Gerth et al. [28] and Tripakis et al. [29] per-
form LTL model checking on timed Büchi automata and en-
code the properties as temporal logic formula in automata as
well. However, all those approaches also come with quite a few
limitations such as the manual construction of those automata
as well as the error-proneness process to adapt and observe the
original system model. Moreover, the comprehensiveness of
the observers represented is not assured as it is in our work in
the form of the pattern specification catalog.

6.2. Generative Observer-based Approaches

Jensen et al. [30] present a method for scaling up the real-
time verification tool UPPAAL by complementing it with meth-
ods for abstraction and compositionality through the notion of
timed ready simulation. Then, they proposed a method for au-
tomatically testing for the existence of a timed ready simulation
between real-time systems using the UPPAAL tool. Later on,
Heinzemann et al. [31] extend the compositional verification
approach of Jensen et al. [30] in particular by using different
kinds of refinement definitions including an automatic selec-
tion of the most suitable refinement definitions to construct test
automata for refinement checking.

Li et al. [32] use Live Sequence Chart (LSC), a message-
only untimed chart of real-time systems for property specifica-
tion and system modeling based on UPPAAL. In their work,
Li et al. specify safety and liveness properties for timed au-
tomata as LSC. They translate their LSC into a timed observer
automaton that reaches an error location if the property is vio-
lated, following the same principle as we apply for the safety
check of our observers. Therefore, that work requires the intro-
duction of another layer of the system model as LSCs following
a scenario-based verification approach.

André [17] proposes a set of correctness patterns encoding
common properties met when verifying concurrent real-time
systems. He identifies commonly used properties of correct-
ness for real-time systems. Then, he proposes an abstract syn-
tax for each pattern, followed by the translation of each pattern
to an observer instantiated in both timed automata and state-
ful timed CSP. Finally, he provides a concrete syntax for the
patterns, implemented in the IMITATOR tool [33]. Later on,
André and Petrucci [18] propose a set of patterns that encode
common specification or verification components when deal-
ing with concurrent real-time systems. There, they provide for-
mal semantics for those patterns, as time Petri nets, and show
that they can encode previous approaches [17]. Besides the
limitation of their set of supported property patterns to their
stateful timed CSP language [34], their work, like the work of

Gruhn and Laue [12], might not be directly applicable to exist-
ing standard model checking tools for real-time systems such
as UPPAAL.

Braberman et al. [35] proposed the Visual Time Event Sce-
narios (VTS), a visual formalism to express and model check
complex event-based requirements for real-time systems. A
tool was also developed to translate visually specified scenarios
into observer timed automata to check satisfaction of the stated
scenarios. Further on, Asteasuain and Braberman [36] propose
the omega-feather weight visual scenarios (ω-FVS), which is
a declarative language founded on graphical scenarios and ca-
pable of expressing ω-regular properties. As in [35], one can
use ω-FVS to automate the generation of rule scenarios (anti-
scenarios) that show how things could go wrong and violate the
rule at stake. Indeed, their work could be an alternative to ex-
press property specifications in the form of visual specifications
instead of the temporal logic formalism. However, the expres-
siveness of their formalism and the practical relevance of the
approach in terms of the PSP catalog are not clear.

6.3. Specification Pattern-based Approaches

Post et al. have proposed an automated analysis of formal
requirements [37] for properties such as consistency and vacu-
ity [25]. To do so, requirements must have been already for-
malized or mathematically described. More recently, Post et
al. have proposed the Req2Spec method [38] where they inte-
grate their previous work [25] into HANFOR [39]—an industry
scale tool based on the specification pattern system by Konrad
and Cheng [14]. By these means, they “automatically translate
the formal specifications into logics for downstream process-
ing” [38]. Although our work aims at a broader scope, possible
extensions of our pattern catalog could target their set of prop-
erties as well.

Another recent approach to formalize and analyze require-
ments is FRET, introduced by Giannakopoulou et al. [40] and
building upon the specification patterns by Dwyer et al. [11].
One of the core improvements of FRET is the support of both
future-time as well as past-time temporal logic.

Sirjani et al. [41] propose a formal verification process
where structured requirements in the form of GIVEN-WHEN-
THEN are encoded into behavior models (state diagrams
and sequence diagrams) from which their Rebeca model (an
actor-based language) is derived and checked against specified
(safety) properties. We believe their work could be potentially
leveraged by targeting the structured requirements of the PSP
catalog, which could provide a more comprehensive set of prop-
erties they could verify. Moreover, model checking UPPAAL
models, as opposed to Rebeca models, provides more compre-
hensive analyses other those safety requirements.

6.4. Summary

In our work, we have focused on a more fine-grained way to
have the observer interact with the system, following the solid
foundations provided by Havelund et al. [16] and without intro-
ducing further modeling overhead to the existing system. In all
those related work, the fact that the properties of interest might
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not be directly verifiable in a widely-used tool for real-time sys-
tems verification like UPPAAL requires further strategies to be
able to explore the benefits of an observer-based verification
process and the beneficial impacts of using property specifica-
tion patterns. For instance, such works do not provide ways
to automatically adjust the model so it can be rendered auto-
matically observable as we do in our approach. Without such
an automated step, the applicability of an observer-based ap-
proach may be hindered as it is still subject to further human
efforts to adapt the system model. Moreover, our work relies
on the solid and comprehensive foundation of property specifi-
cation patterns [13, 14, 11]. In this way, we are able to make
evident not only the practical relevance of our work, but also to
automatically build an observer for each property pattern with-
out changing the semantics of the model and provide a seamless
reachability checking for real-time systems.

7. Conclusion and Future Work

Property specification patterns aim for bridging the gap be-
tween practitioners and model checking. As typical for pat-
terns, the property specification patterns are organized in a cat-
alog, which comprises the “best practices” in system specifi-
cation and represents an attempt to capture proven solutions in
a single framework. However, there exists a gap between the
property specification patterns [13] which use the full expres-
sive power of temporal logic formalisms and UPPAAL which
supports only a subset of such formalisms. Thus, UPPAAL
does not support the majority of the property specification pat-
terns as the corresponding TCTL formulae cannot be expressed
in UPPAAL. Moreover, existing work does not bridge the gap
between all property specification patterns and existing model
checkers, even beyond UPPAAL, considering qualitative and
real-time requirements by leveraging an automated approach to
generate observers.

The contribution of this work is that we have closed this
gap by developing a comprehensive property specification pat-
tern catalog for UPPAAL. The catalog supports qualitative and
real-time properties that are specified using patterns and auto-
matically mapped to UPPAAL for verification. To achieve this
mapping, we have concretized and automated the manual flag,
debt, and observer techniques proposed by Havelund et al. [16]
for all qualitative and real-time patterns of the catalog by Au-
tili et al. [13], except of the real-time variants of the Prece-
dence patterns that are not feasible with UPPAAL. Especially,
we have specified UPPAAL-compatible formula and observer
templates that are specific for each pattern and that are collected
in our publicly available catalog. Moreover, we have devel-
oped an automated generator to produce concrete formulae and
observers based on the templates given a pattern-based prop-
erty specification from a user. The resulting formulae and ob-
servers can be directly used for verification in UPPAAL. Thus,
we have leveraged the benefits of property specification pat-
terns to the widely-used UPPAAL by enabling practitioners to
specify properties in a pattern-based way, that is, without using
a temporal logic, and to verify these properties in UPPAAL.

This approach promises to ease the use of model checking with
UPPAAL in practice.

We have evaluated our catalog on three real-time systems
from literature [19, 20, 21], two of which have been applied in
an industrial setting. These systems have been originally veri-
fied with UPPAAL using manually created observer automata.
Applying our catalog to these systems, we demonstrate that our
catalog can express the properties of interest and automatically
generate corresponding observer automata and formulae. Us-
ing these generated observer automata and formulae, we were
able to reproduce the verification results reported in literature
for these systems, which provides evidence for the validity of
our catalog.

As future work, we envision to prove by (weak) bisimula-
tion that the annotations we make to the system model do not
alter its specified behavior. We also plan to prove that the ob-
servers that we build are correct with respect to the TCTL for-
mulae in the catalog by Autili et al. [13]. Last, but not least, we
plan to apply our approach to observers/monitors at runtime.
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