
Just-in-Time Code Duplicates Extraction

Eman Abdullah AlOmara,1,∗, Anton Ivanovb,1, Zarina Kurbatovac, Yaroslav
Golubevc, Mohamed Wiem Mkaouerd, Ali Ounie, Timofey Bryksinf, Le

Nguyend, Amit Kinid, Aditya Thakurd

aStevens Institute of Technology, Hoboken, NJ, USA
bHSE University, Moscow, Russia

cJetBrains Research, Belgrade, Serbia
dRochester Institute of Technology, Rochester, NY, USA

eETS Montreal, University of Quebec, Montreal, QC, Canada
fJetBrains Research, Limassol, Cyprus

Abstract

Context: Refactoring is a critical task in software maintenance, and is usu-
ally performed to enforce better design and coding practices, while coping with
design defects. The Extract Method refactoring is widely used for merging du-
plicate code fragments into a single new method. Several studies attempted to
recommend Extract Method refactoring opportunities using different techniques,
including program slicing, program dependency graph analysis, change history
analysis, structural similarity, and feature extraction. However, irrespective
of the method, most of the existing approaches interfere with the developer’s
workflow: they require the developer to stop coding and analyze the suggested
opportunities, and also consider all refactoring suggestions in the entire project
without focusing on the development context.
Objective: To increase the adoption of the Extract Method refactoring, in this
paper, we aim to investigate the effectiveness of machine learning and deep
learning algorithms for its recommendation while maintaining the workflow of
the developer.
Method: The proposed approach relies on mining prior applied Extract Method
refactorings and extracting their features to train a deep learning classifier that
detects them in the user’s code. We implemented our approach as a plugin for
IntelliJ IDEA called AntiCopyPaster. To develop our approach, we trained
and evaluated various popular models on a dataset of 18,942 code fragments
from 13 Open Source Apache projects.

∗Corresponding author
Email addresses: ealomar@stevens.edu (Eman Abdullah AlOmar),

apivanov_1@edu.hse.ru (Anton Ivanov), zarina.kurbatova@jetbrains.com (Zarina
Kurbatova), yaroslav.golubev@jetbrains.com (Yaroslav Golubev), mwmvse@rit.edu
(Mohamed Wiem Mkaouer), ali.ouni@etsmtl.ca (Ali Ouni),
timofey.bryksin@jetbrains.com (Timofey Bryksin), ln8378@rit.edu (Le Nguyen),
ak3328@rit.edu (Amit Kini), at4415@rit.edu (Aditya Thakur)

1Authors contributed equally

Preprint submitted to Information and Software Technology February 8, 2023

ar
X

iv
:2

30
2.

03
41

6v
1

 [
cs

.S
E

]
 7

 F
eb

 2
02

3

Results: The results show that the best model is the Convolutional Neural
Network (CNN), which recommends appropriate Extract Method refactorings
with an F-measure of 0.82. We also conducted a qualitative study with 72
developers to evaluate the usefulness of the developed plugin.
Conclusion: The results show that developers tend to appreciate the idea of
the approach and are satisfied with various aspects of the plugin’s operation.

Keywords: refactoring, machine learning, software quality

1. Introduction

Duplicating a code fragment is the act of copying and pasting it with or with-
out minor modifications into another section of the code base. Despite being
an intuitive practice of code reuse, duplicate code brings its own challenges to
software maintenance and evolution [1, 2]. Recent studies have shown that du-
plicate code has become a problem that affects both developers and researchers.
Developers can suffer from fixing a bug in a duplicate code fragment, which
might then need to be applied to all of its siblings [3]. This can complicate and
slow down the maintenance and lead to bug propagation. On the other hand,
researchers may face problems when building machine learning models, com-
bined with natural language processing techniques, which are designed to learn
from code to support various software development practices. The threat of du-
plicate code can easily introduce data leakage when appearing in both training
and testing data [4, 5]. Therefore, removing duplicate code via refactoring has
become a natural response to arising challenges [6].

Refactoring is the practice of improving software quality without altering
its behavior [7]. Developers intuitively refactor their code for multiple pur-
poses: improving program comprehension, removing duplicate code, reducing
complexity, dealing with technical debt, and removing code smells [8, 9, 10, 11].
Refactoring duplicate code consists in taking a code fragment and moving it to
create a new method, while replacing all instances of that fragment with a call
to this newly created method. This refactoring is known as Extract Method.
Various studies have recommended refactorings using different motivation and
base, such as improving code structure [12, 13], feature extraction [14, 15, 16],
reducing code duplication [17, 18, 19, 20], and removing the Long Method code
smell [21, 22, 23, 24, 25, 26].

Despite their promising results, the adoption of these studies is challenged
by their need to exhaustively search the entire code base to recommend proper
Extract Method refactorings. In other words, they take the entire source code of
the project as input and analyze it to find any Extract Method refactoring op-
portunities. However, developers may not have the privilege or the knowledge to
perform a program-wide refactoring, which makes them reluctant to adopt these
recommendations. Moreover, this process requires developers to find a separate
time to review various refactoring suggestions that are unrelated to their current
work in the code, which reduces the chances of these recommendations to be

2

Figure 1: Extract Method refactoring opportunity (code fragments extracted from [28]).

accepted in practice. Even though the Extract Method refactoring is a built-in
feature in modern programming environments, its adoption by developers is still
limited even in this setting [27].

To address the above-mentioned challenges, the goal of this paper is to aid
developers with just-in-time refactoring of duplicate code. Unlike the existing
approaches that follow a posterior approach of removing accumulated duplicate
code, we aim at increasing the awareness of developers while writing their code,
i.e., removing duplicate code as soon as it is introduced in their code base.
To do so, we design an automated approach implemented as an IntelliJ IDEA2

plugin called AntiCopyPaster that monitors the introduction of potential
duplicate code and pro-actively recommends its refactoring using the IDE’s
Extract Method feature.

2IntelliJ IDEA: https://www.jetbrains.com/idea/

3

https://www.jetbrains.com/idea/

(a) Identification of Duplicate Code instances.

(b) Correction of Duplicate Code through the application of Extract Method refactoring.

Figure 2: AntiCopyPaster in action, showing the identified Duplicated Code and the rec-
ommended Extract Method refactoring.

4

As shown in Figures 1 and 2, when a duplicate piece of code is pasted and
is not edited for some time, a pop-up notification appears at the bottom of the
screen, alerting the developer of a potential Extract Method refactoring. The
developer can choose whether to click on the notification or ignore it, until it
disappears after a few seconds. If the notification is clicked, the Extract Method
feature is called with the duplicate code as input, and a refactoring preview
window is opened. The developer can either apply the refactoring and suggest
a name to the newly created method, or cancel the process.

The main advantage of this solution, in comparison with previous works, is
the ability to recommend just-in-time refactorings, which increases the chances
of their acceptance, since it recommends changes to a code that is (1) just edited
by the developer, and (2) within the current context of development. However,
not all duplicate code fragments need to be extracted, and the main challenge
is being able to recommend refactoring only when the refactoring is worth it,
in order not to bother the developer by suggesting to extract random pieces of
code or trivial statements.

In essence, we tackle the problem of whether the given duplicate code frag-
ment should be extracted as a binary classification problem. First, the pasted
code fragment is parsed using the IDE’s Program Structure Interface (PSI)3 to
generate its corresponding syntactic and semantic model. This model is used
to calculate a set of 78 comprehensive structural and semantic metrics, pre-
viously used in various studies recommending the Extract Method refactoring
[16, 23, 29, 30, 31, 32, 33, 34, 35, 36]. Based on these metrics, a binary clas-
sification is performed to decide whether or not to suggest the refactoring. To
handle the high dimensionality of the data, we design our binary classifier using
a Convolutional Neural Network (CNN).

We evaluate our approach in terms of two dimensions: correctness and use-
fulness. The first dimension evaluates the CNN’s learning ability to correctly
detect whether a given code fragment should be refactored. We trained and
tested our model on a dataset of 18,942 code fragments mined from 13 mature
Apache projects. Our experimental results show that our CNN model achieves
high performance in the binary classification, with an F-measure of 0.82, which
outperforms all other evaluated machine learning algorithms, such as Random
Forest, Support Vector Machine, Naive Bayes, and Logistic Regression, while
also being lightweight and convenient to use.

As for the second dimension, we designed a survey that invites developers to
use AntiCopyPaster and reflect on its usability and usefulness. In total, 72
developers participated in the survey. The results show that the vast majority
of participants found our AntiCopyPaster tool useful and were satisfied with
its operation. Furthermore, the survey has also shown that the majority of
participants are not necessarily familiar with the Extract Method built-in IDE
feature, and therefore, we foresee their usage of the plugin as an opportunity to
raise the awareness of this refactoring type.

3PSI: https://plugins.jetbrains.com/docs/intellij/psi-files.html

5

https://plugins.jetbrains.com/docs/intellij/psi-files.html

This paper extends our recently accepted tool paper [37] by providing more
details about the used model and its design, discussing the used metrics and the
performance of various models, and describing the full comprehensive analysis
of user’s feedback, including their general usage of refactorings and the open
coding of their answers. To summarize, this paper makes the following key
contributions:

• We design and implement a novel approach called AntiCopyPaster that
pro-actively identifies and recommends the Extract Method refactoring as
soon as a duplicate code fragment is pasted into the file.

• We train, deploy, and evaluate a CNN model that has shown good perfor-
mance with respect to other models, achieving an F-measure of 0.82.

• We provide AntiCopyPaster as an open source tool publicly available
for the community [38]. We also provide a comprehensive replication pack-
age containing the dataset, survey results, and scripts, as well as docu-
mentation on how to embed another model into the plugin, allowing re-
searchers and practitioners to customize the tool and match their own
preferences [39].

The remainder of this paper is organized as follows. Section 2 elaborates
on the main concepts of the model. Section 3 reviews the existing studies
related to the Extract Method refactoring opportunities. Section 4 outlines our
approach, including data collection, metrics selection, and model training. The
tool implementation is discussed in Section 5. Section 6 describes the conducted
evaluation and its research questions, as well as our findings. Section 7 captures
threats to the validity of our work, and we conclude the paper in Section 8.

2. Background

In this section, we elaborate on the main concepts of CNNs as discussed by
Kriszhevsky et al. [40].

Convolutional neural networks (CNNs) are a type of neural network archi-
tecture that uses a series of filters to extract significant features for the purpose
of classification. These filters are typically convolutional layers, mapping inputs
from the previous layer to the next layer by applying trainable weights to a
predefined window of data and then outputting the weighted sum of that win-
dow. Another filter that can be applied is a pooling layer. Pooling allows the
accumulation of features from maps generated during the convolution. The idea
of pooling is to reduce the spatial size of the representation and decrease the
number of parameters and computation in the network. Typically, this is done
via a max pooling layer, which again looks at a window of data from the previ-
ous input layer, and then takes the maximum value in that window to output
to the next layer. Pooling layers are a computationally efficient way to distill
significant features from the previous layer, since there are no weights to train.
In our work, we also used traditional fully connected feedforward layers as well,

6

which take input values, apply a trainable weight to it and feed it through an
activation function before outputting.

Since neural networks may quickly overfit when trained on fewer but similar
instances, there are various strategies to mitigate such overfitting. Dropout is
a regularization strategy that deactivates a defined percentage of neurons in a
layer at random every training epoch. Deactivating these neurons ensures that
not every neuron is exposed to all the data every epoch, so it cannot overfit
to superfluous patterns in the data. Also, it reduces any feature detection co-
adaptations as the deactivated neurons cannot influence the retained ones.

Batch normalization is a transformation applied to the current batch of input
data to the network. As the name implies, it normalizes the current input batch
to take out unnecessary bias inherent in the feature data, such as some features
having a different order of magnitude than others. By normalizing the input
data, the CNN can train more effectively and will converge with higher accuracy.

The choice of activation function is critical to the learning rate of neural
networks. It also specifies the model’s type of prediction. In this paper, Rectified
Linear Unit (ReLU) was selected as the activation function. The ReLU function
is a piecewise function that is zero for negative values and linear for positive
values. This is a classic function used in neural networks because it masks
out any negatively weighted features and then gives linear importance to the
positively weighted ones.

During the model’s training, the loss function computes the error between
the ground truth data labels and the predicted labels. This error between the
actual versus the predicted labels (i.e., loss) is used to update the weights of
the model to maximize accuracy (minimize loss). Loss minimization is carried
out by first propagating forward through the network, and applying all of the
current filters and weights to the input data to calculate predictions. Then, the
loss is calculated from the current predictions, before performing a backward
propagation to find the gradient of each weight with respect to the loss (i.e.,
finding the contribution of each weight to the loss). Using the gradients from
each weight, the stochastic gradient descent is carried out on the loss space,
which results in minimizing it.

3. Related Work

Various studies that relate to software refactoring have been of importance to
both practitioners and researchers. A considerable effort has been spent by the
research community on identifying and suggesting Extract Method refactorings.
The focus of these studies ranges from using program slicing techniques [30,
31, 41] and graph representations of code [12, 23, 32, 35] to relying on scoring
functions to find the most appropriate refactoring candidates [21, 29, 33, 34]
and using machine learning techniques [14, 15, 16, 36]. We summarize the key
studies in Table 1.

Maruyama [30] developed a semi-automated approach for suggesting refac-
torings, which decomposed the control flow graph using block-based program

7

Table 1: Related work in identifying the Extract Method refactoring opportunities.

S
tu
d
y

Y
ea
r

A
p
p
ro
ac
h

T
ec
h
n
iq
u
e

T
oo

l
D
es
ig
n
D
ef
ec
t

P
lu
gi
n
?

M
ar
uy

am
a
[3
0]

20
01

R
ul
e-
ba

se
d

C
od

e
sl
ic
in
g

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
N
o

M
ur
ph

y-
H
ill

&
B
la
ck

[9
]

20
08

R
ul
e-
ba

se
d

A
ss
er
ti
on

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
N
o

T
sa
nt
al
is

&
C
ha

tz
ig
eo
rg
io
u
[4
1,

31
]

20
09

&
20
11

R
ul
e-
ba

se
d

C
od

e
sl
ic
in
g

JD
eo
do

ra
nt

Lo
ng

M
et
ho

d
Y
es

Y
an

g
et

al
.
[2
1]

20
09

Sc
or
e-
ba

se
d

Fr
ag
m
en
t
id
en
ti
fic
at
io
n

A
ut
oM

eD
Lo

ng
M
et
ho

d
N
o

K
an

em
it
su

et
al
.
[1
2]

20
11

G
ra
ph

-b
as
ed

P
ro
gr
am

de
pe

nd
en
cy

gr
ap

h
R
eA

F
N
ot

m
en
ti
on

ed
N
o

Sh
ar
m
a
[3
2]

20
12

G
ra
ph

-b
as
ed

D
at
a
&

st
ru
ct
ur
e
de
pe

nd
en
cy

N
/A

N
ot

m
en
ti
on

ed
N
o

Si
lv
a
et

al
.
[3
3,

34
]

20
14

&
20
15

Sc
or
e-
ba

se
d

St
ru
ct
ur
al

si
m
ila

ri
ty

JE
xt
ra
ct

N
ot

m
en
ti
on

ed
Y
es

C
ha

ra
la
m
pi
do

u
et

al
.
[4
2]

20
16

R
ul
e-
ba

se
d

Fu
nc
ti
on

al
re
le
va
nc
e

SE
M
I

Lo
ng

M
et
ho

d
N
o

H
aa
s
&

H
um

m
el

[2
9]

20
16

Sc
or
e-
ba

se
d

C
on

tr
ol

&
da

ta
flo

w
gr
ap

h
C
on

Q
A
T

Lo
ng

M
et
ho

d
N
o

X
u
et

al
.
[1
4]

20
17

M
L-
ba

se
d

Fe
at
ur
e
ex
tr
ac
ti
on

G
E
M
S

N
ot

m
en
ti
on

ed
N
o

Y
ue

et
al
.
[1
5]

20
18

M
L-
ba

se
d

Fe
at
ur
e
ex
tr
ac
ti
on

C
R
E
C

C
od

e
C
lo
ne

N
o

Y
os
hi
da

et
al
.
[1
7]

20
19

R
ul
e-
ba

se
d

C
od

e
m
od

ifi
ca
ti
on

an
al
ys
is

N
ot

m
en
ti
on

ed
C
od

e
C
lo
ne

Y
es

A
ni
ch
e
et

al
.
[1
6]

20
20

M
L-
ba

se
d

Fe
at
ur
e
ex
tr
ac
ti
on

N
/A

N
ot

m
en
ti
on

ed
N
o

V
an

de
r
Le

ij
et

al
.
[3
6]

20
21

M
L-
ba

se
d

Fe
at
ur
e
ex
tr
ac
ti
on

N
/A

N
ot

m
en
ti
on

ed
N
o

Sh
ah

id
ie

t
al
.
[3
5]

20
22

G
ra
ph

-b
as
ed

D
ep

en
de
nc
y
gr
ap

h
an

al
ys
is

N
/A

Lo
ng

M
et
ho

d
N
o

T
iw
ar
i&

Jo
sh
i[
23
]

20
22

G
ra
ph

-b
as
ed

Se
gm

en
ta
ti
on

N
/A

Lo
ng

M
et
ho

d
Y
es

T
h
is

w
or
k

D
L
-b
as
ed

F
ea
tu
re

ex
tr
ac
ti
on

A
n
t
iC

o
p
y
P
a
st

er
D
u
p
li
ca
te

C
od

e
Y
es

8

slicing. This approach was later adapted and implemented by Tsantalis and
Chatzigeorgiou [41] in the JDeodorant tool that identified Extract Method
refactoring opportunities using code slicing along with a set of rules to ensure
behavior preservation after slice extraction. In a follow-up work, Tsantalis and
Chatzigeorgiou [31] proposed a set of additional behavior preservation rules that
exclude refactoring opportunities related to slices, the extraction of which could
possibly cause a change in the program behavior. In another study, Murphy-Hill
and Black [9] presented three features to improve the adoption and usage of the
Extract Method refactoring, namely, selection assist, box view, and refactoring
annotation. Their formative study shows that user satisfaction was significantly
increased with these features. Sharma [32] proposed Extract Method candidates
based on the data and the structure dependency graph. Their suggestions were
obtained by eliminating the longest dependency edge in the graph.

Kanemitsu et al. [12] presented a visualization method for identifying Extract
Method refactorings and introduced an implementation of the proposed method
called ReAF. Another approach was proposed by Yang et al. [21], the authors
identified fragments to be extracted from long methods. Their approach is
implemented as a prototype called AutoMeD. The evaluation results suggested
that the approach may reduce the refactoring cost by 40%.

Silva et al. [33] used a similarity-based approach to recommend automated
Extract Method refactoring opportunities that hide structural dependencies that
are rarely used by the remaining statements in the original method. Their eval-
uation on a sample of 81 Extract Method opportunities achieved the precision
and recall rates close to 50% when detecting refactoring instances. In another
study, Silva et al. [34] extended their work by designing an Eclipse plugin called
JExtract that automatically identified, ranked, and applied refactorings upon
request. Inspired by the study of Silva et al. [34], Haas and Hummel [29] devel-
oped a scoring function aimed to decrease the complexity of code by considering
the code’s length and nesting depth. The evaluation against 10 experienced de-
velopers showed that they accepted 86% of the suggested refactorings. Another
study by Charalampidou et al. [42] shows the application of functional rele-
vance to detect the Long Method code smell. The authors developed a tool
called SEMI to automate the application of this approach for Java classes.

Xu et al. [14] proposed a plugin called GEMS that used both structural
and functional features of code fragments from the real-world Extract Method
refactorings to train a model to suggest refactorings. GEMS utilized the same
extraction algorithm as JExtract [34] to create code fragments for the extrac-
tion. Yue et al. [15] presented a tool called CRec that combined static analysis
and the analysis of the history of code to suggest code clones that should be
extracted into a separate method. Another experiment was conducted using a
pro-active clone recommendation system. Yoshida et al. [17] designed an Eclipse
plugin that tracks user code modification and constructed a system for support-
ing clone refactoring. When the system detects an Extract Method refactoring
being performed, it automatically searches for clones of the extracted fragment
and suggests to extract them as well. However, this still requires a developer to
think about whether a code clone is worth refactoring.

9

Aniche et al. [16] used a machine learning approach that involves predicting
refactorings using code, process, and ownership metrics. The resulting models
predict 20 different refactorings at the levels of a class, method, and variable
with an accuracy often higher than 90%. Another experiment that predicts
refactorings was conducted using quality metrics. Van der Leij et al. [36] ex-
plored the recommendation of the Extract Method refactoring at ING. They
observed that machine learning models can recommend Extract Method refac-
torings with high accuracy, and the user study reveals that ING experts tend
to agree with most of the recommendations of the model.

More recently, Shahidi et al. [35] automatically identified and refactored the
Long Method code smells in Java code using advanced graph analysis techniques.
Their proposed approach was evaluated on five different Java projects. The
findings reveal the applicability of the proposed method in establishing the single
responsibility principle with a 21% improvement. In another study, Tiwari
and Joshi [23] introduced Segmentation as a graph-based technique to identify
Extract Method refactoring with the aim of achieving higher performance with
fewer refactoring suggestions. The authors compared their approach against
two state-of-the-art approaches, i.e., JExtract and SEMI, and showed an
improvement over both of them.

Overall, recommending Extract Method refactoring opportunities has been
extensively studied [16, 17, 31, 36]. Although some of the proposed techniques
utilized various code metrics as a new way for recommending Extract Method
refactoring, to the best of our knowledge, no prior studies have proposed a just-
in-time automated Extract Method refactoring tool for the purpose of specifically
eliminating code duplication while using code metrics as features to predict
whether a piece of code should be extracted. The just-in-time automatic aspect
is crucial since it allows developers to remain in the context of the suggestion
and thus make a timely decision. This alleviates the burden of reviewing a long
list of refactoring opportunities, located in code fragments that are irrelevant to
development context.

To gain a more in-depth understanding of the issue, increase the awareness of
duplicate code, and increase the adoption of Extract Method refactorings, in this
paper, we develop a tool called AntiCopyPaster that is fast, conformable to
use, and integrated into the developer’s IDE editor. Our study complements the
existing efforts that are carried out to recommend Extract Method refactorings
in general [9, 16, 32, 33, 36] or specifically in order to eliminate certain code
smells [17, 23, 29, 31, 35, 42].

4. Approach

In a nutshell, the goal of our work is to automatically provide just-in-time
recommendations of Extract Method refactoring opportunities as soon as dupli-
cate code is introduced in the opened file in the IDE. Our approach takes code
metrics as input and makes a binary decision on whether the code fragment has
to be extracted. The present work can be divided into four phases as shown
in Figure 3. It consists of: (1) data collection, (2) refactoring detection, (3)

10

Table 2: The overview of the data.

Item Count

Number of projects 13
Software quality metrics 78
Extracted code fragments (Positive Examples) 9,471
Non-Extracted code fragments (Negative Examples) 1,000,000
Selected non-Extracted code fragments (Negative Examples) 9,471
Final dataset 18,942

code metrics selection, and (4) tool design and evaluation. The dataset, tool,
and scripts utilized in this study are available in the replication package [39] for
extension and replication purposes.

4.1. Data Collection
Our first step consists of selecting 13 mature projects from the Apache

Software Foundation,4 which are popular open-source Java projects hosted on
GitHub [43, 44]. These curated projects were selected with respect to both
project size and activity, while verifying that they were Java-based, the only
language supported by RefactoringMiner [45, 46]. An overview of the extracted
data is provided in Table 2.

4.2. Refactoring Detection
To extract the entire refactoring history of each project, we used Refactoring-

Miner v2.0,5 a widely-used refactoring detection tool introduced by Tsantalis et
al. [45, 46]. We decided to use RefactoringMiner as it has shown good results
in detecting refactorings compared to other available tools (a precision of 99.8%
and a recall of 95.8%) and is suitable for a study that requires a high degree of
automation since it can be used through its external API.

We identify methods that underwent an Extract Method refactoring (i.e.,
positive examples) using RefactoringMiner. In total, the tool mined 9,471 cases
of Extract Method refactorings. Specifically, we discovered Extract Method refac-
torings, then traversed the history to the previous commit and took the code
fragment that had been extracted. This allowed us to detect fragments that are
worth of being extracted, since they were extracted in mature projects. These
refactorings are not necessarily only applied in the context of duplicate code,
and thus our model learns from various contexts (e.g., splitting long methods).
Our model is not intended to identify duplicate code, since this is handled by
another algorithm in the tool, but to evaluate whether the given duplicate code
is worth refactoring.

4Apache projects on GitHub: https://github.com/apache
5RefactoringMiner: https://github.com/tsantalis/RefactoringMiner

11

https://github.com/apache
https://github.com/tsantalis/RefactoringMiner

P
h
a
s
e

4
:

T
o
o
l

D
e
s
i
g
n

&

E
v
a
l
u
a
t
i
o
n

P
h
a
s
e

1

&

2
:

D
a
t
a

C
o
l
l
e
c
t
i
o
n

&

R
e
f
a
c
t
o
r
i
n
g

D
e
t
e
c
t
i
o
n

Se
le

ct
 A

pa
ch

e
op

en
-s

ou
rc

e

Ja
va

 p
ro

je
ct

s

(1
3)

C
lo

ne
 re

po
si

to
rie

s

(1

3)

D
et

ec
t E

xt
ra

ct
 M

et
ho

d

co
de

 fr
ag

m
en

t

(R
ef

ac
to

rin
gM

in
er

)

P
h
a
s
e

3
:

C
o
d
e

M
e
t
r
i
c
s

S
e
l
e
c
t
i
o
n

Se
le

ct
 c

od
e

m
et

ric
s

fro
m

lit
er

at
ur

e

(7

8)

C
al

cu
la

te
 c

od
e

m
et

ric
s

Ex
tra

ct
 c

om
m

its

Po
si

tiv
e

an
d

ne
ga

tiv
e

ex
am

pl
es

w
ith

 c
or

re
sp

on
di

ng
m

et
ric

s

Po
si

tiv
e

an
d

ne
ga

tiv
e

ex
am

pl
es

Ex
tra

ct
ed

 c
od

e
fra

gm
en

ts

 (9
,4

71
 p

os
iti

ve
 e

xa
m

pl
es

)

N
on

-e
xt

ra
ct

ed
 c

od
e

fra
gm

en
ts

(9

,4
71

 n
eg

at
iv

e
ex

am
pl

es
)

R
an

k
no

n-
Ex

tra
ct

 M
et

ho
d

co
de

 fr
ag

m
en

ts

(R

an
ki

ng
 a

lg
or

ith
m

)

Su
rv

ey
 p

ar
tic

ip
an

ts
Su

rv
ey

 p
re

pa
ra

tio
n

Pi
lo

t s
tu

dy
D

at
a

an
al

ys
is

R
Q

 2

R
Q

 1
O

pt
im

iz
ed

 m
od

el
M

od
el

 tr
ai

ni
ng

M
od

el
 tu

ni
ng

 &

 e
va

lu
at

io
n

D
at

a
pr

ep
ro

ce
ss

in
g

Po
si

tiv
e

an
d

ne
ga

tiv
e

ex
am

pl
es

w
ith

 c
or

re
sp

on
di

ng
m

et
ric

s

F
ig
ur
e
3:

T
he

ov
er
al
l
pi
pe

lin
e
of

ou
r
w
or
k.

12

As mentioned in Section 3, various approaches rank candidate code frag-
ments for method extraction. These techniques can be also used to discover
the opposite: code fragments that are less likely to be extracted, i.e., negative
samples for our model. In our work, we use the ranking formula inspired by the
work of Haas and Hummel [29], since the authors corroborated its validity by
providing a human evaluation of the results. To collect the negative samples,
we start with selecting all sequences of statements that are eligible to be ex-
tracted. Then, they are ranked according to a special scoring formula proposed
by Haas and Hummel [29] that optimizes independent code metrics. From their
formula, we used three terms: statement length, nesting depth, and nesting area.
After ranking the fragments, according to the original work, the fragments that
are more likely to be extracted will be located at the top of the list. In order
to gather the ones that are less likely to be extracted, we skip the first 5% of
fragments and select the bottom 95% of the list. We carried out this process
for all 13 projects, then, to match the number of positive examples, we sampled
9,471 negative examples to constitute the final dataset.

4.3. Code Metrics Selection
After collecting positive and negative examples, we characterize them through

various metrics. The goal of selecting metrics is to identify patterns in their val-
ues to allow distinguishing between the two classes of fragments. To do so,
we gathered all the metrics that have been extensively used in previous stud-
ies [15, 16, 29, 47, 48, 49] and then removed all the redundant metrics to avoid
generating features with similar values. In machine learning, duplicated val-
ues is a well-known problem that can have adverse effects on models and cause
training algorithms to overfit or inflate classification metrics [5]. In total, we
selected 78 metrics that can be divided into three main categories:

1. Metrics that relate to the code fragment: e.g., length of the code
fragment in symbols, if keyword count, etc.

2. Metrics that relate to the enclosing method: e.g., length of the
enclosing method in lines, etc.

3. Coupling metrics: e.g., number of references to fields from the enclosing
class in the code fragment, etc.

The list of metrics is available in our replication package [39].

4.4. Model Training
4.4.1. Dataset

To prepare the dataset, we label code fragments that underwent an Extract
Method refactoring with “1”, and code fragments that are less likely to be ex-
tracted with “0”. Our feature vectors consist of the collected code metrics values,
calculated for the positive and negative examples. In total, we annotated 9,471
code fragments as positive and 9,471 code fragments as negative.

13

Figure 4: The architecture of the proposed CNN model.

4.4.2. CNN Binary Classification
We define the detection of an Extract Method opportunity as a binary clas-

sification problem. Our intended model takes a set of metrics as input, and uses
them as features to learn patterns in their values that distinguish between du-
plicate code fragments that are more likely and less likely to be extracted. Since
the input corresponds to 78 metrics, we chose to rely on CNNs for building our
model. CNNs have been proven to achieve higher performance when classifying
with a high number of features [50, 51].

Our CNN model consists of multiple layers of fully connected nodes, struc-
tured into a convolutional, deconvolutional, dense layers, and a dropout stage
to prevent overfitting. The visualization of this architecture can be found in
Figure 4. The input to the CNN is a vector of 78 metrics values that are
batch-normalized to stabilize their distributions, through introducing additional
network layers to control their mean and variance. The batch normalised in-
puts are fed to a convolution that reduces the feature space from 78 to 32.
This convolution allows the model to adjust the weighting of the features, so
the more significant ones are signal-boosted while less significant ones get sup-
pressed (without being entirely dismissed). To do so, it takes a subset of the
input vector, and applies a given weight to each element before summing them
up and evaluating them using an activation function. We use the Rectified Lin-
ear Unit (ReLU) as the activation function for the convolutional layers. As an
example of visualization, in Figure 5, a convolutional layer with a 3 × 1 filter
multiplies the filter values by the learned weights and sums them up to distill
dimensionality down to the most important features. During the training, the
gradients were computed using a back-propagation algorithm.

Then, the convoluted data is fed to the deconvolutional layer. This is essen-
tially the opposite of a convolutional layer where we take one value and multiply

14

Figure 5: 1D convolution with a kernel size 3 and stride 3.

it by the layer’s weights to increase the dimensionality of our feature space. In
this layer, the most important features are boosted with higher weights once the
model is trained. Thus, the training of the model adjusts the weights to boost
important features and suppresses the noise by reducing the feature space to
what is most significant, then immediately expanding it again to make those sig-
nificant features more prominent in the network. To further refine the weighting
of our set of features, we use a max-pooling layer.

The max pool layer contains a filter of size 2 and takes the largest number in
the said filter. This cuts our feature space in half and only considers the most
prominent values. It is also computationally efficient since there are no weights
associated with this max function. Since the training data is randomized, there
is a possibility of the same class instances being consecutively fed during the
training, which potentially biases the model into overpredicting that class. To
avoid such overtraining bias, we added a dropout section to hide a subset of the
nodes every epoch.

The final layer in the CNN is a dense one, in which each node receives the
input from all nodes of the previous layer. Essentially, it maps the input to the
corresponding output once the weights are adjusted properly (learned). The
dense layer will output to a single node, making a probabilistic decision about
whether a code fragment has to be refactored, given its original inputs (metric
values). The CNN has been trained to minimize the binary cross-entropy loss
function that calculates the distance between the model’s predicted label and
the expected one.

4.4.3. Model Tuning
The purpose of this stage in the model construction process is to obtain the

optimal set of classifier parameters that provide the minimized loss value; in
other words, the objective of this task is to tune the hyperparameters. For our
model, we optimized the batch size, number of nodes for the deconvolutional 1D
layer, the dropout percentage, and the size of the dense layer. A randomized
search was used to optimize these parameters [52]. For each set of parameters, 3
epochs were run to calculate the loss value. For batch size, we generated random
values between 10 to 256. For sizes of layers, we generated random numbers
between 16 and 256. For the dropout percentage, we tried random percentages

15

Table 3: Optimal parameter values for CNN.

Parameter Value

n_epochs 3
batch size 20
convolutional layer 32
deconvolutional 1D layer 242
dropout 21.5
dense layer 190

between 0 and 50. Lastly, for the dense layer size, we tried random sizes between
5 and 256. The size of the convolutional layer was kept constant at 32. The
parameters which had the minimal loss value after 3 epochs were considered as
the best set of parameters (see Table 3). As a result, the hyperparameter tuning
has set the optimal batch size to 20, the size of the deconvolutional 1D layer to
242, the dropout percentage to 21.5, and the size of the dense layer to 190.

5. Tool implementation

In this section, we describe the specific implementation of our proposed
approach and the trained model. AntiCopyPaster is a plugin for IntelliJ
IDEA, one of the most popular IDEs for Java. The plugin is composed of four
main components.

Duplicate Detector. To detect duplicates, we use bag-of-words token-
based clone detection [53]. This code similarity-based approach takes a given
code fragment as input, then parses all methods inside the same file, so that
each method is represented as tokens. The next step is to compute the similarity
between the code fragment and methods via their abstracted token representa-
tion. This approach can detect an exact match, i.e., when the code fragment
is a substring of the method body. The bag-of-tokens similarity also takes into
account minor changes in the pasted fragment, such as reordering the sequence
of code, or renaming an identifier.

Since it is possible that a code fragment will be significantly edited soon
after it is pasted, in order to avoid the immediate flagging of the pasted code as
duplicate, and potentially interfering with the developer’s flow, we implement a
delay and place the pasted code fragment in a queue. Then, two sanity checks
are executed: we check whether the pasted fragment is Java code and whether it
constitutes a correct syntactic statement. To do that, the plugin tries to build a
PSI tree of the fragment. A PSI (Program Structure Interface) tree is a concrete
syntax tree that is used in the IntelliJ Platform to represent the code [54]. If
a PSI tree can be built and represents a valid statement, and if the duplicates
still remain after the delay, the code fragment is passed to the Code Analyzer.

Code Analyzer. This component takes the duplicate fragment as input
and uses its PSI representation to calculate the 78 metrics that we discussed

16

in Section 4. The code fragment, with its corresponding vector of metrics,
consitute the input to the Method Extractor.

Method Extractor. This component takes as input the vector of metrics,
and feeds it to the pre-trained model in order to make the binary decision of
whether this code fragment is similar to the ones that have been previously refac-
tored in the training dataset. If the binary classifier confirms the refactoring,
then Refactoring Launcher is called.

Refactoring Launcher. This component starts with checking if the pasted
code fragment could be extracted into a separate method without any compi-
lation errors. If all checks pass, a notification is then enabled to appear in
the bottom right corner of the editor, informing the developer that an Extract
Method refactoring is recommended (see Figure 1). If the user responds to
the tip, Refactoring Launcher passes the duplicate fragment as an input to the
IDE’s built-in Extract Method API, and initiates the preview window. The user
previews the code change and has the choice to either confirm the refactoring,
while renaming the newly extracted method, or cancel the entire process.

6. Evaluation and Discussion

This section describes our empirical study aimed to evaluate the proposed
approach, as well as its main results. We formulated two research questions:

RQ1. To what extent is the CNN model able to correctly detect the Extract
Method refactoring compared to other models?

RQ2. Do users find AntiCopyPaster and the recommended Extract Method
refactorings useful?

6.1. RQ1: Correctness
6.1.1. Approach

To address RQ1, we explore the ability of our CNN to accurately detect
Extract Method refactoring opportunities. Furthermore, we compare the per-
formance of our CNN model with four machine learning classifiers: Random
Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), and Logistic
Regression (LR). We selected these ML classifiers since their performance was
competitive in similar binary classification problems [16, 36, 55, 56, 57, 58]. To
evaluate the performance of the algorithms, we use out-of-sample bootstrap val-
idation since this validation technique yields the best balance between the bias
and variance in comparison to single-repetition holdout validation [59].

6.1.2. Results
The comparison between the classification algorithms is reported in Table 4.

Based on our findings, the F-measure of CNN is 82%, higher than its competi-
tors RF, SVM, NB, and LR, achieving 81%, 76%, 56%, and 71%, respectively.
We conjecture that a proper conveyance of the semantics behind the source code

17

Table 4: The performance of different classifiers. Highest values are highlighted in bold.

Classifier Precision Recall F-measure PR-AUC

Random Forest 0.83 0.78 0.81 0.86
Support Vector Machine 0.78 0.74 0.76 0.86
Naive Bayes 0.72 0.46 0.56 0.72
Logistic Regression 0.73 0.70 0.71 0.79
Convolutional Neural Network 0.82 0.82 0.82 0.86

Figure 6: PCA plots between the positive (yellow) and negative (purple) classes for both
training and testing data.

would have required complex feature engineering using neural network classi-
fication strategy rather than traditional machine algorithms. This observation
has been also supported by previous studies that utilized deep learning to source
code analysis [60, 61].

To further assess the efficiency of the identification of Extract Method refac-
toring, we used Isolation Forest (iForest) [62] to perform a one-class classification
(anomaly detection) to evaluate the model’s ability to characterize the positive
examples compared to noise. iForest detects the abnormal data in sample data
by looking at how many branches are needed to classify a data point and judges
whether the sample is isolated based on this branching.

To evaluate the effectiveness of iForest in Extract Method identification, we
compare iForest with other models considered in Table 4. As can be seen,
traditional classification methods obtain better performance and the Isolation
Forest does not do better than random guessing (Accuracy = 0.49). Further,
to better visualize the overlap of data points from the positive and negative
examples, we performed the clustering on the data. Figure 6 illustrates the
PCA plots for both training and testing data. We can see there is high overlap

18

Table 5: Statistical comparison between different classification algorithms (McNemar’s test
and Odds Ratio). ‘*’ captures the smallest OR among 10 statistical tests.

Comparision p-value OR

CNN vs RF < 0.005 1.45*
CNN vs SVM < 0.005 2.19
CNN vs NB < 0.005 3.59
CNN vs LR < 0.005 2.55
RF vs LR < 0.005 1.95*
RF vs SVM < 0.005 1.54*
RF vs NB < 0.005 2.96*
SVM vs NB < 0.005 2.59
SVM vs LR < 0.005 1.77
LR vs NB < 0.005 2.11

between the positive (yellow) and negative (purple) classes. This indicates that
the one-class classification (anomaly detection) is insufficient to classify this data
because our noise overlaps too much with the positive class. Note that we used
PCA for dimensionality reduction so we can get a better visualization of the
clustering, but K-means clustering was carried out in the entire 78-dimensional
space as well and found the same overlap (it could not distinguish between the
groups better than random guessing).

Since there is no model that outperforms all the others in both precision and
recall, the choice of the model can become the decision of the practitioner who
is adopting the tool. For this problem, the lack of precision indicates potential
recommendations of code that is not necessarily worth refactoring (e.g., less
complex), which would result in creating one extra method. At the same time,
the lack of recall indicates missing opportunities of recommending code that is
worth refactoring. We opted to deploy CNN because it not only provides the
highest recall, but also delivers the best trade-off in terms of F-measure.

In order to statistically compare the performance of the classification algo-
rithms, we use the McNemar test [63] and the Odds Ratio (OR) effect size,
where an OR greater than 1 indicates that the first technique outperforms the
second one. We compared the performance of each pair of the classifiers by
running statistical tests 10 times. Since multiple comparisons are performed,
we adjusted the p-values using the Bonferroni correction [64]. In this context,
we define the following null hypothesis H0 for each test: there is no statisti-
cally significant difference between the performance of two algorithms and our
alternate hypothesis H1 is: there is a statistically significant difference between
the performance of the two algorithms. Table 5 describes the p-values and OR
obtained for each test. We tested the hypotheses at a 5% significance level and
used an adjusted alpha value (i.e., 0.005) for the comparisons. As shown in the
table, the McNemar test results show that null hypothesis is rejected as there
are statistically significant differences (p-value < 0.05/10) in the performance

19

of the algorithms, with the CNN having 2.19, 3.59, and 2.55 more chances to
correctly recommend Extract Method refactoring opportunities than SVM, NB,
and LR, respectively, and at least 1.45 more chances than RF. The table also re-
veals that the performance of the other two classifiers are statistically significant
with OR greater than 1.

Summary: CNN outperforms traditional machine learning algorithms,
having at least 1.45 more chances to recommend proper Extract Method
refactoring opportunities.

6.2. RQ2: Usefulness
6.2.1. Approach

To assess the usefulness of AntiCopyPaster, we performed an external
validation by involving 109 participants from the Rochester Institute of Tech-
nology, Stevens Institute of Technology, and ETS Montreal. All participants
volunteered to participate in the experiment. Of the set of invited participants,
72 developers accepted and participated in the survey (yielding a response rate
of 66.1%, which is considered high for software engineering research [65]), and
50 out of 72 participants confirmed that they executed the plugin. Table 6 sum-
marizes the developers’ experience. 88.9% of the participants have more than
1 year of coding experience. Also, 50% of the participants have between 1 to
more than 10 years of development in either industry or open source.

As suggested by Kitchenham and Pfleeger [66], we constructed the survey
to use a 5-point ordered response scale (‘Likert scale’) questions, 7 open-ended
questions, and 8 multiple choice questions with an optional ‘Other’ category,
allowing the respondents to share thoughts not mentioned in the list. The
survey consisted of 21 questions. The first part of the survey includes questions
about the demographics of participants. Next, we asked about the usefulness,
usability, and functionality of the proposed idea and the plugin. We provide
participants with a video demonstrating how to use the plugin, along with a
link to download it.

Furthermore, we asked the participants to potentially share with us the log
of the plugin events. This log tracks the usage of the tool. Such information

Table 6: Professional development experience of the participants in years.

Years of
Experience

Professional
Experience (%)

Programming
Experience (%)

< 1 36 (50%) 8 (11.11%)
1-3 26 (36.12%) 24 (33.33%)
4-6 5 (6.94%) 25 (34.73%)
7-10 0 (0%) 9 (12.5%)
10+ 5 (6.94%) 6 (8.33%)

20

provides us with more detailed information about the plugin’s usage over time.
The log does not track any personal information related to the user or the source
code. The log features the following events:

• copyCount. Action of copying a code fragment.

• pasteCount. Action of pasting a code fragment.

• notificationCount. Appearance of a notification about a potential refac-
toring opportunity.

• extractMethodAppliedCount. Acceptance of the recommendation by
clicking on the notification and applying the refactoring.

• extractMethodCanceledCount. Cancelation, when the notification
was clicked, but the process was canceled.

To share the log with us, the participants neede to upload an XML file,
which is auto-generated by the plugin, at the end of the survey.

We analyzed the responses to open-ended questions to create a comprehen-
sive high-level list of themes by adopting a thematic analysis approach based on
guidelines provided by Cruzes et al. [67]. Thematic analysis is one of the most
used methods in Software Engineering literature [8, 68]. This is a technique for
identifying and recording patterns (or “themes”) within a collection of descrip-
tive labels, which we call “codes”. For each response, we proceeded with the
analysis using the following steps: i) Initial reading of the survey responses; ii)
Generating initial codes (i.e., labels) for each response; iii) Translating codes
into themes, sub-themes, and higher-order themes; iv) Reviewing the themes to
find opportunities for merging; v) Defining and naming the final themes, and
creating a model of higher-order themes and their underlying evidence. The
above-mentioned steps were performed independently by two authors. One au-
thor performed the labeling of responses to open-ended questions independently
from the other author, who was responsible for reviewing the currently drafted
themes. Then, the authors met and refined the themes. It is important to note
that the approach is not a single-step process. As the codes were analyzed, some
of the first cycle codes were subsumed by other codes, relabeled, or dropped al-
together. As the two authors progressed in the translation to themes, there was
some refinement and reclassification of data into different or new codes.

6.2.2. Results
We started the survey by asking participants how often they use the Extract

Method refactoring feature in the IDE. Figure 7 shows the breakdown of the
answers. It can be seen that Extract Method refactoring is not very frequently
used in the IDE as 55.7% of developers indicated that they never used the Ex-
tract Method refactoring feature, while 34.3% said they used it several times a
year. Only 4.3% of the users said that they extracted methods approximately
once per month, and just 5.7% perform Extract Method several times a month.
It appears that not many developers have used the IDE to apply the Extract

21

5 . 7 %4 . 3 %

3 4 . 3 % 5 5 . 7 %

 N e v e r
 S e v e r a l t i m e s a y e a r
 O n c e p e r m o n t h
 S e v e r a l t i m e s a m o n t h
 O n c e p e r w e e k
 S e v e r a l t i m e s a w e e k

Figure 7: Answers to the question “How often do you use the Extract Method refactoring
feature in the IDE?”

4 8 . 6 %

3 0 . 0 %1 1 . 4 %
5 . 7 %

2 . 9 % 1 . 4 %

 N e v e r
 S e v e r a l t i m e s a y e a r
 O n c e p e r m o n t h
 S e v e r a l t i m e s a m o n t h
 O n c e p e r w e e k
 S e v e r a l t i m e s a w e e k

Figure 8: Answers to the question “How often have you refactored duplicate code / code
clones?”

Method refactoring. This observation corroborates the finding of a recent sur-
vey on refactoring [27] that shows significantly fewer developers using the IDE
feature for the Extract refactorings, especially when compared to the Rename
feature. The fact that Extract is not as intuitive as Rename represents a signifi-
cant challenge to the ongoing research and studies that develop recommendation
algorithms to extract code at any level (method, class, package, etc.). This is
one of the main motivations behind the design of our solution. We believe that
our tool can further support developers to practice this type of refactoring, or
at least raise their awareness of its existence regardless.

22

Table 7: The results of tracking features in collected logs.

Event Count

notificationCount 63
extractMethodAppliedCount 59
extractMethodCanceledCount 0
copyCount 350
pasteCount 379

Concerning the frequency of refactoring specifically duplicated code, Figure 8
depicts that almost half of the developers answered that they refactor duplicated
code several times a year. 30% of the respondents said that they never refactor
duplicated code. 11.4% of the respondents said that they refactor duplicated
code once per month. We conjecture that despite the existence of automated
code clone detectors (e.g., CCFinder [69]), these tools might lack integration,
as developers acknowledge the existence of code clones but they do not have
a preference on how to refactor them using automated tools. Besides, several
studies have also shown that not all duplicates are harmful to the code [70].

Table 7 reveals the sum of metric numbers, extracted from the log files shared
by the participants. Our first observation is that only 17% of the pasted code was
evaluated as worth refactoring by the model. This can be due to the CNN being
picky by nature, which explains that 93% of its recommendations were actually
accepted by the participants. Since the number of cancelled refactorings is zero,
we conjecture that the 7% of cases where the model recommends a refactoring
that was not applied, can be due to developers simply ignoring the notification
shown in their screen. This is another advantage of the pop-up notification —
it has a minimal disturbance on the developers when they are busy.

In Table 8, we report the main thoughts, comments, and suggestions about
the overall impression of the usefulness, usability, and functionality of the pro-
posed idea, in accordance with the conducted labeling. Table 8 also presents
samples of the participants’ comments to illustrate their impressions.

Usefulness. Generally, the respondents found the tool to be useful in regard
to four main aspects: effort, quality, automation, and awareness. The majority
of the participants commented that the proposed idea saves time and effort for
developers who would not have to examine and refactor duplicates manually.
Other participants communicated that reducing redundant code assists in in-
creasing its readability and efficiency while reducing its complexity, which helps
improve overall code quality. A moderate subset of developers revealed that
the tool’s ability to identify duplicates within a file and reduce them to a single
method allows users to only correct errors in a specific location pro-actively and
automatically. Further, some developers commented that the tool aids devel-
opers in identifying their redundancy when updating a source file that they are
not familiar with. Another noteworthy point mentioned was that the tool helps
less experienced and novice coders in writing well-structured code.

23

Table 8: Developer’s insight about the usefulness, usability, and functionality of the tool.

C
at
eg
or
y

S
u
b
-c
at
eg
or
y

E
xa

m
p
le

(E
xc
er
p
ts

fr
om

a
re
la
te
d
su
rv
ey

re
sp
on

se
)

U
se
fu
ln
es
s

E
ffo

rt
“I

fe
el

it
sh
ou

ld
be

us
ef
ul

as
th
is
sa
ve
s
ti
m
e
an

d
eff

or
t
pu

t
bu
t
th
e
de
ve
lo
pe
r
w
ho

is
de
ve
lo
pi
ng

a
so
ft
w
ar
e.
”

Q
ua

lit
y

“A
pl
ug
in

th
at

au
to
m
at
ic
al
ly

ex
tr
ac
ts

m
et
ho
ds

fr
om

du
pl
ic
at
ed

co
de

so
un

ds
ve
ry

us
ef
ul

fo
r
th
e
sa
ke

of
re
du

ci
n
g
co
m
pl
ex
it
y
an

d
im

pr
ov
in
g
re
ad

ab
il
it
y
of

co
de

.
In

m
y

ow
n
co
di
ng

ex
pe
ri
en
ce
,I
’v
e
de
fin

it
el
y
ha
d
ti
m
es

w
he
re

I
re
co
gn
iz
ed

th
at

I
w
as

du
pl
ic
at
-

in
g
co
de
,
bu
t
th
e
m
ea
ns

by
w
hi
ch

th
e
m
et
ho
d
sh
ou

ld
be

ex
tr
ac
te
d
w
as
n’
t
im

m
ed
ia
te
ly

ob
vi
ou

s.
”

A
ut
om

at
io
n

“F
or

sm
al
lc
od
e
pr
oj
ec
ts
,
I
do
n’
t
th
in
k
it
w
ou

ld
be

as
us
ef
ul
,
bu
t
fo
r
la
rg
e
co
de

pr
oj
ec
ts

it
pr
ob
ab
ly

w
ou

ld
be
.
A

su
gg
es
ti
on

,
to

m
ak
e
th
e
to
ol

ev
en

m
or
e
us
ef
ul
,
w
ou

ld
be

to
al
lo
w
fo
r
st
at
ic

an
al
ys
is

of
la
rg
e
co
de

ba
se
s
(w

he
re

th
e
to
ol

w
ou

ld
be

m
os
t
us
ef
ul
)
th
at

ha
ve

al
re
ad
y
be
en

co
de
d,

th
en

re
co
m
m
en
di
ng

ex
tr
ac
t
m
et
ho
d
re
fa
ct
or
in
gs
.
C
om

pa
ni
es

w
it
h
la
rg
e
m
es
sy

co
de

ba
se
s
w
ou

ld
lo
ve

to
ha
ve

a
to
ol

lik
e
th
at

to
cl
ea
n
up

al
l
th
ei
r

co
de

du
pl
ic
at
es

w
it
ho

ut
ha

vi
n
g
to

m
et
ic
ul
ou

sl
y
go

th
ro
ug
h
it
m
an

ua
ll
y.
”

A
w
ar
en
es
s

“A
s
a
de
ve
lo
pe
r,

w
he
n
w
or
ki
ng

w
it
h
la
rg
e
fil
es

an
d
th
ou

sa
nd

s
of

co
de

lin
es

w
e
te
nd

to
re
pe
at

so
m
e
of

th
e
fu
nc
ti
on

s
al
re
ad
y
pr
es
en
t
in

th
e
co
de

w
hi
ch

re
su
lts

to
du

pl
ic
it
y
an

d
le
ss

effi
ci
en
t.

T
hi
s
to
ol

is
ve
ry

he
lp
fu
l
an

d
m
ak
es

th
e
de
ve
lo
pe
r
aw

ar
e
of

th
ei
r

ap
pr
oa
ch

an
d
no

t
to

m
ak
e
th
e
m
is
ta
ke
s
of

re
pe
at
in
g
th
e
co
de

ag
ai
n
an

d
ag
ai
n.
”

U
sa
b
il
it
y

N
ot
ifi
ca
ti
on

“I
gu
es
s
ad
di
ng

a
no

ti
fic
at
io
n
w
as

gr
ea
t
to
uc
h
to

th
e
pr
oj
ec
t.

bu
t
I
w
ou

ld
ra
th
er

ha
ve

an
op

ti
on

to
en
ab
le

or
di
sa
bl
e
th
e
n
ot
ifi
ca
ti
on

.
P
lu
s
i
w
ou

ld
al
so

lik
e
it

to
hi
gh
lig
ht

th
e
du

pl
ic
at
io
ns

in
th
e
co
de

it
se
lf
ra
th
er

th
en

a
no

ti
fic
at
io
n.
”

D
el
ay

“I
w
ou

ld
re
m
ov
e
th
e
de
la
y
an

d
ju
st

pu
t
a
U
I
no

ti
fic
at
io
n
in

bo
tt
om

th
at

re
fa
ct
or
in
g

is
av
ai
la
bl
e.

If
th
e
us
er

tr
ie
s
to

ed
it
th
e
co
de
,
th
en

th
e
no

ti
fic
at
io
n
di
sa
pp
ea
rs
.”

D
ia
lo
g
bo

x
“I

w
ou

ld
re
m
ov
e
th
e
di
al
og

as
it
ca
n
in
te
rr
up

t
a
us
er
s
w
or
kfl

ow
.
I
w
ou

ld
se
t
it
as

an
al
er
t
in

th
e
U
I
su
ch

th
at

it
do
es
n’
t
in
te
rr
up

t
a
us
er

bu
t
ra
th
er

no
ti
fie
s
th
em

an
d

gi
ve
s
th
e
ab
ili
ty

to
m
ak
e
th
e
fix

or
ea
si
ly

co
nt
in
ue

de
ve
lo
pi
ng

w
it
h
th
e
du

pl
ic
at
e
co
de
.”

P
re
vi
ew

“A
ch
an

ge
in

th
e
op
er
at
io
n
of

th
e
pl
ug
in

w
ou

ld
be

sh
ow

ca
se

a
pr
ev
ie
w
of

th
e
co
de

it
se
lf
in
st
ea
d
of

ju
st

th
e
si
gn
at
ur
e
pr
ev
ie
w
.
Se
ei
ng

th
e
co
de

ch
an

ge
as

yo
u
na

m
e

th
e
ne
w
fu
nc
ti
on

w
ou

ld
be

a
ni
ce

ch
an

ge
.”

Fu
n
ct
io
n
al
it
y

R
ec
om

m
en
da

ti
on

“P
er
ha
ps

gi
ve

a
de
fa
ul
t
n
am

e
to

th
e
fu
n
ct
io
n

in
st
ea
d
of

as
ki
ng

us
er

to
en
te
r

m
an

ua
lly

.”

R
ef
ac
to
ri
ng

“I
ns
te
ad

of
m
ak
in
g
a
po
p-
up

ap
pe
ar

w
he
ne
ve
r
du

pl
ic
at
ed

co
de

is
de
te
ct
ed
,
I
w
ou

ld
pr
ef
er

to
ha

ve
an

op
ti
on

to
sc
an

fo
r
in
st
an

ce
s
of

du
pl
ic
at
ed

co
de

an
d
ha
ve

it
au

to
m
at
ic
al
ly

re
fa
ct
or
ed

af
te
r
th
at
.”

24

Usability. Based on the feedback provided by the respondents to the sur-
vey, the key areas in usability related to the notification, the delay, the dialog
box, and the preview. The notification and the delay aspects of the tool were
the primary areas identified for change or improvement. The main suggestions
about the pop-up notification were driven by developers’ personal preferences of
how notifications should be shown. For example, some respondents viewed the
current pop-up notification (Figure 1) as something that could be distracting,
and suggested other options. These options included highlighting the duplicate
code, icon flashing at the bottom taskbar, or just using a warning message.
Some responses stated that the users of the tool should have more control to set
the delay time to wait before triggering the suggestion. Other responses also
stated that triggering the tool after a save operation would be less disruptive.
While many of these ideas can be added to tailor the tool to developers’ pref-
erences, we find the suggestion of highlighting duplicate code to be the most
practical and we plan to implement it in the future.

Functionality. From the participants’ feedback, we have also extracted
suggestions to improve the tool’s functional features. One proposed feature was
to recommend the proper method name for the extracted code, based on its
functionality. Moreover, since the participants found the tool to be useful, they
suggested to support additional refactorings to remove duplicates at the class
level (i.e., Extract Class). Participants also suggested scanning all project files
for duplicates (instead of just the current one, as it is now implemented) and then
interactively suggest their refactoring one by one. We found this suggestion to
be particularly interesting, since it does not match the rationale of our solution.
Implementing this suggestion would require training with positive samples that
were exclusively executed to remove duplicates. It would also require taking
into account the imbalanced nature of the codebase by creating a significantly
higher number of negative samples.

50 out of 72 participants confirmed that they executed the plugin. We asked
them about their satisfaction with various aspects of the tool. Figure 9 presents
an overview of their answers. With respect to the tool setup, most of the respon-
dents (43 participants) reported that they are satisfied with the tool. Regarding
the tool documentation, the majority of the respondents agreed that the doc-
umentation is useful; only 4 participants were unsatisfied. For the ease of use
aspect, a larger group (41 participants) was satisfied. Several participants found
that the tool is not easy to use, so we will work on improving its usability. Con-
cerning the execution time, 39 participants were happy with it. For the amount
of pop-up notifications, the majority of respondents (26 participants) agreed
that the amount of pop-up notifications is acceptable, although there were a
few participants that remained neutral. There were also a few participants who
were not happy with the amount of pop-up notifications, and we are planning
on improving this aspect of the tool in the future.

25

T o o l s e t u p

T o o l
d o c u m e n t a t i o n

E a s e o f u s e

E x e c u t i o n
t i m e

A m o u n t o f
p o p - u p

n o t i f i c a t i o n s

- 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0

- 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0

% o f r e s p o n d e n t s

 V e r y U n s a t i s f i e d S o m e w h a t U n s a t i s f i e d N e u t r a l
 S o m e w h a t S a t i s f i e d V e r y S a t i s f i e d

Figure 9: Participants’ satisfaction with various aspects of the AntiCopyPaster tool.

Summary: Overall, the participants were satisfied with the plugin and
rated its various aspects highly. The aspects of the tool that can be im-
proved are the UI of highlighting and more settings for users’ preferences.

7. Threats to Validity

In this section, we identify potential threats to the validity of our approach
and our experiments as discussed in the work of Ampatzoglou et al. [71].

Internal Validity. Our analysis is mainly threatened by the accuracy of
the refactoring mining tool because the tool may miss the detection of some
refactorings. However, previous studies [45, 46] report that RefactoringMiner
has high precision and recall scores (99.8% and 95.8%, respectively) compared
to other state-of-the-art refactoring detection tools, which gives us confidence
in using this tool. Also, since the developers have the option to just "skip"
the notification, there were no cases when developers started the process and
then rejected it. It is also possible that developers undid the refactoring after
conducting it.

Construct Validity. Collecting positive examples for our model requires
not only finding the refactoring itself but navigating to the previous commit to
see the context, from where the method was extracted. In some cases, the de-
tection of the previous commit might not be straightforward because there are

26

several branches in the repository. We found several such cases when manually
checking the collected data. As for the collection of negative examples, it was
done using the ranking algorithm inspired by the one of Haas and Hummel [29],
so our work inherits any limitation associated with that algorithm. Concerning
the completeness and correctness of our interpretation of the open-ended re-
sponses within the survey, we did not extensively discuss all responses because
some of them are open to various interpretations, and we need further follow-up
surveys or interviews to clarify them.

External Validity. Our analysis was performed on 13 mature open-source
Java projects belonging to the Apache ecosystem that are varied in size, con-
tributors, number of commits and refactorings. However, we cannot claim the
generality of our observations to projects written in other programming lan-
guages or belonging to other ecosystems. Further investigation of even more
projects is needed to mitigate this threat. Regarding the study participants,
the majority of our participants involved students, with some of them having
industrial experience. To avoid bias in the experiment, we make providing feed-
back anonymous and not mandatory, to increase the magnitude of tool usage
experience. Although feedback was optional, 95% of students have completed
it after removing arbitrary submissions. As future work, we plan to perform
another round of external validation with professional software engineers in in-
dustry to hear their perception.

8. Conclusion

Recommending Extract Method refactoring opportunities is of paramount
importance to the research community and industry. Although a plethora of
studies have utilized a variety of approaches to identify Extract Method refac-
toring, recommending this refactoring type without interfering with developers’
workflow remains largely unexplored. In this study, we proposed AntiCopy-
Paster as an IntelliJ IDEA plugin, and experimented with machine learning
models in order to increase the adoption and usage of the Extract Method refac-
toring while maintaining the workflow of a developer. Our results reveal that
machine learning models are able to recommend Extract Method refactoring
opportunities as soon as code duplicates are introduced in the IDE, and the
participants were satisfied with the AntiCopyPaster tool.

In particular, the proposed CNN demonstrated an F-measure of 0.82 and
outperformed other machine learning models. In the survey, we discovered that
a majority of developers carry out Extract Method refactorings very rarely or
never at all, so the proposed pro-active pipeline for their recommendation can
also fulfill the educational needs. Overall, the participants rated various aspects
of the plugin highly, while also providing valuable ideas for future development.
In particular, we would like to implement the highlighting of refactorable code
duplicates in the editor and give the users more control over various aspects of
the plugin for customization.

27

References

[1] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach, Science of computer programming 74 (7)
(2009) 470–495.

[2] B. Hu, Y. Wu, X. Peng, J. Sun, N. Zhan, J. Wu, Assessing code clone harmfulness:
Indicators, factors, and counter measures, in: 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE, 2021, pp. 225–236.

[3] P. Thongtanunam, W. Shang, A. E. Hassan, Will this clone be short-lived? Towards
a better understanding of the characteristics of short-lived clones, Empirical Software
Engineering 24 (2) (2019) 937–972.

[4] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, J. Vitek,
Déjàvu: a map of code duplicates on GitHub, Proceedings of the ACM on Programming
Languages 1 (OOPSLA) (2017) 1–28.

[5] M. Allamanis, The adverse effects of code duplication in machine learning models of code,
in: Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, 2019, pp. 143–153.

[6] R. Fanta, V. Rajlich, Removing clones from the code, Journal of Software Maintenance:
Research and Practice 11 (4) (1999) 223–243.

[7] M. Fowler, Refactoring: Improving the design of existing code, Addison-Wesley Profes-
sional, 2018.

[8] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? Confessions of GitHub contrib-
utors, in: 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, ACM, 2016, pp. 858–870.

[9] E. Murphy-Hill, A. P. Black, Breaking the barriers to successful refactoring: Observations
and tools for Extract Method, in: Proceedings of the 30th international conference on
Software engineering, 2008, pp. 421–430.

[10] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria code refactoring
using search-based software engineering: An industrial case study, ACM Transactions on
Software Engineering and Methodology (TOSEM) 25 (3) (2016) 1–53.

[11] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, A. Ouni, Many-
objective software remodularization using NSGA-III, ACM Transactions on Software
Engineering and Methodology (TOSEM) 24 (3) (2015) 1–45.

[12] T. Kanemitsu, Y. Higo, S. Kusumoto, A visualization method of program dependency
graph for identifying Extract Method opportunity, in: Proceedings of the 4th Workshop
on Refactoring Tools, 2011, pp. 8–14.

[13] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Automating Extract Class refactoring:
An improved method and its evaluation, Empirical Software Engineering 19 (6) (2014)
1617–1664.

[14] S. Xu, A. Sivaraman, S.-C. Khoo, J. Xu, GEMS: An Extract Method refactoring recom-
mender, in: 2017 IEEE 28th International Symposium on Software Reliability Engineer-
ing (ISSRE), IEEE, 2017, pp. 24–34.

[15] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, J. D. Morgenthaler, Automatic clone
recommendation for refactoring based on the present and the past, in: 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), IEEE, 2018, pp.
115–126.

28

[16] M. Aniche, E. Maziero, R. Durelli, V. H. Durelli, The effectiveness of supervised machine
learning algorithms in predicting software refactoring, IEEE Transactions on Software
Engineering 48 (4) (2020) 1432–1450.

[17] N. Yoshida, S. Numata, E. Choiz, K. Inoue, Proactive clone recommendation system
for Extract Method refactoring, in: 2019 IEEE/ACM 3rd International Workshop on
Refactoring (IWoR), IEEE, 2019, pp. 67–70.

[18] J. P. S. Alcocer, A. S. Antezana, G. Santos, A. Bergel, Improving the success rate of
applying the Extract Method refactoring, Science of Computer Programming 195 (2020)
102475.

[19] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, Is duplicate code more frequently modified
than non-duplicate code in software evolution? An empirical study on open source soft-
ware, in: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution (IWPSE), 2010, pp. 73–82.

[20] Y. Higo, S. Kusumoto, K. Inoue, A metric-based approach to identifying refactoring
opportunities for merging code clones in a Java software system, Journal of Software
Maintenance and Evolution: Research and Practice 20 (6) (2008) 435–461.

[21] L. Yang, H. Liu, Z. Niu, Identifying fragments to be extracted from long methods, in:
2009 16th Asia-Pacific Software Engineering Conference, IEEE, 2009, pp. 43–49.

[22] R. Morales, Z. Soh, F. Khomh, G. Antoniol, F. Chicano, On the use of developers’ context
for automatic refactoring of software anti-patterns, Journal of systems and software 128
(2017) 236–251.

[23] O. Tiwari, R. Joshi, Identifying Extract Method Rrefactorings, in: 15th Innovations in
Software Engineering Conference, 2022, pp. 1–11.

[24] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory study of the im-
pact of antipatterns on class change- and fault-proneness, Empirical Software Engineering
17 (3) (2012) 243–275.

[25] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, Do they really smell
bad? A study on developers’ perception of bad code smells, in: 2014 IEEE International
Conference on Software Maintenance and Evolution, IEEE, 2014, pp. 101–110.

[26] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, A. D. Lucia, On the diffuse-
ness and the impact on maintainability of code smells: A large scale empirical investiga-
tion, Empirical Software Engineering 23 (3) (2018) 1188–1221.

[27] Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, M. W. Mkaouer, One thousand and
one stories: A large-scale survey of software refactoring, in: 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 1303–1313.

[28] Example of Java code, https://www.cs.utexas.edu/~scottm/cs307/javacode/
codeSamples/IntListVer2.java, (Accessed on 01/02/2023).

[29] R. Haas, B. Hummel, Deriving Extract Method refactoring suggestions for long methods,
in: International Conference on Software Quality, Springer, 2016, pp. 144–155.

[30] K. Maruyama, Automated method-extraction refactoring by using block-based slicing,
in: Proceedings of the 2001 symposium on Software reusability: putting software reuse
in context, 2001, pp. 31–40.

[31] N. Tsantalis, A. Chatzigeorgiou, Identification of Extract Method refactoring opportuni-
ties for the decomposition of methods, Journal of Systems and Software 84 (10) (2011)
1757–1782.

29

https://www.cs.utexas.edu/~scottm/cs307/javacode/codeSamples/IntListVer2.java
https://www.cs.utexas.edu/~scottm/cs307/javacode/codeSamples/IntListVer2.java

[32] T. Sharma, Identifying extract-method refactoring candidates automatically, in: Pro-
ceedings of the Fifth Workshop on Refactoring Tools, 2012, pp. 50–53.

[33] D. Silva, R. Terra, M. T. Valente, Recommending automated Extract Method refactor-
ings, in: Proceedings of the 22nd International Conference on Program Comprehension,
2014, pp. 146–156.

[34] D. Silva, R. Terra, M. T. Valente, JExtract: An eclipse plug-in for recommending auto-
mated Extract Method refactorings, arXiv preprint arXiv:1506.06086.

[35] M. Shahidi, M. Ashtiani, M. Zakeri-Nasrabadi, An automated Extract Method refactor-
ing approach to correct the long method code smell, Journal of Systems and Software
187 (2022) 111221.

[36] D. van der Leij, J. Binda, R. van Dalen, P. Vallen, Y. Luo, M. Aniche, Data-driven
Extract Method recommendations: A study at ING, in: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1337–1347.

[37] E. A. Alomar, A. Ivanov, Z. Kurbatova, Y. Golubev, M. W. Mkaouer, A. Ouni,
T. Bryksin, L. Nguyen, A. Kini, A. Thakur, AntiCopyPaster: extracting code dupli-
cates as soon as they are introduced in the IDE, in: 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–4.

[38] E. A. Alomar, A. Ivanov, Z. Kurbatova, Y. Golubev, M. W. Mkaouer, A. Ouni,
T. Bryksin, L. Nguyen, A. Kini, A. Thakur, AntiCopyPaster on GitHub (2023).
URL https://github.com/JetBrains-Research/anti-copy-paster

[39] E. A. Alomar, A. Ivanov, Z. Kurbatova, Y. Golubev, M. W. Mkaouer, A. Ouni,
T. Bryksin, L. Nguyen, A. Kini, A. Thakur, Replication Package (2023).
URL https://zenodo.org/record/7428835

[40] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolu-
tional neural networks, Communications of the ACM 60 (6) (2017) 84–90.

[41] N. Tsantalis, A. Chatzigeorgiou, Identification of Extract Method refactoring opportu-
nities, in: 2009 13th European Conference on Software Maintenance and Reengineering,
IEEE, 2009, pp. 119–128.

[42] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis, P. Avgeriou, Iden-
tifying Extract Method refactoring opportunities based on functional relevance, IEEE
Transactions on Software Engineering 43 (10) (2016) 954–974.

[43] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, How the Apache com-
munity upgrades dependencies: An evolutionary study, Empirical Software Engineering
20 (5) (2015) 1275–1317.

[44] M. Di Penta, G. Bavota, F. Zampetti, On the relationship between refactoring actions
and bugs: A differentiated replication, in: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 556–567.

[45] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, D. Dig, Accurate and efficient
refactoring detection in commit history, in: 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE), IEEE, 2018, pp. 483–494.

[46] N. Tsantalis, A. Ketkar, D. Dig, RefactoringMiner 2.0, IEEE Transactions on Software
Engineering 48 (3) (2020) 930–950.

30

https://github.com/JetBrains-Research/anti-copy-paster
https://github.com/JetBrains-Research/anti-copy-paster
https://zenodo.org/record/7428835
https://zenodo.org/record/7428835

[47] M. Caulo, G. Scanniello, A taxonomy of metrics for software fault prediction, in: 2020
46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
IEEE, 2020, pp. 429–436.

[48] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide, Recommendation
system for software refactoring using innovization and interactive dynamic optimization,
in: Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 331–336.

[49] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: A bench-
mark and an extensive comparison, Empirical Software Engineering 17 (4) (2012) 531–
577.

[50] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, et al., Recent advances in convolutional neural networks, Pattern Recognition 77
(2018) 354–377.

[51] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, X. Yang, On the reproducibility and replicabil-
ity of deep learning in software engineering, ACM Transactions on Software Engineering
and Methodology (TOSEM) 31 (1) (2021) 1–46.

[52] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, Journal of
machine learning research 13 (2).

[53] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes, SourcererCC: Scaling code
clone detection to big-code, in: Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 1157–1168.

[54] Z. Kurbatova, Y. Golubev, V. Kovalenko, T. Bryksin, The intellij platform: a framework
for building plugins and mining software data, in: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW), IEEE, 2021, pp.
14–17.

[55] E. A. AlOmar, J. Liu, K. Addo, M. W. Mkaouer, C. Newman, A. Ouni, Z. Yu, On the
documentation of refactoring types, Automated Software Engineering 29 (1) (2022) 1–40.

[56] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, M. Kessentini, How
we refactor and how we document it? On the use of supervised machine learning al-
gorithms to classify refactoring documentation, Expert Systems with Applications 167
(2021) 114176.

[57] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Toward the automatic classification of self-
affirmed refactoring, Journal of Systems and Software 171 (2021) 110821.

[58] S. Levin, A. Yehudai, Boosting automatic commit classification into maintenance activ-
ities by utilizing source code changes, in: 13th International Conference on Predictive
Models and Data Analytics in Software Engineering, PROMISE, 2017, pp. 97–106.

[59] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto, An empirical compar-
ison of model validation techniques for defect prediction models, IEEE Transactions on
Software Engineering 43 (1) (2016) 1–18.

[60] F. Zampetti, A. Serebrenik, M. Di Penta, Automatically learning patterns for self-
admitted technical debt removal, in: 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), IEEE, 2020, pp. 355–366.

[61] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, D. Poshyvanyk, An empirical
study on learning bug-fixing patches in the wild via neural machine translation, ACM
Transactions on Software Engineering and Methodology (TOSEM) 28 (4) (2019) 1–29.

31

[62] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth IEEE international
conference on data mining, IEEE, 2008, pp. 413–422.

[63] T. G. Dietterich, Approximate statistical tests for comparing supervised classification
learning algorithms, Neural computation 10 (7) (1998) 1895–1923.

[64] P. Dalgaard, Analysis of variance and the Kruskal-Wallis test, Introductory Statistics
with R (2002) 111–127.

[65] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, T. Zimmermann, Improving developer
participation rates in surveys, in: 2013 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), IEEE, 2013, pp. 89–92.

[66] B. A. Kitchenham, S. L. Pfleeger, Personal opinion surveys, in: Guide to advanced
empirical software engineering, Springer, 2008, pp. 63–92.

[67] D. S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in software engineer-
ing, in: 2011 international symposium on empirical software engineering and measure-
ment, IEEE, 2011, pp. 275–284.

[68] E. A. AlOmar, M. Chouchen, M. W. Mkaouer, A. Ouni, Code review practices for refac-
toring changes: an empirical study on OpenStack, in: Proceedings of the 19th Interna-
tional Conference on Mining Software Repositories, 2022, pp. 689–701.

[69] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: A multilinguistic token-based code clone
detection system for large scale source code, IEEE transactions on software engineering
28 (7) (2002) 654–670.

[70] K. Mens, S. Nijssen, H.-S. Pham, The good, the bad, and the ugly: Mining for patterns
in student source code, in: Proceedings of the 3rd International Workshop on Education
through Advanced Software Engineering and Artificial Intelligence, 2021, pp. 1–8.

[71] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, A. Chatzigeorgiou, Identifying, cat-
egorizing and mitigating threats to validity in software engineering secondary studies,
Information and Software Technology 106 (2019) 201–230.

32

	1 Introduction
	2 Background
	3 Related Work
	4 Approach
	4.1 Data Collection
	4.2 Refactoring Detection
	4.3 Code Metrics Selection
	4.4 Model Training
	4.4.1 Dataset
	4.4.2 CNN Binary Classification
	4.4.3 Model Tuning

	5 Tool implementation
	6 Evaluation and Discussion
	6.1 RQ1: Correctness
	6.1.1 Approach
	6.1.2 Results

	6.2 RQ2: Usefulness
	6.2.1 Approach
	6.2.2 Results

	7 Threats to Validity
	8 Conclusion

