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Abstract

The Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data

mining. It is capable of projecting high-dimensional data onto a regular, usually

2-dimensional grid of neurons with good neighborhood preservation between two

spaces. However, due to the dimensional conflict, the neighborhood preservation

cannot always lead to perfect topology preservation. In this paper, we establish

an Expanding SOM (ESOM) to preserve better topology between the two spaces.

Besides the neighborhood relationship, our ESOM can detect and preserve an or-

dering relationship using an expanding mechanism. The computation complexity of

the ESOM is comparable with that of the SOM. Our experiment results demon-

strate that the ESOM constructs better mappings than the classic SOM, especially,

in terms of the topological error. Furthermore, clustering results generated by the

ESOM are more accurate than those obtained by the SOM.
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1 Introduction

The Self-Organizing Map (SOM) has been proven to be useful as visualiza-

tion and data exploratory analysis tools [6]. It maps high-dimensional data

items onto a low-dimensional grid of neurons. The regular grid can be used

as a convenient visualization surface for showing different features of data

such as the cluster tendencies of the data [8, 12, 16]. SOMs have been suc-

cessfully applied in various engineering applications covering areas such as

pattern recognition, full-text and image analysis, vector quantization, regres-

sion, financial data analysis, traveling salesman problem, and fault diagnosis

[3, 4, 6, 7, 10, 14, 18].

However, because a SOM maps the data from a high-dimensional space to a

low-dimensional space which is usually 2-dimensional, a dimensional conflict

may occur and a perfect topology preserving mapping may not be generated

[1, 5]. For example, consider the two trained SOMs depicted in Fig.1, although

they preserve good neighborhood relationships, the SOM depicted in Fig.1(b)

folds the neuron string onto data irregularly and loses much topology infor-

mation in comparison with the SOM shown in Fig.1(a).

There are many research efforts to enhance SOMs for visualization and cluster

analysis. Most of them focus on how to visualize neurons clearly and classify

data [3, 14, 16]. Some work has concentrated on better topology preservation.

Kirk and Zurada [5] trained their SOM to minimize the quantization error in
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Fig. 1. Two SOMs from 2-dimensional space to 1-dimension. The connected dots

indicate a string of neurons, and other dots indicate data.

the first phase and then minimize the topological error in the second phase.

Su and Chang proposed a Double SOM (DSOM) that uses a dynamic grid

structure instead of a static structure used in the conventional SOMs. The

DSOM uses the classic SOM learning rule to learn a grid structure from input

data [12].

Motivated by an irregularity problem of SOMs and our previous work of using

SOM for traveling salesman problem [4], we propose a new learning rule to

enhance the topology preservation. The paper is organized as follows. We

outline the SOM techniques in the next section. We introduce our ESOM in

Section 3, followed by its theoretic analysis. The visualization and clustering

results of the ESOM are presented and compared with the SOM in Section 4.

A conclusion is given in the last section.

2 Self-Organizing Map

The SOM consists of two layers of neurons. The neurons on the input layer

receive data ~xk(t) = [x1k(t), x2k(t), · · · , xDk(t)]
T ∈ <D (1 ≤ k ≤ N) at time

t where D is the dimensionality of the data space and N is the number of

data items in the data set. The neurons on the output layer are located on

a grid with certain neighborhood relationship. In this paper, the rectangular
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neighborhood is used. The weight vector ~wj(t) = [w1j(t), w2j(t), · · · , wDj(t)]
T

∈ <D (1 ≤ j ≤ M) indicates the j-th output neuron’s location in the data

space. It moves closer to the input vector according to

~wj(t + 1) = ~wj(t) + ε(t)hj,m(t) [~xk(t)− ~wj(t)] . (1)

Here m(t) is the winning neuron, hj,m(t) is the neighborhood function, and ε(t)

is the learning rate and usually shrinks to zero. Fig.(2)(a) illustrates this learn-

ing rule. During the learning, the SOM behaves like a flexible net that folds

onto the “cloud” formed by the input data. It finally constructs a neighbor-

hood preserving map so that the neurons adjacent on the grid have similar

weight vectors. The SOM usually maps a high-dimensional data set to a low-

dimensional grid, so a dimensional conflict may occur in the trained SOM.

Thus, the neighborhood preserving map of the SOM is a good but usually not

a perfect topology preserving one.

3 Expanding SOM

Besides the neighborhood relationship in the SOM, another topology relation-

ship can be detected and preserved during the learning process to achieve a

better topology preserving mapping for data visualization. This is a linear

ordering relationship based on the distance between data and their center. A

neural network can detect and preserve this ordering relationship. If the dis-

tance between a data item and the center of all data items is larger, the dis-

tance between the corresponding output neuron and the center is also larger.

The linear ordering relationship contains certain important topological infor-

mation. A typical example may be found in Fig.1. Though two SOMs in Fig.1
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(a) and (b) have similar quantization errors, the left one certainly has less

topological error. In other words, the left one visualizes the data set better.

In order to overcome such irregularity as in Fig.1(b), we proposed the Expand-

ing SOM (ESOM) to learn the linear ordering through expanding. The ESOM

can construct a mapping that preserves both the neighborhood and the or-

dering relationships. Since this mapping preserves more topology information

of the input data, better performance in visualization can be expected.

We introduce a new learning rule to learn the linear ordering relationship.

Different from the SOM, the learning rule of the ESOM has an additional

factor, the expanding coefficient cj(t), which is used to push neurons away

from the center of all data items during the learning process. In other words,

the flexible neuron network is expanding gradually in our ESOM algorithm.

Moreover, the expanding force is specified according to the ordering of the

data items. In general, the larger the distance between the corresponding data

item and the center is, the larger the expanding coefficient cj(t) is, the larger

the distance between the corresponding data item and the center, the larger

the expanding coefficient cj(t). Consequently, the associated output neuron is

pushed away from the center and the ordering of data items is thus preserved

in the output neurons. For example, the good topological preserving map in

Fig. 1(a) can be achieved.

In the following sub-sections, the ESOM algorithm will be discussed first.

Theoretical analysis of the ESOM algorithm will then be described.
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3.1 The ESOM algorithm

The ESOM algorithm consists of 6 steps.

(1) Linearly transform the coordinates ~x
′
i = [x′1i, x

′
2i, · · · , x′Di]

T (i = 1, · · · , N)

of all given data items so that they lie within a sphere SR centered at the

origin with radius R (< 1). Here N is the number of data items, D is the

dimensionality of the data set. Hereafter, [x1i, x2i, · · · , xDi]
T denotes the

new coordinate of ~xi. Let the center of all data items be ~x
′
C = 1

N

N∑
i=1

~x
′
i and

the maximum distance of data from the data center be Dmax, then

~xi =
R

Dmax

(
~x
′
i − ~x

′
C

)
for all i. (2)

(2) Set t = 0, and the initialize weight vectors ~wj(0) (j = 1, · · · , M) with

random values within the above sphere SR where M is the number of output

neurons.

(3) Select a data item at random, say ~xk(t) = [x1k, x2k, · · · , xDk]
T , and feed it

to the input neurons.

(4) Find the winning output neuron, say m(t), nearest to ~xk(t) according to

the Euclidean metric:

m(t) = arg min
j
‖~xk(t)− ~wj(t)‖ . (3)

(5) Train neuron m(t) and its neighbors by using the following formula:

~wj(t + 1) = cj(t)~w
′
j(t + 1)

4
= cj(t){~wj(t) + αj(t) [~xk(t)− ~wj(t)]} (4)

The parameters include:

• the interim neuron ~w
′
j(t + 1), which indicates the position of the excited

neuron ~wj(t) after moving towards the input data item ~xk(t);
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• the learning parameter αj(t)(∈ [0, 1]), which is specified by a learning

rate ε(t) and a neighborhood function hj,m(t)(σ(t)):

αj(t) = ε(t)× hj,m(t)(σ(t)); (5)

• the expanding coefficient cj(t), which is specified according to

cj(t) = [1− 2αj(t) (1− αj(t)) κj(t)]
− 1

2 , (6)

where κj(t) is specified by

κj(t) = 1− 〈~xk(t), ~wj(t)〉 −
√

(1− ‖~xk(t)‖2)(1− ‖~wj(t)‖2) (7)

(6) Update the neighbor width parameter σ(t) and the learning parameters

ε(t) with predetermined decreasing schemes. If the learning loop does not

reach a predetermined number, go to Step 3 with t := t + 1.

The first step facilitates the realization of the expanding coefficient cj(t). After

the transformation, we can use the norm of a data item ‖~xk(t)‖ to represent

its distance from the center of the transformed data items since the center is

the origin. Thus, the norm ‖~xk(t)‖ can indicate the ordering topology in the

data space. This ordering will be detected and preserved in ‖~wj(t)‖ through

the expanding process.

The learning rule defined in Eq.(4) is the key point of the proposed ESOM

algorithm. Different from the SOM learning rule, it has an additional multi-

plication factor — the expanding coefficient cj(t). This expanding coefficient

is greatly motivated by our work of applying SOM to the traveling salesman

problem [4], where the expanding coefficient is defined in a 2-D space by virtue

of a unit sphere. Extending the formula for the 2-D case into a D-dimensional

space, we get Eq.(4).
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It is worth pointing out that, although the expanding coefficient cj(t) is rel-

evant to all data items, the calculation of cj(t) only depends on αj(t), ~xk(t)

and ~wj(t). If cj(t) is a constant 1.0, the ESOM is simplified to a conventional

SOM. Since cj(t) is always greater than or equal to 1.0, the expanding force

pushes the excited neuron away from the center. In other words, the inequality

‖~wj(t + 1)‖ ≥
∥∥∥~w

′
j(t + 1)

∥∥∥ is always true. Fig.2(b) illustrates the expanding

functionality. After moving the excited neuron ~wj(t) towards the input data

item ~xk(t), as indicated by ~w′
j(t + 1), the neuron is then pushed away from

the center. So, during the learning process, the flexible neuron net is expand-

ing in the data space. More interestingly, as the expanding force is specified

accordingly to the ordering relationships, distant data items are likely to be

mapped to the distant neurons, while data items near the center are likely to

be mapped to the neurons near the center of map, therefore, cj(t) can help

us to detect and preserve the ordering relationship. The expanding coefficient

cj(t) is also close to 1, which enables the ESOM to learn and preserve the

neighborhood relationship as the SOM does. We will give a theoretical anal-

ysis on this point in the next subsection.

There are several variations of SOM for better topology preservation, but

most of them are either computationally expensive or structurally compli-

cated. GSOM [11] needs to expand its output neuron layer gradually during

learning. However, the expansion of ESOM only happens on the output neu-

rons’ weight vectors, rather than the structure of output neuron layer. Besides

finding the nearest neuron for the input data item as in ESOM/SOM, GSOM

also needs to determine whether, where, and how a new output neuron has to

be inserted. The two-stage SOM [5] uses both a k-means algorithm and a par-

tition error based heuristic to improve the topography preservation. However,
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Fig. 2. A schematic view of two different learning rules. (a). The learning rule for

the traditional SOM; (b). The learning rule for the ESOM. A black disc indicates

a data vector; a gray disc indicates a neuron; a solid line indicates the neighbor

relationship on the grid; a circle indicates the new position of a neuron; a dashed

circle indicates a neuron’s temporary position; a dashed arrow indicates a movement

direction; and ‘o’ indicates the origin, i.e., the data center.

it causes a great number of minor topological discontinuities. By incorporating

the fuzzy concept into the SOM, the Fuzzy SOM [13] is able to handle vague

and imprecise data, but it demands a high computational cost for the mem-

bership functions. The tree-structured SOM [3] can generate a tree of SOM

dynamically, It can handle many difficult data sets but it spends almost twice

longer than the SOM [2].

3.2 Theoretical analysis

To show the feasibility of the ESOM, we should verify that the ESOM does

generate a map that preserves both the neighborhood and the ordering rela-

tionships. In this paper, we only give a theorem on a one-step trend to support

the feasibility of the ESOM because it is very difficult to prove the convergence

of the SOM-like networks in higher dimensional cases. In fact, it is still one

of the long-standing open research problems in neural networks [9]. We will
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perform a more rigorous convergence analysis in our future work if the con-

vergence analysis of the SOM is fulfilled. In the following theorem, we assume

that all input data items are located within the sphere SR and their center

coincides with the origin because the preprocessing procedure in Step 1 has

been executed.

Theorem 1 Let SR be the closed sphere with radius R (< 1) centered at the

origin, {~xk(t) ∈ SR} (for k = 1, · · · , N) be the input data and {~wj(t)} ( for

j = 1, · · · ,M) be the weight vectors of the ESOM at time t. Then, for any

t ≥ 0,

(i). for j ∈ {1, 2, · · · , M},

1 ≤ cj(t) ≤ 1√
1−R2

; (8)

and ~wj(t) ∈ SR, that is,

‖~wj(t)‖ ≤ R. (9)

(ii). the expanding coefficient cj(t) increases with ‖~xk(t)‖ when ‖~xk(t)‖ ≥
‖~wj(t)‖.

Proof: (i). We prove Eqs.(8) and (9) together by induction. This is trivially

true for t = 0 according to Step 2 of the ESOM algorithm. If we assume that

both equations hold for certain t(≥ 0), then we find

1− κj(t) = 〈~xk(t), ~wj(t)〉+
√

(1− ‖~xk(t)‖2)
√

(1− ‖~wj(t)‖2)

≤
(

D∑

d=1

x2
dk(t) +

(√
(1− ‖~xk(t)‖2)

)2
)

×
(

D∑

d=1

w2
dj(t) +

(√
(1− ‖~wj(t)‖2)

)2
)

= 1.
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Similarly,

1− κj(t) = 〈~xk(t), ~wj(t)〉+
√

(1− ‖~xk(t)‖2)
√

(1− ‖~wj(t)‖2)

≥−1

2
(‖~xk(t)‖2 + ‖~wj(t)‖2) +

√
(1−R2)

√
(1−R2)

≥ 1− 2R2.

Thus,

0 ≤ κj(t) ≤ 2R2

On the other hand, for any learning parameter αj(t) ∈ [0, 1], the following

inequality is true,

0 ≤ αj(t) (1− αj(t)) ≤ 0.25.

According to Eq.(6), we get 1 ≤ cj(t) ≤ 1√
1−R2 . According to the ESOM

learning rule, we have

1− ‖~wj(t + 1)‖2 =
[
[cj(t)]

−2 − ‖~wj(t) + αj(t)(~xk(t)− ~wj(t))‖2
]
× (cj(t))

2

(10)

=

[
(1− αj(t))

√
1− ‖~wj(t)‖2 + αj(t)

√
1− ‖~xk(t)‖2

]2

(cj(t))
−2

≥
[
(1− αj(t))

√
1−R2 + αj(t)

√
1−R2

]2

= 1−R2.

This implies that ‖~wj(t + 1)‖ ≤ R for any j = 1, · · · ,M . Thus, by induction,

~wj(t) ∈ SR for any j and t.

(ii). We rewrite ~xk(t) and ~wj(t) as follows,

~xk(t) = ρ× ~exk

~wj(t) = r × ~ewj
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Here ~exk
and ~ewj

are two unit vectors, and ρ = ‖~xk(t)‖ and r = ‖~wj(t)‖.
According to the assumption that ρ ≥ r holds. Let

F (ρ) = 〈~wj(t), ~xk(t)〉 +
√

(1− ‖~wj(t)‖2)(1− ‖~xk(t)‖2) (11)

= ρ · r ·
〈
~ewj

, ~exk

〉
+

√
(1− ρ2)(1− r2).

According to Eq.(6), it is obvious that F (ρ) = 1− 1−c−2
j (t)

2αj(t)(1−αj(t))
. F (ρ) decreases

with the expanding coefficient cj(t). So, to justify the increasing property of

cj(t), it is sufficient to show that F (ρ) decreases with ρ whenever ρ ≥ r. A

direct calculation shows

∂F (ρ)

∂ρ
= r ·

〈
~ewj

, ~exk

〉
− ρ√

1− ρ2

√
1− r2 (12)

≤ r − ρ ≤ 0. (13)

This implies that the decreasing property of F (ρ) on ρ when ρ ≥ r. ¥

Theorem 1 (i) says that the expanding coefficient cj(t) is always larger than

or equal to 1.0. In other words, it always pushes neurons away from the origin.

Thus, during learning, the neuron net is expanding. Furthermore, though the

expanding force is always greater than or equal to 1.0, it will never push

the output neurons to infinite locations. In fact, it is restricted by sphere SR

in which the data items are located. This point is substantiated by Eq.(9).

In other words, the expanding coefficient is never very large and enables the

ESOM to learn the neighborhood relationships as the SOM does.This supports

the feasibility of the proposed ESOM.

Theorem 1 (ii) gives a theoretic support that the ESOM aims to detect and

preserve the ordering relationship among the training data items. It points out

that the expanding coefficient cj(t), or the expanding influence, is different

for various data items. The larger the distance between a data item and the
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center of all data items is, the stronger the expanding force will influence on

the associated output neuron. Consequently, the output neurons are located in

the data space according to the linear ordering of their associated data items.

We now briefly discuss another interesting trend based on the proof procedure.

If ~wj(t) is far away from ~xk(t)
1 ,

〈
~ewj

, ~exk

〉
will be very small or even less

than 0. From Eq.(12), ∂F (ρ)
∂ρ

≈ − ρ√
1−ρ2

√
1− r2 ≤ 0. In other words, the

expanding coefficient cj(t) increases with ρ which is the distance of the input

data item ~xk(t) from the center. So, the ordering of ‖~xk(t)‖ is reflected in by

the expanding coefficient cj(t) and then is learned by ~wj(t). This also explains

why the topological error of the ESOM decreases more quickly than that of

the SOM at the beginning of learning. A typical example can be found in Fig.

4 in Section 4.

In this paragraph, we derive the computation complexity of the ESOM algo-

rithm. Two differences between the ESOM and the SOM algorithms are the

preprocessing Step 1 and the learning rule. The computation complexity of the

preprocessing step is O(N). The learning rule of the ESOM in Eq.(4) needs

a few extra arithmetic operations in comparison with the one of the conven-

tional SOM. Thus, the total computation complexity of the ESOM algorithm

is comparable with that of the SOM which is O(MN) [16].

1 the case is common at the beginning of learning since the weight vector ~wj(t) is

randomly initialized.
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Table 1

Data Sets Properties

Data Set No. of dimensions No. of records No. of classes

Data Set 1 2 3000 3

Data Set 2 3 2000 2

Data Set 3 3 3000 3

Mars 4 234 unknown

Viking 2 7 29225 unknown

4 Experimental results

We have examined the ESOM on 3 synthetic data sets and 2 real-life data sets.

Table 1 shows the properties of the five data sets. The first three synthetic data

sets are interesting in both their special cluster shapes and locations as illus-

trated in Fig.3. The conventional clustering algorithms such as K-means and

expectation-maximization (EM) are unable to identify the clusters. The fourth

data set, Mars, contains the temperatures taken from the Mars Pathfinder’s

three sensors in different height. The fifth data set, Viking 2, contains the

measurements of solar longitude, wind speed, pressure, and temperature taken

from the Viking Lander 2. The Mars and Viking 2 data sets are downloaded

from the web site ”The Live from Earth & Mars” of University of Washington

(http://www-k12.atmos.washington.edu/k12/resources/mars data-information/data.html).

All data sets have been pre-processed by using the linear transformation de-

scribed in Eq.(2) in order to compare results fairly. The initial values of ε, σ,

and R are 0.5, 0.9 and 0.999 respectively. The values of α and σ are decreased
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by 0.998 per iteration. Except for the Mars data set, we have used a rectangu-

lar grid with 20*20 neurons. As there are not many data items in Mars data

sets, an output grid with 10 * 10 neurons is used. All experiments have been

executed for 2000 iterations.
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Fig. 3. Illustration of the 3 synthetic data sets, Data Set 1 (Upper), Data Set 2

(Middle) and Data Set 3 (Lower)

Researchers have introduced several measures to evaluate the quality of a

mapping [1, 17]. In this paper, we employ the topological error ET used in

[5, 15] to evaluate the mapping obtained by our ESOM. ET is defined as

the proportion of the data items for which the closest and the second-closest
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neurons are not adjacent on the grid. On the other hand, since the number of

data items is normally larger than the number of output neurons, the weight

vectors in the trained SOM become representatives of the original data set.

The quantization error evaluates how well the weight vectors represent the

data set [5, 16]. It is specified as follows:

EQ =
1

N

N∑

k=1

‖~xk(t)− ~wmk
(t)‖ (14)

where mk is the winner for the data vector ~xk(t). These two criteria usually

conflict in the SOM.

4.1 Results of 10 independent runs

We have performed 10 independent runs of both algorithms for the five data

sets. The average topological errors, the average quantization errors and the

average execution time are summarized in Tables 2, 3 and 4 respectively.

Table 2

Average Topological Errors based on 10 independent runs.

Data Set Name ESOM SOM Improvement (%)

Data Set 1 0.24088 0.26039 7.49154

Data Set 2 0.30215 0.30555 1.11241

Data Set 3 0.33132 0.34763 4.69203

Mars 0.47059 0.53589 12.18534

Viking 2 0.79041 0.82103 3.72946

On average, the quantization errors of the ESOM for the three synthetic data
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Table 3

Average Quantization Errors based on 10 independent runs.

Data Set Name ESOM SOM Improvement (%)

Data Set 1 0.01767 0.01800 1.80060

Data Set 2 0.04753 0.04832 1.64508

Data Set 3 0.05991 0.06042 0.83417

Mars 0.01308 0.01305 -0.22989

Viking 2 0.02370 0.02369 -0.04221

Table 4

Average Execution Times based on 10 independent runs.

Data Set Name ESOM SOM Difference (%)

Data Set 1 2371.6 2283.2 3.87176

Data Set 2 2068.9 2051.2 0.86291

Data Set 3 2904.7 2872.1 1.13506

Mars 32.3 31.7 1.85758

Viking 2 4844 4704 2.89017

sets are 0.01767, 0.04753 and 0.05991, which are little smaller than those of

the SOM. The average topological errors of the ESOM are 0.24088, 0.30215,

and 0.33132 respectively. They are 7.49152%, 1.11241% and 4.69203% smaller

than those of SOM. In addition, the ESOM only needs little longer execution

time as listed in Table 4. Therefore, for the synthetic data sets, the ESOM

generates better mappings than the SOM in terms of both the topological and
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the quantization errors with similar execution time.

For the first real-life data, the topological error of ESOM is 0.47059, which is

12.18534% shorter than the value of the SOM, 0.53589. On the other hand,

the quantization error of ESOM is only 0.22989% larger than the one of the

SOM. Similar comparison is found for the second real-life data set, where

the ESOM makes 3.72946% improvement on the topological error and only

0.04221% loss on the quantization error. The gain on the topological error is

very obvious in comparison with the loss on the quantization error. Therefore,

using similar execution time, the ESOM can generate mappings with much

better topological errors than the SOM. The ESOM has similiar quantization

errors as SOM.

4.2 Typical results for the synthetic data sets
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Fig. 4. The quantization error (Left) and the topological error (Right) during the

learning of the ESOM and the SOM for the first data set.

Fig.4 illustrates the quantization and the topological errors during a typi-

cal run on the first data set of both algorithms. It is clearly seen that the

quantization error decreases gradually as the learning process continues. The

quantization error of the trained ESOM is 0.017 which is a bit smaller than
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Fig. 5. U-Matrix of the trained ESOM (Left) and the trained SOM (Right) for the

first data set.

that of the trained SOM, 0.018. During learning, the decreasing, the increas-

ing and the converging stages can be observed in the topological error curve.

At the very beginning of the training process, the neuron’s weights are fairly

dislike, while some of them even contain remnants of random initial values,

thus higher topological errors are obtained. After executing several iterations,

the topological error decreases dramatically. Because the learning rate ε and

the neighborhood function are large, the neurons adjacent on the grid may

move much closer to the input data item together. At this stage, the ESOM

can learn the ordering topology of data items quickly. As shown in Fig.4, the

topological error of the ESOM is much smaller than that of the SOM. The

final topological errors of the ESOM and the SOM are 0.238 and 0.304 respec-

tively, ESOM gains about 20% improvement. Thus, the ESOM can generate

better topology preserving maps than the SOM.

Fig.5 illustrates the trained ESOM and SOM for the first data set in the form

of U-matrix. The x-axis and the y-axis of the U-matrix indicate a neuron’s

position on the grid, and the z-axis is the average Euclidean distance of neurons

from its adjacent ones [3]. A sequence of consecutive peaks can be regarded as

a boundary among clusters, while the basins are regarded as clusters. There
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Fig. 6. Scatter plot the trained ESOM (Left) and the trained SOM (Right) for the

first data set.

are clearly two sequences of peaks in the ESOM’s U-matrix, which indicate

three clusters in the first data set. The layer structure in the data set is clearly

illustrated. In contrast, The boundaries in the SOM’s U-matrix is not so clear

because some high peaks blur the boundaries. The scatter plots shown in Fig.6

illustrate data clusters on the grid. In the scatter plot, each marker represents

a mapping of a data item and the shape of the marker indicates its cluster

label. The marker is placed on the winning neuron of the data item. To avoid

overlapping, the marker has plotted with a small offset which is determined

according to the data item’s Euclidean distance from the winning neurons.

The ESOM maps data items in well-organized layers. We can easily find the

three clusters in its scatter plot which is quite similar with the original data

set as shown in Fig.3. However, the SOM cannot map the data items very well.

The outer cluster in Fig.3 is even separated into three subclusters (indicated

by ‘+’).

Fig.7 illustrates the scatter plots of a typical run of both algorithms for the

second data set. The scatter plot of the ESOM clearly shows two clusters

where one cluster surrounds the other as in the original data set depicted in
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Fig. 7. Scatter plot the trained ESOM (Left) and the trained SOM (Right) for the

second data set.
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Fig. 8. U-Matrices of the ESOM (Left) and the SOM (Right) for the Mars data set.

Fig.3. In contrast, the SOM separates one of the clusters in the original data

set into two clusters(represented by ‘.’).

4.3 Typical results for the real-life data sets

Fig.8 illustrates the U-matrices during a typical run on the Mars data set of

both algorithms. By comparing all the data items and the weight values of all

the neurons in the trained ESOM and SOM respectively, we have found that

both of the algorithms are able to discover two clusters, but only ESOM can

show the boundary clearly in the U-matrix.
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From the above experimental and comparison results, we conclude that the

ESOM can generate better topology preserving mappings than the SOM in

terms of both the topological error and quantization error. The ESOM is more

likely to identify the correct clusters from data sets than the SOM.

5 Conclusion

In this paper, we have proposed an Expanding Self-Organizing Map (ESOM)

to detect and preserve better topology correspondence between the input data

space and the output grid. During the learning process of our ESOM, the

flexible neuron net is expanding and the neuron corresponding to a distant

data item gets large expanding force. Besides the neighborhood relationship

as in the SOM (Self-Organizing Map), the ESOM can detect and preserve

a linear ordering relationship as confirmed by our theoretical analysis. Our

experiment results have substantiated that, with similar execution time, the

ESOM constructs better visualization results than the classic SOM, especially,

in terms of the topological error. Furthermore, clustering results generated by

the ESOM are more accurate than those obtained by the SOM on both the

synthetic and the real-life data sets.

A rigorous theoretical analysis of the ESOM algorithm is subject to our future

work, which heavily relies on the convergence analysis of SOM. We are also in-

terested in applying the ESOM algorithm to large-scale and high-dimensional

data sets.
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