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aÉcole polytechnique de l’Université de Nantes, LINA CNRS FRE 2729, Rue
Christian Pauc, 44306 Nantes, France

bFaculty of Law, Economics, and Finance, University of Luxembourg, 162A,
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Abstract

To extend the classical Shannon entropy to non-additive measures, Marichal [1–3] re-
cently introduced the concept of generalized entropy for discrete Choquet capacities.
We provide a first axiomatization of this new concept on the basis of three axioms:
the symmetry property, a boundary condition for which the entropy reduces to the
Shannon entropy, and a generalized version of the well-known recursivity property.
We also show that this generalized entropy fulfills several properties considered as
requisites for defining an entropy-like measure. Lastly, we provide an interpretation
of it in the framework of aggregation by the discrete Choquet integral.
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1 Introduction

The well-known Shannon entropy [5] of a probability distribution p defined on
a nonempty finite set N := {1, . . . , n} is given by

HS(p) := −
∑

i∈N

p(i) ln p(i)

⋆ This paper is a revised and extended version with proofs of the conference pa-
per [4].
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with the convention that 0 ln 0 := 0.

In a general non probabilistic setting, it is merely a measure of the uniformity
(evenness) of p. In a probabilistic context, when p is associated with an n-
state discrete stochastic system, it is naturally interpreted as a measure of
its unpredictability and thus reflects the uncertainty associated with a future
state of the system.

Although several other measures of uniformity and uncertainty have been pro-
posed in probability theory as generalizations of the Shannon entropy (see e.g.
[6] for an overview), the most widely used measure remains that of Shannon
mainly because of its attractive properties, its connections with the Kullback-
Leibler divergence [7], and its role in the maximum entropy principle [8]. Also,
several axiomatic characterizations of the Shannon entropy have been pro-
posed in the literature (see e.g. [9–12]), among which the most famous is
probably Shannon’s theorem [5].

By relaxing the additivity property of probability measures, requiring only
that they be monotone, one obtains Choquet capacities [13], also known as
fuzzy measures [14], which are able to model other types of possibly uncertain
information. Formally, a discrete Choquet capacity µ on a nonempty finite set
N is a monotone set function defined on the power set of N that is zero at
the empty set.

Discrete Choquet capacities are at the root of many fields such as the Dempster-
Shafer theory of evidence (see e.g. [15,16]), possibility theory (see e.g. [16,17]),
cooperative game theory (see e.g. [18,19]), and multicriteria decision making
(see e.g. [20,21]). In these fields, Choquet capacities are generally used to model
either uncertainty (in evidence and possibility theories) or the importance of
coalitions (in cooperative game theory and multicriteria decision making).

A discrete Choquet capacity being clearly a generalization of a discrete prob-
ability distribution, the following natural question arises : how could one ap-
praise the ‘uniformity’ or ‘uncertainty’ associated with a Choquet capacity in
the spirit of the Shannon entropy?

For particular Choquet capacities such as belief, plausibility, and possibil-
ity measures used in evidence and possibility theories, several definitions of
entropy-like measures of uncertainty, known as measures of ‘conflict’, ‘confu-
sion’, ‘dissonance’, ‘discord’, and ‘aggregate uncertainty’, have been proposed
(see e.g. [15,16,22–24]). For general Choquet capacities, it seems that no defi-
nition of generalized entropy was available until recently when three proposals
were introduced successively by Marichal [1–3], Yager [25,26], and Dukhovny
[27]. All three proposals can be regarded as direct extensions of the Shannon
entropy in the sense that they coincide with the latter when the capacity is
additive.
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The main purpose of this paper is to propose a first axiomatization, as a
measure of ‘uniformity’, of the generalized entropy proposed by Marichal,
which is defined by

HM(µ) :=
∑

i∈N

∑

S⊆N\{i}

γ|S|(|N |) h[µ(S ∪ {i}) − µ(S)],

where µ is a Choquet capacity on N = {1, . . . , n} and where the functions

γs(n) :=
(n − s − 1)! s!

n!
(s = 0, 1, . . . , n − 1),

and

h(x) :=







−x ln x, if x > 0,

0, if x = 0,

will be used throughout.

As we will see in Section 3, this axiomatization is based on three properties:
the symmetry property, a boundary condition for which the entropy reduces to
the Shannon entropy, and a generalized version of the well-known recursivity
property.

It has been shown that this generalized entropy HM satisfies many properties
that one would intuitively require from such a measure [2]. We will recall some
of them in Section 4.

Note also that its formulation is very close to that of the Shapley value [18] of a
Choquet capacity µ on N , which is a fundamental concept in cooperative game
theory. It is an n-dimensional vector φ(µ) whose ith component is defined by

φi(µ) :=
∑

S⊆N\{i}

γ|S|(|N |) [µ(S ∪ {i}) − µ(S)]

and can be interpreted as the average marginal contribution of i to a coalition
not containing it. It is worth noting that a basic property of the Shapley value
is

∑

i∈N

φi(µ) = µ(N). (1)

Hence, for a normalized Choquet capacity µ on N (i.e., satisfying µ(N) = 1),
the Shapley value φ(µ) forms a probability distribution on N .

This latter observation led Yager [25,26] to propose another definition for
normalized Choquet capacities on N . His generalized entropy is defined as the
Shannon entropy of the Shapley value of the capacity, i.e.

HY (µ) := HS(φ(µ)).

A comparative study of HM and HY can be found in [3].
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The last and most recent proposal, due to Dukhovny [27], is based on an
interpretation of HM in terms of maximal chains of the Hasse diagram of N
and will be presented in Section 2.

In this paper, after defining the notion of uniformity in the setting of discrete
Choquet capacities (Section 2), we propose a characterization of the general-
ized entropy HM by means of three axioms (Section 3). We also list some of
its properties (Section 4) and present an interpretation of it in the framework
of aggregation by the discrete Choquet integral (Section 5).

2 Uniformity of a discrete Choquet capacity

The Shannon entropy HS(p) of a distribution p = (p1, . . . , pn) of n positive real
numbers summing up to one is a measure of the uniformity of these numbers.
That is, the closer HS(p) is to ln n, the more uniform is p. In a probabilistic
context, when p is regarded as the probability distribution associated with an
n-state discrete stochastic system, HS(p) becomes a natural measure of the
uncertainty associated with the system. That is, the more uniform is p, the
higher HS(p) and thus the more difficult it is to predict a future state of the
system.

The approach to the definition of a generalized entropy measure adopted in
this paper is similarly grounded on the notion of uniformity. In the present
section, we propose an intuitive definition of this notion for discrete Choquet
capacities based on their lattice representation.

2.1 Notation and first definitions

Throughout this paper we shall consider a countably infinite set U , the uni-
verse of discourse. A discrete Choquet capacity [13] or discrete fuzzy measure
[14] on U is then a set function µ : 2U → R+ (R+ := [0, +∞[) satisfying the
following conditions :

(i) µ(∅) = 0,
(ii) for any S, T ⊆ U , we have S ⊆ T ⇒ µ(S) ≤ µ(T ).

A set N ⊆ U is said to be a carrier (or support) of a Choquet capacity µ
if µ(S) = µ(N ∩ S) for all S ⊆ U . Thus, a capacity µ with carrier N ⊆ U
is completely defined by the knowledge of the coefficients {µ(S)}S⊆N and
the elements outside N have no influence on the capacity since they do not
contribute to any subset. Note that it follows that any superset of N is also
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a carrier of µ. Clearly, a Choquet capacity on a nonempty finite set N can be
identified with a Choquet capacity on U with carrier N .

A Choquet capacity with nonempty finite carrier N ⊂ U is said to be normal-
ized if µ(N) = 1. In that case we also have µ(N ′) = 1 for any other carrier N ′

of µ.

In this paper we restrict our study of the notion of uniformity to normalized
Choquet capacities. We denote by C the set of normalized capacities with
nonempty finite carriers on U and by CN the set of normalized capacities
having N ⊂ U as nonempty finite carrier.

In order to avoid a heavy notation, we will often omit braces for singletons,
e.g., by writing µ(i), U \ i instead of µ({i}), U \{i}. Furthermore, cardinalities
of subsets S, T, . . . , will be denoted by the corresponding lower case letters
s, t, . . . Finally, for any integer k ≥ 1, the set {1, . . . , k} will simply be denoted
by [k].

A Choquet capacity µ ∈ CN is said to be

• additive if µ(S ∪ T ) = µ(S) + µ(T ) for all disjoint subsets S, T ⊆ N ,
• cardinality-based if, for all T ⊆ N , µ(T ) depends only on the cardinality of

T . Formally, there exist µ0, µ1, . . . , µn ∈ [0, 1] such that µ(T ) = µt for all
T ⊆ N such that |T | = t. Note that if µ ∈ CN is cardinality-based, µ seen
as an element of CN ′ , with N ′ ) N , is no longer cardinality-based.

There is only one Choquet capacity of CN that is both additive and cardinality-
based. We shall call it the uniform Choquet capacity and denote it by µ∗

N . It
is easy to check that µ∗

N is given by

µ∗
N(T ) = t/n, ∀T ⊆ N.

For the sake of convenience, we will henceforth assume that N is the n-element
set [n].

2.2 Choquet capacities and maximal chains

The lattice related to the power set of N under the inclusion relation can be
represented by a graph HN , called Hasse diagram, whose nodes correspond to
subsets S ⊆ N and whose edges represent adding an element to the bottom
subset to get the top subset. Figure 1 shows an example of such a graph for
N = {1, 2, 3, 4}.

A maximal chain m of HN is an ordered collection of n + 1 nested distinct
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{1} {2} {3} {4}

{1,3},{1,2} {1,4} {3,4}{2,3} {2,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Fig. 1. Hasse diagram corresponding to the lattice of subsets of N = {1, 2, 3, 4}.

subsets denoted

m = (∅ ( {i1} ( {i1, i2} ( · · · ( {i1, . . . , in} = N). 1

Denote by MN the set of maximal chains of HN and by ΠK the set of per-
mutations on any set K ⊆ U . We can readily see that the sets MN and ΠN

are equipollent. Indeed, to each permutation π ∈ ΠN corresponds a unique
maximal chain mπ ∈ MN defined by

mπ = (∅ ( {π(n)} ( {π(n − 1), π(n)} ( · · · ( {π(1), . . . , π(n)} = N).

Now, given a capacity µ ∈ CN , with each permutation π ∈ ΠN can be associ-
ated a discrete probability distribution pµ

π on N defined by

pµ
π(i) := µ({π(i), . . . , π(n)}) − µ({π(i + 1), . . . , π(n)}), ∀i ∈ N.

Equivalently, with the maximal chain mπ ∈ MN is associated the probability
distribution pµ

mπ := pµ
π .

We will denote by P µ
N the set {pµ

π}π∈ΠN
= {pµ

m}m∈MN
of n! probability distri-

butions obtained from µ ∈ CN .

Notice that, if µ ∈ CN is cardinality-based, then there exists a unique prob-
ability distribution pµ on N such that pµ

π = pµ for all π ∈ ΠN . If µ ∈ CN is

1 For instance, in Figure 1, the maximal chain

(∅ ( {1} ( {1, 4} ( {1, 2, 4} ( {1, 2, 3, 4} = N)

is emphasized.
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additive then we simply have pµ
π(i) = µ(π(i)) for all i ∈ N .

2.3 Uniformity of a discrete Choquet capacity

As discussed earlier, in a general non probabilistic context, the Shannon en-
tropy of a discrete probability distribution can be regarded a measure of its
uniformity (for a discussion, see e.g. [6]).

Although discrete Choquet capacities can be clearly seen as generalizations of
discrete probability distributions, it is not clear what ‘uniformity’ should mean
for such non-additive measures. As we have seen above, a capacity µ ∈ CN

can be represented by the set P µ
N = {pµ

m}m∈MN
of n! probability distributions

on N . We therefore propose to define the intuitive notion of uniformity of
a Choquet capacity µ ∈ CN as an average of the uniformity values of the
probability distributions pµ

m (m ∈ MN). Hence, the more uniform on average
the probability distributions pµ

m (m ∈ MN), the higher the uniformity of the
capacity µ. As no maximal chain should be privileged, a measure of the average
uniformity should be defined by means of a symmetric function of the values
HS(pµ

m) (m ∈ MN). In this respect, it can be shown that the entropy HM is
written in terms of maximal chains as

HM(µ) =
1

n!

∑

m∈MN

HS(pµ
m), ∀µ ∈ CN , (2)

or, equivalently,

HM(µ) =
1

n!

∑

π∈ΠN

HS(pµ
π), ∀µ ∈ CN . (3)

This result immediately follows from the next proposition [4] (see also [27]).

Proposition 1 Let µ be any Choquet capacity with nonempty finite carrier
N (normalized or not) and let f be any function. Then, we have

1

n!

∑

m∈MN

∑

j∈N

f [pµ
m(j)] =

∑

i∈N

∑

S⊆N\i

γs(n) f [µ(S ∪ i) − µ(S)].

Proof. For any i ∈ N and any S ⊆ N \ i, let us denote by MS,S∪i
N the subset

of MN formed by the maximal chains whose subsets of cardinality s and s+1
are respectively S and S ∪ i. It is easy to check that

|MS,S∪i
N | = s!(n − s − 1)!
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It follows therefore that, for any fixed i ∈ N and any fixed S ⊆ N \ i, when
summing the term

∑

j∈N f [pµ
m(j)] over the set of maximal chains, the expres-

sion f [µ(S ∪ i) − µ(S)] appears s!(n − s − 1)! times. 2

If ΠN is considered as a probability space, a straightforward probabilistic in-
terpretation of HM directly follows from Eq. (3). For any µ ∈ CN , HM(µ) is the
mathematical expectation of HS(pµ

π) with respect to the uniform distribution
on ΠN .

Interestingly, Dukhovny [27] recently proposed the following alternative entropy-
like measure

HD(µ) := min
m∈MN

HS(pµ
m), ∀µ ∈ CN ,

which is nothing but the lowest uniformity value contained in the probabil-
ity distributions {pµ

m}m∈MN
. Its advantage resides in the fact that it can be

defined even for capacities having no finite carriers.

3 Axiomatization of the entropy HM

Before stating the axioms we use in our characterization, we define some ad-
ditional concepts that will be needed as we proceed.

3.1 Additional definitions

Consider any nonempty finite set N ⊂ U and let µ ∈ CN . Let also S and T be
two disjoint subsets of N , and let A1, . . . , Ak form any partition of N .

We consider the following definitions (see e.g. [28]):

• The restriction of µ to S is a capacity of CS denoted µS and defined by

µS(K) := µ(K), ∀K ⊆ S.

• The restriction of µ to S in the presence of T is a capacity of CS denoted
µS
∪T and defined by

µS
∪T (K) := µ(K ∪ T ) − µ(T ), ∀K ⊆ S.

• The reduction of µ with respect to A1, . . . , Ak is a capacity of C{[A1],...,[Ak]}

denoted µ[A1]...[Ak] and defined by

µ[A1]...[Ak]
(

⋃

i∈S

[Ai]
)

= µ
(

⋃

i∈S

Ai

)

, ∀S ⊆ [k], (4)
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where, for all i ∈ [k], [Ai] stands for an hypothetical macro element that is
the union (or the representative) of the elements in Ai.

Clearly, these new capacities need not be normalized. The normalized version
of any Choquet capacity µ on N , denoted µ̄, is defined by

µ̄(S) :=















µ(S)/µ(N), for all S ⊆ N if µ(N) 6= 0,

0, for all S ( N if µ(N) = 0,

1, if S = N and µ(N) = 0.

Finally, for any capacity µ ∈ CN and any permutation π ∈ ΠU , we denote by
πµ the capacity of Cπ(N) defined by

πµ[π(S)] = µ(S), ∀S ⊆ U,

where π(S) := {π(i) | i ∈ S}.

3.2 Axioms

To present our axiomatization, we will regard a generalized entropy merely as
a function

H : C → R+,

where, for any nonempty finite set N ⊂ U and any µ ∈ CN , the number H(µ)
quantifies the uniformity of µ.

Given µ ∈ CN , it is easy to verify that any permutation π ∈ ΠU transforms
the set P µ

N of probability distributions into the set P πµ
π(N), thus only affecting

the labels of the elements of N . Hence, naturally, our first axiom is:

• Symmetry axiom (S): For any µ ∈ C and any π ∈ ΠU , we have H(πµ) =
H(µ).

Recall from the previous section that, for a cardinality-based capacity µ ∈ CN ,
there exits a probability distribution pµ on N such that the elements of the set
P µ

N all are equal to pµ. This suggests measuring the uniformity of a cardinality-
based capacity µ ∈ CN as that of the probability distribution pµ. The choice
of the Shannon entropy being natural as that of a measure of uniformity of a
probability distribution, our second axiom is:

• Shannon entropy axiom (SE): For any nonempty finite set N ⊂ U and any
cardinality-based capacity µ ∈ CN , we have H(µ) = HS(pµ).

Note that the previous axiom naturally implies that among all the cardinality-
based capacities of CN , µ∗

N is the most uniform one.
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The Shannon entropy is known to satisfy the so-called recursivity property
[5,6,9,10,29], which, in a probabilistic context, basically states that the en-
tropy of a discrete stochastic system can be calculated either directly or by
dividing the system into subsystems. 2 Let p be a probability distribution on a
nonempty finite set N ⊂ U and assume that there exists a partition {A1, A2}
of N such that p(A1) 6= 0 and p(A2) 6= 0. Then, recursivity means that

HS(p) = HS(p[A1][A2]) + p(A1) HS(p̄A1) + p(A2) HS(p̄A2), (5)

where, according to our terminology, p[A1][A2] is a probability distribution on
the pair {[A1], [A2]} defined by

p[A1][A2]([Ai]) = p(Ai), ∀ i ∈ {1, 2},

and where p̄A1 and p̄A2 are the normalized probability distributions on A1 and
A2, respectively, obtained from p, that is,

p̄Ai(j) =
p(j)

p(Ai)
∀ j ∈ Ai , ∀ i ∈ {1, 2}.

As a generalization of the Shannon entropy, we require that our measure of
uniformity H satisfy a similar property that would thus reflect the possibility
to decompose in an additive way the calculation of the uniformity of any
capacity µ ∈ CN . Under certain conditions and when µ is cardinality-based,
such a decomposition already exists if axiom SE is satisfied. To demonstrate
this, let us consider a cardinality-based capacity µ ∈ CN and a partition of N
into two subsets A1 and A2. The capacities that can be constructed from such
a decomposition are :

• the reduced capacity µ[A1][A2] on {[A1], [A2]}, which need not be cardinality-
based,

• the capacities on A1: µ̄A1 and µ̄A1
∪A2

, which are cardinality-based,

• and the capacities on A2: µ̄A2 and µ̄A2
∪A1

, which are cardinality-based as well.

Assume now that n is even so that the subsets A1 and A2 can be chosen
to have the same cardinality n/2. Then, there exist permutations π, σ ∈ ΠN

such that µ̄A1 = πµ̄A2 and µ̄A1
∪A2

= σµ̄A2
∪A1

, and the reduced capacity µ[A1][A2] is
cardinality-based. According to axiom SE and Eq. (5), the following identity

2 Note that the recursivity property is important because it implies among other
things the additivity of the Shannon entropy, i.e.,

HS(p ⊗ q) = HS(p) + HS(q),

for all probability distributions p, q on N , where p ⊗ q denotes the tensor product
of p and q.
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holds

H(µ) = H(µ[A1][A2]) + µA1(A1) H(µ̄A1) + µA2
∪A1

(A2) H(µ̄A2
∪A1

), (6)

which could be equivalently rewritten as

H(µ) = H(µ[A1][A2]) + µA2(A2) H(µ̄A2) + µA1
∪A2

(A1) H(µ̄A1
∪A2

).

The following question then arises: how could we generalize the previous func-
tional equation to situations when the subsets A1 and A2 do not have the same
cardinality anymore? Indeed, for a general choice of N and of the subsets A1

and A2, the capacities µ̄A1 and µ̄A2 need not have the same entropy. Neither
do the capacities µ̄A1

∪A2
and µ̄A2

∪A1
. Furthermore, the reduced capacity µ[A1][A2]

need not be cardinality-based. As an extension of the previous case, we then
require that the following functional equation, which is a generalization of (6)
and is still in accordance with our intuitive additivity requirement, holds for
any cardinality-based capacity µ ∈ CN .

H(µ) = H(µ[A1][A2])

+ α1 µA1(A1) H(µ̄A1) + α1
2 µA1

∪A2
(A1) H(µ̄A1

∪A2
)

+ α2 µA2(A2) H(µ̄A2) + α2
1 µA2

∪A1
(A2) H(µ̄A2

∪A1
),

where α1, α1
2, α2, and α2

1 are as yet undetermined real numbers.

By generalizing the previous functional equation to any partition {A1, . . . , Ak}
of N into k subsets, we obtain our third axiom:

• Recursivity axiom (R): For any finite set N ⊂ U , with n ≥ 2, and any
integer k such that 2 ≤ k ≤ n, there exists a family of real coefficients

{

αi
S(n, k)

∣

∣

∣ i ∈ [k], S ⊆ [k] \ i
}

such that, for any partition {A1, . . . , Ak} of N and any cardinality-based
capacity µ ∈ CN , we have

H(µ) = H(µ[A1]...[Ak]) +
k
∑

i=1

∑

S⊆[k]\i

αi
S(n, k) µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
). (7)

The three axioms we consider here are natural enough to characterize the
generalized entropy HM as a measure of uniformity. Axiom S says that the
labels of the elements of any carrier do not matter. Axiom SE means that in
the limit case where the capacity is cardinality-based then HM collapses into
the Shannon entropy, which is a natural choice for measuring the uniformity
along the maximal chains. Finally, axiom R makes it possible to calculate the
uniformity of any capacity starting from this limit case and from certain of its
restrictions and reductions.
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3.3 Axiomatic characterization of HM

We can now state our main result.

Theorem 2 H : C → R+ fulfills axioms S, SE, and R, if and only if H = HM .

The proof of this theorem is given in the appendix.

4 Properties of the entropy HM

In addition to axioms S, SE, and R, the entropy HM fulfills several properties
considered as natural for an entropy-like measure. In this section we list some
of them (see [2,3,27]).

(1) Boundary property for additive measures. For any additive capac-
ity µ ∈ CN , we have

HM(µ) = HS(p),

where p is the probability distribution on N defined by p(i) = µ(i) for all
i ∈ N .

(2) Expansibility. Let µ ∈ CN and let i ∈ N be a null element, that is, such
that µ(S ∪ i) = µ(S) for all S ⊆ N \ i. Then

HM(µ) = HM(µN\i).

(3) Decisivity. We have

HM(µ) ≥ 0, ∀µ ∈ CN .

Moreover, HM(µ) = 0 if and only if µ is a binary-valued capacity, that
is, such that µ(T ) ∈ {0, 1} for all T ⊆ N .

(4) Maximality. For any µ ∈ CN , we have

HD(µ) ≤ HM(µ) ≤ HY (µ) ≤ ln n.

Moreover,
• HM(µ) = HD(µ) if and only if µ is equientropic [27], that is if

HS(pµ
m) = HS(pµ

m′), ∀m, m′ ∈ MN ,

• HM(µ) = HY (µ) if and only if µ is additive,
• HM(µ) = ln n if and only if µ is the uniform capacity µ∗

N on N .
(5) Increasing monotonicity toward µ

∗

N
. Let µ ∈ CN \ {µ∗

N} and, for
any λ ∈ [0, 1], define µλ ∈ CN by µλ := µ + λ(µ∗

N − µ). Then for any

12



0 ≤ λ1 < λ2 ≤ 1 we have

HM(µλ1) < HM(µλ2).

We now state another very important property of HM which follows from
Eq. (2) and the strict concavity of HS.

(6) Strict concavity. For any µ1, µ2 ∈ CN and any λ ∈ ]0, 1[, we have

HM(λ µ1 + (1 − λ) µ2) > λ HM(µ1) + (1 − λ) HM(µ2).

An immediate consequence of the previous property is that maximizing HM

over a convex subset of CN always leads to a unique global maximum.

For probability distributions, the strict concavity of the Shannon entropy and
its naturalness as a measure of uncertainty gave rise to the maximum entropy
principle, which was pointed out in 1957 by Jaynes [8]. This principle states
that, when one has only partial information about the possible outcomes of
a random variable, one should choose its probability distribution so as to
maximize the uncertainty about the missing information. In other words, all
the available information should be used, but one should be as uncommitted as
possible about missing information. In more mathematical terms, this principle
means that among all the probability distributions that are in accordance with
the available prior knowledge (i.e. a set of constraints), one should choose the
one that has maximum uncertainty.

The strict concavity of HM suggests extending such an inference principle to
discrete Choquet capacities. 3 Note, however, that the interpretation of the
maximum entropy principle for capacities is less natural than for probability
distributions because the notion of uniformity in the context of capacities is
not naturally linked with that of uncertainty as it is the case for probability
distributions.

5 Interpretation of the entropy HM in the aggregation framework

Suppose that the nonempty finite set N = [n] represents a set of criteria in
a multicriteria decision making problem and consider a capacity µ ∈ CN . For
any S ⊆ N , µ(S) can be interpreted as the weight or the degree of impor-
tance of the coalition S of criteria. Hence, in addition to the usual weights on
criteria taken separately, weights on any coalition of criteria are also defined,
thus allowing to model interaction phenomena among them (see e.g [20,21]).

3 See [30] for an application in cooperative game theory of the maximum entropy
principle with HM .
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Monotonicity of µ then means that adding a new element to a coalition cannot
decrease its importance. Obviously µ(N) has the maximal value, being one by
convention.

Now, suppose that x1, . . . , xn ∈ [0, 1] represent quantitative evaluations of an
object with respect to criteria 1, . . . , n, respectively. We further assume that
these evaluations are commensurate, i.e., defined on the same measurement
scale. A global evaluation for this object can then be calculated by means
of the discrete Choquet integral with respect to µ, which has proved to be
an appropriate extension of the classical weighted arithmetic mean for the
aggregation of interacting criteria [21].

Formally, the Choquet integral of x ∈ [0, 1]n with respect to a Choquet capac-
ity µ ∈ CN is defined by

Cµ(x) :=
∑

i∈N

xπ(i)

[

µ
(

{π(i), . . . , π(n)}
)

− µ
(

{π(i + 1), . . . , π(n)}
)]

,

where π is a permutation of ΠN such that xπ(1) ≤ · · · ≤ xπ(n). For more details,
see e.g. [21] and the references therein.

For instance, if x3 ≤ x1 ≤ x2, we have

Cµ(x1, x2, x3) = x3 [µ({3, 1, 2})− µ({1, 2})]

+ x1 [µ({1, 2}) − µ({2})]

+ x2 [µ({2}) − µ(∅)].

Whether a partial evaluation xi will have some influence on the calculation of
Cµ(x) obviously depends upon its corresponding coefficient and hence upon
the capacity µ.

It would then be interesting to appraise the degree to which the partial evalu-
ations x1, . . . , xn contribute to the calculation of the aggregated value Cµ(x).
In this final section we shall show that the function HM measures the aver-
age value over all x ∈ [0, 1]n of the degree to which the arguments x1, . . . , xn

contribute to the calculation of Cµ(x).

To demonstrate this, let us first consider the case when µ is additive, that
is, when no interaction among criteria is allowed. The Choquet integral then
reduces to the weighted arithmetic mean

Cµ(x) =
∑

i∈N

xi µ(i) =
∑

i∈N

xi p(i),

where p is the probability distribution defined by p(i) := µ(i) for all i ∈ N .
In this case, the function HS(p) behaves like a dispersion index [2], which

14



measures the uniformity (evenness) of the weights p(i). For example,

• if HS(p) is close to ln n, then the weights are distributed among all criteria
almost evenly,

• if HS(p) is close to zero, then the total weight is focused almost on only one
criterion.

In other terms, HS(p) measures the extent to which all the individual criteria
contribute to the aggregation process, or equivalently, the extent to which
the arguments x1, . . . , xn contribute to the calculation of the aggregated value
Cµ(x). In that sense, the more uniform the probability distribution p the more
the arguments x1, . . . , xn contribute to the aggregation process.

Now consider a general (non-additive) capacity µ ∈ CN and define the sets

Oπ := {x ∈ [0, 1]n | xπ(1) ≤ · · · ≤ xπ(n)} (π ∈ ΠN )

which cover the hypercube [0, 1]n.

Let x ∈ [0, 1]n be fixed. Then there exists π ∈ ΠN such that x ∈ Oπ and hence

Cµ(x) =
∑

i∈N

xπ(i) pµ
π(i).

The permutation π corresponds to the maximal chain mπ, along which the
Choquet integral boils down to a weighted arithmetic mean whose weights are
defined by the probability distribution pµ

π. In that case, HS(pµ
π) measures the

uniformity of the distribution pµ
π, that is, the regularity of the increasingness

of µ along the chain mπ. Equivalently, it measures the degree to which the
arguments x1, . . . , xn contribute 4 to the calculation of the aggregated value
Cµ(x).

Starting from Eq. (3) and using the fact that
∫

x∈Oπ
dx = 1/n! the entropy

HM(µ) can be rewritten as

HM(µ) =
∑

π∈ΠN

∫

x∈Oπ

HS(pµ
π) dx =

∫

[0,1]n
HS(pµ

πx
) dx,

where πx is a permutation of ΠN such that x ∈ Oπx
.

We thus observe that HM(µ) measures the average value over all x ∈ [0, 1]n

of the degree to which the arguments x1, . . . , xn contribute to the calculation

4 Should HS(pµ
π) be close to ln n, the distribution p

µ
π will be approximately uniform

and all the partial evaluations x1, . . . , xn will be involved almost equally in the
calculation of Cµ(x), which will be close to the arithmetic mean of the xi’s. On the
contrary, should HS(pµ

π) be close to zero, one p
µ
π(i) will be very close to one and

Cµ(x) will be very close to the corresponding partial evaluation.
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of Cµ(x). From Eq. (2), it can also be interpreted as a measure of the average
regularity of the increasingness of µ over all maximal chains m ∈ MN .

In probabilistic terms, it corresponds to the expectation over all x ∈ [0, 1]n,
with uniform distribution, of the degree of contribution of arguments x1, . . . , xn

in the calculation of Cµ(x). From Eq. (2), it also corresponds to the expec-
tation over all maximal chains m ∈ MN , with uniform distribution, of the
regularity of the increasingness of µ.

It should also be mentioned that the interpretation of HM(µ) as an average
degree of contribution of the arguments is in full accordance with the proper-
ties listed in Section 4 (see [2,3]). For example, the decisivity property, which
states that HM(µ) = 0 if and only if µ is binary-valued, is quite relevant for
our aggregation framework. Indeed, it can be shown that this latter condition
holds if and only if

Cµ(x) ∈ {x1, . . . , xn} (x ∈ [0, 1]n).

In other terms, HM(µ) is minimum (= 0) if and only if only one partial
evaluation contributes in the calculation of Cµ(x).

To conclude this section, we give an interpretation of the maximum entropy
principle stated in the previous section in the framework of aggregation by the
Choquet integral.

Assume that we are given a set of linear constraints on the behavior of a
Choquet integral Cµ, that is, constraints that are linear with respect to the
corresponding capacity µ. Then, among all the feasible (admissible) Choquet
integrals, choosing the Choquet integral with respect to the maximum entropy
Choquet capacity amounts to choosing the Choquet integral that will have
the highest average degree of contribution of its arguments in the aggregation
phase. In other words, we could say the Choquet integral with respect to the
maximum entropy Choquet capacity is the one that will exploit the most on
average its arguments.

6 Conclusion

We have proposed an axiomatic characterization of the concept of entropy of
a discrete Choquet capacity, recently introduced on intuitive grounds in the
framework of aggregation by the Choquet integral.

Depending upon the context in which this entropy is used, it can be interpreted
either as a quantification of the uniformity of a Choquet capacity, that is, a

16



measure of the average regularity of a Choquet capacity along all maximal
chains, or as the degree of average contribution of arguments in the framework
of aggregation by the Choquet integral.

A Proof of Theorem 2

In order to prove Theorem 2, we shall go through three technical lemmas.
Moreover, for any cardinality-based capacity µ ∈ CN , we shall use the notation
µt := µ(T ) for all T ⊆ N such that |T | = t, with t ∈ {0, . . . , n}.

Lemma 3 If the function H : C → R+ fulfills axiom SE then, for any finite
set N ⊂ U , with n ≥ 2, any integer k such that 2 ≤ k ≤ n, any partition
{A1, . . . , Ak} of N , and any cardinality-based capacity µ ∈ CN , we have

µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
)

=
ai
∑

t=1

h
[

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

]

− h
[

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]

(A.1)

for all i ∈ [k] and all S ⊆ [k] \ i.

Proof. Consider a finite set N ⊂ U , n ≥ 2, a partition {A1, . . . , Ak} of N ,
with 2 ≤ k ≤ n, and a cardinality-based capacity µ ∈ CN . Then, there exist
µ0, . . . , µn ∈ [0, 1] such that µ(T ) = µt for all T ⊆ N . Moreover, it is easy to
check that the capacities µ̄Ai

∪j∈SAj
are cardinality-based. From axiom SE, for

any i ∈ [k] and any S ⊆ [k] \ i, we then have

µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
)

=
(

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

)

ai
∑

t=1

h
[µ∑

j∈S
aj+t − µ∑

j∈S
aj+t−1

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]

,

=
ai
∑

t=1

h
[

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

]

+ ln
(

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

)

ai
∑

t=1

(

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

)

,

which completes the proof. 2

Lemma 4 If the function H : C → R+ fulfills axioms S, SE, and R, then, for
any integer k ≥ 2 and any finite set N ⊂ U , with n = k(2k − 1), there exists
a family of constants α0(n, k), . . . , αk−1(n, k) such that

αi
S(n, k) = αs(n, k), ∀ i ∈ [k], ∀S ⊆ [k] \ i.
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Proof. Let k ≥ 2 be an integer and consider N ⊂ U such that n = k(2k − 1).
Let µ ∈ CN be cardinality-based and let {A1, . . . , Ak} be a partition of N .

Let π ∈ Π[k]. It is easy to check that

H(µ[A1]...[Ak]) = H(µ[Aπ(1)]...[Aπ(k)]). (A.2)

Indeed, defining u, v ∈ C[k] by

u(S) := µ
(

⋃

i∈S

Aπ(i)

)

, ∀S ⊆ [k],

and

v(S) := µ
(

⋃

i∈S

Ai

)

, ∀S ⊆ [k],

we clearly see that v(π(S)) = u(S) for all S ⊆ [k] and hence v = πu. By (4)
and axiom S, we then have

H(µ[A1]...[Ak]) = H(v) = H(u) = H(µ[Aπ(1)]...[Aπ(k)]).

From axiom R, we know that the functional equation (7) must hold for all par-
titions of N into k subsets. Writing it for {A1, . . . , Ak} and for {Aπ(1), . . . , Aπ(k)}
and making use of (A.2), we have

k
∑

i=1

∑

S⊆[k]\i

αi
S(n, k) µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
)

=
k
∑

i=1

∑

S⊆[k]\i

αi
S(n, k) µ

Aπ(i)

∪j∈SAπ(j)
(Aπ(i)) H(µ̄

Aπ(i)

∪j∈SAπ(j)
).

Rewriting the right-hand side of the previous equation, we obtain

k
∑

i=1

∑

S⊆[k]\i

(

αi
S(n, k) − α

π−1(i)
π−1(S)(n, k)

)

µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
) = 0,

that is, by Lemma 3,

k
∑

i=1

∑

S⊆[k]\i

(

αi
S(n, k) − α

π−1(i)
π−1(S)(n, k)

)

×
[ ai
∑

t=1

h[µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1] − h[µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]
]

= 0,

which must hold for all cardinality-based capacities µ ∈ CN and all partitions
{A1, . . . , Ak} of N .
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By choosing µ and {A1, . . . , Ak} in an appropriate way, we will now show that

αi
S(n, k) = α

π−1(i)
π−1(S)(n, k), ∀π ∈ Π[k], ∀i ∈ [k], ∀S ⊆ [k] \ i,

which will complete the proof of the lemma.

Consider a partition {B1, . . . , Bk} of N such that, for all i ∈ [k], bi = k 2i−1.
This is possible since we have chosen n = k(2k − 1) =

∑k
i=1 k 2i−1. Such a

choice ensures that the partial sums
∑

i∈S bi (S ⊆ [k]) all are different.

Let us fix i∗ ∈ [k], S∗ ⊆ [k] \ i∗, σ ∈ Π[k] such that σ(i∗) = k, and choose
the partition {A1, . . . , Ak} such that Ai = Bσ(i) for all i ∈ [k]. Finally, define
µ ∈ CN by

µ(T ) :=



































0, if t ≤
∑

j∈S∗

aj

1/2, if
∑

j∈S∗

aj < t <
∑

j∈S∗

aj + ai∗

1, if t ≥
∑

j∈S∗

aj + ai∗

with ai∗ = bk = k 2k−1 ≥ 4.

Then, we can show that

ai
∑

t=1

h
[

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

]

− h
[

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]

=







ln 2, if i = i∗ and S = S∗,

0, otherwise.

Indeed, by definition of µ, the left-hand side of the previous identity will be
strictly positive (with value ln 2) if and only if two elements in the sequence

∆i
S :=

(

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

)

t=1,...,ai

are 1/2.

The choice of the cardinality-based capacity µ ensures that only the first and
the last elements of the sequence ∆i∗

S∗ are equal to 1/2.

The choice of the partition {A1, . . . , Ak} ensures that there exists no pair
(i, S) 6= (i∗, S∗) such that ∆i∗

S∗ is a subsequence of ∆i
S . Indeed, ai∗ > ai for all

i ∈ [k] \ i∗ and the partial sums
∑

i∈S ai (S ⊆ [k]) all are different. 2

Lemma 5 If the function H : C → R+ fulfills axioms S, SE, and R, then, for
any integer k ≥ 2 and any finite set N ⊂ U , with n = k(2k − 1), we have

αs(n, k) = γs(k), ∀ s = 0, . . . , k − 1.

19



Proof. Let k ≥ 2 be an integer and consider N ⊂ U such that n = k(2k − 1).
Let µ ∈ CN be cardinality-based and let {A1, . . . , Ak} be a partition of N such
that a1 = · · · = ak := a, with a = 2k − 1 > 1.

From axiom SE, we have that

H(µ) = HS(pµ) =
n
∑

i=1

h[µi − µi−1],

which can be rewritten as

H(µ)=
k−1
∑

s=0

a
∑

t=1

h[µsa+t − µsa+t−1]

= k
k−1
∑

s=0

(

k − 1

s

)

γs(k)
a
∑

t=1

h[µsa+t − µsa+t−1],

that is,

H(µ) =
k
∑

i=1

∑

S⊆[k]\i

γs(k)
a
∑

t=1

h[µsa+t − µsa+t−1]. (A.3)

Since the subsets Ai have the same cardinality, it is easy to check that the
capacity µ[A1]...[Ak] is cardinality-based. According to axiom SE, H(µ[A1]...[Ak])
can be written as

H(µ[A1]...[Ak]) =
k
∑

i=1

h[pµ[A1]...[Ak]

(i)] =
k
∑

i=1

h[µia − µ(i−1)a]

=
k−1
∑

s=0

h[µ(s+1)a − µsa]

= k
k−1
∑

s=0

(

k − 1

s

)

γs(k) h[µ(s+1)a − µsa]

that is,

H(µ[A1]...[Ak]) =
k
∑

i=1

∑

S⊆[k]\i

γs(k) h[µ(s+1)a − µsa]. (A.4)

Using Lemma 3 in the case where the numbers ai all are equal, for all i ∈ [k]
and all S ⊆ [k] \ i, we obtain

µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
) =

a
∑

t=1

h[µsa+t − µsa+t−1] − h[µ(s+1)a − µsa]. (A.5)
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Substituting in the functional equation (7) of axiom R the terms

H(µ), H(µ[A1]...[Ak]), and µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
)

by their expressions given respectively in Eq. (A.3), (A.4), and (A.5), we
obtain, using Lemma 4,

k
∑

i=1

∑

S⊆[k]\i

(

γs(k) − αs(n, k)
)

[ a
∑

t=1

h[µsa+t − µsa+t−1] − h[µ(s+1)a − µsa]
]

= 0,

that is,

k−1
∑

s=0

(

k − 1

s

)

(

γs(k) − αs(n, k)
)

×
[ a
∑

t=1

h[µsa+t − µsa+t−1] − h[µ(s+1)a − µsa]
]

= 0, (A.6)

which must hold for all cardinality-based capacities µ ∈ CN . By choosing µ in
an appropriate way, we will now show that

αs(n, k) = γs(k), ∀ s = 0, . . . , k − 1,

which will complete the proof of the lemma.

Let us fix s∗ ∈ {0, . . . , k − 1} and define µ ∈ CN by

µ(T ) :=























0, if t ≤ s∗a,
t − s∗a

a
, if s∗a ≤ t ≤ (s∗ + 1)a,

1, if t ≥ (s∗ + 1)a.

Using axiom SE, we can easily show that Eq. (A.6) becomes

(

k − 1

s∗

)

(

γs∗(k) − αs∗(n, k)
)

ln a = 0,

where a > 1, which is sufficient. 2

We now prove Theorem 2.

Proof. (Necessity) Let H : C → R+ fulfill axioms S, SE, and R. Let k ≥ 2 be
an integer and let ν ∈ C[k]. We only need to prove that H(ν) = HM(ν).

Let us show first that, given a set N ⊂ U , with n = k(2k − 1), there exists
a partition {A1, . . . , Ak} of N and a cardinality-based capacity µ ∈ CN such
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that ν = µ[A1]···[Ak], that is,

ν(S) = µ[A1]···[Ak]
(

⋃

i∈S

[Ai]
)

= µ∑
i∈S

ai
∀S ⊆ [k].

To prove this, it suffices to consider sets A1, . . . , Ak such that ai = k 2i−1

(i ∈ [k]). In that case, the partial sums
∑

i∈S ai (S ⊆ [k]) all are different
and hence we can always define a cardinality-based capacity µ ∈ CN , with
n = k(2k − 1), such that

µ∑
i∈S

ai
= ν(S) ∀S ⊆ [k].

Now, consider a set function v : 2U → R with carrier [k] defined by

v(R) :=































0, if R = ∅,

∑

j∈R
aj

∑

t=1

h[µt − µt−1], if ∅ 6= R ⊆ [k].

It is easy to check that v is a capacity.

We then have

ai
∑

t=1

h[µt+
∑

j∈S
aj
−µt−1+

∑

j∈S
aj

] =

ai+
∑

j∈S
aj

∑

t=1+
∑

j∈S
aj

h[µt−µt−1] = v(S∪i)−v(S).

and hence

k
∑

i=1

∑

S⊆[k]\i

γs(k)
ai
∑

t=1

h[µt+
∑

j∈S
aj
− µt−1+

∑

j∈S
aj

]

=
k
∑

i=1

∑

S⊆[k]\i

γs(k) [v(S ∪ i) − v(S)]

= v([k]) (cf. Eq. (1))

=
n
∑

t=1

h[µt − µt−1]

= HS(pµ).

Finally, by axiom SE, we obtain

k
∑

i=1

∑

S⊆[k]\i

γs(k)
ai
∑

t=1

h
[

µt+
∑

j∈S
aj
− µt−1+

∑

j∈S
aj

]

= H(µ). (A.7)
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Therefore, combining (A.1) and (A.7), we have

k
∑

i=1

∑

S⊆[k]\i

γs(k) µAi

∪j∈SAj
(Ai) H(µ̄Ai

∪j∈SAj
)

= H(µ) −
k
∑

i=1

∑

S⊆[k]\i

γs(k) h[ν(S ∪ i) − ν(S)].

Finally, using Lemmas 4 and 5, Eq. (7) becomes

H(µ[A1]···[Ak]) =
k
∑

i=1

∑

S⊆[k]\i

γs(k) h[ν(S ∪ i) − ν(S)],

that is,
H(ν) = HM(ν).

(Sufficiency) We know that HM fulfills axioms S and SE. Let us show that it
fulfills axiom R.

Consider an integer k ≥ 2 and a finite set N ⊂ U such that n ≥ k. Let µ ∈ CN

be cardinality-based and let {A1, . . . , Ak} be a partition of N . By Lemma 3,
we have

µAi

∪j∈SAj
(Ai) HM(µ̄Ai

∪j∈SAj
)

=
ai
∑

t=1

h
[

µ∑
j∈S

aj+t − µ∑
j∈S

aj+t−1

]

− h
[

µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]

and hence (cf. (A.7))

k
∑

i=1

∑

S⊆[k]\i

γs(k) µAi

∪j∈SAj
(Ai) HM(µ̄Ai

∪j∈SAj
)

= HM(µ) −
k
∑

i=1

∑

S⊆[k]\i

γs(k) h[µ∑
j∈S

aj+ai
− µ∑

j∈S
aj

]

= HM(µ) − HM(µ[A1]···[Ak]).

We have therefore shown that HM fulfills also axiom R which completes the
proof. 2
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