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Abstract

An obfuscation is a behaviour-preserving program transformation
whose aim is to make a program “harder to understand”. Obfusca-
tions are mainly applied to make reverse engineering of object-oriented
programs more difficult. In this paper, we propose a fresh approach
by obfuscating abstract data-types allowing us to develop structure-
dependent obfuscations that would otherwise (traditionally) not be
available. We regard obfuscation as data refinement enabling us to
produce equations for proving correctness and we model the data-type
operations as functional programs making our proofs easy to construct.

We show how we can generalise an imperative obfuscation — an
array split — so that we can apply it to more general data-types and
we give specific examples for lists and matrices. We develop a theo-
rem which allows us, under certain conditions, to produce obfuscated
operations directly. Our approach allows us to produce random obfus-
cations and we give an example for our list data-type.

1 Introduction

We will consider a particular imperative obfuscation and discuss how it
can be generalised. To do this, we will study abstract data-types and pro-
pose a new approach to obfuscation. “Obfuscation” means “Concealment
or obscuration of a concept, idea, expression”. From a Computer Science
perspective, an obfuscation is a behaviour-preserving program transforma-
tion whose aim is to make a program “harder to understand”. Obfuscations
are applied to a program to make reverse engineering of the program more
difficult. Two concerns about an obfuscation are whether it preserves be-
haviour (i.e. it is correct) and the degree to which it maintains efficiency.
Two current approaches to obfuscation are discussed in Collberg et al. [3]
and Barak et al. [1]. Collberg et al. define metrics which try to qualify
“harder to understand” and consider object-oriented obfuscations.

Barak et al. [1] take a more formal approach to obfuscation — their
notion of obfuscation is as follows. An obfuscator O is a “compiler” which
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takes as input a program P and produces a new program O(P ) such that
for every P :

• Functionality — O(P ) computes the same function as P .

• Polynomial Slowdown — the description length and running time of
O(P ) are at most polynomially larger than that of P .

• “Virtual black box” property — “Anything that can be efficiently com-
puted from O(P ) can be efficiently computed given oracle access to
P” [1, Page 2].

With this definition, Barak et al. construct a family of functions which is
unobfuscatable in the sense that there is no way of obfuscating programs
that compute these functions. The main result of [1] is that their notion
of obfuscation is impossible to achieve. This definition, in particular the
“Virtual Black Box” property, is too strong for our purposes and so we
consider a weaker notion. We do not consider our programs as being “black
boxes” as we assume that any attacker can inspect and modify our code
and we should aim for obfuscations that are difficult (but not necessarily
impossible) to undo. In this paper, we will not explicitly give a definition
pertinent to our approach — a definition is given in [6, Chapter 3] — but
use the notion of obfuscation from Collberg et al. [3]. With abstract data-
types, we may interpret “harder to understand” as, for instance, using an
obscure data structure or having more complicated clauses in the definition
of a function.

The current view of obfuscating programs (in particular [3]) often just
focuses on code fragments and concrete data structures. Our contribution
to the study of obfuscation will be to consider obfuscation as data refine-
ment [5] and we propose a framework for objects which we view (for the
purpose of refinement) as data-types, calling the methods operations. We
consider abstract data-types and define obfuscations for the whole data-
type. This means that rather than just obfuscating single operations we
obfuscate all the operations in the data-type. We model our operations us-
ing the functional language Haskell [12] to provide a framework for specifying
data-types and obfuscations.

A requirement of both of the definitions of Barak et al. [1] and Collberg
et al. [3] is that an obfuscation is correct (i.e. behaviour preserving). Thus
when creating obfuscations we should ensure that they are correct but in an
imperative context, proofs of correctness for transformations are frequently
hard, typically requiring language restrictions — see, for example, [9] in
which a framework is provided for proving the correctness of compiler opti-
misations. This means that obfuscations are mostly stated without giving a
proof of correctness. However, the use of data refinement techniques [5] and
Haskell (which allows us to reason about programs mathematically) enable
us to prove the correctness of all our obfuscations easily.
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Often, obfuscation is seen as applicable only to object-oriented languages
(or the underlying bytecode) but the use of a more mathematical approach
(by using standard refinement and derivation techniques) allows us to ap-
ply obfuscation to more general areas. Since we use Haskell as a basis for
our (apparently new) approach we have the benefits of the elegance of the
functional style and the consequent abstraction of side-effects. Thus our
approach will provide support for purely imperative obfuscations. Some
aims of our proposal are to make the process of creating obfuscations easier
and to have the ability to generalise our obfuscations. The techniques that
we will use (such as data-types, refinement and functional programming)
are well established in the programming research community and so they
will be familiar to many computer scientists. Although the techniques of
formal methods are well-known, the application of obfuscation using these
techniques is not. To demonstrate the scope of this new proposal we show
how to generalise some of the specific obfuscations discussed in [3]. We will
discuss one particular array obfuscation and show how it can be applied to
more abstract data-types.

1.1 Array Splitting

The particular obfuscation that we are going to study is called an array split.
This obfuscation changes the structure of an array by placing the elements
into two (or more) new arrays. Collberg et al. [3] gives this example of an
array split:

int [ ] A = new int [10];

. . .
A[i] = . . . ;

⇒

int [ ] B1 = new int [5];
int [ ] B2 = new int [5];
. . .
if ((i% 2) == 0) B1[i/2] = . . . ;

else B2[i/2] = . . . ;

(1)

The first step to generalising this transformation is to specify functions
which determine how an array is split. We need to define a split so that an
array A of size n is broken up into two other arrays. To do this, we define
three functions ch, f1 and f2 and two new arrays B1 and B2 of sizes m1

and m2 respectively (where m1 + m2 ≥ n). Each array element needs to be
placed in exactly one of the new arrays; this choice will be determined by
ch (the choice function). Each fi gives the position of the elements in each
array.

The types of the functions are as follows:

ch :: [0..n) → B

f1 :: [0..n) → [0..m1)
f2 :: [0..n) → [0..m2)
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Then the relationship between A and B1 and B2 is given by the following
rule:

A[i] =

{

B1[f1(i)] if ch(i)
B2[f2(i)] otherwise

To ensure that there are no index clashes we require that f1 is injective
for the values for which ch is true (similarly for f2). We can write the
transformation described above as:

A[i] =

{

B1[i div 2] if i is even
B2[i div 2] if i is odd

(2)

This relationship can be generalised further so that the elements of A
could be split between more than two arrays. Suppose that we want to split
A into p arrays B0, . . . , Bp−1 with sizes s0, . . . , sp−1 respectively. We can
make the type of ch as follows:

ch :: [0..n) → [0..p)

We define a family of functions F where F = {f0, . . . , fp−1} where each
function fi has type

fi :: ch−1(i) ½ [0..si)

The mapping for A[i] is:

A[i] = Bk[fk(i)] where k = ch(i)

So that each fi is a total function we use ch−1(i) for the domain rather
than [0..n). This generalisation is discussed further in Section 3 where we
consider defining splits for more abstract data-types. We will also develop
a theorem which, under certain conditions, gives definitions for obfuscated
operations directly.

2 Data-types and Obfuscation

To obfuscate a program, you can either obfuscate its algorithms or obfuscate
its data structures. We will concentrate on the latter and propose a frame-
work for objects which we view (for the purpose of refinement) as data-types,
calling the methods operations. We consider abstract data-types (i.e. a lo-
cal state accessible only by declared operations) and define obfuscations for
the whole data-type. This means that rather than just obfuscating single
methods we are obfuscating all the methods of that data-type.

For our framework, we model data-type operations using a functional
language and view obfuscation as data refinement [5]. These mathematical
techniques allow us to prove the correctness of all our obfuscations and
also for some obfuscations we are able to derive an obfuscated operation
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from an unobfuscated one. When we define a data-type, we will insist that
the operations are total and deterministic. This restriction ensures that we
can use equality in our correctness proofs. We choose to use the style of
the functional language Haskell [12] to specify operations and obfuscations
(note that we are not aiming to obfuscate Haskell code but to use Haskell as
a modelling language). Haskell is a suitable language as its mathematical
flavour lends itself to derivational proofs thus allowing us to prove properties
(such as correctness) of Haskell functions (see for example [2, Chapter 4]
and [14, Chapter 14]). Since we are using Haskell as a modelling language
we should ensure that we can convert our operations into other languages.
Thus we will not exploit all the characteristics of Haskell and in particular,
we will use finite, well-defined data-types and we will not use laziness. We
could have chosen a strict language such as ML but the syntax of ML and
the presence of reference cells means that it is not as elegant a setting for
proofs as Haskell.

The view of Collberg et al. [3] concentrates on concrete data structures
such as variables and arrays. All of the data-types that we will use could be
implemented concretely using arrays — for example, we can use the standard
“double, double plus one” conversion [4, Chapter 6] to represent a binary
tree as an array. Why, therefore, do we obfuscate the abstract data-type
rather than its concrete implementation? Apart from providing a simple
way of proving correctness, using data-types gives us an extra “level” in
which to add obfuscations. Going immediately to arrays forces us to think
in array terms and we would have only array obfuscations at our disposal.
For instance, in [7], a data-type for trees is considered and so the usual tree
transformations (such as swapping two subtrees) are naturally available;
they would be more difficult to conceive using arrays. Also, converting a
data-type to an array often loses information about the data-type (such as
the structure) and so it would be difficult to perform operations that use or
rely on knowledge of that structure. Some matrix operations rely on the 2-
dimensional structure of matrices and so we would have difficulties defining
such operations for matrices that have flattened to arrays. We may also gain
new array obfuscations by obfuscating a data-type and then converting the
data-type to an array. Thus, we have two opportunities for obfuscation; the
first using our new data-type approach and the second using the standard
imperative methods.

2.1 Obfuscation as Data Refinement

Suppose that we have a data-type D and we want to obfuscate it to obtain
the data-type O. To provide a framework for obfuscating data-types (and
establishing the correctness of the obfuscated operations) we view obfusca-
tion as data refinement [5]. A refinement can be achieved by a relation R
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between an abstract and a concrete state:

R :: A ↔ C

that satisfies a simulation condition [5, Section 2.1]. A refinement is called
functional if and only if there exists a data-type invariant dti and a function
af :: C → A, called an abstraction function, such that R has the form

a R c ⇔ (af(c) = a) ∧ dti(c)

If we have a functional refinement then each instance of the concrete state
satisfying the data-type invariant is related to at most one instance of the ab-
stract state. That corresponds to the concrete state having more “structure”
than the abstract state. In general, when obfuscating we aim to obscure the
data-type by adding more structure and so we propose that the obfuscated
data-type O will be no more abstract than the original data-type D. Thus
the most general form of refinement for us is functional refinement. This
formulation allows us to have many obfuscations which can be “undone” by
the same abstraction function. We may have a situation where we obfus-
cate a data-type by first performing a (possibly non-functional) refinement
and then obfuscating this refinement. As data refinement is a well-known
technique, we will concentrate on just the obfuscation part of the refinement.

So, for obfuscation we require an abstraction function af :: O → D and
a data-type invariant dti such that for elements x :: D and y :: O

x ; y ⇔ (x = af(y)) ∧ dti(y) (3)

The term x ; y is read as “x is data refined by y” (or in our case, “. . . is
obfuscated by. . . ”) which expresses how the data-types are related.

In our situation, it turns out that af is a surjective function so that if
we have an obfuscation function of :: D → O that satisfies

of(x) = y ⇒ x ; y

then

af · of = id (4)

Suppose that the operation f :: D → D is defined in D. Then to
obfuscate f we want an operation fO with type

fO :: O → O

which preserves the correctness of f . In terms of data refinement, we say
that fO is correct (with respect to f) if it satisfies:

(∀x :: D; y :: O) • x ; y ⇒ f(x) ; fO(y)
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If fO is a correct refinement (obfuscation) of f then we write f ; fO. Using
Equation (3), we obtain

f · af = af · fO (5)

Thus we can prove that a definition of fO is correct by using this equation.
Note that since we have total, deterministic operations then we have equal-
ity in this equation. However general correctness follows if the equality is
merely v (refinement). We can produce similar equations for operations
with different types.

3 Generalising Splitting

We aim to generalise the array split obfuscation and we want to specify
splitting as a refinement (Section 2.1). In this section we introduce some
ideas and notation that we will use to define this generalisation. The aim of
a split is to break up an object t of a particular data-type T into n smaller
objects (which we normally refer to as the split components) t0, t1, . . . , tn−1

of type T by using a so-called split sp:

t ; 〈t0, t1, . . . , tn−1〉sp

The aim of this refinement is to spread the information contained in t across
the split components. The obfuscator knows the relationship between an
object and the components and should aim to hide this relationship.

3.1 Indexed Data-Types

What features do arrays have that allow us to define a split? First, the array
data-type has an underlying type e.g. we can define an array of integers or
an array of strings. Secondly, we can access any element of the array by
providing an index (with arrays we usually use natural numbers).

We generalise these features as follows by defining an Indexed Data-Type
(which we abbreviate to IDT). An indexed data-type T has the following
properties:

(a) an underlying type called the element type — if T has an element type
α then we write T (α)

(b) a set of indexes IT called the indexer

(c) a partial function AT called the access function with type

AT :: T (α) × IT →+ α
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If t has type T (α) (an IDT) then t consists of a collection of elements
(multiple elements are allowed) of type α. Borrowing notation from Haskell
list comprehension, we write e ← t to denote that e is an element of t (this
is analogous to set membership) and it satisfies:

e ← t ⇔ (∃ i ∈ IT ) • AT (t, i) = e

We can define an indexer It for t as follows:

It = {i ∈ IT |AT (t, i) ← t}

Note that AT (t, i) will be undefined if and only if i ∈ IT \It.
Let us look at some example IDTs:

• For arrays, we can take Iarray = N and Aarray (A, I) = X ⇔ A[I] = X.

• For finite Haskell lists, the indexer Ilist is N and the access function is
written !!.

• For sequences in Z [13, Section 4.5], the indexer is N and the access
function is written as functional application, i.e. Aseq (s, n) = a ⇔
s n = a

• If Mr×c is the set of matrices with r rows and c columns, then IMr×c =
[0..r) × [0..c) and we write M(i, j) to denote the access function.

• For binary trees which have type:

Tree α == Null | Fork (Tree α) α (Tree α)

we can define an indexer to be a string of the form (L|R)∗ where L
stands for left subtree and R for right subtree (if we want to access
the top element then we use the empty string ε).

3.2 Defining a Split

Now that we have a more general data-type, how can we define a split for
IDTs? We will characterise a split of an IDT by a pair (ch,F) — where
ch is a function (called the choice function) and F is a family of functions.
Suppose that we want to split t :: T (α) of an indexed data-type T using
a split sp = (ch,F). For data refinement we require a unique abstraction
function that “recovers” t unambiguously from the split components. We
insist that for every position i ∈ It the element AT (t, i) is mapped to exactly
one split component. Thus we need the choice function to be a total function
and all the functions fk ∈ F to be injective. We also require that the domain
of fk is ch−1(k) so that each position of It is mapped to exactly one split
component.
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Hence

t ; 〈t0, t1, . . . , tn−1〉sp

⇔

ch :: It → [0..n)

∧

(∀ fk ∈ F) • fk :: ch−1(k) ½ Itk

∧

AT (tk, fk(i)) = AT (t, i) where ch(i) = k (6)

We will call the last equation — Equation (6) — the split relationship.
From this formulation, we can see that every element of t (counting

multiplicities) must be contained in the split components. So we require
that

(∀ a ← t) • freq(a, t) ≤
∑

e∈[0..n)

freq(a, te)

where freq(c, y) is the frequency of the occurrence of an element c where
c ← y and can be defined as follows:

freq(c, y) = |{i ∈ Iy |AT (y, i) = c}|

3.3 Example Splits

We now give two examples and for these splits, we assume that we have
an IDT T (α) which has an access function AT and for each t :: T (α), the
indexer It ⊆ N.

The first split we shall look at is called the alternating split, which we
denote by asp. This split has two components — the first contains the
elements (in order) which have an even index and the second component
contains the rest.

The choice function is defined as

ch(i) = i mod 2

and the family of functions F = {f0, f1} where

f0 = f1 = (λi.i div 2)

For an element t :: T , we write t ; 〈t0, t1〉asp. We can easily see that if
dom(fk) = ch−1(k) then fk is injective.

Using the definitions of ch and F we can define an access operation:

ATasp
(〈t0, t1〉asp, i) =

{

AT (t0, (i div 2)) if i mod 2 = 0
AT (t1, (i div 2)) otherwise
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This split matches up to the example array split shown in Equation (2).
The second split that we will look at is called the k-block split, which

we will write as b(k) for a constant k :: N. For this split, the first split
component contains the elements which has an index less than k and the
second contains the rest. The choice function is defined as

ch(i) =

{

0 if i < k
1 otherwise

and the family of functions F = {f0, f1} where

f0 = (λi.i)
and f1 = (λi.i − k)

Note that we could write F = {fp = (λi.i−k× ((p+1) mod 2)) | p ∈ {0, 1}}
and ch(i) = sgn(i div k) where sgn is the signum function, i.e.

sgn(x) =







1 if x > 0
0 if x = 0
−1 if x < 0

Since we assume that i, k ∈ N then i div k ≥ 0 and so sgn(i div k) 6= −1.
We can easily see that each fi is injective. We can define an access function
for this split as follows:

ATb(k)
(〈t0, t1〉b(k), i) =

{

AT (t0, i) if i < k
AT (t1, (i − k)) otherwise

A fuller discussion of these splits can be found in [6].

3.4 Splits and Operations

Suppose that we have an indexed data-type D(X) and an operation g of
arity p and elements x1, . . . , xp of type D(X) which we split with respect to
a split sp, so that:

xe
; 〈xe

0, x
e
1, . . . , x

e
n−1〉sp for e :: [1..p]

Suppose that we want to compute g(x1, . . . , xp). Is it possible to express
each of the components of the split of this result in terms of exactly one of
the split components from each of our p elements? That is, we would like

g(x1, . . . , xp) ; 〈g(x1
θ1(0), . . . , x

p

θp(0)), . . . , g(x1
θ1(n−1), . . . , x

p

θp(n−1)) 〉sp

for some family of permutations on [0..n), {θe}e::[1..p]. This can be achieved
if we can find a function h :: Xp → Y and a family of functions {φe}e::[1..p],
where for each e

φe :: Ixe → Ixe
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and for all i ∈ Ix

AD(y, i) = h(AD(x1, φ1(i)), . . . , AD(xp, φp(i))) (7)

where y = g(x1, . . . , xp).

Theorem 1. Function Splitting Theorem

Suppose that the elements x1, . . . , xp of a data-type D(X) are split for some
split sp = (ch,F). Let g be an operation g :: D(X)p → D(Y ) with element y
and functions h and {φe}e as above in Equation (7). If there exists a family
of functions {θe}e::[1..p], such that for each e:

θe · ch = ch · φe (8)

and if each φe satisfies:

φe(fk (i)) = fθe(k) (φe(i)) (9)

where k = ch(i) and fk, fθ(k) ∈ F and if

y ; 〈y0, y1, . . . , yn−1〉sp

then, for each split component of y (with respect to sp)

(∀ i) yk = g(x1
θ1(k), . . . , x

p

θp(k)) where k = ch(i)

Proof. Pick i ∈ Ix, let k = ch(i) and then consider AD(yk, fk(i)).

AD(yk, fk(i))

= {split relationship (6)}

AD(y, i)

= {Equation (7)}

h (AD(x1, φ1(i)), . . . , AD(xp, φp(i)))

= {split relationship (6) with ke = ch(φe(i))}

h (AD(x1
k1

, fk1(φ
1(i))), . . . , AD(xp

kp
, fkp

(φp(i))))

= {Property (8), ke = ch(φe(i)) = θe(ch(i)) = θe(k)}

h (AD(x1
θ1(k), fθ1(k) (φ1(i))), . . . , AD (xp

θp(k), fθp(k) (φp(i))))

= {Property (9)}

h (AD(x1
θ1(k), φ

1(fk (i))), . . . , AD(xp

θp(k), φ
p(fk (i))))

= {definition of g in terms of h and φe, Equation (7)}

AD(g(x1
θp(k), . . . , x

p

θp(k)), fk(i))

Thus

(∀ i) yk = g(x1
θ1(k), . . . , x

p

θp(k)) where k = ch(i)
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List α ::= Empty | Cons α (List α)

(:) :: α → List α → List α
| | :: List α → N

head :: List α → α
tail :: List α → List α

(++) :: List α → List α → List α
map :: (α → β) → List α → List β
filter :: (α → B) → List α → List α

Figure 1: Data-Type for finite lists

In Section 5.2 we show how this theorem can be used to define a trans-
position operation for a particular matrix split.

4 List Splitting

Our data-type for finite lists is given in Figure 1 This data-type is based
on the list data-type in Haskell. We will use the normal Haskell shorthand
for list viz. for Empty we write [ ] and we write Cons 1 (Cons 2 Empty)
as 1 : (2 : [ ]) or just [1, 2] and so x : xs ≡ Cons x xs. We will write |xs|
instead of length xs. Note that head and tail are defined for non-empty finite
lists while the rest are defined for all finite lists. For the sake of conciseness
in this paper we do not consider all of the operations in the data-type —
just the ones that have some particular interest. A full discussion of this
data-type can be found in [6, Chapter 4].

Let us suppose that we want to split the list xs into two lists l and
r (the split components). As before, we write xs ; 〈l, r〉 to denote that
the list xs can be obfuscated by a split list 〈l, r〉. Suppose that we have a
split sp = (ch,F). As the list indexing operation (!!) is expensive to use,
for Haskell list splitting we will define two functions splitsp (the splitting
function) and unsplitsp (which is the inverse of splitsp), such that

xs ; 〈l, r〉sp ⇔ splitsp(xs) = 〈l, r〉sp ∧

unsplitsp(〈l, r〉sp) = xs

and

unsplitsp · splitsp = id

These two functions correspond to the obfuscation and abstraction functions
for this refinement. For any list split we must ensure that splitsp performs
the same split as (ch,F).

By the Function Splitting Theorem (Theorem 1), we can define mapsp f
for any split sp. For map:

(map f xs) !! n = f(xs !! n)
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If we take h = f and φ1 = id then the conditions for the theorem are
satisfied. So

mapsp f 〈x1, . . . , xn〉sp = 〈map f x1, . . . ,map f xn〉sp

4.1 The Alternating Split

We will now define the alternating split (defined in Section 3.3) for lists.
Thus we would like

[4, 8, 3, 1, 8, 7, 6] ; 〈[4, 3, 8, 6], [8, 1, 7]〉asp

The representation xs ; 〈l, r〉asp satisfies the following invariant:

dti ≡ |r| ≤ |l| ≤ |r| + 1

We define a splitting function as follows:

splitasp [ ] = 〈[ ], [ ]〉asp

splitasp (a : xs) = 〈a : r, l〉asp

where 〈l, r〉asp = splitasp xs

and here is the abstraction function:

unsplitasp 〈[ ], [ ]〉asp = [ ]

unsplitasp 〈a : r, l〉asp = a : unsplitasp 〈l, r〉asp

These two functions must satisfy Equation (4) and so we require that

unsplitasp · splitasp = id

A proof can be found in [6, Chapter 4]. For this split, we can also prove
that:

splitasp · unsplitasp = id

This means that unsplitasp is a bijective abstraction function.
To ensure that our definition of splitasp matches the (ch,F) formulation

(stated in Section 3.3), we have to prove the following (a proof is given
in [6]).

Property 1. If splitasp xs = 〈l, r〉asp then (∀ n :: N) • n < |xs|

xs !!n =

{

l !! (n div 2) if n is even
r !! (n div 2) otherwise

where xs is a finite list.
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We define a function consasp

consasp a 〈l, r〉asp = 〈a : r, l〉asp

which satisfies

splitasp (a : xs) = consasp a (splitasp xs)

The function consasp for split lists corresponds to (:) for standard Haskell
lists. We can prove this by using Equation (5), so for some element a:

((:) a) · unsplitasp = unsplitasp · (consasp a)

Since splitasp is an inverse for unsplitasp then we obtain:

consasp a = splitasp · ((:) a) · unsplitasp

We can prove this by induction and the details are omitted here.
As well as proving the correctness of split list operations, we can also

derive definitions for split operations. For example, [6, Chapter 4] shows
how to derive a concatenation operation ++asp for the alternating split using
the equation:

xsp ++asp ysp = splitasp ((unsplitasp xsp) ++ (unsplitasp ysp))

Using this equation, we obtain the following definition:

〈[ ], [ ]〉asp ++asp ysp = ysp
〈x : r0, l0〉asp ++asp ysp = consasp x (〈l0, r0〉asp ++asp ysp)

The operations for the alternating split have similar efficiencies to the unsplit
list operations.

4.2 Block Split

The k-block split (written b(k)) — where k ∈ N is a constant — splits a
list so that the first component contains the first k elements of the list and
the second component contains the rest. For this split we must determine
the value of k before the split is performed and we need to keep the value
constant. The value of k determines how the list is split — we call such a
value the decision value for a split. For instance,

[4, 3, 1, 1, 5, 8, 2] ; 〈[4, 3, 1], [1, 5, 8, 2]〉b(3)

The representation xs ; 〈l, r〉b(k) satisfies the invariant:

dti ≡ (|r| = 0 ∧ |l| < k) ∨ (|l| = k)

We can see that if the list xs has at most k elements then xs ; 〈xs, [ ]〉b(k).
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As with the alternating split, rather than using !!, we define a function
that splits a list:

splitb(k) [ ] = 〈[ ], [ ]〉b(k)

splitb(0) xs = 〈[ ], xs〉b(0)
splitb(k) (x : xs) = 〈x : l, r〉b(k)

where 〈l, r〉b(k−1) = splitb(k−1) xs

To ensure that our definition of splitb(k) matches up with the (ch,F)
formulation stated in Section 3.3, we have to prove the following (a proof is
given in [6, Chapter 4]).

Property 2. Let xs be a non-empty list and suppose n :: N. If splitb(k) xs =
〈l, r〉b(k) then (∀ n :: N) • n < |xs|

xs !!n =

{

l !! n if n < k
r !! (n − k) otherwise

For the abstraction function, we can define:

unsplitb(k) 〈l, r〉b(k) = l ++r

Note that this definition is independent of k.

4.3 Arbitrary List Splitting

When a list is split using the alternating split or the block split it is always
split in the same way. Suppose that we split up a finite list arbitrarily so
that the list is split differently each time a program is executed. This means
that even with the same input list, different program traces are produced
on different executions and this helps to confuse an attacker further. So,
for a list xs, we would like xs ; 〈l, r〉. If we want to do this arbitrarily
then an easy way to do so is to provide a random Boolean for each element
of xs. We could say that if the value is True for an element of xs then
that element should be placed into the list r and if False then into l. So
when splitting each list, we need to provide a list of Booleans that tells us
how to split the list — such a list can be a decision value for this split. For
example, suppose we want to split up the list [1, 2, 3, 4, 5, 6]. Then using the
list [F, F, F, T, F, T ]

[1, 2, 3, 4, 5, 6] ; 〈[1, 2, 3, 5], [4, 6]〉

Instead of providing a list of Booleans, we could use a natural number.
If we let T have value 1 and F have value 0 then we can consider the list of
Booleans as the binary representation of a natural number. For efficiency,
we will consider the least significant bit to be the head of the list. For the
example above, [F, F, F, T, F, T ] has the value 40.
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To be able to use the split list, we will need to know how it has been
split and so we have to carry around the decision value. To do this we create
a new type called an augmented split list which contains a decision value (of
type β) as well as the split lists:

ASpList α ::= 〈β, List α, List α〉A

For our examples, we take β = N. So,

[1, 2, 3, 4, 5, 6] ; 〈40, [1, 2, 3, 5], [4, 6]〉A

We now need to consider how to implement a “cons” operation for this
split. When adding a new element to the front of an augmented split list,
we need to indicate whether the value should be added to the first or to the
second list. So our cons operation will also need to take in a random bit
which decides into which list we add to. If m ∈ {0, 1} then we can define:

consA m x 〈d, l, r〉A = if m == 0 then 〈n, (x : l), r〉A
else 〈n, l, (x : r)〉A

where n = (2 × d) + m

We would like two functions splitA and unsplitA that satisfy the following
property

xs ; 〈n, l, r〉A ⇔ splitA n xs = 〈n, l, r〉A ∧
unsplitA 〈n, l, r〉A = xs

Note that for this split we will take dti ≡ True.
Using the definition of consA, we can easily define a splitting function,

splitA:

splitA n [ ] = 〈n, [ ], [ ]〉A
splitA n (x : xs) = consA m x (splitA d xs)

where (d, m) = divMod n 2

Again we can define this split using (ch,F) — however, we need to
change the types of the functions so that they take in an extra parameter
n. We can define a choice function as follows:

ch(0, n) = n mod 2
ch(i, n) = ch(i − 1, n div 2)

and we can define fi as follows:

fk(t, n) = |{i | 0 ≤ i < t ∧ ch(i, n) == k}|

Property 3. Let xs be a non-empty list and suppose n :: N. If splitA xs =
〈n, l, r〉A then (∀ s :: N) • s < |xs|

xs !! s =

{

l !! f0 (s, n) if ch(s, n) == 0
r !! f1 (s, n) otherwise
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The proof that this formulation matches the split function is given in [6,
Chapter 4]. The abstraction function can be defined as follows:

unsplitA 〈n, [ ], [ ]〉A = [ ]
unsplitA xsp = h : (unsplitA t)

where (b, h, t) = headTailA xsp

where

headTailA 〈n, l, r〉A = if m == 0 then (m, head l, 〈d, tail l, r〉A)
else (m, head r, 〈d, l, tail r〉A)

where (d, m) = divMod n 2

The operation headTail has type ASpList α → (N, α, ASpList α) and satis-
fies:

xsp = consA b h t ⇔ (b, h, t) = headTailA xsp

5 Matrices

As an alternative to lists we consider matrices and we briefly develop some
splits for this data-type. A matrix M which has r rows and c columns
with elements of type α will be denoted by Mr×c(α). We write M(i, j) to
denote the access function which denotes the element located at the ith row
and the jth column. An indexer for a matrix Mr×c is [0..r) × [0..c). Thus
since matrices are examples of IDTs, we can perform splits. For simplicity,
we assume the our element type is Z and so we simply write M instead of
M(Z).

We can model matrices in Haskell using a list of lists. Not all lists of lists
represent a matrix: mss represents a matrix if and only if all the members of
mss are lists of the same length. We can define a function valid that checks
whether a list of lists is a valid matrix representation.

valid [mss] = True
valid (ms : ns : mss) = (|ms| == |ns|) ∧ valid (ns : mss)

We represent Mr×c by a list of lists mss where |mss| = r and each list in
mss has length c. Let us suppose that we want to define multiplication by
a scalar (scale), addition (+), transposition (T ), multiplication (×) and an
indexer (!!!).

For addition, the two matrices must have the same size and for multipli-
cation we need the matrices to be conformable, i.e. the number of columns
of the first is equal to the number of rows in the second. We can specify the
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operations point-wise as follows:

(scale s M)(i, j) = s × M(i, j)
(M + N)(i, j) = M(i, j) + N(i, j)

(MT )(i, j) = M(j, i)
(M × P)(i, k) =

∑c
j=1(M(i, j) × P(j, k))

M !!! (i, j) = M(i, j)

for matrices Mr×c, Nr×c and Pc×d with i :: [0..r), j :: [0..c) and k :: [0..d).
The Haskell definitions for these operations are given in [6, Chapter 6].

We assume that basic arithmetic operations take constant time and so
the computational complexities of M+N, scale s M and MT are all r×c and
the complexity of M ×P is r×c×d. In fact, to reduce the number of multi-
plications in the calculation of M×P, we could use Strassen’s algorithm [4,
Section 28.2] which performs matrix multiplication by establishing simulta-
neous equations. The algorithm requires starting with a 2n×2n matrix and
splitting it into four n×n matrices but by padding a matrix with zeros, this
method can be adapted for more general matrices. We should ensure that
when we obfuscate these operations we do not change the complexity.

5.1 Splitting Matrices

Since matrices form an IDT we can use the Function Splitting Theorem
(Theorem 1 from Section 3.4). Can we express our matrix operations using
functions h and φe? For scale (×s), we can take h = (×s) and φ1 = id;
for (T ), h = id and φ1(i, j) = (j, i) and for (+), we can take h = (+) and
φ1 = id = φ2. We cannot define (×) using h and φe — in the next section,
we use a split in which the components of the split of A ×B are calculated
using two components from the split of A and two from the split of B.

For (+) and scale the φ functions are equal to id (as are the θ functions)
and so Equation (9) is satisfied for any split. If, for some split sp,

A ; 〈A0 , . . . ,An−1〉sp

B ; 〈B0 , . . . ,Bn−1〉sp

then

A +sp B = 〈A0 + B0, . . . ,An−1 + Bn−1〉sp

scalesp s A = 〈scale s A0, . . . , scale s An−1〉sp

5.1.1 Splitting in squares

A simple matrix split is one which splits a square matrix into four matrices
— two of which are square. Using this split we can give definitions of our
operations for split matrices. Suppose that we have a square matrix Mr×r
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and choose a positive integer k such that k < n. The choice function ch(i, j)
is defined as

ch(i, j) =















0 (0 ≤ i < k) ∧ (0 ≤ j < k)
1 (0 ≤ i < k) ∧ (k ≤ j < r)
2 (k ≤ i < n) ∧ (0 ≤ j < k)
3 (k ≤ i < n) ∧ (k ≤ j < r)

which can be written as a single formula

ch(i, j) = 2 sgn (i div k) + sgn (j div k)

The family of functions F is {f0, f1, f2, f3} where

f0 = (λ (i, j) . (i, j))
f1 = (λ (i, j) . (i, j − k))
f2 = (λ (i, j) . (i − k, j))

and f3 = (λ (i, j) . (i − k, j − k))

Alternatively:

fp = (λ (i, j) . (i − k × (p div 2), j − k × (p mod 2))) where p ∈ [0..3]

We call this split the (k, k)-square split since the first component of the split
is a k×k square matrix. Pictorially, we split a matrix as follows:





















a(0,0) . . . a(0,k−1) a(0,k) . . . a(0,n−1)
...

. . .
...

...
. . .

...
a(k−1,0) . . . a(k−1,k−1) a(k−1,k) . . . a(k−1,n−1)

a(k,0) . . . a(k,k−1) a(k,k) . . . a(k,n−1)
...

. . .
...

...
. . .

...
a(n−1,0) . . . a(n−1,k−1) a(n−1,k) . . . a(n−1,n−1)





















So if

M(i, j) = Mt(ft(i, j)) where t = ch(i, j)

then we can write

Mn×n
; 〈Mk×k

0 ,M
k×(n−k)
1 ,M

(n−k)×k
2 ,M

(n−k)×(n−k)
3 〉s(k)

where the subscript s(k) denotes the (k, k)-square split.
For this split

MT
; 〈M0

T ,M2
T ,M1

T ,M3
T 〉s(k)

or, pictorially,

(

M0 M1

M2 M3

)T

=

(

M0
T M2

T

M1
T M3

T

)
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This operation has complexity n×n.
What is the definition of !!! for this split? To access an element of a split

matrix, first we decide which component we need and then what position.
We propose the following definition:

〈M0,M1,M2,M3〉s(k) !!!s(k) (r, c)
∣

∣

∣

∣

∣

∣

∣

∣

r < k ∧ c < k = M0 !!! (r, c)
r < k ∧ c ≥ k = M1 !!! (r, c − k)
r ≥ k ∧ c < k = M2 !!! (r − k, c)
r ≥ k ∧ c ≥ k = M3 !!! (r − k, c − k)

Finally let us consider how we can multiply split matrices. Let

Mn×n
; 〈M0, M1, M2, M3〉s(k)

Nn×n
; 〈N0, N1, N2, N3 〉s(k)

By considering the product
(

M0 M1

M2 M3

)

×

(

N0 N1

N2 N3

)

we obtain the following result:

M × N ; 〈(M0 × N0) + (M1 × N2), (M0 × N1) + (M1 × N3),
(M2 × N0) + (M3 × N2), (M2 × N1) + (M3 × N3)〉s(k)

The computation of M×N using naive matrix multiplication needs n3

integer multiplications. By adding up the number of multiplications for each
of the components, we can see that split matrix multiplication also needs n3

multiplications.

5.2 Generalising the square split

Suppose that we have a matrix Mk×k which we want to split into n2 blocks
with the condition that the blocks down the main diagonal are square. We
will call this the n-square matrix split, denoted by sq(n). For this, we will
need a set of numbers S0, S1, . . . , Sm such that 0 = S0 < S1 < S2 < . . . <
Sn−1 < Sn = k − 1. We require strict inequality so that we have exactly n2

blocks with both dimensions of each block at least 1.
The n-square matrix split is defined as follows: sq(n) = (ch,F) such

that

ch :: [0..k) × [0..k) → [0..n2)

ch(i, j) = p n + q where (Sp ≤ i < Sp+1) ∧ (Sq ≤ j < Sq+1)

and if fr ∈ F then

fr :: [0..k) × [0..k) → [0..Sp − Sp−1) × [0..Sq − Sq−1)

fr(i, j) = (i − Sp, j − Sq) where r = ch(i, j) = pn + q
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An alternative form for the choice function is

ch(i, j) =
n

∑

t=1

(

n × sgn(i div St) + (j div St)
)

Note that if ch(i, j) = pn + q then ch(j, i) = qn + p. The matrices M and
Mr are related by the formula

Mr(fr(i, j)) = M(i, j) where r = ch(i, j)

We can use the Function Splitting Theorem (Theorem 1) to define trans-
position. For transpose, h = id and φ1 = λ (i, j).(j, i). We define a permu-
tation function as follows:

θ1 = λ s.(n × (s mod n) + (s div n))

Suppose that t = ch(i, j) = pn + q then θ1(t) = qn + p. So,

θ1 (ch(i, j)) = θ1 (pn + q)

= qn + p

= ch (j, i)

= ch (φ1 (i, j))

and thus Equation (8) is satisfied. Also,

φ1 (ft (i, j)) = φ1 (fpn+q (i, j))

= φ1 (i − Sp, j − Sq)

= (j − Sq, i − Sp)

= fqn+p (j, i)

= fqn+p (φ1 (i, j))

= fθ1(t) (φ1 (i, j))

and thus Equation (9) is satisfied. Hence Theorem 1 applies and so if

M ; 〈M0,M1, . . . ,Mn,Mn+1, . . . ,Mn2−1〉sq(n)

then

MT
; 〈M0

T ,Mn
T , . . . ,M1

T ,Mn+1
T , . . . ,Mn2−1

T 〉sq(n)

Without the theorem, the derivation of this obfuscation is much harder.
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6 Conclusions and Future Work

The current view of obfuscation concentrates on obfuscating object-oriented
languages (or the underlying intermediate representations) and the obfusca-
tions given in [3] focus on concrete data-types such as variables and arrays.
It is often difficult to produce more general obfuscations when using such
concrete data-types. We have concentrated on a specific array obfuscation
taken from Collberg et al. [3] called an array split and we have shown how
this obfuscation could be generalised. Firstly, we stated that, using the
(ch,F) representation, we can specify how the elements of the original ar-
rays are split into the two new arrays. We generalised this specification
further by considering how to split the original array into more than two
components. We developed an abstract data-type, called an Indexed Data-
Type, which captured the properties of arrays that are needed for splitting.
We then showed how to define “splits” for IDTs which reflect the general-
isations developed for split arrays. The use of abstract data-types allowed
us prove properties about the operations defined for splits. For list splits
we gave the (ch,F) specification and Haskell functions to perform the split
(and unsplit) and we can verify that these two notions match up. For our
data-types, we can prove that the split operations that we produce are cor-
rect and in some cases we can actually derive obfuscated operations. We
also proved a theorem which, under certain conditions, provides definitions
for split operations. In this paper, we have not stated how “obfuscated” our
obfuscations are but a new definition of obfuscation for abstract data-types
based upon proving assertions is given in the thesis [6]. In this thesis, dif-
ferent obfuscations of the concatenation operation (++) are given and it is
discussed which of these operations is “more obfuscated’ according to this
new definition.

Can we split binary trees? Yes, in fact trees turn out to be IDTs since,
as we mentioned in Section 3.1, we can take the “index” of a node to be the
path from the root. In [7] binary tree splitting is briefly discussed and the
following example of a tree split is given. We can split a binary tree at the
root node by making the right subtree one split component and the rest of
the tree the other. Thus we would have

Null ; 〈Null, Null〉
Fork lt v rt ; 〈Fork lt v Null, rt〉

The obfuscations produced using this split have comparable complexities
but this refinement was rejected in [7] because the definitions of the obfus-
cated operations were too similar to the unobfuscated versions. Instead a
refinement was explored which exploited the structure of binary trees.

Can other array obfuscations given in [3] be generalised? Another array
obfuscation is array merging which takes two or more arrays and merges
them into a single array. This obfuscation can be specified by considering the
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inverse of split. In fact, for lists and matrices, the operation unsplit performs
a merge. By considering IDTs, we can also specify and generalise arrays
obfuscations such as increasing and decreasing the number of dimensions
and permuting the order of the elements.

We have proposed a new approach to obfuscation by studying abstract
data-types and considering obfuscation as functional refinement. A benefit
of considering abstract data-types is that we have been able to introduce
randomness in our obfuscations. We have given an example of an obfusca-
tion that can split a list arbitrarily. In [6, Chapter 4] an example is given in
which a list is split so that random elements can be placed in the split com-
ponents and in [6, Chapter 7] random obfuscations for trees are discussed.
Randomness can help confuse an attacker further by creating different pro-
gram traces on different executions with the same input.

It is important to check that an obfuscation is correct — i.e. it preserves
the functionality of an operation — but proving correctness is a challenging
task. Considering obfuscation as refinement allows us to prove the correct-
ness of all our obfuscations of data-type operations. Additionally if the
abstraction function is injective then it has a unique inverse with which we
can derive obfuscations. Note that the abstraction function acts as a de-
obfuscation function and so we must hide this function from an attacker to
prevent the reconstruction of unobfuscated operations. Using simple deriva-
tional techniques and modelling our operations in Haskell has allowed us to
establish correctness easily — this is a real strength of our approach. The
example operations and obfuscations that we have given have been made
simple in order to demonstrate our obfuscation techniques. It seems clear
that more intricate, realistic obfuscations can be developed similarly for
other abstract data-types.

We have seen that this our approach has allowed us to produce new ob-
fuscations and we can easily prove properties (such as correctness) about our
obfuscations. However, this proposal (and the array generalisation) needs
further research. One area for future work is to find out how “strong” our
obfuscations are and so the resilience of our obfuscations to reverse engineer-
ing and deobfuscators should be explored. One simple technique for reverse
engineering is to execute the program and then study the program traces. If
random obfuscations are used then different program traces can be created.
Another technique which can be used is refactoring [8] which is the process
of improving the design of existing code by performing behaviour-preserving
transformations. One particular area to explore is the refactoring of func-
tional programs — [10] gives a discussion of a tool for refactoring Haskell
called HaRe. What happens to our obfuscations if they are refactored?
Could HaRe be used to specify obfuscations and so can our obfuscations be
automated easily?

In the Introduction (Section 1) we stated two aims which were to make
the process of creating obfuscations easier and to have the ability to gener-
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alise our obfuscations. The use of functional programming, data refinement
and abstract data-types has meant that we are able to easily specify ob-
fuscations but has our approach been general enough? For more generality
categories could be obfuscated and concepts such as hylomorphisms [11]
could be used. Barak et al. [1] provide a formal cryptographic treatment
of obfuscation by obfuscating Turing machines. How does our approach
compare with their definition?
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