
Information Sciences 178 (2008) 230–243

www.elsevier.com/locate/ins
Access control in user hierarchy based on elliptic curve
cryptosystem

Yu Fang Chung a, Hsiu Hui Lee b, Feipei Lai b,c, Tzer Shyong Chen d,*

a Information Management Department, Chaoyang University of Technology, Taiwan
b Computer Science and Information Engineering Department, National Taiwan University, Taiwan

c Electrical Engineering Department, National Taiwan University, Taiwan
d Information Management Department, Tunghai University, Taiwan

Received 16 May 2006; received in revised form 30 July 2007; accepted 1 August 2007
Abstract

This work proposes a novel key management method based on elliptic curve cryptosystem and one-way hash function
to solve dynamic access problems in a user hierarchy. The proposed scheme attempts to derive the secret key of successors
efficiently and non-redundantly. It includes functions such as insertion and removal of classes, updating of their relation-
ships, and changing of secret keys. The method utilizes a Central Authority, which enables a user to change the secret key
at will conveniently. Since the proposed method uses the elliptic curve cryptosystem which has a low computational cost
and small key size, its performance in terms of both security and efficiency is quite commendable. Therefore, it can be
anticipated that its use will be extended to wireless communication in the future.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Key management; Elliptic curve cryptosystem; Access control; User hierarchy
1. Introduction

Computer cryptography and information security are of prior concern in the digital age. The accelerated
growth of computer networks and technology favors environments that support multi-users in a hierarchy.
Thus, sharing resources has become unavoidable, and both academic and industrial fields require approaches
to protect information from unauthorized access.

Computer communication systems often employ user hierarchies to solve access control problems. A user
hierarchy generally comprises disjointed security classes, to which users and user information are assigned
and ranked. The security class of a user is known as his security clearance. Assume that SC1,SC2, . . . ,SCn are
n disjointed security classes. Let P denote a binary partially ordered relationship in a user set, SC = {SC1,
SC2, . . . ,SCn}. In the partially ordered set (poset,SC,P), SCi P SCj denotes that the security class SCi have
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2007.08.001

* Corresponding author. Tel.: +886 923 696355; fax: +886 2 23504930.
E-mail address: arden@thu.edu.tw (T.S. Chen).

mailto:arden@thu.edu.tw


Fig. 1. Poset in a user hierarchy.

Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 231
a security clearance higher than or equal to the security class SCj. SCi is classified as a predecessor of SCj, and SCj

as a successor of SCi. The predecessors SCi have accessibility to information belonging to their successors SCj,
but not vice versa. If there is no security class SCk between SCi and SCj, where SCi P SCk P SCj, then SCi is
known as an immediate predecessor of SCj, and SCj is an immediate successor of SCi. Fig. 1 illustrates an exam-
ple of the partially ordered set in a user hierarchy. The arrows linking the connected paths in an accessible net
indicate the direction of access. A user at the end of an arrow can access the user at the head of the same arrow.

For SCi P SCj, the data classified as SCj is generally encrypted using the secret key skj, and SCi derives skj

to access the data that belongs to SCj using ski. A predecessor needs to access the non-immediate successors by
recursively storing the successors’ secret keys level by level. Following a growing hierarchy, the users of higher-
clearance security classes need larger storage space to accommodate the secret keys of all successors, resulting
in key management problems. Additionally, large numbers of keys make security management difficult.
Another solution to the problem is developed, which is, to assign each user a unique secret key through which
a user can calculate all his successors’ keys.

The cryptographic key assignment scheme is developed by Akl and Taylor [19]. In this model, each security
class SCi is given with a secret key ski corresponding to a public parameter Ti. For the relationship
SCi P SCj,SCi can derive the successor’s secret key skj from his secret key ski and the successor’s public
parameter Tj. Simple key generation and derivation algorithms make the scheme superior to other solutions
for dynamic access control problems. However, in practice, the number of security classes increases as the hier-
archy expands, and so does the required storage space for maintaining public parameters. Therefore, the pro-
cess of updating a key becomes complex and the procedure for altering secret keys becomes inconvenient.

This study presents a key management approach to overcome the above problems. The proposed method
simplifies key generation and derivation algorithms, efficiently solves the dynamic access control problems,
enables users to alter their secret keys at will for security reasons, and resists collusive attacks.

The rest of this paper is organized as follows. Section 2 briefly reviews previous studies on access control
problems. Section 3 presents the proposed key generation and derivation algorithms. Section 4 describes
dynamic key management. Section 5 analyzes the secure tolerance under such a key management scheme. Sec-
tion 6 gives the analysis of performance. Conclusions are finally drawn in Section 7.

2. Review of previous research

In AT’s model [19], each security class SCi is assigned a public parameter Ti and a secret key ski. The secret
key is created as follows:
ski ¼ skT i
0 ðmodMÞ
where sk0 denotes the secret key of the Central Authority (called CA for brevity hereafter). M represents the
product of a pair of secret large prime numbers, and Ti rises with the expansion of security classes. If
SCi P SCj, then Tj/Ti will be an integer so that a predecessor SCi can derive skj, as follows:
skj ¼ skT j

0 ¼ skT i�ðT j=T iÞ
0 ¼ skðT j=T iÞ

i ðmod MÞ

If SCj (not 6) SCi, then Tj/Ti will not be an integer, and the key derivation fails.

For the case where Ti rises as the security classes expand, MacKinnon et al. [20] presented a canonical
assignment scheme to lower the value of Ti. Both AT’s and MacKinnon’s schemes utilize top-down traversal.



232 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
Harn and Lin [15] developed a bottom-up key generation method. Although these approaches succeed in
decreasing the value of Ti, they have to update all existing secret keys to maintain security whenever the hier-
archy changes.

Several key management schemes have been presented; for instance, the methods in [6,14,21] construct and
derive the secure keys of all classes on the basis of discrete logarithm problems; the model in [17] uses the inte-
ger factorization problem to complete the construction and derivation of key. Attempts to improve dynamic
access control problems were made in these schemes using different methods. These methods deal with the
problems of inserting and removing security classes in a user hierarchy and the reduction of the size of public
parameters. In these models, users with high security clearance apply repetitive key derivation processes to
obtain the secret keys of non-immediate successors. Other methods [12,22] attempt to enhance AT’s scheme,
and explore other possible approaches that can enable a user in a hierarchy to modify the secret key as nec-
essary. Accordingly, a predecessor can directly and efficiently derive the secret keys of its successors.

Lin [7] found that deriving one key from another key might compromise the new key due to the disclosure
of the old secret key. Furthermore, if the identities of two users belonging to two different security classes in
the hierarchy are only slightly different, then one user can probably guess the key of the other.

Kuo et al. later developed a method [10] that employs the public key to encrypt the secret key. Their model
has a straightforward key assignment algorithm, and small storage space requirement. It utilizes a one-way
hash function H(X), where X denotes an arbitrary-length input, and H(X) is a fixed-length output. The hash
function is the fingerprint of a file, a message, or other data blocks, and has the following attributes [8].

(1) X can be applied to a data block of all sizes.
(2) For any given variable X, H(X) is easy to operate, enabling easy implementation in software and

hardware.
(3) The output length of H(X) is fixed.
(4) Deriving X from the given value h and the given hash function H(X) is computationally infeasible.
(5) For any given variable X, finding any Y 5 X so that H(Y) = H(X) is computationally infeasible.
(6) Finding an input (X,Y) so that H(X) = H(Y) is computationally infeasible.

The trade-off between security and efficiency in performance means that H(X) can help obtain message
digest.

Based on these related works [3–5,9,13,17], this work develops a security model that provides protection
against external and internal attacks. The model can provide a simple and efficient solution to overcome
the collision and the security leaks.

3. Proposed scheme

The proposed method has three sequential phases, namely the relationship building phase, the key gener-
ation phase, and the key derivation phase, all of which are described below.

3.1. Elliptic curve cryptosystem

To ensure high security and efficiency, the proposed method is established based on an elliptic curve cryp-
tosystem. An elliptic curve cryptosystem can achieve security of equal level to the RSA or DSA in the discrete
logarithm problems, and it has lower computation overhead and smaller key size. The mathematic back-
ground of elliptic curve cryptosystem [1,23] is defined below.

The elliptic curve cryptosystem employs the use of elliptic curves. The variables and coefficients of elliptic
curves are all restricted to elements of a finite field, offering added efficiency in the operation of ECC. Two
families of elliptic curves, prime curves defined over Zp and binary curves constructed over GF(2n), are used
in cryptographic applications. Fernandes [2] once pointed out, ‘‘prime curves are best for software applica-
tions because the extended bit-fiddling operations needed by binary curves are not required; and that binary
curves are best for hardware application, where it takes remarkably few logic gates to create a powerful, fast
cryptosystem’’.



Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 233
In this study, the applied elliptic curve over Zp, defined modulo a primep, is the set of solutions (x,y) to the
equation, Ep(a,b): y2 = x3 + ax + b (mod p) where a,b 2 Zp, and 4a3 + 27b2 mod p 5 0. The condition
4a3 + 27b2 mod p 5 0 is necessary to ensure that x3 + ax + b (mod p) has no repeated factors, which means
that a finite abelian group can be defined based on the set Ep(a,b). The definition of an elliptic curve also
includes a point at infinity denoted as O, which is the third point of intersection of any straight line with
the curve; such a line has points of intersection of the form (x,y), (x,�y) and O. Not any elliptic curve over
Zp can be applied in cryptographic applications. Fig. 2 [11] shows an example of the elliptic curve group,
where the elliptic curve is defined by the equation, y2 = x3 + x + 1 (mod 23) (taken from [23]).

The example depicted in Fig. 2 has a = 1 and b = 1 so that 4a3 + 27b2 mod 23 � 8 mod 23 5 0. Thus, the
elliptic group E23(1,1) consists of the points shown in Table 1, extracted from [23].

Addition operation has been used over Ep(a,b). For all points P,Q 2 Ep(a,b), the rules for addition over
Ep(a,b) are defined as follows:

1. P + O = P, where O serves as the additive identity.
2. If P = (xp,yp), then P + (xp, �yp) = O. The point (xp, �yp) is the negative of P, denoted as �P. For exam-

ple, in E23(1, 1), for P = (6, 4), we have �P = (6,�4). Since �4 mod 23 � 19, �P = (6,19), which is also
over E23(1, 1).

3. If P = (xp,yp) and Q = (xq,yq) with P 5 �Q, then R = P + Q = (xr,yr) is over E23(1,1) and is determined
by the following the rules:
xr ¼ ðk2 � xp � xqÞmodp

yr ¼ ðkðxp � xrÞ � ypÞmodp

where k is given as shown below

k ¼
yq�yp

xq�xp

� �
modp; if P 6¼ Q

3x2
pþa

2yp

� �
mod p; if P ¼ Q

8><
>:

4. Multiplication by an integer is defined by repeated addition; for example, 2P = P + P.
Fig. 2. Example of elliptic curve in case of y2 = x3 + x + 1 (mod 23).



Table 1
Points over the elliptic curve E23(1,1)

(0,1) (6,4) (12,19) (0,22) (6,19) (13,7) (1,7) (7,11) (13,16)
(1,16) (7,12) (17,3) (3,10) (9,7) (17,20) (3,13) (9,16) (18,3)
(4,0) (11,3) (18,20) (5,4) (11,20) (19,5) (5,19) (12,4) (19,18)

234 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
Example. Let P = (6,4) and Q = (7,11) in E23(1,1). When P 5 Q, we must derive k before calculating P + Q,
as follows:

11� 4
� �
k ¼
7� 6

mod 23 � 7
So, when k = 7, xr and yr can be derived as shown below. Thus, P + Q = (13, 16).
xr ¼ ð72 � 6� 7Þmod 23 � �6mod23 � 13

yr ¼ ð7ð6� 13Þ � 4Þmod23 � �53mod 23 � 16
To calculate 2P, we must first derive k as follows:
k ¼ 3ð62Þ þ 1

2� 4

� �
mod23 � 109

8
mod 23 � 5
So, when k = 7, xr and yr can be derived as shown below. Thus, 2P = (13,7).
xr ¼ ð52 � 6� 6Þmod 23 � 13mod 23 � 13

yr ¼ ð5ð6� 13Þ � 4Þmod23 � �39mod 23 � 7
The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiplication in
ECC is the counterpart of modular exponentiation in RSA. A difficult problem is essential to creating a cryp-
tographic system using elliptic curves over Zp. Consider the equation Q = kP, where Q, P 2 Ep(a,b) and k < p.
Given k and P, it is relatively easy to calculate Q, but given Q and P, it is relatively hard to determine k. This is
called the elliptic curve discrete logarithm problem (ECDLP) [1,16,23].

Given an example taken from [23], suppose E23(9,17) is an elliptic curve defined by y2 = x3 + 9x + 17 (mod
23). Find the discrete logarithm k of Q = (4,5) to the base P = (16,5). One solution is the brute-force method,
in which multiples of P is computed until Q is found. Thus, P = (16,5), 2P = (20, 20), 3P = (14, 14),
4P = (19, 20), 5P = (13, 10), 6P = (7,3), 7P = (8, 7), 8P = (12, 17), 9P = (4,5).

Because 9P = (4, 5) = Q, the discrete logarithm Q to the base P is k = 9. But in the real implementation, the
brute-force method is quite infeasible as p and k would be so large that the method would not be viable.

Apparently, the efficiency of ECC depends on the fast calculation of Q = kP for some number k and a point
P on the curve. The addition of elliptic curve points requires a few modular calculations. As shown in [23],
ECC can have a prime p that is much smaller than the numbers in the other types of systems. This allows
for significant improvement in efficiency in the operation of ECC over both integer factorization and discrete
logarithm systems.

3.2. Relationship building phase

First, establish the Central Authority to specialize in system and member maintenance. In this phase, CA

builds the hierarchical structure for controlling access according to the relationships between the nodes. Sup-
pose there are n members which together form a set denoted as U = {SC1,SC2, . . . ,SCn}. Let SCi be a security
class with higher clearance and SCj a security class with lower clearance. If there is a legitimate relationship
between SCi and SCj such that SCi can access SCj, then this relationship can be represented as
(SCi,SCj) 2 Ri,j.



Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 235
3.3. Key generation phase

To complete the key generation phase, CA executes the algorithm below.

Step 1: randomly select a large prime p

Step 2: select an elliptic curve E defined over Zp, where the order of E is located in the interval between
[p + 1 � 2

p
p,p + 1 + 2

p
p]

Step 3: select a one-way function h(x) to transform a point into a number and a base point Gj from E(Zp),
where j = 1, . . . ,n

Step 4: select a secret key skj and a sub-secret key sj for SCj, where j = 1, . . . ,n

Step 5: for all {SCij(SCi,SCj)} 2 Ri,j
determine siGj = (x j,i, yj,i)
determine h(xj,ikyj,i) using the one-way hash function, where k is a bit concatenation operator
end for

Step 6: determine the public polynomial fj(x) using h(xj,ikyj,i) as follows
fjðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ� þ skj mod p
Step 7: send skj and sj to the security class SCj via a secret channel, and announce p, h(x), Gj, and fj(x)
Example. As shown in Fig. 1, the user set has six security classes, denoted as U = {SC1,SC2,SC3,

SC4,SC5,SC6}. CA determines the public elliptic curve polynomial fj(x) for each security class. Each security
class can then derive the secret keys of his successors, as follows:
fjðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ� þ skj modp

SC1 : f1ðxÞ ¼ ½x� hðx1;0ky1;0Þ� þ sk1 modp; where s0 is given by CA

SC2 : f2ðxÞ ¼ ½x� hðx2;1ky2;1Þ� þ sk2 modp

SC3 : f3ðxÞ ¼ ½x� hðx3;1ky3;1Þ� þ sk3 modp

SC4 : f4ðxÞ ¼ ½x� hðx4;1ky4;1Þ�½x� hðx4;2ky4;2Þ� þ sk4 mod p

SC5 : f5ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� þ sk5 modp

SC6 : f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 mod p
3.4. Key derivation phase

For the relationship (SCi,SCj) 2 Ri,j between SCi and SCj, the predecessor SCi calculates the secret keys skj

of all successors, SCj, as follows:

Step 1: for {SCij(SCi,SCj)} 2 Ri,j
determine siGj = (x j i, yj,i)
determine h(xj,ikyj,i) using the one-way hash function, where k is a bit
concatenation operator
end for

Step 2: determine skj using h(xj,ikyj,i) as follows
Y

fjðxÞ ¼

SCiPSCj

½x� hðxj;ikyj;iÞ� þ skj modp

fjðhðxj;ikyj;iÞÞ ¼ skj modp



236 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
4. Solution to key management of dynamic access problems

After establishing the protocol to generate and derive keys in a hierarchy, the solution to dynamic key man-
agement problems such as inserting a new security class, removing an existing security class, creating a new
relationship, revoking an existing relationship, and changing secret keys is given as shown below.

4.1. Inserting new security classes

Assume that a new security class SCk is inserted into the hierarchy such that SCi P SCk P SCj; the
relationship SCi P SCk is given as (SCi,SCk) 2 Ri,k, and the relationship SCk P SCj is denoted as
(SCk,SCj) 2 Rk,j. CA follows the procedure below to manage the accessing priority of SCk in the hierarchy.

Step 1: update the partial relationship R that follows when SCk joins the hierarchy
Step 2: randomly select skk, sk, and Gk

Step 3: for all {SCij(SCi,SCk)} 2 Ri,k that satisfies SCi P SCk while inserting the new security class SCk
determine siGk = (xk,i,yk,i)
determine h(xk,ikyk,i) using the one-way hash function, where k is a bit
concatenation operator

end for
Step 4: determine the public polynomial fk(x) using h(xk,ikyk,i) as follows
fkðxÞ ¼
Y

SCiPSCk

½x� hðxk;ikyk;iÞ� þ skk modp
Step 5: for all {SCij(SCi,SCk)} 2 Ri,k and {SCkj(SCk,SCj)} 2 Rk,j that satisfy SCi P SCk P SCj
determine skGj = (x j,k, yj,k)
determine siGj = (x j,i, yj,i)
determine h(xj,kkyj,k) and h(xj,ikyj,i) using the one-way hash function, where k is a
bit concatenation operator

end for
Step 6: determine the public polynomial f 0j ðxÞ using h(xj,kkyj,k) and h(xj,ikyj,i) as follows
f 0j ðxÞ ¼
Y

SCiPSCkPSCj

½x� hðxj;ikyj;iÞ�½x� hðxj;kkyj;kÞ� þ skj modp
Step 7: replace fj(x) with f 0j ðxÞ
Step 8: send skk and sk to SCk via a secret channel, and announce Gk, fk(x) and f 0j ðxÞ
Example. In Fig. 3, a new security class SC7 is inserted into the user hierarchy such that SC1 P SC7 P SC6.
For SC7, CA randomly selects sk7, s7, and G7. Since SC7 is assigned as a successor to SC1 and as a predecessor
to SC6, CA constructs the public polynomial f7(x), and replaces the public polynomial f6(x) with f 06ðxÞ. CA first
calculates h(x7,1ky7,1) with the help of the sub-secret key s1 to construct f7(x); then determines h(x6,7ky6,7) using
the sub-secret key s7 to derive f 06ðxÞ. Finally, CA transmits sk7 and s7 to SC7 via a secret channel and
announces G7, f7(x), and f 06ðxÞ.
Fig. 3. The consequent poset after inserting SC7.



Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 237
Before SC7 joins the hierarchy, the public polynomial f6(x) is formed as follows:
f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 modp
After SC7 joins the hierarchy, the public polynomials f 06ðxÞ and f7(x) are formed as follows:
f 06ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ�½x� hðx6;7ky6;7Þ� þ sk6 modp

f7ðxÞ ¼ ½x� hðx7;1ky7;1Þ� þ sk7 modp
4.2. Removing existing security classes

Assume that an existing member SCk is to be removed from a user hierarchy, such that the relationship
SCi P SCk P SCj breaks up. CA not only directly revokes information related to SCk, but also alters the
accessing relationship between the involved ex-predecessor SCi and ex-successor SCj, of SCk. In particular,
to control the forward security of SCj, CA needs to renew the secret key skj as sk0j, the base point Gj as G0j,
and the public polynomial fj(x) as f 0j ðxÞ, as follows:

Step 1: update the partial relationship R that follows when SCk is removed
Step 2: for all {SCkj(SCk,SCj)} 2 Rk,j
renew the secret key skj as sk0j and the base point Gj as G0j, of SCj

for all {SCij(SCi,SCj)} 2 Ri,j

renew {SCij(SCi,SCj)} 2 Ri,j after removing SCk

determine siG
0
j ¼ ðxj;i, yj,i)

determine h(xj,ikyj,i) using the one-way hash function, where k is a bit concatenation operator
end for
determine the public polynomial f 0j ðxÞ as follows

f 0j ðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ� þ sk0j ðmodpÞ

replace fj(x) with f 0j ðxÞ

end for
Step 3: send sk0j to SCj via a secret channel, and announce G0j and f 0j ðxÞ
Example. For instance, considering Fig. 4, let SC3 be removed from the poset, so that the relationships

SC1 P SC3 P SC5 and SC1 P SC3 P SC6 break up. To revoke the accessibility of SC3, CA removes all
parameters related to SC3, and updates the relationships among the relative predecessors and successors on
the connected path, such as SC1 and SC6. To ensure forward security of the successor SC6, CA renews the
secret key sk6 as sk06 and the base point G6 as G06. Then, CA identifies all predecessors of SC6, namely SC1 in
Fig. 4; determines h(x6,1jjy6,1) using the sub-secret key s1 and G06, and builds the newly available polynomial
f 06ðxÞ. The same procedure is then executed on other successors involved on the connected path, namely SC5.
After completing all renewals, CA transmits sk05 to SC5 and sk06 to SC6 through a secret channel and
announces G05, G06, f 05ðxÞ, and f 06ðxÞ.
Fig. 4. The consequent poset after deleting SC3.



238 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
Before deleting SC3, f5(x) and f6(x) are formed as shown below.
f5ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� þ sk5 mod p

f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 modp
After deleting SC3, f 05ðxÞ and f 06ðxÞ are formed as shown below.
f 05ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ� þ sk50 modp

f 06ðxÞ ¼ ½x� hðx6;1ky6;1Þ� þ sk06 modp
4.3. Creating new relationships

The relationships among members in an organization might be changeable. For instance, a new relationship
SCk P SCl might be added such that SCi P SCk P SCl P SCj. Notably, the relationship between SCk and
SCl is immediate. CA performs the following procedure to link the relationships between SCl and his prede-
cessors (SCk,SCi), and the relationships between SCj and his predecessors (SCl,SCk,SCi).

Step 1: save the partial relationship SCi P SCk P SCl P SCj formed due to the creation of SCk P SCl

Step 2: for all SCi P SCl
if {SCij(SCi,SCl)} 2 Ri,l does not hold until SCk P SCl is created such that SCi P SCk P SCl P SCj

determine siGl = (xl,i,yl,i)
determine skGl = (xl,k,yl,k)
determine h(xl,ikyl,i) and h(xl,kkyl,k) using the one-way hash function, where k is a bit concatenation
operator

end if
end for

Step 3: determine the public polynomial fl(x) as follows
flðxÞ ¼
Y

SCiPSCl

½x� hðxl;ikyl;iÞ�½x� hðxl;kkyl;kÞ� þ skl modp
Step 4: for all SCi P SCj
if {SCij(SCi,SCj)} 2 Ri,j do not hold until SCk P SCl is created such that SCi P SCk P SCl P SCj

for all {SCij(SCi,SCj)} 2 Ri,j

determine siGj = (xj,i,yj,i)
determine skGj = (xj,k,yj,k)
determine slGj = (xj,l,yj,l)
determine h(xj,ikyj,i), h(xj,kkyj,k), and h(xj,lkyj,l), where k is a bit concatenation operator

end for
end if

end for
Step 5: determine the public polynomial f 0j ðxÞ as follows
f 0j ðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ�½x� hðxj;kkyj;kÞ�½x� hðxj;lkyj;lÞ� þ skj modp
Step 6: replace fj(x) with f 0j ðxÞ
Step 7: announce fl(x) and f 0j ðxÞ
Example. Fig. 5 displays the creation of a relationship between SC5 and SC6 such that SC2 P SC5 P SC6,

making SC5 a new predecessor of SC6. To authorize access to SC5 from SC6, CA calculates h(x6,5ky6,5) with s5

and h(x6,2ky6,2) with s2 to build the public polynomial f6(x) using previously obtained parameters h(x6,1ky6,1)
and h(x6,3ky6,3).



Fig. 5. The consequent poset after creating SC5 P SC6.

Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 239
Before creating the relationship SC2 P SC5 P SC6, f6(x) is formed as follows:
f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 modp
After creating the relationship SC2 P SC5 P SC6, f 06ðxÞ is formed as follows:
f 06ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ�½x� hðx6;2ky6;2Þ�½x� hðx6;5ky6;5Þ� þ sk06 mod p
4.4. Revoking existing relationships

Consider the case of revoking an existing relationship (SCk,SCl) 2 Rk,l. In addition to directly deleting the
relationship, CA updates the accessibility of SCk over SCl for controlling the forward security of the ex-suc-
cessor SCl. Restated, CA renews the secret key skl as sk0l, the base point Gl as G0l, and fl(x) as f 0l ðxÞ, related to
SCl. CA follows the following procedure to revoke an existing relationship.

Step 1: revoke the partial relationship R due to the deletion of (SCk,SCl) 2 Rk,l

Step 2: renew the secret key skl as sk0l and the base point Gl as G0l, related to SCl

Step 3: for all {SCij(SCi,SCl)} 2 Ri,l that holds after revoking (SCk,SCl) 2 Rk,l
determine siG
0
l ¼ ðxl;i; yl;iÞ

determine h(xl,ikyl,i) using the one-way hash function, where jj is a bit concatenation operator
end for

Step 4: determine the public polynomial f 0l ðxÞ using h(xl,ikyl,i) as follows
f 0l ðxÞ ¼
Y

SCiPSCl

½x� hðxl;ikyl;iÞ� þ sk0l modp
Step 5: for all {SCkj(SCk,SCj)} 2 Rk,j
if {SCkj(SCk,SCj)} 2 Rk,j breaks up after revoking (SCk,SCl) 2 Rk,l

renew the secret key skj as sk0j and the base point Gl as G0l, related to SCj

for all {SCij(SCi,SCj)} 2 Ri,j

determine siG
0
j ¼ ðxj;i; yj;iÞ

determine slG
0
j ¼ ðxj;l; yj;lÞ

determine h(xj,ikyj,i) and h(xj,lkyj,l), where k is a bit concatenation operator
end for

renew the public polynomial f 0j ðxÞ as follows

f 0j ðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ�½x� hðxj;lkyj;lÞ� þ sk0j modp

end if

end for
Step 6: send the sk0l to SCl and sk0j to SCj via a secret channel, and announce f 0l ðxÞ, f 0j ðxÞ, Gl, and G0l
Example. Consider the revoking of relationship {SC2j(SC2,SC5)} 2 R2,5 in Fig. 6, such that

{SC2j(SC2,SC5)} 62 R2,5.



Fig. 6. The consequent poset after revoking SC2 P SC5.

240 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
Because {SC2j(SC2,SC5)} 2 R2,5 does not hold, CA renews the secret key sk5 as sk05, the base point G5 as G05,
and the public polynomial f5(x) as f 05ðxÞ, related to SC5.

Before revoking {SC2j(SC2,SC5)} 2 R2,5, f5(x) is formed as follows:
f5ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� þ sk5 modp
After revoking {SC2j(SC2,SC5)} 2 R2,5, f5(x) is replaced with f 05ðxÞ as follows:
f 05ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;3ky5;3Þ� þ sk05 modp
4.5. Changing secret keys

A secret key must be changeable to maximize security. To change a secret key skj to sk0j, CA must replace
the base point Gj with G0j and the public polynomial fj(x) with f 0j ðxÞ, as follows:

Step 1: replace the secret key skj with sk0j and the base point Gj with G0j
Step 2: for all {SCij(SCi,SCj)} 2 Ri,j
determine siG
0
j ¼ ðxj;i; yj;iÞ

determine h(xj,ikyj,i), where k is a bit concatenation operator
end for

Step 3: determine the public polynomial f 0j ðxÞ as follows
f 0j ðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ� þ sk0j mod p
Step 4: replace fj(x) with f 0j ðxÞ
Step 5: send sk0j to SCj via a secret channel, and announce G0j and f 0j ðxÞ

5. Discussion of security

This section addresses the possible types of attacks. Security tolerance of the proposed model in response to
the various attacks is discussed in the following subsections.

5.1. Contrary attack

The first potential attack is from a successor, who might wish to obtain the secret key of the immediate or
any prior predecessor through the public parameters and his own secret key. That is, can a successor SCj com-
pute the predecessor’s secret key from the public polynomial fi(x) and the one-way hash function h(xj,ikyj,i)?
The unauthorized user can generally solve this problem by the given plaintext. However, both the elliptic curve
cryptosystem and the one-way hash function can resist forced attack in the proposed approach because their
time complexity is placed at reasonable computational security. An unauthorized successor cannot obtain
the secret key even after years of attempting. Hence, the proposed scheme is highly secure against such an
attack.



Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 241
5.2. Exterior collecting attack

The second potential attack is from an outsider. Can an intruder generate the secret key from a lower secu-
rity class by accessible public parameters? In addition to deriving both the elliptic curve cryptosystem and the
one-way hash function, the invader must successfully launch a ciphertext attack against the asymmetric cryp-
tosystem. A ciphertext attack against an asymmetric cryptosystem is much harder than a plaintext attack
against an asymmetric cryptosystem. Therefore, the proposed model resists intrusion from outsiders.

5.3. Collaborative attack

The collaborative attack is a type of attack where several users collaborate to launch the attack. Suppose
SCj and SCk are the immediate successors of SCi; their relationship can be denoted as (SCi,SCj) 2 Ri,j and
(SCi,SCk) 2 Ri,k, as shown in Fig. 7.

When SCj and SCk collaborate to try to hack the secret key ski of SCi, first, SCj and SCk must exchange
secret keys with each other, and then derive the sub-secret key si of SCi through fj(x) and fk(x).
fjðxÞ ¼
Y

SCiPSCj

½x� hðxj;ikyj;iÞ� þ skj modp

fkðxÞ ¼
Y

SCiPSCk

½x� hðxk;ikyk;iÞ� þ skk modp
However, si is protected by the one-way hash function and the ECDLP among which one-way hash function is
irreversible while the ECDLP is computationally extremely complex. Therefore, attackers cannot invert the
procedure to derive si.

5.4. Equation attack

This is a type of attack where a member uses the common successor to try to hack the secret key of another
member it does not have an accessibility relationship with, like those shown in Fig. 8. For the relationships
SCi P SCj and SCk P SCj,SCi may try to obtain the sub-secret key sk of SCk through fj(x).

Taking Fig. 1 as example, aimed at the relationships SC2 P SC5 and SC3 P SC5,SC2 may attempt
to obtain s3 through their common successor SC5. Using s1G5 = (x5,1,y5,1), s2G5 = (x5,2,y5,2), and
s3G5 = (x5,3,y5,3), f5(x) can be formed as follows:
f5ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� þ sk5 modp

f5ðxÞ � sk5 ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� modp

x� hðx5;3ky5;3Þ ¼ ½f5ðxÞ � sk5�=½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ� modp

Let x ¼ 0; then hðx5;3ky5;3Þ ¼ ½sk5 � f5ð0Þ�=½hðx5;1ky5;1Þ�½hðx5;2ky5;2Þ� modp
The derivation of hacking s3 from f5(x) is based on the difficulty of solving one-way hash function and
ECDLP, which is of reasonable computational security.

5.5. Forward security of the successors while changing SCi P SCk P SCj to SCi P SCj

Modifying the relationship SCi P SCk P SCj to SCi P SCj annuls the accessibility authority of SCk over
SCj. The forward security of the existing security class SCj should be considered seriously. CA not only deletes
Fig. 7. Relationships potentially risking a collaborative attack.



Fig. 8. Relationships potentially risking an equation attack.

242 Y.F. Chung et al. / Information Sciences 178 (2008) 230–243
the accessibility-link relationship, but also updates the accessibility-link relationship between SCi and SCj. CA
replaces the secret key skj with sk0j and the base point Gj with G0j, and thus computes the renewed public poly-
nomial f 0j ðxÞ which no longer includes the factor h(xk,ikyk,i). The authority of SCk over SCj is thus terminated,
so SCk cannot later determine the secret key skj of SCj.

6. Analysis of performance

Table 2 analyzes the proposed approach in comparison to other methods in terms of the required complex-
ity for processing dynamic access control problems, in which Chang denotes the model in [6], Wu represents
that in [14], and Hwang is that in [17]. The analysis in Table 2 clearly reveals that the proposed method is more
straightforward than the other ones, and also requires less storage space.

Table 2 shows functional comparisons between the presented scheme and other previously proposed ones.
In terms of storage size, both Hwang’s and Wu’s schemes require large storage space. In these schemes, the
number of public parameters and the length of the public parameters grow as the number of successor
increases, so the required storage space too gets increasingly larger. As for Chang’s scheme, it is similar to
the scheme proposed in this study. Each class has only one fixed public parameter that needs to be stored.
In terms of dynamic access control problem, all four schemes need only make partial update to information
when inserting and deleting security classes, creating and revoking relationship, and changing security key.

On computational complexity, key generation and key derivation requires executing elliptic curve addition
operations, hash operations and constructing interpolating polynomials. In terms of computational over-
heads, Vanstone [18] had summarized that the key sizes and bandwidth required by ECC provides higher effi-
ciency with order of magnitude roughly 10 times that of integer factorization systems and discrete logarithm
systems. Besides, Stallings [23] estimated that the 4096-bit key size of the RSA gives the same level of security
as the 313-bit one in ECC. That is, the length of the prime p in Ep(a,b) is secure enough with 300 bits.

The storage required for the polynomials fi(x) is proportional to the number of successors a security class is
assigned. The length of the prime p is 300 bits such that the coefficients of the polynomial are defined over p.
Let m be the degree of fi(x); then the storage occupies about mdlogp + 1e bits. In integer factorization systems
or discrete logarithm systems, the chosen prime should be of at least 100 decimal digits to provide sufficient
security.
Table 2
Performance analysis in terms of complexity for access control problems

Required complexity Chang Wu Hwang The proposal

Key generation Exponential Exponential Factorization ECC + hash + encryption
Key derivation Exponential Exponential Factorization ECC + hash + decryption
Inserting/removing security classes Partial update Partial update Partial update Partial update
Creating/revoking relationships Partial update Partial update Partial update Partial update
Changing secret keys Partial update Partial update Partial update Partial update
Storage for public parameters Fixed and small Large Large Fixed and small



Y.F. Chung et al. / Information Sciences 178 (2008) 230–243 243
As to constructing an interpolating polynomial, Knuth [8] completed it with a computation time of
O(m(log m)2). The overall computational complexity of establishing and updating the polynomials is
O(nÆm(log m)2), where n is the number of security classes in the hierarchy.

7. Conclusions

The proposed key management method for controlling dynamic access problems is a simple and efficient
solution for ensuring hierarchical organization. It allows the access of members to data to be classified accord-
ing to their ranks. Members in higher-ranked security class can directly access the secret keys of members in
lower-ranked classes, but not vice versa. The members can change the secret keys at will in consideration of
security, showing that the key generation and public polynomial are flexible.

References

[1] A. Cilardo, L. Coppolino, N. Mazzocca, L. Romano, Elliptic curve cryptography engineering, Proceedings of the IEEE 94 (2) (2006)
395–406.

[2] A.D. Fernandes, Elliptic-curve cryptography, Dr. Dobb’s Journal (1999).
[3] A.D. Santis, A.L. Ferrara, B. Masucci, A new key assignment scheme for access control in a complete tree hierarchy, in: Proceeding of

the International Workshop on Coding and Cryptography—WCC 2005, LNCS 3969, 2006, pp. 202–217.
[4] A.D. Santis, A.L. Ferrara, B. Masucci, Cryptographic key assignment schemes for any access control policy, Information Processing

Letters 92 (4) (2004) 199–205, Nov.
[5] A.D. Santis, A.L. Ferrara, B. Masucci, Enforcing the security of a time-bound hierarchical key assignment scheme, Information

Sciences 176 (12) (2006) 1684–1694, June.
[6] C.C. Chang, I.C. Lin, H.M. Tsai, H.H. Wang, A key assignment scheme for controlling access in partially ordered user hierarchies, in:

Proceedings of the 18th IEEE International Conference on Advanced Information Networking and Applications (AINA2004),
Fukuoka, Japan, vol. 2, March 2004, pp. 376–379.

[7] C.H. Lin, Dynamic key management schemes for access control in a hierarchy, Computer Communications 20 (15) (1997) 1381–1385.
[8] D.E. Knuth, 3rd ed., The Art of Computer Programming, vol.2: Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1998.
[9] F.G. Jeng, C.M. Wang, An efficient key-management scheme for hierarchical access control based on elliptic curve cryptosystem,

Journal of Systems and Software 79 (8) (2006) 1161–1167, Oct.
[10] F.H. Kuo, V.R.L. Shen, T.S. Chen, F. Lai, Cryptographic key assignment scheme for dynamic access control in a user hierarchy, IEE

Proceeding—Computers and Digital Techniques 146 (5) (1999) 235–240.
[11] Francisco Rodrı́guez-Henrı́quez, Doctoral Dissertation: New Algorithms and Architectures for Arithmetic in GF(2m) Suitable for

Elliptic Curve Cryptography, Oregon EUA, June 2000. Supervisor: Dr. Cetin K. Koc. Available from: <http://delta.cs.cinvestav.mx/
~francisco/tesis.html>.

[12] H.M. Tsai, C.C. Chang, A cryptographic implementation for dynamic access control in a user hierarchy, Computers and Security 14
(2) (1995) 159–166.

[13] J.H. Yeh, R. Chow, R. Newman, Key assignment for enforcing access control policy exceptions in distributed systems, Information
Sciences 152 (2003) 63–88.

[14] J. Wu, R. Wei, An access control scheme for partially ordered set hierarchy with provable security, in: Proceedings of SAC 2005,
LNCS 3897, 2006, pp. 221–232.

[15] L. Harn, H.Y. Lin, A cryptographic key generation scheme for multilevel data security, Computers and Security 9 (6) (1990) 539–546.
[16] M.A. Strangio, Efficient Diffie-Hellmann two-party key agreement protocols based on elliptic curves, in: Proceedings of the 2005

ACM Symposium on Applied Computing, 2005, pp. 324–331.
[17] M.S. Hwang, W.P. Yang, Controlling access in large partially-ordered hierarchies using cryptographic keys, Journal of Systems and

Software 67 (2) (2003) 99–107.
[18] S.A. Vanstone, Elliptic curve cryptosystem—The answer to strong, fast public-key cryptography for securing constrained

environments, Information Security Technical Report 2 (2) (1997) 78–87.
[19] S.G. Akl, P.D. Taylor, Cryptographic solution to a problem of access control in a hierarchy, ACM Transactions on Computer

Systems 1 (3) (1983) 239–248.
[20] S.J. MacKinnon, P.D. Taylor, H. Meijer, S.G. Akl, An optimal algorithm for assigning cryptographic keys to control access in a

hierarchy, IEEE Transactions on Computers 34 (9) (1985) 797–802.
[21] V.R.L. Shen, T.S. Chen, A novel key management scheme based on discrete logarithms and polynomial interpolations, Computers

and Security 21 (2) (2002) 164–171.
[22] V.R.L. Shen, T.S. Chen, F. Lai, Novel cryptographic key assignment scheme for dynamic access control in a hierarchy, IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences E80-A (10) (1997) 2035–2037.
[23] W. Stallings, Cryptography and Network Security: Principles and Practice, fourth ed., Prentice Hall, 2005.

http://delta.cs.cinvestav.mx/~francisco/tesis.html
http://delta.cs.cinvestav.mx/~francisco/tesis.html

	Access control in user hierarchy based on elliptic curve cryptosystem
	Introduction
	Review of previous research
	Proposed scheme
	Elliptic curve cryptosystem
	Relationship building phase
	Key generation phase
	Key derivation phase

	Solution to key management of dynamic access problems
	Inserting new security classes
	Removing existing security classes
	Creating new relationships
	Revoking existing relationships
	Changing secret keys

	Discussion of security
	Contrary attack
	Exterior collecting attack
	Collaborative attack
	Equation attack
	Forward security of the successors while changing SCi ges SCk ges SCj to SCi ges SCj

	Analysis of performance
	Conclusions
	References


