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In this paper, assuming that each node is incident with two or more fault-free links, we
show that an n-dimensional alternating group graph can tolerate up to 4n � 13 link faults,
where n P 4, while retaining a fault-free Hamiltonian cycle. The proof is computer-
assisted. The result is optimal with respect to the number of link faults tolerated. Previ-
ously, without the assumption, at most 2n � 6 link faults can be tolerated for the same
problem and the same graph.
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1. Introduction

The performance of interconnection networks (networks for short) heavily relies on their topologies. In recent decades, a
lot of network topologies have been proposed in the literature [1,9,16,22,27] for the purpose of connecting hundreds or thou-
sands of processors. Among them, the alternating group graph [22] owns many favorable properties such as sublogarithmic
degree and diameter, vertex and edge symmetry, recursive structure, maximal fault tolerance, and strong resilience. These
properties are all desired when we are building an interconnection topology for a parallel and distributed system. The alter-
nating group graph is an instance of Cayley graphs [1].

Rings are one of the most fundamental networks for parallel and distributed computation, and many simple and efficient
ring algorithms for solving various algebra or graph problems can be found in [2]. They can be also used as control/data flow
structures for distributed computation in networks (see [29]). In [22], cycles of lengths ranging from 3 to n!/2 were embed-
ded in an n-dimensional alternating group graph of n!/2 nodes, in order to use the advantages of rings. In [31], the alternat-
ing group graph was shown to be panpositionable Hamiltonian. Besides, the alternating group graph can embed grids [22],
trees [22], and paths of all possible lengths between every two nodes [6].

Since node or link faults may occur to networks, it is significant to consider faulty networks. Previously, many fun-
damental problems such as diameter [11,23,30], routing [4], gossiping [12], and embedding [3,5–7,15,18–21,28,32,33]
were studied on various faulty networks. Among them, two fault models were considered; one was the random fault
model [4,6,7,11,12,18–20,25,28], and the other was the conditional fault model [3,5,15,21,23,30,32,33]. The random fault
. All rights reserved.
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model assumed that the faults might occur everywhere without any restriction, whereas the conditional fault model
assumed that the distribution of faults was subject to some constraint, e.g., two or more fault-free links incident to each
node.

In this paper, under the conditional fault model and with the assumption of at least two fault-free links incident to each
node, we show that an n-dimensional alternating group graph can tolerate up to 4n � 13 link faults, where n P 4, while
retaining a fault-free Hamiltonian cycle. The result is optimal with respect to the number of link faults tolerated. For the
same problem, at most 2n � 6 link faults can be tolerated if the random fault model is adopted (see [20]). With our result,
all parallel algorithms developed on rings of lengths up to n!/2 can be executed as well on an n-dimensional alternating
group graph provided every node is incident with at least two fault-free links, even if it has 4n � 13 link faults.

Previous results with the same fault model and assumption are described as follows, which are all embeddings of fault-
free paths or cycles in faulty networks. An n-dimensional hypercube (n-cube for short) with at most 2n � 5 link faults is
strongly Hamiltonian laceable [32]. An n-cube with at most 2n�1 link faults is Hamiltonian if these link faults form a match-
ing and there are two fault-free links in each dimension whose distance is odd [13]. Given any fault-free link, an n-cube with
at most 2n � 5 link faults contains fault-free cycles of even lengths ranging from 6 to 2n that each contain the link [33]. An n-
dimensional star graph with at most 2n � 7 link faults is Hamiltonian [15] and strongly Hamiltonian laceable [34]. An n-
dimensional crossed cube with at most 2n � 5 link faults is Hamiltonian [21]. An m-ary n-cube with at most 4n � 5 link
faults is Hamiltonian [3], where m P 3.

On the other hand, under the same fault model, but with a different assumption of each node having at least k fault-free
neighbors, the minimum number of node faults whose removal may disconnect an n-cube can increase to (n � k)2k, where
1 6 k 6 bn/2c [24]. Such a minimum number was called the Rk-node-connectivity. There is a lower bound of
md((n � d � 1)(m � 1)(s + 1) + (m � s � 1)) on the Rk-node-connectivity of an m-ary n-cube [35], where d = bk/(m � 1)c and
s = kmod(m � 1). In particular, when k = 1, the R1-node-connectivity of an n-cube (m-ary n-cube) can increase to 2n � 2
(4n � 2 if m P 4, and 4n � 3 if m = 3) [14,10], and the R1-node connectivities of cube-connected cycles, undirected binary
de Bruijn networks and Kautz graphs are all greater by one than their normal node connectivities [26]. Besides, the diameters
of an n-cube with 2n � 3 node faults [23] and an n-dimensional star graph with 2n � 5 node faults [30] are greater by two in
the worst case than their normal diameters.

In the next section, the structure of the alternating group graph is first reviewed. Some necessary definitions, notations
and fundamental properties of the alternating group graph are then introduced. In Section 3, it is shown that there exists a
fault-free Hamiltonian cycle in an n-dimensional alternating group graph with up to 4n � 13 link faults under the conditional
fault model and with our assumption. Finally, in Section 4, this paper concludes with some remarks.
2. Preliminaries

It is convenient to represent a network with a graph G, where each vertex (edge) of G uniquely represents a node (link) of
the network. We use V(G) and E(G) to denote the vertex set and edge set of G, respectively. Throughout this paper, we use
node and vertex, link and edge, and network and graph, interchangeably.

Let u = a1a2� � �an be a permutation of 1,2, . . . ,n. A pair of symbols ai and aj in u are said to be an inversion if ai < aj and i > j,
and u is an even permutation if it has an even number of inversions. There are n!/2 even permutations of 1,2, . . . ,n. The fol-
lowing is a formal definition of the alternating group graph.

Definition 1 [22]. An n-dimensional alternating group graph, denoted by AGn, has the node set V(AGn) = {a1a2� � �anja1a2� � �an is
an even permutation of 1,2, . . . ,n} and the link set E(AGn) = {(a1a2� � �an,a2aia3a4� � �ai�2ai�1a1ai+1ai+2� � �an), (a1a2� � �an,aia1a3a4� � �
ai�2ai�1a2ai+1ai+2� � �an)ja1a2� � �an 2 V(AGn) and 3 6 i 6 n}.

The two links (a1a2� � �an,a2aia3a4� � �ai�2ai�1a1ai+1ai+2� � �an) and (a1a2� � �an,aia1a3a4� � �ai�2ai�1a2ai+1ai+2� � �an) are referred to as
i-dimensional links of a1a2� � �an, where 3 6 i 6 n. Intuitively, a2aia3a4� � �ai�2ai�1a1ai+1ai+2� � �an (aia1a3a4� � �ai�2ai�1a2ai+1ai+2� � �an)
is obtained from a1a2� � �an by shifting the three elements a1, a2, ai left (right) cyclically, while retaining the other n � 3 ele-
ments a3,a4, . . . ,ai�1,ai+1,ai+2, . . . ,an stationary. Fig. 1 illustrates the topologies of AG3 and AG4. It is not difficult to see that AGn

has n!/2 nodes and (n � 2)n!/2 links. Besides, AGn is regular of degree 2(n � 2). Throughout this paper, we use E(i)(AGn) to
denote the set of all i-dimensional links in AGn.

It was shown in [22] that AGn is both node symmetric and link symmetric. Besides, AGn is recursive, as explained below. It
can be observed from Fig. 1 that AG4 consists of four embedded AG3’s, denoted by AGð1Þ4 , AGð2Þ4 , AGð3Þ4 , and AGð4Þ4 . In general,
AGn comprises n embedded AGn�1’s: AGðiÞn for 1 6 i 6 n, where each node in AGðiÞn has the rightmost digit i. For I # {1,2, . . . ,n},
we let AGI

n denote the subgraph of AGn induced by
S

k2IVðAGðkÞn Þ, and for p – q, we let eEp;qðAGnÞ denote the set of n-dimen-
sional links in AGn that connect AGðpÞn and AGðqÞn .

For each u 2 V(G), let deg(u) denote the degree of u, which is the number of links incident to u, and let d(G) = min{de-
g(u)ju 2 V(G)} be the minimal node degree of G. By Pv0 ;v t ¼ hv0;v1;v2; . . . ;v t�1;v ti we denote a path from node v0 to node
vt, where v1,v2, . . . ,vt�1 are intermediate nodes. When v0 ¼ v t ; Pv0 ;v t forms a cycle. A path may contain another path as its
subpath. For example, Pv0 ;v t ¼ hv0;v1; . . . ;v i; Pv i ;v j

; v j; . . . ;v ti contains a subpath, i.e., Pv i ;v j
, as its subpath.

A path (cycle) in G is called a Hamiltonian path (Hamiltonian cycle) if it contains every node of G exactly once. G is called
Hamiltonian if it has a Hamiltonian cycle, and Hamiltonian-connected if it has a Hamiltonian path between every two nodes.



123

312231

1234

2314

1342

3412

2143

3241

2431

4132

4321

3124

4213

1423

(1)
4AG

(2)
4AG (3)

4AG

(4)
4AG

a b
Fig. 1. The topologies of (a) AG3 and (b) AG4.
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Since AGn is isomorphic to the (n,n � 2)-arrangement graph (see [8]), the following lemma can be obtained, as an immediate
consequence of Hsu [20].

Lemma 1 [20]. Suppose that Fv � V(AGn) and Fe � E(AGn). Then, AGn � Fv � Fe is Hamiltonian if jFvj + jFej 6 2n � 6, and
Hamiltonian-connected if jFvj + jFej 6 2n � 7, where n P 4 and AGn � Fv � Fe denotes the subgraph of AGn that is obtained by
removing all nodes in Fv and all links in Fe from AGn (the links incident to the nodes of Fv are removed automatically, but they are
not counted in jFej).

The following lemma is an immediate consequence of Definition 1.

Lemma 2. jeEp;qðAGnÞj ¼ ðn� 2Þ! for all p, q 2 {1,2, . . . ,n} and p – q, where n P 4.

Lemma 3. Suppose that Fe � E(AGn) and I = {k1,k2, . . . , kjIj} # {1,2, . . . ,n}, where n P 5 and jIjP 2. Then, for any node s 2 AGðk1Þ
n

and any node t 2 AGðkjIj Þn , AGI
n � Fe contains a Hamiltonian path Ps,t that passes through AGðk1Þ

n , AGðk2Þ
n ; . . . ;AGðkjIj Þn in this sequence,

provided the following two conditions hold:

(1) jeEkj ;kjþ1
ðAGnÞ n FejP 3 for all 1 6 j < jIj, where ndenotes the set difference;

(2) AGðkjÞ
n � Fe is Hamiltonian-connected for all 1 6 j 6 jIj.

Proof. A desired Hamiltonian path, as depicted in Fig. 2, can result as a consequence of (1) and (2). With (1), nodes
v1,u2,v2,u3, . . . ,vjIj�1,ujIj can be determined, sequentially, so that ujIj – vjIj, vj – uj, and (vj,uj+1) 2 E(n)(AGn)nFe for all 1 6 j < jIj.
With (2), a Hamiltonian path Puj ;v j

can be found in AGðkjÞ
n � Fe for all 1 6 j 6 jIj. h
3. A fault-free Hamiltonian cycle

In this section, assuming that each node is incident with two or more fault-free links, we show that AGn can tolerate up to
4n � 13 link faults, while retaining a fault-free Hamiltonian cycle, where n P 4.

Theorem 1. Suppose that Fe � E(AGn), where n P 4. If jFej 6 4n � 13 and d(AGn � Fe) P 2, then AGn � Fe is Hamiltonian.
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Fig. 2. A Hamiltonian path in AGI
n � Fe .



854 P.-Y. Tsai et al. / Information Sciences 179 (2009) 851–857
Proof. We show the theorem by induction on n. When n = 4, the correctness of the theorem can be verified by a computer
program (refer to [36]). Suppose that the theorem holds for AGn�1, where n � 1 P 4. In the rest of the proof, we show that the
theorem also holds for AGn.

Since AGn is link symmetric, we assume jE(n)(AGn) \ FejP jE(n�1)(AGn) \ FejP � � �P jE(3)(AGn) \ Fej, without loss of
generality. When n P 8, we have jE(n)(AGn) \ FejP d(4n � 13)/(n � 2)eP 4. Hence, jEðAGðrÞn Þ \ Fej 6 jFe n EðnÞðAGnÞj 6 4n� 17
for all 1 6 r 6 n. Similarly, when 5 6 n 6 7, we have jE(n)(AGn) \ FejP 3 and jEðAGðrÞn Þ \ Fej 6 jFe n EðnÞðAGnÞj 6 4n� 16 for all
1 6 r 6 n.

By Lemma 2, we have jeEp;qðAGnÞj ¼ ðn� 2Þ! for all p, q 2 {1,2, . . . ,n} and p – q. If n P 6, then
jeEp;qðAGnÞjP 4n > 4n� 10 P jFej þ 3, which implies jeEp;qðAGnÞ n Fej > 3. If n = 5, then 0 6 jeEp;qðAG5Þ n Fej 6 6, because
jeEp;qðAG5Þj ¼ 6 and jFej 6 7. Suppose that jEðAGðaÞn Þ \ FejP jEðAGðrÞn Þ \ Fej for all r 2 {1,2, . . . ,n}n{a}, where 1 6 a 6 n. Three
cases: jEðAGðaÞn Þ \ Fej 6 2n� 9, 2n� 8 6 jEðAGðaÞn Þ \ Fej 6 4n� 17, and jEðAGðaÞn Þ \ Fej ¼ 4n� 16, are discussed below. Notice
that we have jEðAGðaÞn Þ \ Fej 6 4n� 17 when n P 8, and jEðAGðaÞn Þ \ Fej 6 4n� 16 when 5 6 n 6 7.

Case 1. jEðAGðaÞn Þ \ Fej 6 2n� 9. Since each AGðrÞn is regular of degree 2n � 6, each node in AGðrÞn � Fe has degree at least
three, where 1 6 r 6 n. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 3, where
i1 ¼ a; fi2; i3; . . . ; ing ¼ f1;2; . . . ;ng n fag;us;vs 2 VðAGðisÞn Þ and us – vs for s 2 {1,2, . . . ,n}, and (u1,vn), (vj,uj+1) 2 E(n)(AGn)nFe

for j 2 {1,2, . . . ,n � 1}. When n P 6; ðv1;u2Þ 2 eEi1 ;i2
ðAGnÞ n Fe and ðu1;vnÞ 2 eEi1 ;in ðAGnÞ n Fe can be selected (refer to the third

paragraph of the proof). When n = 5, they can be also selected if we arrange i2, i3, . . . , in so that jeEi1 ;i2 ðAGnÞ n FejP 1 and
jeEi1 ;in ðAGnÞ n FejP 1. By Lemma 1, there is a Hamiltonian path Pu1 ;v1 in AGði1Þ

n � Fe.
Next, the existence of a Hamiltonian path Pu2 ;vn in AGI

n � Fe is explained, where I = {i2, i3, . . . , in}. When n P 6, the existence
of Pu2 ;vn in AGI

n � Fe can be assured by Lemma 3. The condition (1), i.e., jeEij ;ijþ1
ðAGnÞ n FejP 3 for all 2 6 j < n, of Lemma 3 holds

(refer to the third paragraph of the proof). The condition (2), i.e., AGðijÞn � Fe is Hamiltonian-connected for all 2 6 j 6 n, of
Lemma 3 holds as a consequence of Lemma 1.

When n = 5, we have 0 6 jeEp;qðAG5Þ n Fej 6 6 for all p, q 2 I and p – q (refer to the third paragraph of the proof). If
jeEp;qðAG5Þ n FejP 3 for all p, q 2 I and p – q, the existence of a Hamiltonian path Pu2 ;v5 in AGI

5 � Fe can be assured by Lemma
3, similar to the situation of n > 5. If there exist p0, q0 2 I and p0 – q0 satisfying jeEp0 ;q0 ðAG5Þ n Fej < 3, then the pair of p0 and q0 is
unique, for otherwise jFejP 2jeEp0 ;q0 ðAG5Þ \ FejP 8, a contradiction. After arranging i2, i3, i4, i5 so that {p0,q0} R {{i2, i3},
{i3, i4}, {i4, i5}}, the existence of a Hamiltonian path Pu2 ;v5 in AGI

5 � Fe can be assured by Lemma 3 similarly.
Case 2. 2n� 8 6 jEðAGðaÞn Þ \ Fej 6 4n� 17. Recall that jFenE(n)(AGn)j 6 4n � 16 and jEðAGðaÞn Þ \ FejP jEðAGðrÞn Þ \ Fej for all

r 2 {1,2, . . . ,n}n{a}, where 1 6 a 6 n (refer to the second and third paragraphs of the proof). It suffices to consider two
situations: (1) jEðAGðaÞn Þ \ Fej ¼ 2n� 8, jEðAGðbÞn Þ \ Fej ¼ 2n� 8 for some b 2 {1,2, . . . ,n}n{a}, and jEðAGðrÞn Þ \ Fej ¼ 0 for all
r 2 {1,2, . . . ,n}n{a, b} and (2) jEðAGðrÞn Þ \ Fej 6 2n� 9 for all r 2 {1,2, . . . ,n}n{a}.

First we consider the situation (1). Since jFej 6 4n � 13 and jEðAGðaÞn Þ \ Fej þ jEðAGðbÞn Þ \ Fej ¼ 4n� 16, we have
jE(n)(AGn) \ Fej 6 3. However, jE(n)(AGn) \ FejP 3 if 5 6 n 6 7 and jE(n)(AGn) \ FejP 4 if n P 8 (refer to the second paragraph
of the proof). Therefore, we have jE(n)(AGn) \ Fej = 3, and the situation (1) occurs only when 5 6 n 6 7. Moreover, since each
AGðrÞn is regular of degree 2n � 6, each node in AGðrÞn � Fe has degree at least two, where 1 6 r 6 n. A desired Hamiltonian cycle
in AGn � Fe can be obtained as shown in Fig. 4, where i1 = a, i2 = b, and {i3, i4, . . . , in} = {1,2, . . . ,n}n{a,b}.

Refer to Fig. 4 again. The induction hypothesis assures a Hamiltonian cycle C1 in AGði1Þ
n � Fe and a Hamiltonian cycle C2 in

AGði2Þ
n � Fe. Notice that jE(n)(AGn) \ Fej = 3, jeEp;qðAGnÞj ¼ ðn� 2Þ! P 6 for all p, q 2 {1,2, . . . ,n} and p – q, and each node is

incident with two links in E(n)(AGn). It is easy to understand that ðv1;u2Þ 2 eEi1 ;i2
ðAGnÞ n Fe and a neighboring node u1 (v2) of v1

(u2) in C1 (C2) having ðu1;vnÞ 2 eEi1 ;in ðAGnÞ n Feððv2;u3Þ 2 eEi2;i3 ðAGnÞ n FeÞ can be found. By Lemma 3, there exists a
Hamiltonian path Pu3 ;vn in AGI

n � Fe, where I = {i3, i4, . . . , in}.
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Fig. 3. A Hamiltonian cycle in AGn � Fe for jEðAGðaÞn Þ \ Fej 6 2n� 9.
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Next we consider the situation (2). Two cases: d(AGðaÞn � FeÞP 1 and dðAGðaÞn � FeÞ ¼ 0, are discussed below.
Case 2.1. dðAGðaÞn � FeÞP 1. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 5a, where i1 = a and

{i2, i3, . . . , in} = {1,2, . . . ,n}n{a}. We first assume dðAGðaÞn � FeÞP 2. The induction hypothesis assures a Hamiltonian cycle C1 in
AGði1Þ

n � Fe. Since jFej 6 4n � 13 and jEðAGðaÞn Þ \ FejP 2n� 8, a link, i.e., (u1,v1), can be selected from C1 so that there exist
(v1,u2), (u1,vn) 2 E(n)(AGn)nFe, for otherwise jE(n)(AGn) \ FejP ((n � 1)!/2)/2 > 2n � 5, a contradiction. Then a Hamiltonian
path Pu2 ;vn in AGI

n � Fe can be assured by Lemma 3 (refer to Case 1), where I = {i2, i3, . . ., in}.
Then we assume dðAGðaÞn � FeÞ ¼ 1. Refer to Fig. 5a again. Since jEðAGðaÞn Þ \ Fej 6 4n� 17, there exists a unique node of

degree one in AGðaÞn � Fe. We let v1 be this node. Since d(AGn � Fe) P 2, there exists an n-dimensional link of v1 that is not
contained in Fe. We let (v1, u2) 2 E(n)(AGn)nFe be this link, where u2 2 VðAGði2Þ

n Þ is assumed. Since jFej 6 4n � 13 and
jEðAGðaÞn Þ \ FejP 2n� 8, a link, i.e., (v1, u1), can be selected from EðAGði1Þ

n Þ \ Fe so that there exists (u1, vn) 2 E(n)(AGn)nFe,
where vn 2 VðAGðinÞn Þ, for otherwise jE(n)(AGn) \ FejP 2(2n � 7) > 2n � 5, a contradiction. The induction hypothesis assures a
Hamiltonian cycle C1 in AGði1Þn � ðFe n fðv1;u1ÞgÞ. Since (v1,u1) 2 C1, there exists a Hamiltonian path Pu1 ;v1 ð¼ C1 � ðv1;u1ÞÞ in
AGði1Þ

n � Fe. A Hamiltonian path Pu2 ;vn in AGI
n � Fe can be assured by Lemma 3 (refer to Case 1), where I = {i2, i3, . . ., in}.

Case 2.2. dðAGðaÞn � FeÞ ¼ 0. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 5b, where i1 = a and
{i2, i3, . . . , in} = {1,2, . . . ,n}n{a}. This case occurs only when n P 6, because jEðAGðaÞn Þ \ Fej 6 4n� 17 and AGðaÞn is regular of
degree 2n � 6. There exists a unique node of degree zero in AGðaÞn � Fe. We let w be this node. Since d(AGn � Fe) P 2, the two
n-dimensional links of w are not contained in Fe. We let (w,v3), (w,u4) 2 E(n)(AGn)nFe be these two links, where v3 2 VðAGði3Þn Þ
and u4 2 VðAGði4Þn Þ are assumed. Refer to Fig. 5b again.

The two links (v1,u2), (u1,vn) can be found, because jeEi1 ;rðAGnÞj ¼ ðn� 2Þ! for all r 2 {i2, i3, . . . , in} and
jE(n)(AGn) \ Fej 6 (4n � 13) � (2n � 8) = 2n � 5. Let Fv = {w} and F 0e ¼ ðEðAGði1Þn Þ \ FeÞ n fðw; zÞjðw; zÞ 2 EðAGði1Þn Þg, where
jFvj + jF0ej 6 2n � 10. By Lemma 1, there exists a Hamiltonian path Pu1;v1 in AGði1Þn � Fv � F 0e. By Lemma 3, there exist a
Hamiltonian path Pu2 ;v3 in AGI1

n � Fe and a Hamiltonian path Pu4 ;vn in AGI2
n � Fe, where I1 = {i2,i3} and I2 = {i4, i5, . . . , in}.
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Fig. 5. Hamiltonian cycles in AGn � Fe for jEðAGðaÞn Þ \ FejP 2n� 8 and jEðAGðrÞn Þ \ Fej 6 2n� 9 for all r 2 {1,2, . . . ,n}n{a}. (a) dðAGðaÞn � FeÞP 1. (b)
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Case 3. jEðAGðaÞn Þ \ Fej ¼ 4n� 16. Recall that when n P 8, we have jEðAGðrÞn Þ \ Fej 6 4n� 17 for all 1 6 r 6 n, and when
5 6 n 6 7, we have jE(n)(AGn) \ FejP 3 (refer to the second paragraph of the proof). Hence, this case occurs only when
5 6 n 6 7, and has jE(n)(AGn) \ Fej = 3 and jEðAGðrÞn Þ \ Fej ¼ 0 for all r 2 {1,2, . . . ,n}n{a}, as a consequence of jFej 6 4n � 13.
Further, since jeEp;qðAGnÞj ¼ ðn� 2Þ! P 6, we have jeEp;qðAGnÞ n FejP 3 for all p, q 2 {1,2, . . . ,n} and p – q. Three cases:
dðAGðaÞn � FeÞP 2, dðAGðaÞn � FeÞ ¼ 1, and dðAGðaÞn � FeÞ ¼ 0, are discussed below.

Case 3.1. dðAGðaÞn � FeÞP 2. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 5a, where i1 = a and
{i2, i3, . . ., in} = {1,2, . . . ,n}n{a}. Since jFej 6 4n � 13, the link (u1,v1) can be selected from EðAGði1Þn Þ \ Fe so that there exist (v1,u2),
(u1,vn) 2 E(n)(AGn)nFe. The induction hypothesis assures a Hamiltonian cycle C1 in AGði1Þ

n � ðFe n fðu1;v1ÞgÞ. If C1 contains
(u1,v1), then a Hamiltonian path Pu2 ;vn in AGI

n � Fe can be assured by Lemma 3, where I = {i2, i3, . . . , in}. Otherwise, a desired
Hamiltonian cycle in AGn � Fe can be obtained all the same as Case 2.1 (when dðAGðaÞn � FeÞP 2).

Case 3.2. dðAGðaÞn � FeÞ ¼ 1. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 5a, where i1 = a and
{i2, i3, . . . , in} = {1,2, . . . ,n}n{a}. Since jEðAGðaÞn Þ \ Fej ¼ 4n� 16, there exists a unique node of degree one in AGðaÞn � Fe. We let v1

be this node. Since d(AGn � Fe) P 2, there exists an n-dimensional link of v1 that is not contained in Fe. We let (v1,
u2) 2 E(n)(AGn)nFe be this link, where u2 2 VðAGði2Þn Þ is assumed. The link (v1, u1) can be selected from EðAGði1Þ

n Þ \ Fe so that
there exists (u1, vn) 2 E(n)(AGn)nFe, where vn 2 VðAGðinÞ

n Þ, for otherwise jE(n)(AGn) \ FejP 2(2n � 7) > 3, a contradiction. The
induction hypothesis assures a Hamiltonian cycle C1 in AGði1Þn � ðFe n fðv1;u1ÞgÞ: Since (v1, u1) 2 C1, there exists a Hamiltonian
path Pu1;v1 ð¼ C1 � ðv1;u1ÞÞ in AGði1Þ

n � Fe. A Hamiltonian path Pu2 ;vn in AGI
n � Fe can be assured by Lemma 3, where

I = {i2, i3, . . . , in}.
Case 3.3. dðAGðaÞn � FeÞ ¼ 0. A desired Hamiltonian cycle in AGn � Fe can be obtained as shown in Fig. 5b, where i1 = a and

{i2, i3, . . . , in} = {1,2, . . . ,n}n{a}. There exists a unique node of degree zero in AGðaÞn � Fe. We let w be this node. Since
d(AGn � Fe) P 2, the two n-dimensional links of w are not contained in Fe. We let (w,v3), (w,u4) 2 E(n)(AGn)nFe be these two
links, where v3 2 VðAGði3Þ

n Þ and u4 2 VðAGði4Þ
n Þ are assumed. Since jeEi1 ;rðAGnÞj ¼ ðn� 2Þ! P 6 for all r 2 {i2, i3, . . . , in} and

jE(n)(AGn) \ Fej = 3, the two links (v1, u2) and (u1, vn) can be selected from eEi1 ;i2 ðAGnÞ n Fe and eEi1 ;in ðAGnÞ n Fe, respectively. Let
Fv = {w} and F 0e ¼ ðEðAGði1Þn Þ \ FeÞ n fðw; zÞjðw; zÞ 2 EðAGði1Þn Þg, where jFv j þ jF 0ej 6 2n� 9. By Lemma 1, there exists a Hamil-
tonian path Pu1 ;v1 in AGði1Þ

n � Fv � F 0e. By Lemma 3, there exist a Hamiltonian path Pu2;v3 in AGI1
n � Fe and a Hamiltonian path

Pu4 ;vn in AGI2
n � Fe, where I1 = {i2, i3} and I2 = {i4, i5, . . . , in}. h
4. Concluding remarks

It is both practically significant and theoretically interesting to investigate the fault-tolerant capability of a multiproces-
sor system. Most of previous work adopted the random fault model, which assumed that the faults might occur anywhere
without any restriction. Under the random fault model, an n-dimensional alternating group graph can tolerate up to 2n � 6
link faults or node faults, while retaining a fault-free Hamiltonian cycle (see Lemma 1). There was another fault model, i.e.,
the conditional fault model, which assumed that the fault distribution must satisfy some properties.

In this paper, adopting the conditional fault model and assuming that there were two or more fault-free links incident to
each node, we showed that an n-dimensional alternating group graph contained a fault-free Hamiltonian cycle, even if there
were up to 4n � 13 link faults, where n P 4. Our result is optimal with respect to the number of link faults tolerated. Refer to
Fig. 6, where a distribution of 4n � 12 link faults over an n-dimensional alternating group graph is shown. It is easy to see
that there is no fault-free Hamiltonian cycle for this situation.
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On the other hand, consider the fault-tolerant Hamiltonian-connectedness problem, i.e., finding a fault-free Hamiltonian
path between every pair of distinct nodes. If the problem is solved on an n-dimensional alternating group graph under the
random fault model, the maximal number of tolerable link faults is 2n � 7 (see Lemma 1). For the same problem and same
graph, it is not possible to increase the maximal number of tolerable link faults, if the conditional fault model is adopted
instead. Refer to Fig. 7, where a distribution of 2n � 6 link faults over an n-dimensional alternating group graph is shown.
It is easy to see that there is no fault-free Hamiltonian path from s to t for this situation.

Since an n-dimensional alternating group graph is isomorphic to an (n,n � 2)-arrangement graph, the embedding meth-
ods and results proposed in this paper are useful to those people who are interesting in the fault-tolerant hamiltonicity of the
arrangement graph under the conditional fault model. Besides, interested readers may try to solve the pancycle problem [17]
on the alternating group graph under the conditional fault model.
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