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Abstract

A random set can be regarded as the result of the imprecise observation
of a random variable. Following this interpretation, we study to which
extent the upper and lower probabilities induced by the random set keep
all the information about the values of the probability distribution of the
random variable. We link this problem to the existence of selectors of
a multi-valued mapping and with the inner approximations of the upper
probability, and prove that under fairly general conditions (although not
in all cases), the upper and lower probabilities are an adequate tool for
modelling the available information. In doing this, we generalise a number
of results from the literature. Finally, we study the particular case of
consonant random sets and we also derive a relationship between Aumann
and Choquet integrals.
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1 Introduction

Random sets, or multi-valued mappings, have been used by several authors in
the context of imprecise or incomplete information [45]. They have also been
applied in many different contexts, such as image analysis [21, 34], medicine [13]
or statistics with coarse data [24]. In this paper, we follow the interpretation
given to random sets by Kruse and Meyer [33] and we regard them as the
imprecise observation of a measurable mapping.
∗This is an updated version, with proofs and additional comments, of a paper [42] presented
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Dempster [15] summarised the probabilistic information of the random set
by means of the upper and lower probabilities, which constitute a generalisation
to a context of imprecise information of the concept of probability induced by a
random variable. The upper and lower probabilities of a random set are plausi-
bility and belief functions in the context of evidence theory [47], and capacities
of infinite order under Choquet’s terminology [8]. This type of set functions
has been thoroughly studied in the literature [9, 44], not only in the context
of multi-valued mappings [16, 22, 47], as a powerful alternative to probability
measures that is able to deal with uncertain, or vague, knowledge. Nevertheless,
under Kruse and Meyer’s interpretation, the most precise piece of information
that the random set gives about the measurable mapping imprecisely observed
is the set of the probability distributions of the measurable selections. The re-
lationship between this set and Dempster-Shafer upper and lower probabilities
has already been studied by some authors (see for instance [7, 11, 23, 26]). In
this paper we investigate some additional aspects of this relationship. Let us
introduce first some concepts and notation.

Consider a probability space (Ω,A, P ), a measurable space (X,A′), and a
measurable mapping U0 : Ω→ X. We will refer to U0 as the original random
variable. There may be some imprecision in the observation of the values of
U0. Following Kruse and Meyer ([33]), a possible model for this situation is
to consider a multi-valued mapping Γ : Ω → P(X), in the sense that for all
ω ∈ Ω we are certain that U0(ω) belongs to the set Γ(ω). As a consequence,
we shall assume throughout that Γ(ω) is non-empty for all ω. We will call the
multi-valued mapping closed (resp., compact, open, complete) when Γ(ω) is a
closed (resp., compact, open, complete) subset of X for all ω ∈ Ω.

Let us define

S(Γ) := {U : Ω→ X | U measurable, U(ω) ∈ Γ(ω) ∀ω}. (1)

This is the class of the measurable selections of Γ. Taking into account our
interpretation of Γ, all we know about U0 is that it is one of the elements of
S(Γ). Concerning the probability distribution of U0, it will belong to

P(Γ) = {PU | U ∈ S(Γ)}, (2)

the class of the probability distributions induced on A′ by the measurable se-
lections. In particular, the probability that the value of U0 belongs to an event
A ∈ A′, i.e. PU0(A), is an element of P(Γ)(A) := {PU (A) | U ∈ S(Γ)}.

Hence, the interpretation of a multi-valued mapping as a model for the im-
precise observation of a random variable provides us with a Bayesian sensitivity
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analysis model for the probability distribution of this variable: the set of prob-
ability distributions P(Γ). There is, however, another set of probabilities that
shall also be interesting for our purposes. It is based on the notions of upper
and lower probabilities induced by multi-valued mapping.

Definition 1. [15, 44] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a multi-valued mapping. Given A ∈ A′, its upper
inverse by Γ is Γ∗(A) := {ω | Γ(ω)∩A 6= ∅}, and its lower inverse, Γ∗(A) :=
{ω | Γ(ω) ⊆ A}.

Following Nguyen [44], a multi-valued mapping is said to be strongly mea-
surable when Γ∗(A) ∈ A for all A ∈ A′. In that case, we will refer to Γ as
random set. Taking into account the relationship Γ∗(A) = (Γ∗(Ac))c, valid
for all A ∈ A′, a random set satisfies Γ∗(A) ∈ A for all A ∈ A′. We will use the
shorter notation A∗ = Γ∗(A) and A∗ = Γ∗(A) when no confusion arises. Al-
though there are other measurability conditions for multi-valued mappings (see
for instance [27]), we shall only consider in this paper the strong measurability;
this condition is necessary if we want to define the upper and lower probabilities
of the random set on A′, as we see next.

Definition 2. [15] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a non-empty random set. The upper probability
induced by Γ on A′ is defined as P ∗(A) = P (A∗) ∀A ∈ A′, and the lower
probability is given by P∗(A) = P (A∗) ∀A ∈ A′.

The upper probability of a random set is∞-alternating and lower continuous,
and the lower probability is ∞-monotone and upper continuous [44]. They are
moreover conjugate functions, meaning that P ∗(A) = 1−P∗(Ac) ∀A ∈ A′. If the
final space is finite, they are a plausibility and a belief function, respectively. We
shall sometimes use the notation P ∗Γ := P ∗ and P∗Γ := P∗, if there is ambiguity
about the random set inducing the upper and lower probabilities. It is easy to
see that A∗ ⊆ U−1(A) ⊆ A∗ for every A ∈ A′ and every U ∈ S(Γ). This implies
that the class P(Γ) defined in Eq. (2) is included in

M(P ∗) = {Q : A′ → [0, 1] probability s.t. Q(A) ≤ P ∗(A) ∀A}, (3)

which is called the core of P ∗.
The upper probability of a random set generalises the concept of probability

distribution of a random variable, and is sometimes used as a model of the
probabilistic information of the random set [17, 19, 35, 43]. In this paper, we
shall investigate if it is appropriate to do so when Γ has the interpretation
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considered by Kruse and Meyer. Specifically, we are going to study under which
conditions we can use the upper probability to represent the information about
the probability that our original random variable takes values in some arbitrary
set A ∈ A′. In other words, we shall investigate under which conditions the
equality P(Γ)(A) = [P∗(A), P ∗(A)] holds. This is important because, as we
shall show, when these two sets are not equal the use of the upper and the lower
probability could carry some serious loss of information.

The study of the equality P(Γ)(A) = [P∗(A), P ∗(A)] can be split into two
different subproblems: on the one hand, we need to study the convexity of the
set P(Γ)(A); and on the other, we need to determine whether the supremum
and infimum values of this set coincide with the upper and lower probabilities
of A, respectively. Because of the duality existing between P ∗ and P∗, it suffices
to study one of the two equalities.

Although this problem has already been investigated by some authors ([4,
23, 26]), this has always been done as a support for other mathematical con-
siderations, and hence the sufficient conditions established for the equalities
P ∗(A) = supP(Γ)(A) and P∗(A) = inf P(Γ)(A) assume some hypotheses on
the random set that are not really necessary for the equalities to hold. We shall
see nevertheless that the problem is not trivial, and we shall extend some of the
established results.

In our treatment, we shall try to be as general as possible. As a conse-
quence, we shall not assume the completeness of the initial probability space
or the closedness of its images. This is not unusual in a context of imprecise
information [1, 2, 30].

As far as we know, the most important result on this problem is the following:

Theorem 1. [10, Prop. 3] Let (Ω,A, P ) be a probability space, (X, τ) a Pol-
ish space and let Γ : Ω → P(X) be a compact random set. Then, P ∗(A) =
supP(Γ)(A) for every A in βX , the Borel σ-field associated to τ .

Recall here that a Polish space is a separable and completely metrizable
topological space. We shall also use later Souslin spaces, which are the images
of Polish spaces by continuous mappings.

We shall study the equality P(Γ)(A) = [P∗(A), P ∗(A)] in detail in our next
section. First, we will investigate under which conditions P ∗(A) and P∗(A)
are, respectively, the supremum and infimum values of P(Γ)(A). For this, we
shall use some results on the existence of measurable selections and on the inner
approximations of the upper probability. Secondly, we will study the convexity
of P(Γ)(A). Finally, in Section 3 we shall show some of the consequences of our
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results.

Remark 1. It is important to remark here that, due to our interpretation of
random sets as a model for the imprecise observation of a random variable, in
our developments we shall always assume that: (i) the initial probability space
is fixed, and (ii) that the measurable selections have to take images in Γ for all
the elements on the initial space. This makes our setting more restrictive than
other works in the literature, where also almost-surely selections are considered
(i.e., selections where the image is included in the random set with probability
one), and where the initial space is not considered important, using then the
so-called allocations of probability [45]. It is not difficult to show that the set
P(Γ) in Eq. (2) is included in the set of allocations of the upper probability P ∗.

On the other hand, this also implies that the sufficient conditions we will
establish for the approximations of upper and lower probabilities by distributions
of measurable selections are also valid under these more general contexts. �

2 [P∗(A), P ∗(A)] as a model of PU0
(A)

2.1 Study of the equality P ∗(A) = supP(Γ)(A)

Let us study first if the upper and lower probabilities of an event A are the most
precise bounds of PU0(A) that we can give, taking into account the information
given by Γ. As we shall show in the following example, this is not always the
case: in fact, it may happen that [P∗(A), P ∗(A)] = [0, 1] while P(Γ)(A) = {0}.
In such an extreme case, the set of the distributions of the measurable selections
would provide precise information, while the upper and lower probabilities would
give no information at all. The example we give is based on [28, Example 5]; the
differences are that Himmelberg et al. consider a weaker notion of measurability
and give an example of a multi-valued mapping which is measurable in that sense
and for which S(Γ) = ∅.

Example 1. Let P be an absolutely continuous probability measure on (R, βR),
and let PN be the probability measure on βRn determined by the product of
countably many copies of P . Consider Ω := {F ⊆ R countable} and A :=
σ({FA | A ∈ βR}), with FA := {F ∈ Ω | F ∩ A 6= ∅}. Let us define
the mapping g : RN → Ω by g(z) = {x ∈ R | x = zn for some n}. Then,
g−1(FA) =

⋃
n

(∏n−1
i=1 R×A×

∏
i>n R

)
∈ βRN , so g is a measurable mapping.

Let us denote by Q the probability measure it induces on A. Consider now the
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multi-valued mapping

Γ : Ω → P(R)

F ↪→ F ∪ {0}

For every A ∈ βR, it follows that Γ∗(A) = Ω if 0 ∈ A, and Γ∗(A) = FA
otherwise. Hence, Γ is strongly measurable. Consider B = R \ {0}. Then
Γ∗(B) = FB, whence P ∗(B) = Q(FB) = PN(g−1(FB)) = PN(∪n(

∏n−1
i=1 R ×

B ×
∏
i>n R)) = 1 − PN({0, 0, 0, . . . }) = 1, taking into account that PN is the

product of an infinite number of copies of a continuous probability measure.
Now, if U ∈ S(Γ) satisfies PU (B) > 0, U is also a measurable selection of

the multi-valued mapping Γ1 : Ω → P(R) given by Γ1(F ) = F if F ∈ U−1(B),
Γ1(F ) = F ∪ {0} otherwise. However, reasoning as in [28, Example 5], it
can be checked that Γ1 does not have measurable selections. As a consequence,
P(Γ) = {δ0}. Hence, P(Γ)(B) = {0} and [P∗(B), P ∗(B)] = [0, 1]. �

This example shows that the use of the upper and lower probabilities may
carry some serious loss of information. Assume for instance that the continu-
ous probability P considered in the example is the Lebesgue measure on [0, 1],
extended in the trivial way to βR: P (A) = P (A ∩ [0, 1]) for all A ∈ βR. If we
use P ∗, P∗ to model the expectation of the original random variable, by means
of the corresponding Choquet integrals, we obtain the interval [0, 1] as the set
of possible expectations; however, we know, because P(Γ) = {δ0}, that the
expectation of the original random variable is 0.

Hence, it is necessary to consider some additional hypotheses in the random
set if we want to guarantee that the upper probability of a set A, P ∗(A), is
the supremum of the set P(Γ)(A) of its probability values by the measurable
selections. In our next result, we prove that the supremum of P(Γ)(A) is indeed
a maximum:

Proposition 2. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable
space and let Γ : Ω → P(X) be a random set. Then, P(Γ)(A) has a maximum
and a minimum value for every A ∈ A′.

Proof: Let us show that P(Γ)(A) has a maximum value; the proof of the
second part follows using the duality between the upper and lower probabilities.
Consider α = supP(Γ)(A). For all n ∈ N, there is some Vn ∈ S(Γ) s.t. α −
PVn

(A) < 1
n . Take D1 = V −1

1 (A), Dn = V −1
n (A) \ [∪n−1

i=1 Di] ∀n ≥ 2, and define
U1 =

∑∞
n=1 VnIDn + V1I(∪∞n=1Dn)c . The map U1 is a measurable selection of Γ

and satisfies PU1(A) ≥ α, whence this supremum is indeed a maximum. �
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Let us now define

HΓ := {A ∈ A′ | P ∗(A) = maxP(Γ)(A)}. (4)

We can then rephrase our goal in this section by stating that we are interested
in providing conditions for the equality between HΓ and A′. To see that they
do not coincide in general, check that HΓ := {B ∈ βR : P (B) = 0 or 0 ∈ B} in
Example 1. It is also easy to modify the example in order to obtain a random
set without measurable selections. In that case the class HΓ would be empty.

In the following proposition, we state that a set A ∈ A′ belongs to the class
HΓ given by Eq.(4) if and only if some random set that we can derive from
Γ has measurable selections. The proof of the result is straightforward, and
is therefore omitted: it suffices to take into account that a measurable set A
belongs to HΓ if and only if there is a measurable selection of Γ taking values
in A whenever possible (up to a set of zero probability).

Proposition 3. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and let Γ : Ω → P(X) be a random set. A set A ∈ A′ belongs to HΓ if and
only if there is some H ∈ A with P (H) = 0 such that S(ΓA,H) 6= ∅, where

ΓA,H(ω) =

{
Γ(ω) ∩A if ω ∈ A∗ \H
Γ(ω) otherwise.

In the sequel, we shall use the notation ΓA for ΓA,∅, i.e, ΓA is the random

set given by ΓA(ω) =

{
Γ(ω) ∩A if ω ∈ A∗

Γ(ω) otherwise.
Proposition 3 shall be useful later on when studying which sets belong to

HΓ, because the existence of measurable selections of a random set is one of
the most important problems in this framework, and there are therefore many
results that may be applicable together with this proposition; see the survey on
the existence of measurable selections by Wagner [48]. Together with some of
the results in [48], we shall prove and use another sufficient condition for the
existence of measurable selections. For this, we must introduce the notion of
reducible σ-field.

Definition 3. Consider a measurable space (X,A′). Given x ∈ X, we define
the minimal measurable set generated by x as [x] :=

⋂
{A ∈ A′ | x ∈ A}.

The σ-field A′ is called reducible when [x] ∈ A′ for all x ∈ X, and (X,A′) is
called then a reducible measurable space.

We can easily see that most σ-fields in our context are reducible: for instance,
the Borel σ-field generated by a T1 topology (and hence also by a metric) is
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reducible, because in that case we have [x] = {x} ∀x ∈ X. To see that the
notion is not trivial, we give next an example of a non-reducible σ-field:

Example 2. Let ≤ be a well-order on the set of real numbers (existing by
Zermelo’s theorem), and let P<x := {y ∈ R | y < x} and P≤x := {y ∈ R | y ≤ x}
denote the sets of strict predecessors and predecessors of x under ≤, respectively.
Let us also define the notation P≥x := (P<x )c.

There is some x0 ∈ R such that P<x0
uncountable and such that P<x is count-

able for any x < x0: it suffices to take the set of points with an uncountable num-
ber of predecessors, and select its first element, existing because ≤ is a well-order.
Consider X := P≤x0

, and let us define B := {∅, A ⊆ P<x0
countable} ∪ {P≥x ∪A |

A ⊆ P<x , x ∈ P<x0
}.

• Given a countable set A ⊆ P<x0
, supA always exists, because ≤ is a well-

order, and it belongs to P<x0
. Taking this into account, we can deduce that

B is closed under complementation. Since it is immediate that it is closed
under countable unions and that ∅, X belong to B, we deduce that B is a
σ-field.

• Note now that x0 does not have a previous element under the order ≤:
otherwise, we contradict the uncountability of P<x0

. Hence, the minimal
measurable set generated by x0 is [x0] = ∩x<x0P≥x = {x0}. This set does
not belong to B and as a consequence this σ-field is not reducible. �

We have already mentioned that a random set may not possess measurable
selections, and that we need to make some requirements in order to guarantee
that the set S(Γ) given by Eq. (1) is non-empty. The existing results usually
make some assumptions on the images of the random set and on the structure
of the final σ-field. In our next result, we give a sufficient condition for the
existence of measurable selections where the only thing we require in A′ is its
reducibility, which, as we have already said, is a very weak assumption:

Lemma 4. Let (Ω,A, P ) be a probability space, (X,A′) a reducible measurable
space, and let Γ : Ω → P(X) be a random set. If there is some countable
{xn}n ⊆ X s.t. ∪nΓ∗([xn]) = Ω, then S(Γ) 6= ∅.

Proof: Let us denote A1 = Γ∗([x1]), An = Γ∗([xn]) \ ∪n−1
i=1 Γ∗([xi]) ∀n ≥ 2,

and let us define Γ′ :=
∑
n(Γ∩ [xn])IAn

. Then, {An}n constitutes a measurable
partition of Ω, and satisfies moreover An ⊆ Γ∗([xn]) ∀n. Hence, Γ′(ω) 6= ∅ ∀ω.
Apply the axiom of choice and take U : Ω → X satisfying U(ω) ∈ Γ′(ω) ⊆
Γ(ω) ∀ω. Taking into account that the minimal measurable sets are pairwise
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disjoint, we deduce that given ω1 ∈ An, ω2 ∈ Am, n 6= m, Γ′(ω1) ∩ Γ′(ω2) = ∅.
This implies that U−1(B) is a countable union of elements of {An}n ⊆ A for
every B ∈ A′. Hence, U is measurable, and consequently S(Γ) 6= ∅. �

Proposition 5. Let (Ω,A, P ) be a probability space, (X,A′) a reducible mea-
surable space, and let Γ : Ω → P(X) be a random set s.t. S(Γ) 6= ∅. For any
countable subset {xn}n of X, ∪n[xn] ∈ HΓ.

Proof: Let U be a measurable selection of Γ, and define A1 := [x1]∗,
An := [xn]∗ \ (∪n−1

i=1 [xi]∗) for any n ≥ 2. Consider the multi-valued mapping

Γ′ :=
∑
n

(Γ ∩ [xn])IAn
+ UI(∪nAn)c .

Let U1 be a mapping satisfying U1(ω) ∈ Γ′(ω) for all ω. Such a mapping exists
from the axiom of choice. It follows that U1 is a measurable selection of Γ and
that U−1

1 (∪n[xn]) = ∪nAn = ∪n[xn]∗, whence PU (∪n[xn]) = P ∗(∪n[xn]). �

We turn now to another property of random sets that shall be useful in
our quest for sufficient conditions for the equality between P(Γ)(A) and the
interval [P∗(A), P ∗(A)]: the existence of inner approximations of P ∗. We shall
investigate under which hypotheses there is some subclass A′1 of A′ such that
P ∗ is the inner set function of its restriction to A′1. The interest of this problem
for our purposes lies in the following proposition:

Proposition 6. Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and let Γ : Ω → P(X) be a random set. If B ∈ A′ satisfies P ∗(B) =
supn P ∗(An) for some increasing sequence {An}n ⊆ HΓ of subsets of B, then
B ∈ HΓ.

Proof: We deduce from the hypotheses and from the monotonicity of a
probability measure that

P ∗(B) = sup
n
P ∗(An) = sup

n
sup

U∈S(Γ)

PU (An)

= sup
U∈S(Γ)

PU (∪nAn) ≤ sup
U∈S(Γ)

PU (B) ≤ P ∗(B).

Hence, P ∗(B) = supP(Γ)(B), and applying Proposition 2 we deduce that B
belongs to HΓ. �

We deduce that if P ∗ satisfies

P ∗(A) = sup
B⊆A,B∈HΓ

P ∗(B) ∀A ∈ A′, (5)
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it also satisfies P ∗(A) = maxP(Γ)(A) for every A ∈ A′ (i.e., HΓ is actually
equal to A′). This will be helpful for our purposes because in some cases it will
be easier to prove the equality P ∗(A) = maxP(Γ)(A) for some specific types of
sets, such as closed or compact sets, and to show then that the upper probability
can be approximated from below from these sets. In particular, Proposition 6
and the lower continuity of P ∗ implies that HΓ is closed under countable unions.

In the language of measure theory, Eq. (5) means that P ∗ is the inner set
function of its restriction to HΓ, or that it is inner regular with respect to HΓ.
There are some results about the inner regularity of upper probabilities in the
literature (see [7, 35]). In this respect, we have proven the following:

Lemma 7. Let (Ω,A, P ) be a probability space, (X, τ) a Polish space and
consider a closed random set Γ : Ω → P(X). For every A ∈ βX , P ∗(A) =
supK⊆A compact P

∗(K).
Proof: From [31, Theorem 30.13], the result follows if we show that for

any compact subset K of X, P ∗(K) = infK⊆G open P
∗(G).

• Let us consider first of all the case of X = RN. Let Πn : RN → Rn, πmn :
Rm → Rn, m ≥ n denote the projection operators, and let K be a compact
subset of RN. Πn is continuous for every n, whence Kn := Πn(K) ⊆ Rn is
compact. As a consequence, K ′n := B(Kn; 1

n ) = {x ∈ Rn| d(x,Kn) ≤ 1
n}

is also a compact subset of Rn, because it is closed and bounded. Consider
K ′′n := K ′n×R×. . . , and let us prove that P ∗(K) = infn P ∗(K ′′n). It suffices
to show that K∗ = ∩n(K ′′n)∗.

Given ω /∈ K∗, Γ(ω) ∩K = ∅ ⇒ K ⊆ Γ(ω)c open. For any x ∈ K, there
is Gx = G′x ×R× . . . , with G′x ⊆ Rn open for some n ∈ N, s.t. x ∈ Gx ⊆
Γ(ω)c. Hence, K ⊆ ∪x∈KGx ⊆ Γ(ω)c, whence there are x1, . . . , xm ∈ K
such that K ⊆ Gx1 ∪· · ·∪Gxm

= (G′x1
×R× . . . )∪· · ·∪ (G′xm

×R× . . . ) ⊆
Γ(ω)c, and as a consequence there are j ∈ N, G ⊆ Rj open such that
K ⊆ G× R× · · · ⊆ Γ(ω)c.

For this j, there must be some l ∈ N s.t. B(Kj ; 1
l ) ⊆ G: otherwise,

{B(Kj ; 1
l ) ∩ G

c}l would be a decreasing sequence of non-empty compact
sets on a Hausdorff space; then, their global intersection would be non-
empty, and there would exist x ∈ ∩l(B(Kj ; 1

l ) ∩ G
c) = Kj ∩ Gc. But

K ⊆ G × R × . . . implies that Kj = Πj(K) ⊆ Πj(G × R × . . . ) = G, a
contradiction.

Therefore, there is l ∈ N, (which we may assume l ≥ j) s.t. B(Kj ; 1
l ) ⊆ G.

It follows easily that B(Kl; 1
l ) × R × · · · ⊆ G × R × · · · ⊆ Γ(ω)c, and as
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a consequence K ′′l ∩ Γ(ω) = ∅ and K∗ = ∩n(K ′′n)∗. This means that
P ∗(K) = infn P ∗(K ′′n). Now, for every n ∈ N, K ⊆ B(Kn; 1

n )×R× · · · ⊆
K ′′n , whence P ∗(K) = infn P ∗(B(Kn; 1

n ) × R × . . . ). Hence, P ∗(K) =
infK⊆G open P

∗(G). Applying now [31, Theorem 30.13], we deduce that
P ∗(A) = supK⊆A compact P

∗(K).

• Secondly, if X is a closed subset of RN, the closed (resp., compact) subsets
of X are also closed (resp., compact) in RN. In particular, Γ is also closed-
valued in RN. Hence, given A ∈ βX ⊆ βRN , P ∗(A) = sup{P ∗(K) | K ⊆
A,K ∈ βRN compact} = sup{P ∗(K) | K ⊆ A,K ∈ βX compact}.

• Consider finally an arbitrary Polish space X. From [31, Theorem 4.17], it
is homeomorphic to a closed subset of RN. Let us denote this set C, and
let f : X → C be the homeomorphism. Consider Γ′ := f ◦ Γ : Ω→ P(C).

– Given A ∈ βC , Γ
′∗(A) = {ω | f(Γ(ω)) ∩ A 6= ∅} = {ω | Γ(ω) ∩

f−1(A) 6= ∅} = Γ∗(f−1(A)) ∈ A. Hence, Γ′ is strongly measurable.

– Taking into account that Γ is a closed random set and f is a closed
mapping, we deduce that Γ′ is a closed random set on a closed subset
of RN. Applying the previous part, P ∗Γ′(A) = supK⊆A compact P

∗
Γ′(K)

for every A ∈ βC .

– Given A ∈ βX , f(A) belongs to βC . From the previous point, it
follows that P ∗Γ′(f(A)) = supK⊆f(A) compact P

∗
Γ′(K), whence given

ε > 0 there is some compact set K ⊆ f(A) such that P ∗Γ′(f(A)) −
P ∗Γ′(K) < ε. This implies that P ∗Γ(A) − P ∗Γ(f−1(K)) < ε, and
f−1(K) ⊆ A is compact because f−1 is continuous. Hence, P ∗(A) =
supK⊆A compact P

∗(K). This completes the proof. �

This lemma generalises a result in [35, Section 2.1]. Let us establish now
sufficient conditions for the equality between HΓ and A′.

Theorem 8. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and Γ : Ω→ P(X), a random set. Under any of the following conditions:

1. Ω is complete, X is Souslin and Gr(Γ) ∈ A⊗ βX

2. X is a separable metric space and Γ is compact

3. X is a Polish space and Γ is closed

4. X is a σ-compact metric space and Γ is closed

11



5. X is a separable metric space and Γ is open

6. CΓ := {Γ∗(B) : B ∈ A′} is countable and A′ is reducible

7. A′ is reducible and Γ has a countable range,

P ∗(A) = maxP(Γ)(A) and P∗(A) = minP(Γ)(A) ∀A ∈ A′.
Proof: Consider A ∈ A′, and let us show that under any of these con-

ditions, P ∗(A) = maxP(Γ)(A) (the equality P∗(A) = minP(Γ)(A) will follow
using conjugacy).

1. The graph of the multi-valued mapping ΓA belongs to A⊗βX when Gr(Γ)
does, and, from [27, Theorem 5.2], ΓA has a measurable selection under
these conditions. Applying Proposition 3, we deduce that A ∈ HΓ.

2,3,4. The result in these three cases follows from Proposition 6 if we show
that i) given a compact set K, the random set ΓK possesses measurable
selections, whence the compact sets belong to HΓ; and ii) given A ∈ βX ,
P ∗(A) = supK⊆A compact P

∗(A).

• For point 2, these two facts follow from [6, Theorem III.8] and [7,
Lemma A3].

• For point 3, they are a consequence of [6, Theorem III.8] and Lemma
7.

• For point 4, it suffices to apply [27, Theorem 5.6] and [39, Proposition
2.6].

5. Let {xn}n, {yn}n be two countable families dense on (X, d) and(A, dA),
respectively. Taking into account that Γ is open-valued, we deduce that
[∪nΓ∗A({yn})] ∪ [∪nΓ∗A({xn})] = Ω. From Lemma 4, S(ΓA) is non-empty,
and applying Proposition 3, P ∗(A) = maxP(Γ)(A).

6,7. First, we are going to show that under any of these two conditions, Γ has
measurable selections.

• It suffices to show that there exists {xn}n ⊆ X s.t. Γ∗(∪n[xn]) = Ω
and to apply Lemma 4. Take x1 ∈ X. If Γ∗([x1]) = Ω, the result
holds. Otherwise, we select ω1 /∈ Γ∗([x1]) and x2 ∈ Γ(ω1) (note that
as a consequence Γ∗([x1]) ( Γ∗([x1] ∪ [x2])), and repeat the process.
The countability of CΓ guarantees that this process is countable.

• Let us denote Γ =
∑
nAnIBn

, and consider, for any n ∈ N, xn ∈ An.
Then, Γ∗(∪n[xn]) = ∪nBn = Ω. Applying Lemma 4, S(Γ) 6= ∅.

12



Now, let us see that ΓA also has measurable selections:

• Given B ∈ A′, Γ∗A(B) = Γ∗(B ∩A)∪ (Γ∗(B) \Γ∗(A)). Hence, CΓA
is

countable when CΓ is.

• If Γ =
∑
nAnIBn for some countable partition {Bn}n of Γ, ΓA =∑

n(An ∩ A)IBn∩A∗ +
∑
nAnIBn∩(A∗)c . Therefore, the range of ΓA

is also countable.

Applying the previous points we deduce that S(ΓA) 6= ∅ and, using now
Proposition 3, A ∈ HΓ. �

The second and third points of Theorem 8 generalise Theorem 1. More-
over, this theorem also generalises the results mentioned in the proofs of [4,
Proposition 2.7] and [23, Theorem 1].

We conclude therefore that the upper and lower probabilities of a random
set provide, under fairly general conditions, the tightest available bounds for
the probabilities induced by the original random variable. They are hence an
adequate tool under the interpretation of Kruse and Meyer.

In our last proposition in this section, we provide a sufficient condition for
the equality P ∗(A) = maxP(Γ)(A) to hold for every set A in a field that is
included in the σ-field A′. This property shall be useful in Section 3.3, when we
relate the probability distributions in P(Γ) and M(P ∗). Recall that a complete
random set is one whose images are complete subsets of the final space, i.e.,
subsets for which any Cauchy sequence has a limit within the set. In particular,
this means that the images of the random set are closed.

Theorem 9. Let (Ω,A, P ) be a probability space, (X, d) a separable metric
space, let Γ : Ω → P(X) be a complete random set. For every A in Q(τ(d)),
the field generated by the open balls, P ∗(A) = maxP(Γ)(A) and P∗(A) =
minP(Γ)(A).

Proof: Given C closed, ΓC is also a complete random set on a separable
metric space. From [6, Theorem III.6], we deduce that S(ΓC) is non-empty,
whence all closed sets belong to HΓ. Any element from the field Q(τ(d)) is a
countable union of closed sets (see for instance [37, Lemma 2.3.2]). Applying
now the lower continuity of P ∗ and Proposition 6, we conclude that Q(τ(d)) is
included in HΓ. �

It is an open problem at this stage whether, for this type of random sets,
HΓ coincides with A′. An affirmative answer to this question would generalise
the second and third points from Theorem 8. One possible approach would be
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to study whether HΓ is closed under countable intersections: in that case HΓ

would include the monotone class generated by the field Q(τ(d)), which is the
Borel σ-field βX . Another approach would be to use convergence properties of
random sets, such as those discussed in [9] and [45, Chapter 7].

2.2 Convexity of P(Γ)(A)

As we mentioned in the introduction, the study of the equality between P(Γ)(A)
and [P∗(A), P ∗(A)] can be split into two different subproblems: the equality
between P ∗(A), P∗(A) and the maximum and minimum values of P(Γ)(A) and
the convexity of this last set. We focus our attention now on this second problem.
We introduce first the following definition:

Definition 4. [5] Let (Ω,A, P ) be a probability space. A set B ∈ A is not an
atom when for every ε ∈ (0, 1) there is some measurable Bε ( B such that
P (Bε) = εP (B).

Proposition 10. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable
space and let Γ : Ω → P(X) be a random set. Let U1, U2 ∈ S(Γ) satisfy
PU1(A) = maxP(Γ)(A), PU2(A) = minP(Γ)(A). Then P(Γ)(A) is convex ⇔
U−1

1 (A) \ U−1
2 (A) is not an atom.

Proof: Note first that P (U−1(A) \ U−1
1 (A)) = P (U−1

2 (A) \ U−1(A)) = 0
for every U ∈ S(Γ); otherwise, we obtain a contradiction with either PU1(A) =
maxP(Γ)(A) or PU2(A) = minP(Γ)(A).

(⇒) Take α ∈ (0, 1). If P(Γ)(A) is convex, there is some V ∈ S(Γ) s.t. PV (A) =
PU2(A) + α(PU1(A) − PU2(A)). The measurable set B = V −1(A) ∩
(U−1

1 (A) \ U−1
2 (A)) ⊆ U−1

1 (A) \ U−1
2 (A) satisfies P (B) = αP (U−1

1 (A) \
U−1

2 (A)).

(⇐) Conversely, take α ∈ (0, 1). Then, there is some measurable B ⊆ U−1
1 (A)\

U−1
2 (A) such that P (B) = αP (U−1

1 (A) \ U−1
2 (A)). Define V := U1IB +

U2IBc . It follows that V ∈ S(Γ) and moreover PV (A) = P (B)+PU2(A) =
αPU1(A) + (1− α)PU2(A). Hence, P(Γ)(A) is convex. �

We deduce that whenever the equalities P ∗(A) = maxP(Γ)(A) and P∗(A) =
minP(Γ)(A) hold, P(Γ)(A) = [P∗(A), P ∗(A)] if and only if A∗ \ A∗ is not an
atom of the initial probability space. This immediately implies the following:

Corollary 11. Under any of the conditions listed in Theorem 8,

[P∗(A), P ∗(A)] = P(Γ)(A) ∀A ∈ A′ ⇔ ∀A ∈ A′, A∗ \A∗ is not an atom of A.
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The right-hand side of this equivalence holds trivially whenever the initial
probability space is non-atomic; however, as we show in [37, Example 3.3.2],
there are instances of random sets defined on a purely atomic probability space
where [P∗(A), P ∗(A)] = P(Γ)(A) ∀A ∈ A′.

3 Some implications of the previous results

3.1 Consonant random sets

One particular type of random sets which is of interest in practice are the
consonant random sets, which are those whose images are nested. They have
been studied in connection with possibility and maxitive measures in a number
of works ([12, 18, 20, 39]). Since a possibility measure is usually defined on all
subsets of its possibility space, we are going to assume in this section that the
final σ-field is P(X), which is in particular reducible.

In this paper we are going to consider the following notion of consonant
random sets. Other possibilities can be found in [39].

Definition 5. A random set Γ : Ω → P(X) is called consonant when the
following two conditions hold:

• For every ω1, ω2 ∈ Ω, either Γ(ω1) ⊆ Γ(ω2) or Γ(ω2) ⊆ Γ(ω1).

• Every A ⊆ Ω has a countable subset B for which ∩ω∈AΓ(ω) = ∩ω∈BΓ(ω).

This definition is a generalisation of the so-called antitone[12] random sets,
where the initial probability space is ([0, 1], β[0,1], λ[0,1]) and where x ≤ y ⇒
Γ(x) ⊇ Γ(y).

Proposition 12. Let (Ω,A, P ) be a probability space, (X,P(X)) a measurable
space and Γ : Ω→ P(X) a consonant random set. Then P ∗(A) = maxP(Γ)(A)
for all A ⊆ X.

Proof: Let us show first of all that a consonant random set has mea-
surable selections. Let us consider a countable set {ωn}n such that ∩nΓ(ωn) =
∩ω∈ΩΓ(ω). We may assume without loss of generality that Γ(ωn) ( Γ(ωn−1) for
all n ≥ 2. If ∩nΓ(ωn) 6= ∅, then a constant mapping on an element of ∩nΓ(ωn)
is a measurable selection of Γ. Assume then that ∩nΓ(ωn) 6= ∅. For each natural
number n, let us consider xn ∈ Γ(ωn)\Γ(ωn+1). Then ∪n{xn}∗ = Ω: otherwise,
there is some ω ∈ Ω such that Γ(ω) ( Γ(ωn) for all n (because Γ is consonant),
and then Γ(ω) ⊆ ∩nΓ(ωn) = ∅, a contradiction. This shows that ∪n{xn}∗ = Ω
and Lemma 4 implies that S(Γ) 6= ∅.
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We prove next that if Γ is consonant the upper probability P ∗ is the inner
approximation of its restriction to countable sets. Let A be a subset of X, and
let B = A∗. If there is some ω ∈ B such that Γ(ω) ⊆ Γ(ω′) for every other
ω′ ∈ B, then given x ∈ Γ(ω) ∩ A, A∗ = {x}∗. If there is no such ω, then
we consider a countable subset {ωn}n of B such that ∩nΓ(ωn) = ∩ω∈BΓ(ω). If
there is some x ∈ A

⋂
∩ω∈BΓ(ω), it follows that A∗ = {x}∗ and the result holds.

If there is no such x, we consider, for each natural number n, xn ∈ Γ(ωn) ∩ A.
Now, for every ω ∈ B, there must be some n such that Γ(ωn) ⊆ Γ(ω): otherwise,
Γ(ω) ⊆ ∩nΓ(ωn) = ∩ω′∈BΓ(ω′), a contradiction with our previous assumption.
We deduce that ω ∈ {xn}∗ for some n and as a consequence A∗ = ∪n{xn}∗.

Since countable sets belong toHΓ from Proposition 5, we deduce from Propo-
sition 6 that P ∗(A) = maxP(Γ)(A) for any A ⊆ X. �

We can deduce from this proof and from [39, Propositions 2.4 and 5.2] that
the upper probability P ∗ of a consonant random set is a possibility measure.

An open problem at this point is whether Proposition 12 can be generalised
to weaker notions of consonancy for random sets, such as those considered in
[39].

3.2 Relationship between the Aumann and the Choquet
integral

Our results allow us also to relate the Choquet [8, 16] integral of a bounded
function with respect to the upper and lower probabilities of a random set and
the set of its integrals with respect to the measurable selections. This set is
related to the Aumann integral of the random set, whose definition we recall:

Definition 6. [3] Let (Ω,A, P ) be a probability space, and let Γ : Ω → P(Rn)
be a random set. Its Aumann integral is given by

(A)
∫

ΓdP :=
{∫

fdP : f ∈ L1(P ), f(ω) ∈ Γ(ω) a.s
}
.

This is the definition of expectation of a random set which is more interesting
in the context of this paper; there are, however, other definitions of expectation
of a random set which could be used, and which in many cases coincide with
the Aumann integral, such as the Debreu [14] or the Herer integral [25]. We
refer to [43, Chapter 2] for a deeper study of this subject.

Note that is this definition we consider the set of the integrals with respect
to the almost-surely integrable selections, which are those integrable mappings
whose images are included in the random set with probability one. Given a
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random set Γ : Ω → P(X) and a measurable mapping f : X → R, it is not
difficult to see that f ◦ Γ : Ω→ P(R) is also a random set.

We first establish a result showing that our approximation result can be
extended to finite chains. The intuition of this result is clear once we realise
that one of the properties of the Choquet integral is its comonotone additivity
[16], which implies in particular that it is additive over finite sums of chained
sets.

Lemma 13. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable space
and Γ : Ω → P(X) a random set. If P ∗(A) = maxP(Γ)(A) for all A ∈ A′,
then for any finite chain A1 ⊆ A2 ⊆ · · · ⊆ An there is some U ∈ S(Γ) such that
PU (Ai) = P ∗(Ai) for every i = 1, . . . , n.

Proof: By assumption for every i = 1, . . . , n there is some Ui ∈ S(Γ)
such that PUi

(Ai) = P ∗(Ai). Let us define B0 = ∅, Bi = U−1
i (Ai), Ci =

Bi \ (∪i−1
j=1Bj) for i = 1, . . . , n. Then {C1, . . . , Cn, (∪nj=1Cj)

c} constitutes a
measurable partition of Ω.

Consider the mapping U :=
∑n
i=1 UiICi

+ UnI(∪n
j=1Cj)c . This is a measur-

able selection of Γ because it is a measurable combination of elements of S(Γ).
Moreover, for i = 1, . . . , n,

U−1(Ai) ⊇ ∪ij=1Ci = ∪ij=1Bi ⊇ Bi = U−1
i (Ai),

whence PU (Ai) ≥ PUi
(Ai) = P ∗(Ai) and consequently PU (Ai) = P ∗(Ai) for

i = 1, . . . , n. �

Theorem 14. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable space
and Γ : Ω→ P(X) a random set. If P ∗(A) = maxP(Γ)(A) for all A ∈ A′, then
for any bounded random variable f : X → R,

(C)
∫
fdP ∗ = sup

U∈S(Γ)

∫
fdPU , (C)

∫
fdP∗ = inf

U∈S(Γ)

∫
fdPU .

As a consequence,

(C)
∫
fdP ∗ = sup(A)

∫
(f ◦ Γ)dP, (C)

∫
fdP∗ = inf(A)

∫
(f ◦ Γ)dP.

Proof: We are going to establish the result for P ∗; the equalities for P∗
follow by conjugacy.

Assume first of all that the random variable f is simple. Then, there is some
natural number n, a partition {A1, . . . , An} of X made up with measurable sets
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and x1 > x2 > · · · > xn such that f =
∑n
i=1 xiIAi

. Define Si = ∪ij=1Aj ,
i = 1, . . . , n, S0 = ∅. Then

(C)
∫
fdP ∗ =

n∑
i=1

xi(P ∗(Si)− P ∗(Si−1)).

Since S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn = X, it follows from Lemma 13 that there is
some U ∈ S(Γ) such that PU (Si) = P ∗(Si) for i = 0, . . . , n. As a consequence,

n∑
i=1

xi(P ∗(Si)− P ∗(Si−1)) =
n∑
i=1

xi(PU (Si)− PU (Si−1) =
∫
fdPU , (6)

and since
∫
fdPV ≤ (C)

∫
fdP ∗ for every V ∈ S(Γ), we deduce that

∫
fdPV =

(C)
∫
fdP ∗.

Now, any bounded random variable f is the uniform limit of some increasing
sequence (fn)n of simple random variables. Applying [16, Theorem 8.1], we
deduce that

(C)
∫
fdP ∗ = sup

n
(C)

∫
fndP

∗ = sup
n

sup
U∈S(Γ)

∫
fndPU = sup

U∈S(Γ)

∫
fdPU ,

where the second equality follows from Eq. (6) and the third, from the dominated
convergence theorem.

We turn now to the second equality. Let V be an almost-everywhere mea-
surable selection of f ◦Γ. Then for every measurable A, PV (A) = P (V −1(A)) ≤
P ((f ◦Γ)∗(A)) = P (Γ∗(f−1(A))). As a consequence,

∫
V dP ≤

∫
fdP ∗, whence

sup(A)
∫

(f ◦ Γ)dP ≤ (C)
∫
fdP ∗. Let us prove the converse inequality. For

any ε > 0, there is some Uε ∈ S(Γ) such that (C)
∫
fdP ∗ −

∫
fdPU < ε.

The mapping f ◦ U is a measurable selection of the random set f ◦ Γ, whence∫
fdPU =

∫
f ◦ UdP ≤ sup(A)

∫
(f ◦ Γ)dP , and as a consequence

(C)
∫
fdP ∗ − sup(A)

∫
(f ◦ Γ)dP < ε.

We conclude that (C)
∫
fdP ∗ = sup(A)

∫
(f ◦ Γ)dP . �

Using this result together with Theorem 8, we can generalise [7, Theo-
rem 3.2]. On the other hand, in [43] it is showed the Aumann integral is a
closed convex set as soon as the images of f ◦ Γ are closed convex subsets of R
and the initial probability space is non-atomic (it coincides then with the so-
called selection expectation). Hence, under those conditions Theorem 14 implies
that [

(C)
∫
fdP∗, (C)

∫
fdP ∗

]
= (A)

∫
(f ◦ Γ)dP.
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3.3 Measurable selections and the core of P ∗

As we said in the introduction, the set P(Γ) of distributions of the selections is
included in the core M(P ∗) of the upper probability, which is given by Eq. (3).
This set can be more imprecise than P(Γ); on the other hand, it has the ad-
vantage of being convex and it is uniquely determined by the function P ∗. This
makes M(P ∗) easier to handle for practical purposes than P(Γ).

We can use our results on the equality between P(Γ)(A) and [P∗(A), P ∗(A)]
to derive conclusions on the relationship between P(Γ) and M(P ∗). For in-
stance, the results we have established allow us to relate the extreme points of
the convex set of probability measures M(P ∗) to distributions of measurable
selections. These extreme points are studied in some detail in [38]. Using our
results in that paper, we prove in [40] the following result, which relates the
closures of these two sets under the weak topology:

Theorem 15. [40, Theorem 4.4] Let (Ω,A, P ) be a probability space, (X, d)
a separable metric space and Γ : Ω → P(X) a random set. Let {xn}n be
a countable dense subset of X and let J := {B(xi, q) : q ∈ Q, i ∈ N}. If
P ∗(A) = maxP(Γ)(A) for all A in the field Q(J ) generated by the countable
class J :

1. M(P ∗) = Conv(P(Γ)).

2. M(P ∗) = P(Γ)⇔ P(Γ) is convex.

Note that not only we can apply this result together with Theorem 8 and
Proposition 12, but also with Theorem 9, because for any separable metric space
the field generated by the open balls includes in particular the field generated
by J . Hence, under very general situations, we can relate the core of the
upper probability with the distributions of the measurable selections. Moreover,
P(Γ) is a convex set as soon as the initial probability space is non-atomic [40,
Theorem 4.7]; this allows us to derive conditions for applying the second point of
Theorem 15. On the other hand, the equality P(Γ) = M(P ∗) does not imply in
general that P(Γ) coincides with M(P ∗); an example and sufficient conditions
for this equality can be found in [41].

As a side result, we also deduce that under any of the conditions listed in
Theorem 8 and Proposition 12, P ∗ is the upper envelope of its core M(P ∗).
This relates our work to the problem studied by Krätschmer in [32], and also
to some results from [29, 46].
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4 Conclusions

The results we have established show that the upper and lower probabilities
of the random set are informative enough in most (but not in all) cases about
the values taken by the probability distribution of the original random variable.
Indeed, the features of Example 1 and the sufficient conditions listed in Theo-
rem 8 make us conclude that we can use the upper and lower probabilities in
all cases of practical interest. Moreover, the problem we have studied allows
us to derive relationships between the core of the upper probability and the
set of distributions of the measurable selections, and between the Aumann and
Choquet integrals.

We would like to discuss here in more detail the case of finite random sets,
i.e., those where X is a finite space and A′ = P(X). They have been studied
for instance in [45, Chapter 3] and [36]. It follows from point 5 in Theorem 8
that for them the upper and lower probabilities can be approximated by the
distributions of the measurable selections.

Hence, Theorem 14 implies that for any random variable f : X → R, its
Choquet integral with respect to the upper probability is the maximum of its
Aumann integral (note that in the proof of that theorem we establish that the
supremum is a maximum for simple random variables, and this is always the
case when X is a finite set). Moreover, the property of consonancy is here
equivalent to the images of the random set being pair-wise nested, and that
this is equivalent to the upper probability of the random set being a possibility
measure [39, 47]. Finally, the sets P(Γ) and M(P ∗) are now closed under
the weak topology (which is here equivalent to the Euclidean topology), and
therefore Theorem 15 implies that M(P ∗) is the convex hull of P(Γ).

We have already pointed out in a few places some of the open problems
derived from our results. More generally, it would be interesting to investi-
gate the suitability of the upper and the lower probabilities when we have some
additional information on the distribution of the original random variable (for
instance that it belongs to some parametric family). Another interesting possi-
bility would be to consider the case where we model the imprecise observation
of U0 by means of a fuzzy random variable.
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