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 

Abstract— The aggregation of objectives in multiple criteria 

programming is one of the simplest and widely used approach. 

But it is well known that this technique sometimes fail in 

different aspects for determining the Pareto frontier. This paper 

proposes a new approach for multicriteria optimization which 

aggregates the objective functions and uses a line search 

method in order to locate an approximate efficient point. Once 

the first Pareto solution is obtained, a simplified version of the 

former one is used in the context of Pareto dominance to obtain 

a set of efficient points, which will assure a thorough distribution 

of solutions on the  Pareto frontier. In the current form, the 

proposed technique is well suitable for problems having multiple  

objectives (it is not limited to bi-objective problems) and 

require the functions to be continuous twice differentiable. In 

order to assess the effectiveness of this approach, some 

experiments were performed and compared with two recent well 

known population-based metaheuristics ParEGO [15] and NSGA 

II [6]. When compared to ParEGO and NSGA II, the proposed 

approach not only assures a better convergence to the Pareto 

frontier but also illustrates a good distribution of solutions. 

From a computational point of view, both stages of the line 

search converge within a short time (average about 150 

milliseconds for the first stage and about 20 milliseconds for the 

second stage). Apart from this, the proposed technique is very 

simple, easy to implement and use to solve multiobjective 

problems. 

 
Index Terms—Fuzzy controller, line search, multuiobjective 

optimization, pharmaceutical applications.  

 

I. INTRODUCTION 

HE field of multicriteria programming abounds in 

methods dealing with different kind of problems.  

Nevertheless, there is still space for new approaches, which 

can better deal with some of the difficulties encountered by 

the existing approaches. There are two main classes of 

approaches suitable for multiobjective optimization:  

scalarization methods and nonscalarizing methods. These 

approaches convert the Multiobjective Optimization Problem 

(MOP) into a Single Objective Optimization Problem (SOP), 

a sequence of SOPs, or into another MOP. There are several 
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scalarization methods reported in the literature: weighted 

sum approach, weighted t-th power approach, weighted 

quadratic approach, -constraint approach, elastic constraint 

approach, Benson approach, etc. are some of them [11]. Since 

the standard weighted sum encounters some difficulties, 

several other methods have been proposed to overcome the 

major drawbacks of this method. These include: Compromise 

Programming [9], Physical Programming 

[18][19][20][21][22][23][24], Normal Boundary Intersection 

(NBI) [2][3][4][5], and the Normal Constraint (NC) [25][26] 

methods. There is also a huge amount of work reported on 

population-based mataheuristics for MOP [11] [8] 

[10][31][36].  Comprehensive surveys can be found in [33], 

[14] [27]. 

In this paper, we propose a new approach which uses a 

scalarization of the objectives in a way similar to the 

weighted t-th power approach (where t is 2 and the 

coefficients values are 1). A line search based technique is 

used to obtain an efficient solution. Starting with this 

solution, a set of efficient points are further generated, which 

are widely distributed along the Pareto frontier using again a 

line search based method but involving Pareto dominance 

relationship.  

Empirical and graphical results and illustrations obtained 

by the proposed approach are compared with two well known 

population based metaheuristics namely ParEGO [15]  and 

NSGA II [6].  

The paper is structured as follows: in Section 2 the 

proposed modified Line Search is presented. Numerical 

experiments considering standard benchmarks are performed 

in Section 3. A set of 8 multiobjective optimizations 

problems are considered. Sections 4 and 5 present the 

application of the proposed approach for solving two 

practical Multiobjective optimization problems. Conclusions 

and further research plans are presented in Section 6. 

II. LINE SEARCH GENERATOR OF PARETO FRONTIER 

 

The line search [12] is a standard and well established 

optimization technique. The standard line search technique is 

modified in this paper so that it is able to generate the set of 

non-dominated solutions for a MOP. The approach proposed 

is called Line search Generator of Pareto frontier (LGP) and 

it comprises of two phases: first, the problem is transformed 
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into a SOP and a solution is found using a line search based 

approach. This is called as convergence phase. Second, a set 

of Pareto solutions are generated starting with the solution 

obtained at the end of convergence phase. This is called as 

spreading phase.  The convergence and spreading phases are 

described below.  

 
Consider the MOP formulated as follows: 

Let 
m

 and 
n
 be Euclidean vector spaces referred to as 

the decision space and the objective space. Let X
m

 be a 

feasible set and let f be a vector-valued objective function f: 


m

 
n
 composed of n real-valued objective functions 

f=(f1, f2,…, fn), where fk: 
m

 , for k=1,2,…, n. A MOP is 

given by: 

 

min (f1(x), f2(x),…, fn(x)), 

subject to xX. 

 

A. Convergence phase 

The MOP is transformed into a SOP by aggregating the objectives 

using an approach similar to the weighted t-th power approach. We 

consider t = 2 and the values of weights equal to 1. The obtained SOP 

is: 

min F =


n

i

i xf
1

2 )(  

subject to xX. 

 

A modified line search method is used to find the optimum 

of this problem. The modification proposed in this paper for 

the standard line search technique refers to direction and step 

setting and also the incorporation of a re-start procedure. To 

fine tune the performance, the first partial derivatives of the 

function to optimize are also made use of.  The proposed 

modifications refer to: 

- the setting of the direction and step 

- the re-starting of the line search method. 

After a given number of iterations, the process is restarted 

by reconsidering other arbitrary starting point which is 

generated by taking into account the result obtained at the end 

of previous set of iterations. 

 

Direction and step setting 

Initially, several experiments were performed in order to 

set an adequate value for the direction. The standard value +1 

or -1 was used and for some functions the value -1 was 

favourable to obtain good performance. Some experiments 

were also performed by setting the direction value as being a 

random number between 0 and 1. It was found that the usage 

of random number helped to obtain overall very good 

performance for the entire considered test functions. But 

usage of the value -1 for direction, obtains almost the same 

performance similar to that obtained with a random value.  So, 

either of these values (the random one and the value -1) may 

be used for better performance.  

 

The step is set as follows: 

k=2+
12

3
2 k

                    

(1) 

where k refers to the iteration number. 

 

The modified line search technique is summarized as 

follows: 

 
Line_search() 

Set k=1 (Number of iterations) 

Repeat  

    for i=1 to No of variables  

             pk=random; //or p=-1; 

             k=2+

12

3
2 k

 

              kk

k

i

k

i pxx 1
 

        endfor 

      if F(
1kx )<F(

kx ) then 
1kx =

kx . 

   k=k+1    

 Until k=Number of iterations (a priori known). 

 

Remarks 

o The condition: 

o if F(
1kx )<F(

kx ) then 
1kx =

kx  

o allows to move to the new generated point only if 

there is an improvement in the quality of the 

function. 

o Number of iterations for which line search is 

applied is apriori known and is usually a small 

number. For the experiments reported in this 

paper, the number of these iterations was set to 

10.  

o When restarting the line search method (after the 

insertion of the re-start technique) the value of the 

iterations number starts again from 1 (this should 

not be related to the value of  after the first set 

of iterations (and after each of the following 

iterations)). 

 

Several experiments were attempted to set a value for the 

step, starting with random values (until a point is reached for 

which the objective function achieves a better value); using a 

starting value for the step and generating random numbers 

with Gaussian distribution around this number, etc. As a result 

of the initial experiments performed, it was decided to use 

equation (1) to compute the step size. But, of course, there 

are also several other ways to set this. 

 

Incorporation of re-start procedure 

In order to restart the algorithm the result obtained in the 
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previous set of iterations (denote it by x) is taken into 

account and the steps given below are followed: 

For each dimension i of the point x, the first partial 

derivative with respect to this dimension is calculated. This 

means the gradient of the objective function is calculated 

which is denoted by g. Taking this into account, the bounds of 

the definition domain for each dimension are re-calculated as 

follows: 

if gi = 0




ix

F
then upper bound =xi; 

if gi = 0




ix

F
then lower bound =xi 

 

The search process is re-started by re-initializing a new 

arbitrary point between the newly obtained boundaries. 

 

B. Spreading phase 

At the end of the convergence phase, a solution is obtained. This 

solution is considered as an efficient (or Pareto) solution. During this 

phase and taking into account of the existing solution, more efficient 

solutions are to be generated so as to have a thorough distribution of all 

several good solutions along the Pareto frontier. In this respect, the line 

search technique is made use of to generate one solution at the end of 

each set of iterations. This procedure is applied several times in order 

to obtain a larger set of non-dominated solutions. The following steps 

are repeated in order to obtain one non-dominated solution: 

Step 1. A set of nondominated solutions found so far is 

archived.  Let us denote it by NonS. Initially, this set 

will have the size one and will only contain the 

solution obtained at the end of convergence phase.  

Step2. We apply line search for one solution and one 

dimension of this solution at one time. For this: 

   Step 2.1. A random number i between one and |NonS| (|
.
| 

denotes the cardinal) is generated. Denote the 

corresponding solution by nonSi. 

  Step 2.2. A random number j between one and the number 

of dimensions (the number of decision 

variables) is generated. Denote this by nonSij. 

Step 3. Line search is applied for nonSij. 

 Step 3.1. Set a random value for p between [-0.5, 1]. 

 Step 3.2. Set  (which depends on the problem, on the 

number of total nondominated solutions which 

are to be generated, etc.).   

Step 3.3. The new obtained solution new_sol is identical to 

nonSi in all dimensions except dimension j which 

is: 

new_solj= nonSij+ 
 
p 

Step 3.4. if (new_solj > upper bound) or (new_solj < 

lower bound) 

 then new_solj = lower bound + random  (upper 

bound – lower bound). 

Step 4. if F(new_sol) > F(nonS1) 

     then discard new_sol 

 else if new_sol is nondominated with respect to the 

set NonS 

  then add new_sol to NonS and increase the size 

on  NonS by 1.  

    Go to step 2.    

 Step 5. Stop 

 

These steps are repeated until a set on nondominated 

solutions of a required size is obtained. In our experiments 

the size of this set is 100.  Note that this procedure it very 

fast and it takes less than 20 milliseconds to obtain 100 non-

dominated solutions. 

 

1) Estimating the value of  using a Fuzzy Logic 

Controller 
 

The performance of the line search algorithm is correlated to directly 

with its careful selection of  value. The use of fuzzy logic controllers 

to adapt the  value is useful to improve the performance. An FLC is 

composed by a knowledge base, that includes the information given by 

the expert in the form of linguistic control rules, a fuzzification interface, 

which has the effect of transforming crisp data into fuzzy sets, an 

inference system, that uses them together with the knowledge base to 

make inference by means of a reasoning method, and a defuzzification 

interface, that translates the fuzzy control action thus obtained to a real 

control action using a defuzzification method. The generic structure of 

an FLC is shown in Fig. 2. 
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Fig. 1. Generic structure of an FLC 

 

In order to set an adequate value for  so that the solutions 

will have a good distribution on the Pareto front, we are 

proceeding as follows: 

 Select a sample set of solutions uniform 

distributed on the Pareto front (denoted by SPS) 

of size equal to the size of the approximation set 

obtained by the our approach. 

 For each point from the approximation set 

obtained by our approach identify the closest 

point in SPS.  
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 Mark each such identified point from SPS. 

 Set the value of distribution indices (Di) as being 

equal to the number of marked points from SPS. 

Our strategy for updating the  value is to consider the 

changes of the value of maximum distribution indices (Dim) 

and average distribution indices (Dia) in two continuous 

iterations. The performance may be measured using two error 

indices: 

 

)(

)()(
)(1

tD

tDtD
te

im

iaim 
            (2) 

 

)(

)1()(
)(2

tD

tDtD
te

im

iaia 
           (3) 

 

Where t is time step, 

 Dim(t) is the maximum distribution index at iteration t, 

 Dia(t) is the average distribution index at iteration t, 

 Dia(t-1) is the average distribution index at iteration (t-

1).  

A two-dimension FLC system is used, in which there are 

two parameters e1 and e2.The membership functions are 

shown in Fig. 2, where NL is Negative large, NS is Negative 

small, ZE is Zero, PS is Positive small, PL is Positive large. 

For the controlling the performance, the output (t) of the 

fuzzy logic controller is translated using fuzzy if-then rules 

as illustrated in Fig. 3. Center of gravity is used as 

defuzzification method. Then we use the crisp value to 

modify the parameters  as follows: 

 (t) =  (t -1) + ∆.  
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Fig. 2. Membership functions. (a) for e1; (b) e2;   (c) for ∆. 

 

For applying the procedure described above, the Pareto 

front it is supposed to be known (and this is the case in all our 

experiments considered). In Fig. 4, two approximation sets A 

and B and a sample set of Pareto points (SPS) of size 10 are 

considered. The value of Di for the set A is 6 (which means 6 

solutions from the SPS are marked) while the value of Di for 

the set B is 10. This means set B is obtaining a better 

distribution on the Pareto front than the set A. 

PL
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PL ZE PS PS NL

e1

e2

 
Fig. 3. Fuzzy rules for ∆. 
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Fig. 4. Illustration of Pareto approximation used for Di calculation. 

 

Example 

An illustrative example for calculation of  is presented in 

Fig. 5. Suppose we have an approximation set containing 100 

solutions. This involves the size of the selected Pareto 

sample points will be also 100. Let us also suppose that are at 

the third iteration and we obtained the value 60 for Di for  = 

0.1 in the first iteration and value 63 for Di for  = 0.15 in 

the second iteration. It should be mentioned that the value of 

 in the first iteration was randomly chosen and for the value 

of  in the second iteration we had the chance to increase or 

decrease de current value; so, we increased it to 0.15.  

Starting with the third iteration we can apply our fuzzy 

rules to calculate the next value for. By using the formulas 

(2) and (3), the membership functions from Fig. 2 and the 

fuzzy rules from Fig. 3, the value 0.04 for  is obtained. 

Based on this, the value of  at the iteration 3 will be 0.15 + 

0.04 = 0.19. 

 

Iteration 3

Iteration 1

Iteration 2

0.1

Di = 60

0.15

Di = 63

e1 = 
63 – 61.5

63

61.5 – 60

63

= 0.023

= 0.023e2 = 

Dim = 63

Dia (1) = 60 (iteration 1)

Dia (2) = 61.5 (iteration 2)

ZE
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-0.6 -0.4 0.4 1.00.6

0-0.1

1
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0.023
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Fig. 5. Example of  calculation. 

 

 
TABLE  I. PARAMETERS USED IN EXPERIMENTS BY PAREGO AND NSGA II. D DENOTES THE NUMBER OF DECISION PARAMETER DIMENSIONS.

 

ParEGO NSGA II 

Parameter Value Parameter Valu

e 

Initial population in latin 11d – 1 Population size 20 
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hypercube 

Total maximum evaluations 250 Maximum generations 13 

Number of scalarizing vectors 11 for 2 objectives 

15 for 3 objectives 

Crossover probability 0.9 

Scalarizing function Augmented Tchebycheff Real value mutation 

probability 

1/d 

Internal genetic algorithm 

evaluations per iteration 

200,000 Real value SBX parameter 10 

Crossover probability 0.2 Real value mutation 

parameter 

50 

Real value mutation probability 1/d   

Real value SBX parameter 10   

Real value mutation parameter 50   

III. EXPERIMENTS AND COMPARISONS 

In order to assess the performance of LGP, some 

experiments were performed using some well known bi-

objective and three-objective test functions, which are 

adapted from [7], [13]. These test functions were also used by 

the authors of ParEGO [15] and NSGA II [6], which are well 

known in the computational intelligence community as very 

efficient techniques for multiobjective optimization. Details 

about implementation of these two techniques may obtained 

from [6] and [15]. Parameters used by ParEGO and NSGA II 

(given in Table I) and the results obtained by these two 

techniques are adapted from [15].  

A set of 100 non-dominated solutions obtained by LGP, 

ParEGO, NSGA II is compared in terms of dominance and 

convergence to the Pareto set. For the first comparison, two 

indices were computed for each set of two comparisons: 

number of solution obtained by the first technique which 

dominate solutions obtained by the second technique and 

number of solutions obtained by the first technique which are 

dominated by the solutions obtained by the second technique.  

For two sets of A and B of solutions, which are compared, 

indices are denoted by Dominate(A, B) and Dominated(A, B) 

respectively. Visualization plots are used to illustrate the 

distribution of solutions on the Pareto frontier. 

LGP uses only three parameters:  

number of re-starts: 20 (10 for KNO1); 

number of iteration per each re-start: 10; 

 for the spreading phase (which is set independent for 

each test function). 

 

Test function KNO1 

This test function has two variables and two objectives. It is 

given by: 

 

minimize  f1 = 20 – r cos() 

minimize  f2 = 20 – r sin() 

 

where  

)2)(2sin(5

))(4sin(3
2

)(5
sin3(9

21

21

2

21












 


xx

xx
xx

r
 

12

)3( 21 


xx
  

 

The distance from the Pareto front is controlled by r and is 

a function of the sum of the decision variables. The location 

transverse to the Pareto front is controlled by the difference 

between the decision variables. Pareto set consists of all 

pairs whose sum is 4.4116. There are 15 local Pareto fronts 

and the true Pareto front lies just beyond a local Pareto front 

which has a larger basin of attraction.  

 

The convergence to the Pareto frontier and the distribution 

of solutions obtained by LGP, ParEGO and NSGA II for the 

test function DTLZ1a is depicted in Fig. 6. Different sizes of 

the objective space are illustrated in order to incorporate all 

solutions obtained by all techniques. The value of  in the 

spreading phase which is adapted by the fuzzy controller is 

0.62. The behavior of the merit function during the 10 re-

starts is depicted in Fig. 7. From the results presented in 

Table II it can be observed that 7 of the solutions obtained by 

LGP are dominated by solutions obtained by ParEGO and 2 

are dominated by solutions obtained by NSGA II. Solutions 

obtained by LGP dominate all 100 solutions obtained by both 

ParEGO and NSGA II. 59 of the solutions obtained by NSGA 

II are dominated by solutions obtained by ParEGO while 42 

of the solutions obtained by ParEGO are dominated by 

solutions obtained by NSGA II.  
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Fig. 6. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function KNO1. 

  

Test function OKA1 

This test function and the test function OKA2 have been 

proposed in [26]. It is a bi-objective test function having two 

variables and it is defined as: 

minimize f1 = 1'x  

minimize 3

1

1212 3)'cos(3'2'2  xxxf   

where 

211
12

sin
12

cos' xxx 



















 

212
12

cos
12

sin' xxx 



















 




































12
cos2

12
sin6,

12
sin61





x  

 

 

Fig. 7. Behavior of merit function for test function KNO1 during the 

convergence phase. 

 

 



























12
cos6,

12
sin22


x  

The Pareto optimal set lies on the curve 2'x = 

3cos( 1'x )+2, 1'x [0, 2]. 

The solutions obtained by LGP, ParEGO and NSGA II for 

the test function DTLZ1a are depicted in Fig. 8. Different 

sizes of the objective space are illustrated in order to 

incorporate all solutions obtained by all techniques. The value 

of  in the spreading phase which is adapted by the fuzzy 

controller is 0.984. The behavior of the merit function during 

the 20 re-starts is depicted in Fig. 9. From the results 

presented in Table III it can be observed that none of the 

solutions obtained by LGP are dominated by solutions 

obtained by either ParEGO or NSGA II. Solutions obtained by 

LGP dominate 83 solutions obtained by both ParEGO and 64 

solutions obtained by NSGA II. 77 of the solutions obtained 

by NSGA II are dominated by solutions obtained by ParEGO 

while 59 of the solutions obtained by ParEGO are dominated 

by solutions obtained by NSGA II. 



> < 

 

8 

Fig. 8. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function OKA1. 

 

 
Fig. 9. Behavior of merit function for test function OKA1 during the 

convergence phase. 

 
Test function OKA2 

Test function OKA2 is given by: 

minimize f1 = x1 

minimize  

3

1

13

3

1

12

2

122

)sin(5

)cos(5)(
4

1
1

xx

xxxf



 
  

 

x1[-, ],   x2, x3[-5, 5]. 

 

The Pareto optima lie on a spiral-shaped curve in the three 

dimensional variable space.  

The Pareto front is given by 

2

122 )(
4

1
1 


 ff ,    f1[-, ]. 

The convergence to the Pareto frontier and the distribution 

of solutions obtained by LGP, ParEGO and NSGA II for the 

test function DTLZ1a is depicted in Fig. 10. The value 1 is 

considered for  for this test function. The behavior of the 

merit function during the 20 re-starts is depicted in Fig. 11. 

From the results presented in Table IV it can be observed that 

28 of the solutions obtained by LGP are dominated by 

solutions obtained by ParEGO while 37 solutions obtained by 

ParEGO and 41 solutions obtained by NSGA II are dominated 

by solutions obtained by LGP. 31 of the solutions obtained by 

NSGA II are dominated by solutions obtained by ParEGO 

while 69 of the solutions obtained by ParEGO are dominated 

by solutions obtained by NSGA II. 

 

Fig. 10. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function OKA2.
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Fig. 11. Behavior of merit function for test function OKA2 during the 

convergence phase. 

 
Test function VLMOP2 

This test function has been proposed in [35]. It is a bi-

objective problem having scalable number decision variables. 

We use 2 variables.  

 

minimize f1 = 




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












 



n

i

i
n

x
1

2
1

exp1  

minimize f2 = 

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x1, x2  [-2, 2], n=2. 

 

The Pareto front is concave and the Pareto optima lie on 

the diagonal passing from 









nn

1
,

1
 to 









nn

1
,

1
 

in the decision variable space.  

 

The convergence to the Pareto frontier and the distribution 

of solutions obtained by LGP, ParEGO and NSGA II for the 

test function DTLZ1a is depicted in Fig. 12. The value of  in 

the spreading phase which is adapted by the fuzzy controller 

is 0.968. The behavior of the merit function during the 20 re-

starts is depicted in Fig. 13. From the results presented in 

Table V it can be observed that 6 of the solutions obtained by 

LGP are dominated by solutions obtained by ParEGO. 

Solutions obtained by LGP dominate 49 solutions obtained 

by ParEGO and 75 solutions obtained by NSGA II. 75 of the 

solutions obtained by NSGA II are dominated by solutions 

obtained by ParEGO while 37 of the solutions obtained by 

ParEGO are dominated by solutions obtained by NSGA II. 

 

Test function VLMOP3 

Test function VLMOP3 has been proposed by Veldhuizen 

and Lamont in [35] and consists of three objective functions 

of two variables given by: 

 

minimize f1 =    2222 sin5.0 yxyx   

minimize f2 = 
   

15
27

1

8

423
22





 yxyx

 

minimize f2 =  22

22
exp1.1

1

1
yx

yx



 

 

x, y  [-3, 3]. 

 

 

Fig. 12. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function VLMOP2. 
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Fig. 13. Behavior of merit function for test function VLMOP2 during the 

convergence phase. 
 

This test function has a disconnected Pareto optimal set 

and the Pareto optimal front is a courve following a 

convoluted path through objective space. 

The convergence to the Pareto frontier and the distribution 

of solutions obtained by LGP, ParEGO and NSGA II for the 

test function DTLZ1a is depicted in Fig. 14. The value of  in 

the spreading phase which is adapted by the fuzzy controller 

is 0.95. Pareto front obtained by LGP considering a set of 

1000 solutions is depicted in Fig. 15. The behavior of the 

merit function during the 20 re-starts is depicted in Fig. 16. 

From the results presented in Table VI it can be observed that 

6 of the solutions obtained by LGP are dominated by 

solutions obtained by ParEGO. Solutions obtained by LGP 

dominate 49 solutions obtained by ParEGO and 75 solutions 

obtained by NSGA II. 75 of the solutions obtained by NSGA 

II are dominated by solutions obtained by ParEGO while 37 

of the solutions obtained by ParEGO are dominated by 

solutions obtained by NSGA II. 

 

 
Fig. 15. Pareto front obtained by LGP for VLMOP3 test problem with a final set 

of 1000 solutions. 

 
Fig. 16. Behavior of merit function for test function VLMOP3 during the 

convergence phase. 

 
Fig. 14. Pareto front obtained by LGP, ParEGO and NSGA II for the test function VLMOP3. 

 

 

Test function DTLZ1a 

The test function DTLZ1a is a two objective test function 

and has 6 variables [15]. It is given by: 

minimize )1(
2

1
11 gxf   

minimize )1)(1(
2

1
12 gxf   

     







 



6

2

2
5.02cos5.05100

i

ii xxg   

xi[0, 1], i=1, …, n, n=6. 
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The Pareto set for this function consists of all solutions 

where all by the first decision variables are equal to 0.5 and 

the first decision variable may take any value between 0 and 1. 

For this test function, the value of  for the spreading 

phase which is adapted by the fuzzy controller is 0.01. The 

convergence to the Pareto frontier and the distribution of 

solutions obtained by LGP, ParEGO and NSGA II for the test 

function DTLZ1a is depicted in Fig. 17. Different sizes of the 

objective space are illustrated in order to incorporate all 

solutions obtained by all techniques. It is obvious that LGP 

assure a very good convergence and distribution for this 

function. The convergence of the merit function during the 20 

re-starts is depicted in Fig. 18. From the results presented in 

Table VII it can be observed that none of the solutions 

obtained by LGP are dominated neither by ParEGO or by 

NSGA II, while solutions obtained by LGP dominate all 100 

solutions obtained by ParEGO and NSGA II. 91 of the 

solutions obtained by NSGA II are dominated by solutions 

obtained by ParEGO while 75 of the solutions obtained by 

ParEGO are dominated by solutions obtained by NSGA II.  

 
Test function DTLZ4a 

Test function DTLZ4a has three objective functions and 8 

decision variables and is given by: 

 

minimize   

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2
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minimize   



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
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2
sin1
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1
3

x
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 



8

3

2
5.0

i

ixg  

 

xi[0, 1], i=1, …, n, n=8. 

 

The Pareto front is 1/8 of the unit sphere centered in 

origin. The Pareto optimal set consist of all solutions but the 

first two decision variables are equal to 0.5 and the first two 

decision variables may take any value between 0 and 1. 

 

For test function DTLZ4a the value of  in the spreading 

phase which is adapted by the fuzzy controller is 0.2. The 

distribution of solutions on the Pareto frontier and the 

convergence to the Pareto frontier for all the three 

algorithms is depicted in Fig. 19. The distribution on the 

Pareto frontier obtained for different other values of  is 

depicted in Fig. 21. With a higher number of nondominated 

solutions (1,000) LGP assure a better coverage of the Pareto 

frontier (as evident from Fig. 22). The convergence of the 

merit function is depicted in Fig. 20.  

From Fig. 19 it can be observed that, compared to ParEGO 

and NSGA II, LGP is assuring a very good convergence. The 

latter two approaches are not converging very well with the 

parameters used.  

As evident from Table VIII none of the solutions obtained by 

LGP are dominated neither by ParEGO or by NSGA II while 

solutions obtained by LGP dominate all 100 solutions 

obtained by ParEGO and NSGA II. 98 of the solutions 

obtained by NSGA II are dominated by solutions obtained by 

ParEGO while 60 of the solutions obtained by ParEGO are 

dominated by solutions obtained by NSGA II.
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Fig. 17. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function DTLZ1

.  

 

 
Fig. 18. Behavior of merit function for test function DTLZ1a during the 

convergence phase. 

 
Test function DTLZ7a 

This test function has 3 objectives and 8 decision variables 

and it is given by: 

 

minimize f1=x1 

minimize f2=x2 

minimize f3=(1+g)h 

 





8

36

9
1

i

ixg  

  



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i

i
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xi[0, 1], i=1, …, n, n=8. 

 

The Pareto front has four discontinuous regions and the 

Pareto set consists of all solutions where all by the first two 

decision variables are equal to 0. 

The test function DTLZ7a has 4 discontinuous Pareto 

regions. LGP is able to converge very well and it is able to 

spread into the all four disconnected Pareto regions from a 

single starting point. The value of  which is adapted by the 

fuzzy controller is 0.99, but there is not much difference 

between different values of  as in the case of DTLZ4a test 

function. The test function DTLZ7a has 4 discontinuous 

Pareto regions. LGP is able to converge very well and it is 

able to spread into the all four disconnected Pareto regions 

from a single starting point. The value of  used is 1, but 

there is not much difference between different values of  as 

in the case of DTLZ4a test function. Fig. 23 depicts the 

distribution of LGP solutions for two different values of . 

As evident from Fig. 24, both ParEGO and NSGA II ar far 

from the Pareto front in terms of convergence. 44 of the 

solutions obtained by LGP dominates solutions obtained by 

ParEGO while 15 solutions obtained by ParEGO dominates 

solutions obtained by LGP. 91 solutions obtained by NSGA II 

are dominated by solutions obtained by LGP and 20 solutions 

obtained by LGP are dominated by solutions obtained by 
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NSGA II. 39 solutions obtained by ParEGO are dominated by 

solutions obtained by NSGA II while 33 of the solutions 

obtained by NSGA II are dominated by solutions obtained by 

ParEGO (as evident from Table IX).  The convergence of the 

merit function is depicted in Fig. 25. 
 

 

Fig. 19. Convergence to the Pareto frontier and distribution of solutions obtained by LGP, ParEGO and NSGA II on the Pareto frontier for test function DTLZ4a 

(view from different angles). 

 

 
Fig. 20. Behavior of merit function for test function DTLZ4 during the 

convergence phase. 

 
As evident from the graphical representation of the results 

obtained by all the three techniques, ParEGO and NSGA II 

and not always providing a very good convergence to the 

Pareto front. This means that they require a higher number of 

generations (which, in turn, involves a higher computational 

time) in order to assure a good convergence to the true 

Pareto front. LGP converge very fast and require less than 

200 mS (milliseconds) to obtain a set of Pareto solutions. 

Also, the convergence is very good and not all 20 re-starts are 

required in the convergence phase (for test functions KNO1 

and VLMOP3 4 re-starts are enough while for test functions 

DTLZ1, DTLZ4 and OKA1 5 restarts assure the convergence 

to the first Pareto optimal solution. 

 

IV. INVESTIGATION OF LGP PERFORMANCES FOR OPTIMIZATION 

OF A FLOW INJECTION SYSTEM FOR DETERMINING HYDROQUINONE 

This problem requires optimizing the determination of hydroquinone by 

using a flow injection system with amperometric detection. There are 

three factors that affect the analytical signal:  

the carrier solution flow rate, Φ (mL min
−1

), 

the conditioning cell potential, Ea (mV),  

the working electrode potential, EL1 (mV), of the 

analytical cell. 

The experimental conditions taken are: 

central values equal to 0.75 mL/min for the flow rate Φ,   

−100 mV for the conditioning cell potential, Ea,  

175 mV for the working electrode potential, EL1, with 

steps of 0.25 mL/min, 50 and 125 mV. 

The task is to find experimental conditions for the three 

factors so that: 

 maximize the signal size estimated as the average value 

(the peak height of the fiagram in A) of 5 signals 

obtained under the same experimental conditions 

 minimize the relative variability estimated as the 

coefficient of variation of the signal, measured as a 

percentage. 

 

It is known that, in general, when increasing the size of an 

analytical signal, its variability is also increased, thus the two 

objectives are conflicting. More details about this problem 

and about the optimization conditions can be found in 

[29][32]. The authors estimated that the peak height should be 

below 1.89 μA and the coefficient of variation below 1.5%. 
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TABLE  II. THE DOMINANCE BET WEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION KNO1. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 100 100 ParEGO 7 59 NSGA II 2 42 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 7 2 ParEGO 100 42 NSGA II 100 59 

 
TABLE  III. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION OKA1. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 83 64 ParEGO 0 77 NSGA II 0 59 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 0 0 ParEGO 83 59 NSGA II 64 77 

TABLE  IV. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION OKA2. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 37 41 ParEGO 28 31 NSGA II 0 69 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 28 0 ParEGO 37 69 NSGA II 41 31 

 
TABLE V. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION VLMOP2. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 49 75 ParEGO 6 75 NSGA II 0 37 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 6 0 ParEGO 49 37 NSGA II 75 75 

 
TABLE  VI. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION VLMOP3. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 44 91 ParEGO 15 33 NSGA II 20 39 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 15 20 ParEGO 44 39 NSGA II 91 33 

 
TABLE  VII. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION DTLZ1A. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 100 100 ParEGO 0 75 NSGA II 0 91 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 0 0 ParEGO 100 91 NSGA II 100 75 

 
TABLE VIII. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION DTLZ4A.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 100 100 ParEGO 0 98 NSGA II 0 60 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 0 0 ParEGO 100 60 NSGA II 100 98 

TABLE  IX. THE DOMINANCE BETWEEN SOLUTIONS OBTAINED BY LGP, PAREGO AND NSGA II FOR TEST FUNCTION DTLZ7A. 

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO 

LGP 100 100 ParEGO 0 97 NSGA II 0 13 

 

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO 

LGP 0 0 ParEGO 100 13 NSGA II 100 97 
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Fig. 21. Distribution of solutions on the Pareto frontier obtained by LGP by considering different values for  in the spreading phase for test function DTLZ4a. 

Fig. 22. Distribution of solutions obtained by LGP for DTLZ4 test function considering a set of 1,000 nondominated solutions (view from different angles). 

  
By using the notations: 

 

Φx1 

Eax2 

EL1x3 

 

the optimization problem can be formulated as follows: 

 

maximize the peak height (A):  
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minimize the Coefficient of variation (%): 
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2
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07.044.023.013.041.070.0

xxxxxxx
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The mathematical analysis of the models provides the 

stationary point (0.49, −0.57, −3.04) for the peak height and 

(0.55, -0.46, 0.47) for the coefficient of variation. The 

stationary point of the model for the peak height is outside 

the experimental domain whereas that of the model for the 

coefficient of variation is inside it. However, both of them 

are saddle points. We are applying LGP for solving this 

optimization problem by considering 10 re-starts and 10 

iterations per each restart.  

Fig. 26 shows the Pareto-optimal front (consisting of 1000 

solutions) for the peak height (objective f1) and the 
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coefficient of variation (objective f2): when the peak height 

increases, the coefficient of variation also increases and vice 

versa. The value of  adapted by the fuzzy controller in the 

spreading phase is 0.54.  

The corresponding level of factors in the experimental 

domain is depicted in Fig. 27. In the graphical representation 

x1 corresponds to the carrier solution flow rate Φ, x2 

corresponds to the conditioning cell potential Ea and x3 

corresponds to the working electrode potential EL1 of the 

analytical cell. 

Fig. 23. Distribution of solutions on the Pareto frontier obtained by LGP by considering different values for  in the spreading phase for test function DTLZ7a. 

Fig. 24. Convergence to the Pareto frontier and distribution of solutions obtained by LGP, ParEGO and NSGA II on the Pareto front ier for test function DTLZ7a 

(view from different angles). 
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Fig. 25. Behavior of merit function for test function 

DTLZ7 during the convergence phase. 
 

 
Fig. 26. Pareto optimal front obtained by LGP for the 

optimization of a flow injection system for determining 

hydroquinone. 

 

 
Fig. 27. The level of factors obtained by LGP: x1 

corresponds to Φ, x2 corresponds to Ea and x3 corresponds to 

EL1. 

The results obtained by LGP can the possibility to choose 

the desired solution based on the expected values for the peak 

height and the coefficient of variation. Some authors consider 

that peak heights below 1.5 μA are unacceptable and values 

above 1.8 μA are good. Also, they look for values for 

coefficient of variation below 1.5% [29].  Desirability values 

are defined to increase (or decrease) linearly between the two 

limits. Given all the required conditions for solving this 

problem, we generated an approximation of the Pareto front 

and set so that the user can select depending on further 

preferences. 

V. LGP FOR THE OPTIMIZATION OF THE FORMULATION OF AN 

ORAL SOLUTION 

The application studied in this section comes from 

pharmaceutics and it is described in detail in [17] and [29]. 

The problem refers to the formulation of a solution of 

slightly soluble drug mainly depending on the percentage of 

surfactant (polysorbate 80), propylene glycol (%) and invert 

sugar medium (mL). The central values of the factors that 

define the experimental domain are 4.0% of polysorbate 80, 

20% of propylene glycol and 55 mL of sucrose invert 

medium with steps 0.3%, 3% and 6 mL respectively. With a 

central composite design (spherical and with α=1.68), two 

response surfaces (quadratic models) are fitted for the 

turbidity (ppm) and cloud point (°C) of the resulting 

solutions. 

For fitting the model for the cloud point two experimental 

points had to be removed with abnormal residuals that 

produce the regression model to be non significant. These 

points were, in codified variables, (0, −1.68, 0) and (0, 1.68, 

0). 

Based on some experimental results, the authors of [29] 

reduced the size of variation of the second factor (propylene 

glycol) to [−1.3, 1.3]. 

The goal of the fitting of the response surfaces is to find 

experimental conditions to reduce the turbidity and to 

increase the cloud point.  

By using the notations: 

 

polysorbate 80x1 

propylene glycol x2 

invert sugar medium x3 

 

The optimization problem can be formulated as follows: 

 

maximize the turbidity:  
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minimize the cloud point: 
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The analysis of the quadratic models (the standard 

mathematical methodology) provides the stationary or 
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critical points (points where gradient vector is equal to the 

null vector) which are (0.82, −0.23, −0.51) for turbidity and 

(0.81, −2.24, −2.37) for the cloud point. The stationary point 

for turbidity is inside the experimental domain and that of the 

cloud point is outside it. In any case, both of them are saddle 

points (nor maximum nor minimum). As mentioned in [29], 

according to the generalization (theorem 2, page 16 in [1]) of 

the Weierstrass Extreme Value Theorem (e.g. theorem 3.9, 

page 57 in [30]), both continuous functions in the 

experimental domain (which is a compact set) attain its 

maximum and minimum values at points within the compact 

region; therefore in this case in the boundary of the 

experimental domain. This theorem, although guaranteeing 

that there are extreme points in the experimental domain for 

both models, does not provide any indication about the 

experimental conditions (the level of the factors) to obtain 

such extreme points, that means that we do not have any idea 

about how to move the experimental conditions for 

minimizing turbidity and maximizing cloud point [29]. 

From the mathematical experiments performed in [17] and 

[29] it is obvious that there are no experimental conditions 

for the three factors that simultaneously provide the 

minimum value for turbidity and the maximum value for cloud 

point. The pairs of values which can be obtained is in the 

Pareto-optimal front estimated for these two functions 

depicted in Fig. 24 (the value of  in the spreading phase 

adapted by the fuzzy controller is 0.982).  

In the Pareto-optimal front, turbidity ranges from 1.11 to 

4.38 ppm and the cloud point from 64.7 to 83.8 °C, but it is 

clearly observed in Fig. 28 how an increase in cloud point is 

linked to an increase in turbidity and if we want to decrease 

turbidity, cloud point is also decreased. 

The solutions obtained by LGP are depicted in Fig. 29. 

Knowing the experimental conditions (inside the 

experimental domain) that estimate values optimal in one or 

the other response the user can choose according to the 

needs (for instance, solutions for which the turbidity is above 

some limits and the cloud point is below some limits and vice 

versa). 

 

Fig. 28. Pareto front obtained by LGP for turbidity and 

cloud point conditions. 

 

 
Fig. 29. Solutions (in the variable space) obtained by LGP 

for the optimization of an oral solution application. 

 

VI. CONCLUSIONS 

The paper proposes a new approach for multiobjective optimization 

which uses an aggregation of objectives and transforms the MOP into a 

SOP. A line search based technique is applied in order to obtain one 

solution. Starting from this solution a simplified version of the initial line 

search is used in order to generate solutions with a well distribution on 

the Pareto frontier. Numerical experiments performed show that the 

proposed approach is able to converge very fast and provide a very 

good distribution (even for discontinuous Pareto frontier) while 

compared with state of the art population based metaheuristics such as 

ParEGO and NSGA II.  

Compared to NSGA II and ParEGO, LGP has only few 

parameters to adjust. It is computationally inexpensive, taking 

less than 200 milliseconds to generate a set of nondominated 

solutions well distributed on the Pareto frontier. 

We also considered two practical problems for which we 

have applied LGP. The first problem refers to the 

optimization of a flow injection system for determining 

hydroquinone. LGP is able to generate a very good 

approximation of the Pareto front and provide results which 

clearly fulfill all the problem requirements. The second 

application is from the pharmaceutical design and requires 

the optimization of an oral solution. LGP is obtaining a good 

Pareto front offering to the user the possibility to select 

from a wide range of solutions. 

The only inconvenience is that LGP involves first partial 

derivatives which makes it be restricted to a class of 

problems which are continuous twice differentiable. But 

almost all practical engineering design problems are 

continuous differentiable.  

One of the further work ideas is to extend LGP to deal with 

constraint multiobjective optimization problems. 
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