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Robust Passivity and Passification of

Stochastic Fuzzy Time-Delay Systems
Jinling Lianga,∗, Zidong Wangb and Xiaohui Liub

Abstract

In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy

systems with time-varying delays. The fuzzy system is based on the Takagi-Sugeno (T-S) model that is often used to

represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical

behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the

parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a

Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the

Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient

criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy

time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent

or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the

standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the

proposed results.
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I. Introduction

In the past decades, the fuzzy logic theory [40] has been shown to be an effective approach to dealing with

the analysis and synthesis problems of nonlinear systems. Among various models available for fuzzy systems,

the Takagi-Sugeno (T-S) fuzzy model in [28] was a notable one which was a linear system constructed to

approximate a nonlinear plant. Roughly speaking, the T-S fuzzy model is a system described by fuzzy IF-

THEN rules which can give local linear representation of the nonlinear system by decomposing the whole

input space into several partial fuzzy spaces and representing each output space with a linear equation. Such

a model is capable of approximating a wide class of nonlinear systems. Since the model in the consequent part

is linear, conventional linear system theory can be conveniently applied for the system analysis and synthesis,

and therefore the past decade has seen a rich body of literature utilizing T-S fuzzy models for analysis and

control of complex dynamic systems [17,23,26,29,36,39].

In reality, the time-delay, modeling errors and stochastic disturbances commonly exist in various engineering,

biological, and economical systems due to the finite speed of information processing. They are arguably three

of the main sources that may cause the instability of the system [31–33, 37, 38]. To cope with the modeling

errors, the robust stability analysis and synthesis problems have first been addressed for T-S fuzzy models with

parameter uncertainties, see [4, 14] for some earlier publications. Subsequently, time-delay was introduced in

[5] for the fuzzy feed-back systems and sufficient stabilization conditions were established. Recently, there have

been a large amount of results on how to check the stability of time-delay T-S systems by using various delay-

dependent or delay-independent approaches, see e.g. [6, 11, 19]. For a comprehensive survey of the research
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for time-delay fuzzy systems, we refer the readers to [20]. Moreover, in the past few decades, a great deal of

attention has been devoted to the stochastic systems governed by Itô stochastic differential equations since

this kind of stochastic systems has many practical applications. Subsequently, stochastic fuzzy T-S systems

with or without time-delays have recently become a research focus. For example, in [13,30], both parameter

uncertainties and stochastic disturbances were considered for the T-S model and the exponential mean square

stability was discussed. In [12], the sliding-mode control (SMC) problem for nonlinear stochastic time-delay

systems was considered by means of a fuzzy approach.

On another research front, the passivity and passification problems for a variety of practical systems have

been attracting renewing attention for many years. The passivity theory was firstly proposed in the circuit

analysis [1] and since then has found successful applications in diverse areas such as stability, signal processing,

complexity, fuzzy control, chaos control and synchronization [3,7,34,35]. Since the well-known T-S fuzzy model

has been proven to be a popular and convenient tool in functional approximations of nonlinear systems, it is

not surprising that the passivity theory has been generalized to T-S fuzzy models with or without time-delays.

For instance, the passivity problem of the T-S fuzzy system with constant delays was considered in [15]. In

[25], the passivity was analyzed for neural networks as well as linear time-delay systems [22,24]. Very recently,

the passivity and passification problems were dealt with in [9] for the networked control systems. As discussed

already, stochastic systems have been successfully applied in modeling practical systems in many areas such

as biology, economics, and engineering, mainly due to the fact that stochastic disturbances exist universally

in reality. Therefore, the robust stability, stabilization, control and filtering problems for stochastic systems

have been intensively investigated by many researchers, and a great number of results on these topics have

been reported in the literature. Unfortunately, to the best of the authors’ knowledge, there have been few

results on the passivity and passification problems of stochastic T-S fuzzy time-delay systems with or without

parameter uncertainties. Therefore, the purpose of this paper is to shorten such a gap.

Motivated by the above discussions, in this paper, we aim to investigate the passivity and passification

problems of a class of generalized time-delay T-S model with both parameter uncertainties and stochastic

disturbances. The main contributions of this paper can be summarized as follows: 1) the fuzzy system under

consideration is comprehensive that comprises stochasticity, uncertainties and time-delays, and can therefore

reflect more realistic dynamical behaviors; 2) the definition of passivity is first extended to the stochastic

setting (i.e., in the sense of expectation); and 3) a novel Lyapunov functional method combined with the

matrix analysis techniques is developed to obtain sufficient conditions under which the closed-loop system

is globally robustly passive in the sense of expectation. These sufficient conditions are expressed in terms

of linear matrix inequalities (LMIs) that can be solved numerically. The rest of the paper is organized as

follows. In Section II, the system studied in this paper is proposed and some preliminaries are given. In

Section III, by utilizing the Lyapunov functional method, passivity conditions and state feedback passification

of the stochastic uncertain T-S model are presented. In Section IV, illustrative examples are constructed

to demonstrate the effectiveness and usefulness of the acquired results and, finally, conclusions are drawn in

Section V.

Notations: Throughout this paper, R
n and R

m×n denote the n-dimensional Euclidean space and the set of

all m × n real matrices, respectively. ‖ · ‖ refers to the Euclidean vector norm and In is the n-dimensional

identity matrix. P > 0 means that P is a real, symmetric and positive definite matrix. QT represents the

transpose of matrix Q and the asterisk “∗” in a matrix is used to represent the term which is induced by

symmetry. Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 containing all P-null sets

and being right continuous. L
p
F0

denotes the family of all F0-measurable C([−τM , 0], Rn)-valued random

variables ϕ = {ϕ(s)| − τM ≤ s ≤ 0} such that sup−τM≤s≤0 E{|ϕ(s)|p} < ∞, where E{·} is the mathematical

expectation operator with respect to the given probability measure P. Sometimes, when no confusion would

arise, the dimensions of a function or a matrix will be omitted for convenience.
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II. Model description and preliminaries

In this section, we consider a generalization of the traditional Takagi-Sugeno fuzzy system that includes

both the parameter uncertainties and stochastic disturbances. The corresponding ith rule is formulated in

the following form:

Plant rule i:

IF θ1(t) is ηi1 and . . . θp(t) is ηip, THEN










dx(t) =
[

(Ai + △Ai)x(t) + (Bi + △Bi)x(t − τ(t)) + (Gi + △Gi)J(t)
]

dt

+σi(t, x(t), x(t − τ(t)))dωi(t),

y(t) = (Ci + ∆Ci)x(t) + (Di + ∆Di)x(t − τ(t)) + (Wi + ∆Wi)J(t); i = 1, 2, . . . , r

(1)

where ηij (j = 1, 2, . . . , p) are fuzzy sets; x(t) ∈ R
n is the state vector and y(t) ∈ R

m is the output vector; J(t) ∈

R
m is the square-integrable exogenous input and r is the number of IF-THEN rules; ωi(t) ∈ R

q (i = 1, 2, . . . , r)

are uncorrelated zero mean Gaussian white noise process with covariances Iq; θ(t) = (θ1(t), θ2(t), . . . , θp(t))

is the premise variable vector and it is assumed that the premise variables do not depend on the noise-input

variables ωi(t) explicitly; 0 ≤ τm ≤ τ(t) ≤ τM denotes the time-varying differentiable delay with τ̇(t) ≤ d.

Note that the assumption of τ̇(t) ≤ d implies that the increasing rate of the time-delay is limited which is

indeed the case in most engineering practice. Ai, Bi, Gi, Ci, Di and Wi are known constant matrices with

appropriate dimensions and ∆Ai, ∆Bi, ∆Gi, ∆Ci, ∆Di and ∆Wi are real matrices representing norm-bounded

parameter uncertainties that satisfy:

[∆Ai ∆Bi ∆Gi] = H1iF1i[E1i E2i E3i], [∆Ci ∆Di ∆Wi] = H2iF2i[E4i E5i E6i] (2)

where H1i, H2i, Eji (j = 1, 2, . . . , 6) are known real constant matrices with appropriate dimensions and F1i,

F2i are unknown matrices satisfying

F T
1iF1i ≤ I, F T

2iF2i ≤ I. (3)

σi(·, ·, ·) : R × R
n × R

n → R
n×q is the noise intensity function satisfying the Lipschitz condition, i.e., there

exist constant matrices R1i and R2i of appropriate dimensions such that the following inequality

trace
(

σT
i (t, u, v)σi(t, u, v)

)

≤ ‖R1iu‖
2 + ‖R2iv‖

2 (4)

holds for all i = 1, 2, . . . , r and (t, u, v) ∈ R × R
n × R

n.

Remark 1: In the fuzzy system (1), both the parameter uncertainties and the stochastic disturbances are

introduced. The reason is twofold: 1) the system parameters are usually obtained by way of statistical estima-

tion which definitely results in some estimation errors; and 2) stochastic disturbances are nearly inevitable due

to a variety of causes such as the thermal noise in the electronic devices or the noisy environment. Note that

parameter uncertainties were firstly proposed in [16] for the passivity and passification problems of uncertain

fuzzy systems without taking into account the stochastic influences and the delay effects.

Let

νi(θ(t)) =

p
∏

j=1

ηij(θj(t)) and µi(θ(t)) =
νi(θ(t))

r
∑

j=1
νj(θ(t))

(5)

where ηij(θj(t)) is the grade of membership of θj(t) in ηij . The basic property of νi(θ(t)) is that νi(θ(t)) ≥ 0

and
r
∑

j=1
νj(θ(t)) > 0 hold uniformly for all t ≥ 0. Obviously, one has

µi(θ(t)) ≥ 0 (i = 1, 2, . . . , r),

r
∑

i=1

µi(θ(t)) = 1; ∀t ∈ R
+. (6)
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The initial condition associated with (1) is given by

x(s) = ϕ(s), −τM ≤ s ≤ 0 (7)

where ϕ(·) ∈ L2
F0

([−τM , 0], Rn) and the corresponding state trajectory is denoted as x(t, ϕ).

We are now ready to introduce the notion of robust passivity for system (1) with stochastic disturbances. In

the literature, there are several different definitions of passivity. In terms of the stochastic nature of the T-S

fuzzy systems under consideration, we define the notion of passivity in the sense of expectation by extending

the concept of passivity proposed in [21].

Definition 1: The fuzzy system (1) is called globally robustly passive in the sense of expectation if there

exists a scalar β ≥ 0 such that

2E

{
∫ t

0
JT (s)y(s)ds

}

≥ −βE

{
∫ t

0
JT (s)J(s)ds

}

, ∀t ≥ 0

for all admissible uncertainties (2)-(3) and solution x(t,0) of (1).

By denoting Āi = Ai + ∆Ai, B̄i = Bi + ∆Bi, C̄i = Ci + ∆Ci, D̄i = Di + ∆Di, Ḡi = Gi + ∆Gi and

W̄i = Wi + ∆Wi, the defuzzified system of model (1) can be represented as follows:















dx(t) =
r
∑

i=1
µi(θ(t))[Āix(t) + B̄ix(t − τ(t)) + ḠiJ(t)]dt +

r
∑

i=1
µi(θ(t))σi(t, x(t), x(t − τ(t)))dωi(t),

y(t) =
r
∑

i=1
µi(θ(t))[C̄ix(t) + D̄ix(t − τ(t)) + W̄iJ(t)].

(8)

Before starting the main results, we need to introduce two more notations and some lemmas which will be

used in the next section.

Let C1,2(R×R
n, R+) denote the family of all nonnegative function V (t, x) on R×R

n which are continuously

twice differentiable in x and once differentiable in t. For each V ∈ C1,2(R×R
n, R+), by Itô’s differential formula

[8, 18], the stochastic derivative of V (t, x(t)) along (8) can be obtained as:

dV (t, x(t)) = LV (t, x(t))dt + Vx(t, x(t))
r
∑

i=1

µi(θ(t))σi(t, x(t), x(t − τ(t)))dωi(t), (9)

where L is the weak infinitesimal operator L of the stochastic process {xt = x(t + s)|t ≥ 0,−τM ≤ s ≤ 0},

and the mathematical expectation of LV (t, x(t)) is given by

E{LV (t, x(t))} = E

{

Vt(t, x(t)) + Vx(t, x(t))

[

r
∑

i=1

µi(θ(t))(Āix(t) + B̄ix(t − τ(t)) + ḠiJ(t))

]

+
1

2
trace

[

r
∑

i=1

µ2
i (θ(t))σT

i (t, x(t), x(t − τ(t)))Vxx(t, x(t))σi(t, x(t), x(t − τ(t)))

]}

(10)

with

Vt(t, x(t)) =
∂V (t, x(t))

∂t
; Vx(t, x(t)) = (

∂V (t, x(t))

∂x1
, . . . ,

∂V (t, x(t))

∂xn

); Vxx(t, x(t)) = (
∂2V (t, x(t))

∂xi∂xj

)n×n.

Lemma 1: [2] Let Q(x) = QT (x), R(x) = RT (x), and S(x) depend affinely on x. Then the following linear

matrix inequality
[

Q(x) S(x)

ST (x) R(x)

]

> 0,

holds if and only if one of the following conditions holds:
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(1) R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0;

(2) Q(x) > 0, R(x) − ST (x)Q−1(x)S(x) > 0.

Lemma 2: [10] For any constant matrix P ∈ R
n×n, P T = P > 0, scalar r > 0, and vector function

u : [0, r] → R
n, one has

r

∫ r

0
uT (s)Pu(s)ds ≥ (

∫ r

0
u(s)ds)T P (

∫ r

0
u(s)ds),

provided that the integrals are well defined.

Lemma 3: Let X, Y , Ξ be matrices with Ξ satisfying ΞTΞ ≤ I and scalar ε > 0. Then the following

inequality holds:

XΞY + (XΞY )T ≤ ε−1XXT + εY T Y.

III. Main Results

In this section, the passivity conditions are first derived for the T-S fuzzy system (1) with both parameter

uncertainties and stochastic disturbances, and the sufficient passive criteria are then obtained for the model

(1) with parameter uncertainties only but using a different Lyapunov functional and, finally, the passification

problem of the state feedback closed-loop fuzzy model is considered.

A. Passivity analysis

Theorem 1: The delayed fuzzy system (1) is globally robustly passive in the sense of expectation if there

exist two positive definite matrices P1, P2 and 2(r + 1) scalars β ≥ 0, λ > 0, ε1i > 0, ε2i > 0 such that the

following LMIs hold for all i = 1, 2, . . . , r:

P1 < λI, (11)

Ξ(i) =

























Ξ
(i)
11 P1Bi −CT

i + P1Gi P1H1i 0 ε1iE
T
1i ε2iE

T
4i

∗ −(1 − d)P2 + λRT
2iR2i −DT

i 0 0 ε1iE
T
2i ε2iE

T
5i

∗ ∗ −(βI + W T
i + Wi) 0 H2i ε1iE

T
3i ε2iE

T
6i

∗ ∗ ∗ −ε1iI 0 0 0

∗ ∗ ∗ ∗ −ε2iI 0 0

∗ ∗ ∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ ∗ ∗ −ε2iI

























< 0, (12)

where Ξ
(i)
11 = P1Ai + AT

i P1 + P2 + λRT
1iR1i.

Proof: By Lemma 1, we know that condition (12) is equivalent to

Ξ
(i)
1 + ε−1

1i Ĥ1iĤ
T
1i + ε1iÊ1iÊ

T
1i + ε−1

2i Ĥ2iĤ
T
2i + ε2iÊ4iÊ

T
4i < 0, (13)

where

Ξ
(i)
1 =







P1Ai + AT
i P1 + P2 + λRT

1iR1i P1Bi −CT
i + P1Gi

∗ −(1 − d)P2 + λRT
2iR2i −DT

i

∗ ∗ −(βI + W T
i + Wi)






,

and

Ĥ1i =







P1H1i

0

0






, Ê1i =







ET
1i

ET
2i

ET
3i






, Ĥ2i =







0

0

H2i






, Ê4i =







ET
4i

ET
5i

ET
6i






.

Choose a Lyapunov functional candidate V1(t, x(t)) ∈ C1,2(R × R
n, R+) as

V1(t, x(t)) = xT (t)P1x(t) +

∫ t

t−τ(t)
xT (s)P2x(s)ds. (14)
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By Itô’s differential rule, the mathematical expectation of the stochastic derivative of V1(t, x(t)) along the

trajectory of fuzzy system (8) can be obtained as

E{dV1(t, x(t))} = E

{{

r
∑

i=1

µi(θ(t))
[

2xT (t)P1(Āix(t) + B̄ix(t − τ(t)) + ḠiJ(t))

+xT (t)P2x(t) − (1 − τ̇(t))xT (t − τ(t))P2x(t − τ(t))
]

+trace[

r
∑

i=1

µ2
i (θ(t))σT

i (t, x(t), x(t − τ(t)))P1σi(t, x(t), x(t − τ(t)))]

}

dt

}

≤ E

{

r
∑

i=1

µi(θ(t))
[

xT (t)(P1Āi + ĀT
i P1 + P2)x(t) + 2xT (t)P1B̄ix(t − τ(t))

+2xT (t)P1ḠiJ(t) − (1 − d)xT (t − τ(t))P2x(t − τ(t))

+trace(σT
i (t, x(t), x(t − τ(t)))P1σi(t, x(t), x(t − τ(t))))

]

dt

}

; (15)

here, to achieve (15), conditions τ̇(t) ≤ d and 0 ≤ µi(θ(t)) ≤ 1 (i = 1, 2, . . . , r) have been exploited and the

relationship of E

{

2
r
∑

i=1
µi(θ(t))xT (t)P1σi(t, x(t), x(t − τ(t)))dωi(t)

}

= 0 has been utilized.

On the other hand, conditions (4) and (11) ensure that

E
{

trace
(

σT
i (t, x(t), x(t − τ(t)))P1σi(t, x(t), x(t − τ(t)))

)}

≤ λE
{(

xT (t)RT
1iR1ix(t) + xT (t − τ(t))RT

2iR2ix(t − τ(t))
)}

, i = 1, 2, . . . , r. (16)

Substituting (16) into (15) gives

E{dV1(t, x(t)) − 2JT (t)y(t)dt − βJT (t)J(t)dt}

≤ E

{

r
∑

i=1

µi(θ(t))
[

xT (t)(P1Āi + ĀT
i P1 + P2 + λRT

1iR1i)x(t) + 2xT (t)P1B̄ix(t − τ(t))

+2xT (t)(P1Ḡi − C̄T
i )J(t)) + xT (t − τ(t))(λRT

2iR2i − (1 − d)P2)x(t − τ(t))

−2xT (t − τ(t))D̄T
i J(t) − JT (t)(W̄ T

i + W̄i + βI)J(t)
]

dt

}

= E

{

r
∑

i=1

µi(θ(t))ζT (t)Ξ
(i)
2 ζ(t)dt

}

; (17)

where ζT (t) = (xT (t) xT (t − τ(t)) JT (t)) and

Ξ
(i)
2 =







P1Āi + ĀT
i P1 + P2 + λRT

1iR1i P1B̄i −C̄T
i + P1Ḡi

∗ −(1 − d)P2 + λRT
2iR2i −D̄T

i

∗ ∗ −(βI + W̄ T
i + W̄i)






.

Obviously, Ξ
(i)
2 = Ξ

(i)
1 + ∆Ξ

(i)
1 , in which

∆Ξ
(i)
1 =







P1(∆Ai) + (∆Ai)
T P1 P1∆Bi −(∆Ci)

T + P1∆Gi

∗ 0 −(∆Di)
T

∗ ∗ −(∆Wi)
T − ∆Wi







= Ĥ1iF1iÊ
T
1i + Ê1iF

T
1iĤ

T
1i − Ĥ2iF2iÊ

T
4i − Ê4iF

T
2iĤ

T
2i.
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It follows from Lemma 3 that

∆Ξ
(i)
1 ≤ ε−1

1i Ĥ1iĤ
T
1i + ε1iÊ1iÊ

T
1i + ε−1

2i Ĥ2iĤ
T
2i + ε2iÊ4iÊ

T
4i. (18)

Considering (13), it can be derived that

E{dV1(t, x(t))}

dt
− E{2JT (t)y(t) + βJT (t)J(t)} ≤

r
∑

i=1

µi(θ(t))E{ζT (t)Ξ
(i)
2 ζ(t)} ≤ 0, (19)

which means

2E

{
∫ t

0
JT (s)y(s)ds

}

≥ E

{

V1(t, x(t)) − V1(t,0) − β

∫ t

0
JT (s)J(s)ds

}

= E

{

V1(t, x(t)) − β

∫ t

0
JT (s)J(s)ds

}

≥ −βE

{
∫ t

0
JT (s)J(s)ds

}

. (20)

From Definition 1, we know this indicates that the stochastic uncertain fuzzy system (1) is globally robustly

passive in the sense of expectation, and the proof of Theorem 1 is then completed.

From the proof of Theorem 1, it is easy to know that if there are no uncertainties in the fuzzy model (1),

i.e., ∆Ai, ∆Bi, ∆Gi, ∆Ci, ∆Di and ∆Wi ≡ 0, the following corollary can be obtained easily.

Corollary 1: The delayed fuzzy system (1) without parameter uncertainties is globally passive in the sense

of expectation if there exist two positive definite matrices P1, P2 and two scalars β ≥ 0, λ > 0 such that the

following LMIs hold for all i = 1, 2, . . . , r:

P1 < λI and Ξ
(i)
1 < 0,

where Ξ
(i)
1 is defined as that in Theorem 1.

Remark 2: In Corollary 1, if there are no stochastic disturbances either, i.e., R1i, R2i ≡ 0 (i = 1, 2, . . . , r);

and the time delay becomes constant, i.e., τ(t) ≡ τ ; then Corollary 1 turns out to be the same result as

Theorem 1 in [15].

In the following, let us consider the fuzzy model (1) without stochastic disturbances in (8), where the system

is simplified to















dx(t) =
r
∑

i=1
µi(θ(t))[Āix(t) + B̄ix(t − τ(t)) + ḠiJ(t)]dt,

y(t) =
r
∑

i=1
µi(θ(t))[C̄ix(t) + D̄ix(t − τ(t)) + W̄iJ(t)].

(21)

Since the stochastic differential is not involved in (21), we are able to employ a different Lyapunov functional

with the hope to reduce possible conservatism. In this case, the definition of the passivity is the same as that

proposed in [21] for deterministic systems.

Theorem 2: The delayed fuzzy system (21) is globally robustly passive if there exist positive definite matrices

Qj , matrices Xj (j = 1, 2, . . . , 5) and 3r + 1 scalars β ≥ 0, δ1i > 0, δ2i > 0, δ3i > 0 such that the following

LMIs hold for all i = 1, 2, . . . , r:

Γ(i) =

[

Γ
(i)
1 Γ

(i)
2

∗ Γ
(i)
3

]

< 0, (22)
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where Γ
(i)
3 = diag(−δ1iI,−δ1iI,−δ2iI,−δ2iI,−δ3iI,−δ3iI),

Γ
(i)
1 =

















Γ
(i)
11

1
τm

Q5 + AT
i XT

2 AT
i XT

3 + X1Bi Q1 − X1 + AT
i XT

4 AT
i XT

5 + X1Gi − CT
i

∗ Γ22
1

τM−τm
Q4 + X2Bi −X2 X2Gi

∗ ∗ Γ
(i)
33 BT

i XT
4 − X3 BT

i XT
5 + X3Gi − DT

i

∗ ∗ ∗ Γ44 X4Gi − XT
5

∗ ∗ ∗ ∗ Γ
(i)
55

















,

Γ
(i)
2 =















X1H1i δ1iE
T
1i 0 δ2iE

T
4i 0 δ3iE

T
1i

0 0 0 0 X2H1i 0

0 δ1iE
T
2i 0 δ2iE

T
5i X3H1i δ3iE

T
2i

0 0 0 0 X4H1i 0

0 δ1iE
T
3i H2i δ2iE

T
6i X5H1i δ3iE

T
3i















,

and Γ
(i)
11 = Q3 − 1

τm
Q5 + X1Ai + AT

i XT
1 , Γ22 = Q2 − Q3 −

1
τm

Q5 − 1
τM−τm

Q4, Γ
(i)
33 = −(1 − d)Q2 + X3Bi +

BT
i XT

3 − 1
τM−τm

Q4, Γ44 = (τM − τm)Q4 + τmQ5 − X4 − XT
4 , Γ

(i)
55 = X5Gi + GT

i XT
5 − (Wi + W T

i + βI).

Proof: It follows from Lemma 1 that the inequality (22) is equivalent to

Γ
(i)
1 + δ−1

1i H̄1iH̄
T
1i + δ−1

2i H̄2iH̄
T
2i + δ−1

3i H̃1iH̃
T
1i + (δ1i + δ3i)Ē1iĒ

T
1i + δ2iĒ4iĒ

T
4i < 0, (23)

where

H̄1i =















X1H1i

0

0

0

0















, H̃1i =















0

X2H1i

X3H1i

X4H1i

X5H1i















, H̄2i =















0

0

0

0

H2i















, Ē1i =















ET
1i

0

ET
2i

0

ET
3i















, Ē4i =















ET
4i

0

ET
5i

0

ET
6i















.

Consider the following Lyapunov functional candidate for model (21) as

V2(t, x(t)) = V21(t, x(t)) + V22(t, x(t)) + V23(t, x(t)), (24)

where

V21(t, x(t)) = xT (t)Q1x(t),

V22(t, x(t)) =

∫ t−τm

t−τ(t)
xT (s)Q2x(s)ds +

∫ t

t−τm

xT (s)Q3x(s)ds,

V23(t, x(t)) =

∫ −τm

−τM

∫ 0

α

ẋT (t + s)Q4ẋ(t + s)dsdα +

∫ 0

−τm

∫ 0

α

ẋT (t + s)Q5ẋ(t + s)dsdα.

Note that the Lyapunov functional (24) is significantly different from that in (14) and, with the derivative

terms involved in V23(t, x(t)), a less conservative result could be established. Nevertheless, such a Lyapunov

functional (24) does not seem to work for the stochastic system (8) and this is the reason why (14) is selected.
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Calculating the time derivative of V2i(t, x(t)) (i = 1, 2, 3) along the solutions of model (21) and we have

d

dt
V21(t, x(t)) = 2xT (t)Q1ẋ(t); (25)

d

dt
V22(t, x(t)) = xT (t)Q3x(t) + xT (t − τm)(Q2 − Q3)x(t − τm) − (1 − τ̇(t))xT (t − τ(t))Q2x(t − τ(t))

≤ xT (t)Q3x(t) + xT (t − τm)(Q2 − Q3)x(t − τm) − (1 − d)xT (t − τ(t))Q2x(t − τ(t)); (26)

d

dt
V23(t, x(t)) = ẋT (t)[(τM − τm)Q4 + τmQ5]ẋ(t) −

∫ t−τm

t−τM

ẋT (s)Q4ẋ(s)ds −

∫ t

t−τm

ẋT (s)Q5ẋ(s)ds

≤ ẋT (t)[(τM − τm)Q4 + τmQ5]ẋ(t) −
1

τM − τm

(
∫ t−τm

t−τM

ẋ(s)ds

)T

Q4

(
∫ t−τm

t−τM

ẋ(s)ds

)

−
1

τm

(
∫ t

t−τm

ẋ(s)ds

)T

Q5

(
∫ t

t−τm

ẋ(s)ds

)

≤ ẋT (t)[(τM − τm)Q4 + τmQ5]ẋ(t) −
1

τM − τm

(

∫ t−τm

t−τ(t)
ẋ(s)ds)T Q4(

∫ t−τm

t−τ(t)
ẋ(s)ds

)

−
1

τm

(x(t) − x(t − τm))T Q5(x(t) − x(t − τm))

= ẋT (t)[(τM − τm)Q4 + τmQ5]ẋ(t) −
1

τm

(x(t) − x(t − τm))T Q5(x(t) − x(t − τm))

−
1

τM − τm

(x(t − τm) − x(t − τ(t)))T Q4(x(t − τm) − x(t − τ(t))). (27)

Note that we have used the condition τ̇(t) ≤ d and Lemma 2 to obtain (26) and (27).

From the equation (21), it follows that for a matrix X = (XT
1 XT

2 XT
3 XT

4 XT
5 )T , the relation

2ξT (t)X

[

r
∑

i=1

µi(θ(t))(Āix(t) + B̄ix(t − τ(t)) + ḠiJ(t)) − ẋ(t)

]

= 0 (28)

is true, where ξT (t) = (xT (t) xT (t − τm) xT (t − τ(t)) ẋT (t) JT (t)).

Combining (21), (25)-(28) together with (2)-(3), we have

dV2(t, x(t))

dt
− 2JT (t)y(t) − βJT (t)J(t) ≤

r
∑

i=1

µi(θ(t))ξT (t)(Γ
(i)
1 + ∆Γ

(i)
1 )ξ(t), (29)

where

∆Γ
(i)
1 =

















X1∆Ai + (∆Ai)
T XT

1 (∆Ai)
T XT

2 (∆Ai)
T XT

3 + X1∆Bi (∆Ai)
T XT

4 ∆Γ
(i)
15

∗ 0 X2∆Bi 0 X2∆Gi

∗ ∗ X3∆Bi + (∆Bi)
T XT

3 (∆Bi)
T XT

4 ∆Γ
(i)
35

∗ ∗ ∗ 0 X4∆Gi

∗ ∗ ∗ ∗ ∆Γ
(i)
55

















= H̄1iF1iĒ
T
1i + Ē1iF

T
1iH̄

T
1i − H̄2iF2iĒ

T
4i − Ē4iF

T
2iH̄

T
2i + H̃1iF1iĒ

T
1i + Ē1iF

T
1iH̃

T
1i

and ∆Γ
(i)
15 = (∆Ai)

T XT
5 + X1∆Gi − (∆Ci)

T , ∆Γ
(i)
35 = (∆Bi)

T XT
5 + X3∆Gi − (∆Di)

T , ∆Γ
(i)
55 = X5∆Gi +

(∆Gi)
T XT

5 − (∆Wi + (∆Wi)
T ).

It follows from Lemma 3 that

∆Γ
(i)
1 ≤ δ−1

1i H̄1iH̄
T
1i + δ−1

2i H̄2iH̄
T
2i + δ−1

3i H̃1iH̃
T
1i + δ1iĒ1iĒ

T
1i + δ3iĒ1iĒ

T
1i + δ2iĒ4iĒ

T
4i. (30)
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Also, it can be seen (23) ensures that Γ
(i)
1 + ∆Γ

(i)
1 < 0. Thus, from (29), one has

2

∫ t

0
JT (s)y(s)ds ≥ V1(t, x(t)) − V1(t,0) − β

∫ t

0
JT (s)J(s)ds

= V1(t, x(t)) − β

∫ t

0
JT (s)J(s)ds

≥ −β

∫ t

0
JT (s)J(s)ds (31)

for all t ≥ 0. The proof is then completed.

The following corollary is readily accessible.

Corollary 2: The delayed fuzzy model (21) without parameter uncertainties is globally passive, if there exist

definite matrices Qj, matrices Xj (j = 1, 2, . . . , 5) and a scalar β ≥ 0 such that Γ
(i)
1 < 0 for all i = 1, 2, . . . , r;

where Γ
(i)
1 is defined as that in Theorem 2.

Remark 3: In Theorem 1, a delay-independent passive condition is obtained for the addressed uncertain

stochastic fuzzy systems with time-delays. From LMI (12), it infers that the time-varying delay needs to

be differentiable and τ̇(t) ≤ d < 1. Such conservatism is mainly due to the consideration of the stochastic

disturbances that influence the construction of the Lyapunov functional. On the other hand, Theorem 2 is

concerned with the deterministic fuzzy systems and hence a delay-dependent passive criterion could be derived

which are dependent on not only the upper bound but also the lower bound of the time-varying delay, where

the time derivative of τ(t) is no longer required to be less than 1.

B. Passification problem

Now, we are ready to consider the passification problem, i.e., design of a state feedback controller that

makes the closed-loop fuzzy system passive.

We first consider the following general stochastic uncertain T-S fuzzy model with control input:

Plant rule i:

IF θ1(t) is ηi1 and . . . θp(t) is ηip, THEN











dx(t) =
[

(Ai + △Ai)x(t) + (Bi + △Bi)x(t − τ(t)) + (Gi + △Gi)J(t)
]

dt

+σi(t, x(t), x(t − τ(t)))dωi(t) + Siu(t),

y(t) = (Ci + ∆Ci)x(t) + (Di + ∆Di)x(t − τ(t)) + (Wi + ∆Wi)J(t); t ≥ 0

(32)

where i = 1, 2, . . . , r; u(t) ∈ R
l is the control input and Si is a constant matrix with appropriate dimensions.

In this paper, the state feedback controller is taken to be as follows:

u(t) =

r
∑

j=1

µj(θ(t))Kjx(t). (33)

Then, the closed-loop fuzzy system can be represented as































dx(t) =
r
∑

i=1

r
∑

j=1
µi(θ(t))µj(θ(t))

[

(Āi + SiKj)x(t) + B̄ix(t − τ(t)) + ḠiJ(t)
]

dt

+
r
∑

i=1
µi(θ(t))σi(t, x(t), x(t − τ(t)))dωi(t),

y(t) =
r
∑

i=1
µi(θ(t))[C̄ix(t) + D̄ix(t − τ(t)) + W̄iJ(t)].

(34)

Theorem 3: The delayed feedback closed-loop fuzzy model (34) is globally robustly passive in the sense of

expectation if there exist two positive definite matrices U1, U2, matrices Tj and 2(r + 1) scalars β ≥ 0, γ > 0,
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ε1i > 0, ε2i > 0 such that the following LMIs hold for all i, j = 1, 2, . . . , r:

U1 > γI, (35)

Π(i,j) =

































Π
(i,j)
11 BiU1 −U1C

T
i + Gi ε1iH1i 0 U1E

T
1i U1E

T
4i U1R

T
1i 0

∗ −(1 − d)U2 −U1D
T
i 0 0 U1E

T
2i U1E

T
5i 0 U1R

T
2i

∗ ∗ Π
(i)
33 0 ε2iH2i ET

3i ET
6i 0 0

∗ ∗ ∗ −ε1iI 0 0 0 0 0

∗ ∗ ∗ ∗ −ε2iI 0 0 0 0

∗ ∗ ∗ ∗ ∗ −ε1iI 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε2iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI

































< 0; (36)

where Π
(i,j)
11 = AiU1 + U1A

T
i + U2 + SiTj + T T

j ST
i , Π

(i)
33 = −(βI + W T

i + Wi). Moreover, the state feedback

gain can be constructed as

Kj = TjU
−1
1 . (37)

Proof: The detailed proof follows a similar line of that of Theorem 1 and is therefore omitted to save

space.

Corollary 3: The delayed feedback closed-loop fuzzy system (34) with no parameter uncertainties is globally

passive in the sense of expectation if there exist two positive definite matrices U1, U2, matrices Tj and two

scalars β ≥ 0, γ > 0 such that the LMIs hold for all i, j = 1, 2, . . . , r:

U1 > γI and Π
(i,j)
1 < 0;

where Π
(i,j)
1 is defined as that in Theorem 3.

Remark 4: In Corollary 3, if R1i, R2i ≡ 0 (i = 1, 2, . . . , r) and the time delay becomes constant, i.e.,

τ(t) ≡ τ , then Corollary 3 reduces to be Theorem 2 in [15].

When there are no stochastic disturbances in (34), the system specializes to














dx(t) =
r
∑

i=1

r
∑

j=1
µi(θ(t))µj(θ(t))

[

(Āi + SiKj)x(t) + B̄ix(t − τ(t)) + ḠiJ(t)
]

dt,

y(t) =
r
∑

i=1
µi(θ(t))[C̄ix(t) + D̄ix(t − τ(t)) + W̄iJ(t)];

(38)

and we can obtain the following result.

Theorem 4: The delayed feedback closed-loop fuzzy model (38) is globally robustly passive if there exist

five positive definite matrices Zj (j = 1, 2, . . . , 5), matrices Y and Tj, 3r + 1 scalars β ≥ 0, δ1i > 0, δ2i > 0,

δ3i > 0 such that the following LMIs hold for all i, j = 1, 2, . . . , r:

Σ(i,j) =

[

Σ
(i,j)
1 Σ

(i)
2

∗ Σ
(i)
3

]

< 0, (39)

where Σ
(i)
3 = diag(−δ1iI,−δ1iI,−δ2iI,−δ2iI,−δ3iI,−δ3iI),

Σ
(i,j)
1 =















Σ
(i,j)
11

1
τm

Z5 + Y AT
i + T T

j ST
i BiY

T Z1 + T T
j ST

i + Y AT
i − Y T Gi − Y CT

i

∗ Σ22
1

τM−τm
Z4 + BiY

T −Y T Gi

∗ ∗ Σ33 Y BT
i −Y DT

i

∗ ∗ ∗ Σ44 Gi

∗ ∗ ∗ ∗ −(βI + Wi + W T
i )















,
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Σ
(i)
2 =















δ1iH1i Y ET
1i 0 Y ET

4i 0 Y ET
1i

0 0 0 0 δ3iH1i 0

0 Y ET
2i 0 Y ET

5i 0 Y ET
2i

0 0 0 0 δ3iH1i 0

0 ET
3i δ2iH2i ET

6i 0 ET
3i















;

and Σ
(i,j)
11 = Z3 −

1
τm

Z5 +AiY
T +Y AT

i +SiTj +T T
j Si, Σ22 = Z2 −Z3 −

1
τm

Z5 −
1

τM−τm
Z4, Σ33 = −(1− d)Z2 −

1
τM−τm

Z4, Σ44 = (τM − τm)Z4 + τmZ5 − Y − Y T . Moreover, the state feedback gain can be constructed as

Kj = Tj(Y
T )−1. (40)

Proof: The detailed proof follows a similar line of that of Theorem 2 and is therefore omitted to save

space.

IV. Numerical Examples

Consider an embedded linear module described by passive state-space equations for RLC interconnect

circuits [27]. Without loss of generality, consider the input J(t) to be the port current vector and the output

y(t) to be the port voltage vector and the state-space equations. The time delay could be made up of a simple

adjustable timer circuit which controls the actual relay. The circuit with uncertain component parameters is

embedded in a feedback structure, which is designed to achieve the system specifications. Furthermore, the

electronic noise is a random signal characteristic of all electronic circuits. Depending on the circuit, the noise

generated by electronic devices can vary greatly. For example, thermal noise and shot noise are inherent to all

devices. The other types depend mostly on manufacturing quality and semiconductor defects. Therefore, RLC

interconnect circuits could exhibit time-delay, parameter uncertainties and stochastic noises. On the other

hand, passivity implies that a network/circuit cannot generate more energy than it absorbs, and no passive

termination of the network will cause the system to go unstable. The loss of passivity can be a serious problem

because transient simulations of reduced networks may encounter artificial oscillations when connected to the

rest of the circuitry. To this end, it is of great importance to investigate the robust passivity and passification

of stochastic fuzzy time-delay systems.

In this section, two examples are illustrated to show the effectiveness of our results, one dealing with the

stochastic uncertain fuzzy delay system (8), and the other corresponding to the deterministic fuzzy model

(21).

Example 1: Consider the uncertain fuzzy system (8) with stochastic disturbances and time-varying delay

τ(t) = 0.1+0.05 sin(10t), that is, d = 0.5. Take the number of IF-THEN rules r = 2 and the other parameters

are as follows:

A1 =







−0.8 0 0.1

0.1 −1.7 0.1

0.1 0 −0.6






, A2 =







−0.5 −0.1 0

0.1 −0.7 0

0 −0.2 −0.9






; B1 =







0.1 0 0.1

0.1 0.2 0

0.1 0 0.1






,

B2 =







−0.1 0.1 0

0 0.2 0.1

−0.1 0 0.1






; G1 =







1 −0.6

0.8 0.9

0.7 0.6






, G2 =







0.9 0.5

−0.6 0.8

0.8 0.7






;

C1 =

[

0.2 0.1 0

0.1 0 0.2

]

, C2 =

[

0.1 0.2 0.1

−0.1 0 0.1

]

; D1 =

[

−0.1 0.2 0.1

0 −0.1 0

]

,

D2 =

[

−0.1 0.1 0

0 0.2 0.1

]

; W1 =

[

0.1 0

0.1 0.2

]

, W2 =

[

0.2 0

0 0.1

]

.
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The parameter uncertainties ∆Ai, ∆Bi, ∆Gi, ∆Ci, ∆Di and ∆Wi satisfy the conditions (2)-(3) with

H11 = H12 =







0.1

0.1

0.1






, ET

11 = ET
12 =







0.1

0.1

0.1






, ET

21 = ET
22 =







0.1

−0.1

0






, ET

31 = ET
32 =

[

−0.1

0.2

]

;

HT
21 = HT

22 =

[

0.1

−0.1

]

, ET
41 = ET

42 =







0

−0.2

−0.1






, ET

51 = ET
52 =







−0.2

0.15

0






, ET

61 = ET
62 =

[

0.1

0.1

]

.

The noise intensity functions σi(·, ·, ·) (i = 1, 2) meet the inequality (4) with

R11 = R12 =

[

−0.1 0 0.1

−0.1 −0.1 0

]

, R21 = R22 =







0 0.2 −0.1

−0.2 0 0.1

0.1 −0.1 0.1






.

LMIs (11)-(12) can be solved with the feasible solutions as follows:

P1 =







7.8397 −0.9420 −1.8243

−0.9420 7.5320 −0.7854

−1.8243 −0.7854 6.6648






, P2 =







4.6018 −0.4591 −1.3436

−0.4591 4.5679 −0.9538

−1.3436 −0.9538 3.7231






;

ε11 = 6.4899, ε12 = 8.5367; ε21 = 5.2175, ε22 = 5.9586;β = 29.0493, λ = 12.0170.

According to Theorem 1, the fuzzy model (8) with parameters as above is globally robustly passive in the

sense of expectation.

In the following, we consider the passification problem. Take

S1 =







−0.3 0 −0.1

0.1 −0.3 0

0 0.1 −0.4






, S2 =







0 −0.45 0.2

−0.2 −0.5 0

0.1 −0.1 −0.56






.

LMIs (35)-(36) can be solved with a feasible solution given as follows:

U1 =







3.3738 −0.3984 0.2495

−0.3984 2.5440 0.0113

0.2495 0.0113 3.4647






, U2 =







3.9343 1.1431 −0.2911

1.1431 4.6714 0.0110

−0.2911 0.0110 4.4277






;

T1 = T2 =







1.7804 5.3470 −1.8584

4.5403 1.5965 −4.9487

2.9129 5.1539 2.1634






;

ε11 = 2.7530, ε12 = 2.7482, ε21 = 2.8610, ε22 = 2.8529;β = 3.0061, γ = 2.2577.

According to Theorem 3, we can construct a state feedback controller to make the closed-loop fuzzy system

(34) passive with the feedback gain as follows:

K1 = K2 =







0.8363 2.2355 −0.6039

1.5638 0.8793 −1.5438

1.0825 2.1930 0.5393






.
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Example 2: Consider the uncertain fuzzy system (21) with τ(t) = 0.1+0.05 sin(30t), i.e., d = 1.5, τM = 0.15

and τm = 0.05. Take the number of IF-THEN rules r = 2 and the other parameters as follows:

A1 =

[

−0.6 0.4

−0.1 −0.8

]

, A2 =

[

−0.9 −0.3

0 −0.7

]

; B1 =

[

0.1 0.2

0 −0.1

]

, B2 =

[

−0.16 0

0.1 0.2

]

;

G1 =

[

0.3 −0.3

0.1 −0.2

]

, G2 =

[

0.1 0.1

−0.1 0

]

; C1 =

[

−0.2 0.05

−0.1 −0.1

]

, C2 =

[

−0.1 −0.2

−0.3 −0.1

]

;

D1 =

[

0.2 0.3

−0.1 0.2

]

, D2 =

[

0.3 −0.1

0.4 −0.1

]

; W1 =

[

0.15 0.02

0.1 0.16

]

, W2 =

[

−0.1 0

0.2 0.1

]

.

The parameter uncertainties ∆Ai, ∆Bi, ∆Gi, ∆Ci, ∆Di and ∆Wi satisfy the conditions (2)-(3) with

H11 =

[

0.1 0.1

0.1 0.05

]

, H12 =

[

0.1 0.2

0.1 −0.1

]

; E11 =

[

0.1 −0.1

0.1 −0.2

]

, E12 =

[

0.2 −0.1

0.1 0

]

;

E21 =

[

−0.05 0.1

0.1 −0.1

]

, E22 =

[

0 0.01

0.2 −0.1

]

; E31 =

[

0.1 0.1

−0.1 0.1

]

, E32 =

[

0.2 −0.1

0.1 −0.2

]

;

H21 =

[

0 0.1

0.2 −0.1

]

, H22 =

[

0.1 0

0.1 −0.1

]

; E41 =

[

0.1 −0.1

0 0.2

]

, E42 =

[

−0.1 0.1

0.2 0

]

;

E51 =

[

0.1 −0.1

0.1 −0.1

]

, E52 =

[

0.2 −0.2

−0.1 −0.1

]

; E61 =

[

0.1 0.1

−0.1 0.1

]

, E62 =

[

0.2 −0.2

−0.1 0.1

]

.

Solving LMIs (22) gives

Q1 =

[

2.7468 0.2005

0.2005 3.8103

]

, Q2 =

[

0.4288 −0.0104

−0.0104 0.4660

]

, Q3 =

[

1.6951 0.0846

0.0846 2.3420

]

,

Q4 =

[

0.2042 −0.0067

−0.0067 0.2077

]

, Q5 =

[

0.0789 −0.0130

−0.0130 0.0404

]

; X1 =

[

1.8594 0.4280

−0.0451 2.9488

]

,

X2 =

[

0.7867 −0.1943

−0.2833 0.3816

]

, X3 =

[

0.0383 0.1979

0.1155 0.0871

]

, X4 =

[

1.3120 0.3578

−0.3466 1.3247

]

,

X5 =

[

0.0924 0.0708

−0.0007 −0.2059

]

;

δ11 = 2.6552, δ12 = 2.4950, δ21 = 2.5973, δ22 = 2.3611, δ31 = 2.6347, δ32 = 2.4730, β = 3.1354.

According to Theorem 2, the fuzzy model (21) with parameters as above is globally robustly passive.

In order to consider the passification problem, we take

S1 =

[

0.1 0 0.26

0.1 0.25 −0.3

]

, S2 =

[

0.15 −0.27 0

0 −0.23 0.1

]

;
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and then solve LMIs (39) to obtain

Z1 =

[

99.3108 1.1459

1.1459 95.3975

]

, Z2 =

[

17.0189 0.8299

0.8299 8.5669

]

, Z3 =

[

80.6531 5.3812

5.3812 53.7594

]

,

Z4 =

[

6.7463 −0.0715

−0.0715 6.3229

]

, Z5 =

[

3.4591 −0.1209

−0.1209 3.4525

]

;

Y =

[

35.9069 −2.0818

−6.5350 46.2361

]

, T1 = T2 =







−239.4619 −69.4844

−16.4446 −1.9395

−58.1799 −24.5773






;

δ11 = 105.8715, δ12 = 104.4078, δ21 = 105.0035, δ22 = 106.1356, δ31 = 105.3239, δ32 = 103.3992, β = 106.4114.

According to Theorem 4, we can construct a state feedback controller to make the closed-loop fuzzy system

(38) passive with the feedback gain as follows:

K1 = K2 =







−6.8119 −2.4656

−0.4642 −0.1076

−1.6648 −0.7669






.

V. Conclusions

In this paper, the passivity and passification problems have been investigated for a class of uncertain

stochastic fuzzy systems with time-varying delay. To reflect more realistic dynamical behaviors of the system,

both the parameter uncertainties and stochastic disturbances have been considered. We have proposed the

definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method

and the Itô differential rule combined with the matrix analysis techniques, we have established several sufficient

criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop

stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which

are either delay-independent or delay-dependent, have been expressed in terms of LMIs. Illustrative examples

have been presented to demonstrate the effectiveness and usefulness of the proposed results.
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