New Complexity Results for the k-Covers Problem

Costas S. Iliopoulos * Manal Mohamed f W.F. Smyth #

Abstract

The k-covers problem (kCP) asks us to compute a minimum cardinality set of strings
of given length & > 1 that covers a given string. It was shown in a recent paper,
by reduction to 3-SAT, that the k-covers problem is NP-complete. In this paper we
introduce a new problem, that we call the k-Bounded Relaxed Vertex Cover Problem
(RVCPy), which we show is equivalent to k-Bounded Set Cover (SCPy). We show
further that £CP is a special case of RVCP}, restricted to certain classes G of graphs
that represent all strings . Thus a minimum k-cover can be approximated to within a
factor k in polynomial time. We discuss approximate solutions of kCP, and we state a
number of conjectures and open problems related to kKCP and Gg .

Keywords: string, cover, regularity, complexity, NP-complete.

1 Introduction

The computation of various kinds of “regularities” in given strings @ = x[l..n] has been
of interest for a quarter-century, signalled by the publication in the early 1980s of several
O(nlogn)-time algorithms for computing all repetitions (adjacent identical substrings)
[7, 3, 16], work that has more recently been refined to O(n)-time algorithms [15, 13]. In
response to applications arising in data compression and molecular biology, the computation
of repetitions was generalized to computation of repeats (adjacency condition dropped), for
which also O(n)-time algorithms have been found [5, 8]; then still further to computation
of approrimate repeats [17].

In [2] the idea of a quasiperiod or cover was introduced; that is, a proper substring
u of the given string x such that every position of « is contained in an occurrence of
u. Several algorithms to compute covers of & were published in the 1990s, culminating
in an algorithm [14] that in O(n) time computes a cover array specifying all the covers
(quasiperiods) of every prefix of x; this algorithm thus directly generalizes the border array
(“failure function”) algorithm [1] that specifies all the borders, hence all the periods, of
every prefix of .

In [12] a further extension, the k-covers problem, was introduced: compute a minimum
set U, = {u1,u2,...,u,} of strings of given length k > 1 such that every position of x is
contained in an occurrence of some element of U,. A polynomial-time algorithm was given

*Department of Computer Science, King’s College London, London WC2R 2LS, England;
csi@dcs.kcl.ac.uk.

tDepartment of Computer Science, King’s College London, London WC2R 2LS, England;
manal@dcs.kcl.ac.uk.

fAlgorithms Research Group, Department of Computing & Software, McMaster University, Hamilton,
Ontario, Canada L8S 4K1; Department of Computing, Curtin University, Perth WA 6845, Australia;
smyth@computing.edu.au.

for this problem, later discovered to be incorrect [18]; just recently the problem itself has
been shown to be NP-complete, based on a reduction to 3-SAT [6]. In this latter paper, two
O(nlogn) algorithms were described that yielded an approximation to a minimum k-cover
of x; it was conjectured that these algorithms would yield a k-cover of cardinality at most
log n times the minimum.

In Section 2 of this paper we introduce a new NP-complete problem which we call the
relaxed vertex cover problem. We show that a special case of this problem is equivalent to
the k-bounded set cover problem. We call this subproblem k-bounded relaxed vertex cover
(RVCPy).

In Section 3 we show that the k-covers problem is a subproblem of RVCPj,. Thus
the existence of an approximation algorithm that achieves at least a ratio of k times the
minimum is assured. The new reduction of k-covers raises the possibility that in fact k-
covers can also be approximated to within a lower factor.

In Section 4 we discuss conjectures and open problems derived from the complexity
analysis of the k-covers problem, both here and in [6].

2 The Relaxed Vertex Cover Problem

In this section, we introduce a new problem which we call the relaxed vertex cover
problem. Given a directed graph G = (V| E), where V, C V is the set of all vertices in V'
with out-degree > 0, find the smallest subset V'’ C V, such that if (u,v) € E, then one of
the following conditions holds:

(C1) ue Vv’
(C2) veV;
(C3) there exist wy, w, € V' such that (wy,u) € F and (w,,v) € E.

We say that V' is a vertex semi-cover of G.

The decision form of the relaxed vertex cover problem asks for given G and v, whether
there exists a vertex semi-cover V' C V, of G such that |V'| = v. We call this problem
RVCP. If the in-degree of all vertices in V' — V,, is no more than k£ we call this problem the
k-bounded relaxed vertex cover problem (RVCPy) and we show that it is equivalent to the
k-bounded set cover problem (SCPy).

SCPy is a special case of the set cover problem and is defined as follows: given a collection
U of subsets of a finite set .S where the number of occurrences in U of any element is bounded
by a constant k, find a minimum size subset U’ C U such that every element in S belongs to
at least one member in U’. This problem is well-known to be NP-complete [9]. Bar-Yehuda
and Even [4], and Hochbaum [11] presented polynomial time k-approximation algorithms
for this problem. Halperin [10] described the most effective such algorithm which yields a

(k—1)-Inlnn

subset whose cardinality is k — o times the minimum.

Theorem 1 Problem RVCP; is equivalent to SCPy.

Proof: First, we show that RVCPj can be reduced to SCPy in polynomial time. Suppose
we are given a directed graph G = (V, E) together with a subset V' of V,, where V, C V
is the set of all vertices with out-degree > 0, an instance of RVCP;. We construct a set S
from F and a collection U of subsets of S, an instance of SCP;. Then we show how V' can

be used to calculate a set cover U’ such that U’ is a cover of S if and only if V' is a vertex
semi-cover of G.

Suppose the vertices of V are labelled 1,2, ...,n and the arcs (u,v) are labelled uv. Let
S be the set of labels of arcs of E. The set U (initially empty) is constructed as follows: for
each vertex v € V,,

1. Determine N(v) = {i|(v,i) € E}, the set of vertices adjacent to vertex v (out-
neighbors of v).

2. Form O, = {vu|(v,u) € E}, the set of the outgoing arcs.
3. Form I, = {uv|(u,v) € E}, the set of incoming arcs.

4. Form C, = {uw|(u,w) € E;u,w € N(v)}. the set of arcs between the out-neighbors
of v.

5. Form U, = I, U O, U C,.
6. Update U « U U{U,}.

Note that each set U, corresponds to the set of arcs that could be semi-covered by vertex
v. The sets C,, are the sets of arcs that satisfy condition (C3). It is not difficult to see that
each arc (v1,v2), where vi,v9 € V,, appears exactly twice in U, while the rest of the arcs
cannot appear more than k times. This is because the in-degree of each vertex in V —V,, is
no more than k.

By construction, we see that V' = {iy, ia, ..., ijy|} is a semi-cover of G if and only if the
corresponding set U’ = {U;,, Ui, ..., UZ-‘V,‘} is a cover of S.

Second, we show that SCPj can also be reduced to RVCPy in polynomial time. Let
S = {e1,e2, .../} and U = {Uy, Uz, ...,Ujy|} be a given instance of SCP;. We construct
a graph G = (V, E) such that |V| = |S| + |U|, where |S| vertices are associated with the
elements in S (element-vertices) and |U| vertices are associated with the distinct subsets
in U (subset-vertices). The set of arcs E is constructed by adding an arc (u,v) from
each subset-vertex u to each element-vertex v that belongs to the subset represented by wu.
Additional arcs are added between the subset-vertices if the two subsets share one or more
elements. More formally F is constructed according to the following steps, each performed
for every element U; € U:

1. Let u be the subset-vertex associated with U; = {e;,, €4y, ..., ei\U-|}'
2. Determine E(u), the set of element-vertices associated with e; , j € 1..|U;].
3. Form F «— EU{(u,v)|v € E(u)}.

4. Determine I(u), the set of subset-vertices associated with the subset elements in U
that intersect with U;.

5. Form E «— E U {(u,w)|w € I(u),w # u}.

Note that the only vertices in V' that have out-degree > 0 are the subset-vertices. Addi-
tionally, the in-degree of each position-vertex is no more than k. Clearly, any set U’ € U
is a set cover of S if and only if the set V' is a semi-cover of G, where V' is the set of
subset-vertices associated with the subsets in U’. O

Corollary 1 For the k-bounded relaxed vertex cover problem (RVCPy,) there is a polynomial
(k—1)-Inlnn

o where n = |E|.

time algorithm with an approximation ratio k —

This follows directly from Theorem 1 and the results obtained in [10].

3 RVCP, and the k-Covers Problem

Here we consider the decision form of the k-covers problem: given a string & and integers
k > 1 and v, decide whether there exists a k-cover of x of cardinality v. We call this
problem kCP and we show that it is a special case of RVCPy.

Theorem 2 FEvery instance of kCP can be reduced to an instance of RVCPy in polynomial
time.

Proof: Suppose now that a string @ = x[l..n] and an integer k are given. Let n be the
length of the string & and n’ be the number of distinct k-substrings (substrings of length
k) in . We initialize a directed graph Gg = (V, E), where |V| =n'+n and E = (. We
called the first n’ vertices in V' the k-substring-vertices and the remaining n vertices the
position-vertices. For every distinct k-substring w; where ¢ = 1, ...,n’, compute

1. The set P(u;) of position-vertices that correspond to the positions in @ that can be
covered by u;, where a position ¢ can be covered by u; if and only if u; occurs at some
position j € 1 — k+ 1..4.

2. The set O(u;) of k-substring-vertices that correspond to all k-substrings of @ that
overlap with wu;, where two strings overlap if and only if there is a non empty prefix
of one of them which equals a suffix of the other.

3. If w is the k-substring-vertex related to u; then E is updated as follows:

E — EU{(u,v)|v e Pu;)} U{(u,w)|lw € Q(u;),w # u}.

Clearly, the k-substring-vertices are the only vertices with out-degree > 0. Accordingly,
any vertex semi-cover of Gz 1. is a set of k-substring-vertices. Note that each position in
x cannot be covered with more than k distinct k-substrings. Thus, the in-degree of all
position-vertices is no more than k.

Consider a vertex semi-cover V' of Gg . Let vertex s be one of the vertices in V'
and let ugs be the k-substring corresponding to s. Then in addition to the outgoing and
incoming arcs of s, all the arcs pointed to each position-vertex v € P(ug) will be semi-
covered according to condition (C3). This is because the sources of these arcs are k-
substring-vertices € O(uy)

If the alphabet of « is ordered, an algorithm to compute G ;. from & can be implemented
in O(nlogn) time using a straightforward approach, somewhat faster using a suffix tree to
sort the k-strings. O

For example, if € = aabbab and k = 2, then the only four distinct k-substrings are aa, ab, ba,
and bb. Let sy, so, s3, s4 be the k-substring-vertices associated with them. The corresponding
graph Gaabbab,Z is:

=t
CEEE DR O P P @

where each position-vertex p; represents position 7 in @. The sets V] = {s1, s2,s3} and
Vy = {s1, s2, 4} are semi-covers of G aabbab,2- The semi-cover V{ corresponds to the minimum
k-cover Uy = {aa, ab,ba} while V3 corresponds to Uy = {aa, ab, bb}.

Theorem 2 and Corollary 1 show that there is an approximation algorithm that calculates
a minimum k-cover of a given string & whose cardinality is at most k& — W times
the minimum. This is because the number of arcs in graph Gg j formed from & = x[1..n]

is at most 2kn.

4 Open Problems

We have shown that for k > 2, the k-covers problem kCP is equivalent to RVCPy, hence
that efficient algorithms can be used to approximate a minimum k-cover as specified in
Section 3. Interesting questions remain:

(Q1) The set G of graphs Gg), in some sense describes the structure of all strings. To our
knowledge these graphs have not previously been reported in the literature. Can the
graphs of G be characterized in another way? What are their defining properties?

(Q2) The NP-completeness proof given in [6] is based upon strings whose length n is a
function of three parameters: k (the length of the covering substrings), r (the number
of variables in the corresponding 3-SAT problem), and s (the number of clauses in the
corresponding 3-SAT problem). A short calculation shows that in fact

n = (18k+7)r + (42k—3)s + (2k—1),
while at the same time the minimum cover size
v=9r+6r" +8s+1, v <.

Let us call the ratio v, = n/(vk) the k-coverability of the string x[1..n]; observe
that 4 has as an upper bound the average number of occurrences in @ of the strings
in the minimum k-cover. Since v < 15r+8s+1, we see then that for the class of
strings constructed in [6], 7 > 6/5; in other words, the strings in the k-cover occur
on average somewhat frequently in . What happens when v, < 6/5? Can we find a
polynomial-time algorithm to compute a minimum k-cover given that v, falls below

a certain threshold? For “most” strings and some sufficiently large k, we expect that
v = [n/k], so that v; ~ 1; thus such an algorithm would in fact handle most of the
cases that arise.

Acknowledgements

Costas S. Iliopoulos was supported in part by a Marie Curie fellowship, Wellcome & Royal
Society grants. Manal Mohamed was supported by an EPSRC studentship. W.F. Smyth
was supported in part by a grant from the Natural Sciences & Engineering Research Council
of Canada.

References

[1]

Alfred V. Aho, John E. Hopcroft and Jeffey D. Ullman, The Design & Analysis of Computer
Algorithms, Addison-Wesley, 1974.

A. Apostolico, M. Farach and C. S. Iliopoulos, Optimal Superprimitivity Testing for Strings,
Inform. Process. Lett. 39, 1991, 17—-20.

Alberto Apostolico and Franco P. Preparata, Optimal Off-Line Detection of Repetitions in a
String, Theoret. Comput. Sci. 22, 1983, 297-315.

Bar-Yehuda and S. Even, A Linear Time Approximation Algorithm for the Weighted Vertex
Cover Problem, Journal of Algorithms 2, 1981, 198-203.

Gerth S. Brodal, Rune B. Lyngsg, Christian N. S. Pedersen and Jens Stoye, Finding Mazimal
Pairs with Bounded Gap, J. Discrete Algs. 1, 2000, 77-103.

Richard Cole, Costas S. Iliopoulos, Manal Mohamed, W. F. Smyth and Lu Yang, Computing
the Minimum k-Cover of a String, Proc. Prague Stringology Conf.’03, 2003, 51-62.

Maxime Crochemore, An Optimal Algorithm for Computing All the Repetitions in a Word,
Inform. Process. Lett. 12-5, 1981, 244-248.

Frantisek Franék, W. F. Smyth and Yudong Tang, Computing all Repeats Using Suffix Arrays,
J. Automata, Languages & Combinatorics 84, 2003, 579-591.

Michael R. Garey and David S. Johnson, Computers and Intractability: a Guide to the Theory
of NP-Completeness, Freeman, 1979.

E. Halperin, Improved Approximation Algorithms for the Vertex Cover Problem in Graphs and
Hypergraph, SIAM Journal on Computing 31(5), 2002, 1608-1623.

D.S. Hochbaum, Approzimation Algorithms for the Set Covering and Vertex Cover Problems,
SIAM Journal on Computing 11(3), 1982, 555-556.

Costas S. Iliopoulos and W. F. Smyth, On-Line Algorithms for k-Covering, Proc. Ninth Aus-
tralasian Workshop on Combinatorial Algorithms, 1998, 107-116.

Roman Kolpakov and Gregory Kucherov, On Mazimal Repetitions in Words, J. Discrete Algs.
1, 2000, 159-186.

Yin Li and W. F. Smyth, Computing the Cover Array in Linear Time, Algorithmica 32-1, 2002,
95-106.

Michael G. Main, Detecting Leftmost Maximal Periodicities, Discrete Applied Maths. 25, 1989,
145-153.

Michael G. Main and Richard J. Lorentz, An O(nlogn) Algorithm for Finding All Repetitions
in a String, J. Algs. 5, 1984, 422-432.

[17] Jeanette P. Schmidt, All Highest Scoring Paths in Weighted Grid Graphs and their Application
to Finding All Approximate Repeats in Strings, STAM J. Comput. 274, 1998, 972-992.

[18] Lu Yang, Computing the Minimum k-Cover of a String, M. Sc. thesis, McMaster University,
2000, 86 pp.

