
New Complexity Results for the k-Covers Problem

Costas S. Iliopoulos ∗ Manal Mohamed † W.F. Smyth ‡

Abstract

The k-covers problem (kCP) asks us to compute a minimum cardinality set of strings
of given length k > 1 that covers a given string. It was shown in a recent paper,
by reduction to 3-SAT, that the k-covers problem is NP-complete. In this paper we
introduce a new problem, that we call the k-Bounded Relaxed Vertex Cover Problem
(RVCPk), which we show is equivalent to k-Bounded Set Cover (SCPk). We show
further that kCP is a special case of RVCPk restricted to certain classes Gx,k of graphs
that represent all strings x. Thus a minimum k-cover can be approximated to within a
factor k in polynomial time. We discuss approximate solutions of kCP, and we state a
number of conjectures and open problems related to kCP and Gx,k.

Keywords: string, cover, regularity, complexity, NP-complete.

1 Introduction

The computation of various kinds of “regularities” in given strings x = x[1..n] has been
of interest for a quarter-century, signalled by the publication in the early 1980s of several
O(n log n)-time algorithms for computing all repetitions (adjacent identical substrings)
[7, 3, 16], work that has more recently been refined to O(n)-time algorithms [15, 13]. In
response to applications arising in data compression and molecular biology, the computation
of repetitions was generalized to computation of repeats (adjacency condition dropped), for
which also O(n)-time algorithms have been found [5, 8]; then still further to computation
of approximate repeats [17].

In [2] the idea of a quasiperiod or cover was introduced; that is, a proper substring
u of the given string x such that every position of x is contained in an occurrence of
u. Several algorithms to compute covers of x were published in the 1990s, culminating
in an algorithm [14] that in O(n) time computes a cover array specifying all the covers
(quasiperiods) of every prefix of x; this algorithm thus directly generalizes the border array
(“failure function”) algorithm [1] that specifies all the borders, hence all the periods, of
every prefix of x.

In [12] a further extension, the k-covers problem, was introduced: compute a minimum
set Uν = {u1, u2, . . . ,uν} of strings of given length k > 1 such that every position of x is
contained in an occurrence of some element of Uν . A polynomial-time algorithm was given

∗Department of Computer Science, King’s College London, London WC2R 2LS, England;

csi@dcs.kcl.ac.uk.
†Department of Computer Science, King’s College London, London WC2R 2LS, England;

manal@dcs.kcl.ac.uk.
‡Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton,

Ontario, Canada L8S 4K1; Department of Computing, Curtin University, Perth WA 6845, Australia;

smyth@computing.edu.au.

1

for this problem, later discovered to be incorrect [18]; just recently the problem itself has
been shown to be NP-complete, based on a reduction to 3-SAT [6]. In this latter paper, two
O(n log n) algorithms were described that yielded an approximation to a minimum k-cover
of x; it was conjectured that these algorithms would yield a k-cover of cardinality at most
log n times the minimum.

In Section 2 of this paper we introduce a new NP-complete problem which we call the
relaxed vertex cover problem. We show that a special case of this problem is equivalent to
the k-bounded set cover problem. We call this subproblem k-bounded relaxed vertex cover
(RVCPk).

In Section 3 we show that the k-covers problem is a subproblem of RVCPk. Thus
the existence of an approximation algorithm that achieves at least a ratio of k times the
minimum is assured. The new reduction of k-covers raises the possibility that in fact k-
covers can also be approximated to within a lower factor.

In Section 4 we discuss conjectures and open problems derived from the complexity
analysis of the k-covers problem, both here and in [6].

2 The Relaxed Vertex Cover Problem

In this section, we introduce a new problem which we call the relaxed vertex cover

problem. Given a directed graph G = (V, E), where Vo ⊆ V is the set of all vertices in V
with out-degree > 0, find the smallest subset V ′ ⊆ Vo such that if (u, v) ∈ E, then one of
the following conditions holds:

(C1) u ∈ V ′;

(C2) v ∈ V ′;

(C3) there exist wu, wv ∈ V ′ such that (wu, u) ∈ E and (wv, v) ∈ E.

We say that V ′ is a vertex semi-cover of G.
The decision form of the relaxed vertex cover problem asks for given G and ν, whether

there exists a vertex semi-cover V ′ ⊆ Vo of G such that |V ′| = ν. We call this problem
RVCP. If the in-degree of all vertices in V −Vo is no more than k we call this problem the
k-bounded relaxed vertex cover problem (RVCPk) and we show that it is equivalent to the
k-bounded set cover problem (SCPk).

SCPk is a special case of the set cover problem and is defined as follows: given a collection
U of subsets of a finite set S where the number of occurrences in U of any element is bounded
by a constant k, find a minimum size subset U ′ ⊆ U such that every element in S belongs to
at least one member in U ′. This problem is well-known to be NP-complete [9]. Bar-Yehuda
and Even [4], and Hochbaum [11] presented polynomial time k-approximation algorithms
for this problem. Halperin [10] described the most effective such algorithm which yields a

subset whose cardinality is k − (k−1)·ln ln n

ln n
times the minimum.

Theorem 1 Problem RVCPk is equivalent to SCPk.

Proof: First, we show that RVCPk can be reduced to SCPk in polynomial time. Suppose
we are given a directed graph G = (V, E) together with a subset V ′ of Vo, where Vo ⊆ V
is the set of all vertices with out-degree > 0, an instance of RVCPk. We construct a set S
from E and a collection U of subsets of S, an instance of SCPk. Then we show how V ′ can

be used to calculate a set cover U ′ such that U ′ is a cover of S if and only if V ′ is a vertex
semi-cover of G.

Suppose the vertices of V are labelled 1, 2, ..., n and the arcs (u, v) are labelled uv. Let
S be the set of labels of arcs of E. The set U (initially empty) is constructed as follows: for
each vertex v ∈ Vo,

1. Determine N(v) = {i|(v, i) ∈ E}, the set of vertices adjacent to vertex v (out-
neighbors of v).

2. Form Ov = {vu|(v, u) ∈ E}, the set of the outgoing arcs.

3. Form Iv = {uv|(u, v) ∈ E}, the set of incoming arcs.

4. Form Cv = {uw|(u, w) ∈ E; u, w ∈ N(v)}. the set of arcs between the out-neighbors
of v.

5. Form Uv = Iv ∪Ov ∪ Cv.

6. Update U ← U ∪ {Uv}.

Note that each set Uv corresponds to the set of arcs that could be semi-covered by vertex
v. The sets Cv are the sets of arcs that satisfy condition (C3). It is not difficult to see that
each arc (v1, v2), where v1, v2 ∈ Vo, appears exactly twice in U , while the rest of the arcs
cannot appear more than k times. This is because the in-degree of each vertex in V − Vo is
no more than k.

By construction, we see that V ′ = {i1, i2, ..., i|V ′|} is a semi-cover of G if and only if the
corresponding set U ′ = {Ui1 , Ui2 , ..., Ui|V ′|

} is a cover of S.
Second, we show that SCPk can also be reduced to RVCPk in polynomial time. Let

S = {e1, e2, ...e|S|} and U = {U1, U2, ..., U|U |} be a given instance of SCPk. We construct
a graph G = (V, E) such that |V | = |S| + |U |, where |S| vertices are associated with the
elements in S (element-vertices) and |U | vertices are associated with the distinct subsets
in U (subset-vertices). The set of arcs E is constructed by adding an arc (u, v) from
each subset-vertex u to each element-vertex v that belongs to the subset represented by u.
Additional arcs are added between the subset-vertices if the two subsets share one or more
elements. More formally E is constructed according to the following steps, each performed
for every element Ui ∈ U :

1. Let u be the subset-vertex associated with Ui = {ei1 , ei2 , ..., ei|Ui|
}.

2. Determine E(u), the set of element-vertices associated with eij , j ∈ 1..|Ui|.

3. Form E ← E ∪ {(u, v)|v ∈ E(u)}.

4. Determine I(u), the set of subset-vertices associated with the subset elements in U
that intersect with Ui.

5. Form E ← E ∪ {(u, w)|w ∈ I(u), w 6= u}.

Note that the only vertices in V that have out-degree > 0 are the subset-vertices. Addi-
tionally, the in-degree of each position-vertex is no more than k. Clearly, any set U ′ ∈ U
is a set cover of S if and only if the set V ′ is a semi-cover of G, where V ′ is the set of
subset-vertices associated with the subsets in U ′. 2

Corollary 1 For the k-bounded relaxed vertex cover problem (RVCPk) there is a polynomial

time algorithm with an approximation ratio k − (k−1)·ln ln n

ln n
, where n = |E|.

This follows directly from Theorem 1 and the results obtained in [10].

3 RVCPk and the k-Covers Problem

Here we consider the decision form of the k-covers problem: given a string x and integers
k > 1 and ν, decide whether there exists a k-cover of x of cardinality ν. We call this
problem kCP and we show that it is a special case of RVCPk.

Theorem 2 Every instance of kCP can be reduced to an instance of RVCPk in polynomial
time.

Proof: Suppose now that a string x = x[1..n] and an integer k are given. Let n be the
length of the string x and n′ be the number of distinct k-substrings (substrings of length
k) in x. We initialize a directed graph Gx,k = (V, E), where |V | = n′ + n and E = ∅. We
called the first n′ vertices in V the k-substring-vertices and the remaining n vertices the
position-vertices. For every distinct k-substring ui where i = 1, ..., n′, compute

1. The set P (ui) of position-vertices that correspond to the positions in x that can be
covered by ui, where a position i can be covered by ui if and only if ui occurs at some
position j ∈ i− k + 1..i.

2. The set O(ui) of k-substring-vertices that correspond to all k-substrings of x that
overlap with ui, where two strings overlap if and only if there is a non empty prefix
of one of them which equals a suffix of the other.

3. If u is the k-substring-vertex related to ui then E is updated as follows:

E ← E ∪ {(u, v)|v ∈ P (ui)} ∪ {(u, w)|w ∈ Q(ui), w 6= u}.

Clearly, the k-substring-vertices are the only vertices with out-degree > 0. Accordingly,
any vertex semi-cover of Gx,k is a set of k-substring-vertices. Note that each position in
x cannot be covered with more than k distinct k-substrings. Thus, the in-degree of all
position-vertices is no more than k.

Consider a vertex semi-cover V ′ of Gx,k. Let vertex s be one of the vertices in V ′

and let us be the k-substring corresponding to s. Then in addition to the outgoing and
incoming arcs of s, all the arcs pointed to each position-vertex v ∈ P (us) will be semi-
covered according to condition (C3). This is because the sources of these arcs are k-
substring-vertices ∈ O(us)

If the alphabet of x is ordered, an algorithm to compute Gx,k from x can be implemented
in O(n log n) time using a straightforward approach, somewhat faster using a suffix tree to
sort the k-strings. 2

For example, if x = aabbab and k = 2, then the only four distinct k-substrings are aa, ab, ba,
and bb. Let s1, s2, s3, s4 be the k-substring-vertices associated with them. The corresponding
graph Gaabbab,2 is:

s1 s2 s3 s4 p1 p2 p3 p4 p5 p6

where each position-vertex pi represents position i in x. The sets V ′
1 = {s1, s2, s3} and

V ′
2 = {s1, s2, s4} are semi-covers of Gaabbab,2. The semi-cover V ′

1 corresponds to the minimum
k-cover U1 = {aa, ab, ba} while V ′

2 corresponds to U2 = {aa, ab, bb}.
Theorem 2 and Corollary 1 show that there is an approximation algorithm that calculates

a minimum k-cover of a given string x whose cardinality is at most k − (k−1)·ln ln 2kn

ln 2kn
times

the minimum. This is because the number of arcs in graph Gx,k formed from x = x[1..n]
is at most 2kn.

4 Open Problems

We have shown that for k ≥ 2, the k-covers problem kCP is equivalent to RVCPk, hence
that efficient algorithms can be used to approximate a minimum k-cover as specified in
Section 3. Interesting questions remain:

(Q1) The set G of graphs Gx,k in some sense describes the structure of all strings. To our
knowledge these graphs have not previously been reported in the literature. Can the
graphs of G be characterized in another way? What are their defining properties?

(Q2) The NP-completeness proof given in [6] is based upon strings whose length n is a
function of three parameters: k (the length of the covering substrings), r (the number
of variables in the corresponding 3-SAT problem), and s (the number of clauses in the
corresponding 3-SAT problem). A short calculation shows that in fact

n = (18k+7)r + (42k−3)s + (2k−1),

while at the same time the minimum cover size

ν = 9r + 6r′ + 8s + 1, r′ ≤ r.

Let us call the ratio γk = n/(νk) the k-coverability of the string x[1..n]; observe
that γk has as an upper bound the average number of occurrences in x of the strings
in the minimum k-cover. Since ν ≤ 15r+8s+1, we see then that for the class of
strings constructed in [6], γk > 6/5; in other words, the strings in the k-cover occur
on average somewhat frequently in x. What happens when γk ≤ 6/5? Can we find a
polynomial-time algorithm to compute a minimum k-cover given that γk falls below

a certain threshold? For “most” strings and some sufficiently large k, we expect that
ν = ⌈n/k⌉, so that γk ≈ 1; thus such an algorithm would in fact handle most of the
cases that arise.

Acknowledgements

Costas S. Iliopoulos was supported in part by a Marie Curie fellowship, Wellcome & Royal
Society grants. Manal Mohamed was supported by an EPSRC studentship. W.F. Smyth
was supported in part by a grant from the Natural Sciences & Engineering Research Council
of Canada.

References

[1] Alfred V. Aho, John E. Hopcroft and Jeffey D. Ullman, The Design & Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] A. Apostolico, M. Farach and C. S. Iliopoulos, Optimal Superprimitivity Testing for Strings,
Inform. Process. Lett. 39, 1991, 17–20.

[3] Alberto Apostolico and Franco P. Preparata, Optimal Off-Line Detection of Repetitions in a
String, Theoret. Comput. Sci. 22, 1983, 297–315.

[4] Bar-Yehuda and S. Even, A Linear Time Approximation Algorithm for the Weighted Vertex
Cover Problem, Journal of Algorithms 2, 1981, 198–203.

[5] Gerth S. Brodal, Rune B. Lyngsø, Christian N. S. Pedersen and Jens Stoye, Finding Maximal
Pairs with Bounded Gap, J. Discrete Algs. 1, 2000, 77–103.

[6] Richard Cole, Costas S. Iliopoulos, Manal Mohamed, W. F. Smyth and Lu Yang, Computing
the Minimum k-Cover of a String, Proc. Prague Stringology Conf.’03, 2003, 51–62.

[7] Maxime Crochemore, An Optimal Algorithm for Computing All the Repetitions in a Word,
Inform. Process. Lett. 12–5, 1981, 244–248.

[8] Frantǐsek Franěk, W. F. Smyth and Yudong Tang, Computing all Repeats Using Suffix Arrays,
J. Automata, Languages & Combinatorics 8–4, 2003, 579–591.

[9] Michael R. Garey and David S. Johnson, Computers and Intractability: a Guide to the Theory
of NP-Completeness, Freeman, 1979.

[10] E. Halperin, Improved Approximation Algorithms for the Vertex Cover Problem in Graphs and
Hypergraph, SIAM Journal on Computing 31(5), 2002, 1608–1623.

[11] D.S. Hochbaum, Approximation Algorithms for the Set Covering and Vertex Cover Problems,
SIAM Journal on Computing 11(3), 1982, 555–556.

[12] Costas S. Iliopoulos and W. F. Smyth, On-Line Algorithms for k-Covering, Proc. Ninth Aus-
tralasian Workshop on Combinatorial Algorithms, 1998, 107–116.

[13] Roman Kolpakov and Gregory Kucherov, On Maximal Repetitions in Words, J. Discrete Algs.
1, 2000, 159–186.

[14] Yin Li and W. F. Smyth, Computing the Cover Array in Linear Time, Algorithmica 32–1, 2002,
95–106.

[15] Michael G. Main, Detecting Leftmost Maximal Periodicities, Discrete Applied Maths. 25, 1989,
145–153.

[16] Michael G. Main and Richard J. Lorentz, An O(n log n) Algorithm for Finding All Repetitions
in a String, J. Algs. 5, 1984, 422–432.

[17] Jeanette P. Schmidt, All Highest Scoring Paths in Weighted Grid Graphs and their Application
to Finding All Approximate Repeats in Strings, SIAM J. Comput. 27–4, 1998, 972–992.

[18] Lu Yang, Computing the Minimum k-Cover of a String, M. Sc. thesis, McMaster University,
2000, 86 pp.

