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Risk, ambiguity and quantum decision theory

Riccardo Franco §

Abstract. In the present article we use the quantum formalism to describe the effects

of risk and ambiguity in decision theory. The main idea is that the probabilities in the

classic theory of expected utility are estimated probabilities, and thus do not follow

the classic laws of probability theory. In particular, we show that it is possible to use

consistently the classic expected utility formula, where the probability associated to

the events are computed with the equation of quantum interference. Thus we show

that the correct utility of a lottery can be simply computed by adding to the classic

expected utility a new corrective term, the uncertainty utility, directly connected with

the quantum interference term.
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1. Introduction

This article is a first attempt to provide a consistent description of the main effects

of decision theory within the quantum formalism. A number of attempts have been

done to apply the formalism of quantum mechanics to domains of science different from

the micro-world with applications to economics, operations research and management

science, psychology and cognition, game theory, and language and artificial intelligence.

For a list of references, see [1, 2]. However, these attempts are very different and they do

not provide a general way to apply the quantum formalism. In [3] there is a quantum-like

approach to describe risk and uncertainty, thought its interpretation is quite difficult.

Our approach is based on the fact that classic expected theory can be modified by

imposing to the judged probabilities different laws. This leads to a formula very similar

to the classic expected utility equation, with an additional term, whose interpretation is

clear and simple. In recent works, it has been shown that the judged probabilities seem

to be adequately described by a quantum formalism. In particular, the inverse fallacy

[1] has been shown to be a direct consequence of the quantum formalism. Moreover, the

conjunction fallacy [2] can be described in terms of the quantum interference, leading

to a good agreement with experimental results.

The judged probability may not be the only object compatible with the quantum

framework: in the present article, we want to show that also the preferences, and thus

the expected utilities, could be described in quantum terms in a very simple way, by

following the same definitions of the expected utility theory [4]. In particular, we will

show that the quantum formalism is able to give a consistent description of the effects

of risk and ambiguity, evidenced for example in the two-color Ellsberg’s experiment

[5]. Before Ellsberg’s work, Keynes [6] observed that people’s willingness to act in the

presence of uncertainty depends on the perceived probability of the event in question.

The Ellsberg’s work tried to generalize this fact, by defining the concept of vagueness or

ambiguity as a quality depending on the amount, type, and ’unanimity’ of information,

and giving rise to one’s degree of ’confidence’ in an estimate of relative likelihoods. The

ambiguity effects [7, 8] have been demonstrated in numerous settings, such as laboratory

choice experiments [9], market experiments [10], and in contextualized decisions [11].

Ambiguity aversion is referred to as one of the most prominent violations of the expected

utility theory.

2. The expected utility theory

The von Neumann-Morgensten expected utility model [4] provides the conceptual and

computational framework that is most often used to analyze decisions: uncertainty

about the future is represented by the following primitive objects:

(i) the decision maker (DM), also called the agent

(ii) a set S of consequences or possible outcomes for the decision maker. They could be

amounts of money in the bank or more general states of the person such as health,
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happiness, pleasant or unpleasant experiences, and so on. We can write explicitly

a finite set of mutually exclusive and exhaustive outcomes (s1, ..., sn).

(iii) a set ∆ of probability distributions or lotteries, defined over the possible outcomes.

A lottery is the assignment (P1, ..., Pn), where Pi is the probability relevant to the

outcome si.

(iv) a preference relation ≥ over the lotteries, which characterizes the decision maker.

The statement f ≥ f ′ has the following interpretation: the lottery f is at least as

desirable as f ′. Given ≥, the strict preference relation > is defined as f > f ′ iff

f ≥ f ′ and not f ′ ≥ f , while the indifference relation ∼ as f ∼ f ′ iff f ≥ f ′ and

f ′ ≥ f .

The preference ordering is assumed to satisfy the following axioms:

(i) Completeness: ∀f, g ∈ ∆: or f ≥ g or g ≥ f

(ii) Transitivity: ∀f, g, h ∈ ∆: if f ≥ g and g ≥ h, then f ≥ h

(iii) Continuity: ∀f, g, h ∈ ∆ with f ≥ g ≥ h, there exists α, β ∈ (0, 1) such that

αf + (1− α)h ≥ g ≥ βf + (1− β)h

(iv) Independence: ∀f, g, h ∈ ∆ we have that f ≥ g if and only if ∀α ∈ (0, 1) we have

that αf + (1− α)h ≥ αg + (1− α)h

The axioms previously defined allow to show that relation f ≥ f ′ is equivalent to the

inequality u(f) ≥ u(f ′), where u(f) is a functional ∆ → R called the utility function:

u(f) =
n
∑

i=1

Piu(si). (1)

Thus the utility associated to a lottery {Pi} can be computed after assigning to any

outcome si a real value u(si). This recipe for rational decision making has ancient roots:

it was first proposed by Daniel Bernoulli (1738) to explain aversion to risk in problems

of gambling and insurance as well as to solve the famous St. Petersburg Paradox. The

idea of seeking to maximize the expected value of a utility function was discarded by

later generations of economists, who doubted that utility could ever be measured on a

cardinal numerical scale. However, it was later revived and rehabilitated, evidencing

that the expected-utility model could be derived from simple and seemingly reasonable

axioms of consistent preferences under risk and uncertainty, in which a pivotal role is

played by an independence condition known as the sure-thing principle.

Von Neumann and Morgenstern [4] consider the special case in which states of the

world have objectively known probabilities (as in games of chance), while Savage extends

the model to include situations where probabilities are subjectively determined by the

decision maker.

3. Judged probabilities

We introduce some very simple definitions, which will be used both in the classic and

in the quantum framework to describe the estimated probabilities and the preferences.
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• An observable A is an event which can be verified. For any observable A we can

always write the dichotomous question ”is A true?”. In the following, we identify

the event a1 with the answer Yes, and we call a0 the answer No, or the negation of

the event.

• The preparation is any information previously given to the agent which can be used

to determine the estimated probabilities.

• The opinion state (or simply state) of an agent is the result of the preparation.

• P (a1) is the estimated probability that the event is true, given a set of agents in the

same opinion state. Analogously, we call P (a0) the estimated probability that the

event is false. Of course, P (a0) + P (a1) = 1.

3.1. Classic judged probabilities

The main hypothesis of this section is that the judged (or estimated) probability follows

the same rules of the classic theory of probability. For any observable A, and thus

for any couple of mutually exclusive events (a0, a1), the opinion state of agents can be

described as the vector
[

P (a0)

P (a1)

]

, (2)

which describes the judged probabilities associated to the events: such probabilities can

be estimated by a single agent, or they can be the mean value of probabilites estimated

by a set of agents in the same preparation. Let us now consider a different couple of

mutually exclusive events (b0, b1), for which we have the vector of judged probabilities
[

P (b0)

P (b1)

]

. (3)

In the simplest case, vector (3) can be written in terms of vector (2) by means of the

transition probability matrix, defined as the square matrix whose elements are

T (i, j) = P (bj|ai) , i, j = 0, 1 , (4)

where P (bj |ai) are the judged conditional probabilities. We can express the Bayes’ rule

in terms of this matrix P (bj) =
∑

i T (i, j)P (ai), or equivalently
[

P (b0)

P (b1)

]

=

[

P (b0|a0) P (b0|a1)

P (b1|a0) P (b1|a1)

] [

P (a0)

P (a1)

]

. (5)

From this equation, and from the normalization of probability distribution P (bj), we

have in general that
∑

j T (i, j) = 1: this defines a right stochastic matrix, which is

a square matrix each of whose rows consists of nonnegative real numbers, with each

row summing to 1. On the contrary, a doubly stochastic matrix is a square matrix for

which all entries are nonnegative and all rows and all columns sum to 1. We recall the

important fact that a right stochastic matrix for which T (i, j) = T (j, i) is also a doubly

stochastic matrix.
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3.2. Quantum judged probabilities

First, we recall that in the quantum formalism the probability state about the decision of

a player is not fully described by probability distributions P (ai) or P (bj). We introduce

the quantum formalism, through the following rules:

• The opinion state s about the observable A in a particular preparation is completely

described by the following vector, called the amplitude vector.




√

P (a0)e
iφ0

√

P (a1)e
iφ1



 (6)

Of course, the estimated probability P (ai) relevant to the event ai is the square

modulus of the corresponding element in the couple describing the opinion state.

Thus the quantum approach differs from the classic in that there are two new

parameters, the phases eiφj , with j = 0, 1.

• Given a second observable B with corresponding events b0 and b1, the opinion state

about B can be written as the vector




√

P (b0)e
iψ0

√

P (b1)e
iψ1



 (7)

Moreover, the judged conditional probabilities P (bj|ai) are such that

P (bj|ai) = P (ai|bj) (8)

for all i, j. This fact is always true in the quantum formalism, while it is not valid

in general in classic probability theory [1]. If the estimated conditional probabilities

follow equation (8), we have the inverse fallacy.

• Given a preparation of the opinion state, we can describe it in terms of question A

or B. The equation which links the estimated probability P (bj) to P (ai) can not

be written with formula (5). The quantum version of this equation is

eiψj

√

P (bj) =
∑

i

Ui,j
√

P (ai)e
iφi , (9)

where Ui,j is a unitary matrix. In the following, we will not use all the parameters

describing a unitary matrix, and thus we will use this simplified unitary matrix

U =





√

P (b0|a0) −
√

P (b0|a1)
√

P (b1|a0)
√

P (b1|a1)



 (10)

Matrix U has the same function of the classic transition probability matrix, but it

applies to the quantum opinion state (6). The opinion state about B thus can be

written in terms of the vector of amplitudes




√

P (a0)P (b0|a0)e
iφ0 −

√

P (a1)P (b0|a1)e
iφ1

√

P (a0)P (b1|a0)e
iφ0 +

√

P (a1)P (b1|a1)e
iφ1



 (11)
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Thus the analogue of Bayes’ rule for P (b1) in the quantum formalism is obtained

with the square modulus of the elements of vector (11):

P (b1) = P (a0)P (b1|a0) + P (a1)P (b1|a1)+

+2
√

P (a0)P (a1)P (b1|a0)P (b1|a1)cos(φ0 − φ1) ,
(12)

where the additional term can be named the interference term I, and its sign

depends on the sign of cos(φ0 − φ1). In [2] it is shown that strongly negative

interference terms can explain the conjunction fallacy.

In the most general case, a quantum state is described by a mixed state, that is a state

for which the preparation is not completely determined. For example, the state may be

in the preparation 1 with a probability P1, and in the preparation 2 with a probability P2

(the two vectors may be not orthogonal). The formal mathematical description of mixed

states leads to the formalism of density matrix [2]. Here we only note that two different

complete preparations may differ in the following three parameters: P (a0), P (a1), φ1−φ0

(hence, in the interference term I). Thus the generalization of equation (12) for mixed

states is

P (b1) =
∑

k

Pk[Pk(a0)P (b1|a0) + Pk(a1)P (b1|a1) + Ik] (13)

where Pk(a0), Pk(a1)Ik, with k = 1, 2, ... are the parameters relevant to the k−th

preparation.

4. Risk and ambiguity in quantum formalism

The experiments about risk and ambiguity that we consider can always be described in

the following general way: we have an urn with red and black balls, in total number

of N . The agents bet on a particular color, for example black: if a black ball is drawn

from the urn, the agent wins X dollars (win condition), and nothing otherwise (lose

condition). We distinguish two different bets:

• a clear bet, where the agents know how many red and black balls are in the urn:

in the following we consider the case of equal number of red and black balls.

• a vague bet, where the agents don’t know how many red and black balls are in the

urn: they may be in any proportion.

Our general description of risk and ambiguity effects involves the following question:

”the drawn ball is black?”. The events relevant to this question are b0 for the answer

No, and b1 for answer Yes.

In experimental tests, agents have to express their quantitative preferences about

bets by prizing them, thus determining the cash equivalents to the bets. There are two

different techniques to evidence such prizes: 1) the willingness to pay (WTP), that is

the prize that an agent decides to pay for a ticket of this lottery; 2) the willingness

to accept (WTA), that is the prize that an agent assigns when he sells a ticket of this
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lottery. In general, the WTP (willingness to pay) is lower than the WTA (willingness

to accept) for the same gamble.

Of course, agents determine the cash equivalents by considering what they gain in

the win/lose condition respect to what they pay (or accept). Our hypothesis is that the

possibilities pay/not pay or accept/not accept influence the determination of the cash

equivalents (and thus the estimated probabilities to win the lottery) in the following

way: we define in general the observable action A, which corresponds in the WTP to

the action of pay for the ticket (a1) or not pay (a0), while in the WTA to the action of

accept money (a1) or not accept (a0).

According to the classic Bayes’s formula, the probability that a black ball is

drawn or not P (bi) (with i = 0, 1) in the clear bet can be determined by knowing

the probabilities P (aj) (with j = 0, 1) and the conditional probabilities P (bi|aj): in

particular, the conditional probabilities are all 1/2, which means that the action pay/not

pay or accept/not accept can not influence the result of drawing a black ball (they are

independent events). Thus we have P (b1) = P (a0)P (b1|a0) + P (a1)P (b1|a1) = 0.5.

According to quantum formalism, the opinion state about aj is described, both in

the clear and in the vague bets, by the vector (in the basis aj):




√

P (a0)e
iφ0

√

P (a1)e
iφ1



 (14)

This means, since the agents do not know a-priori which action they will choose, that

the opinion state is a linear superposition of the two possible choices. In general, it

seems reasonable to attribute in mean the same probability to P (a0) = P (a1) = 1/2:

the agents evaluate the color that will be drawn by considering both the situations a0
and a1. However, Bayes’ formula is replaced by the interference formula (12), which

states

P (b1) = P (a0)P (b1|a0) + P (a1)P (b1|a1) + (15)

2
√

P (a0)P (a1)P (b1|a0)P (b1|a1)cos(φ0 − φ1) (16)

The interference equation evidences that the two beliefs about aj may interfere, and the

resulting estimated probability P (b1) may be higher or lower than 1/2.

In the vague bet, the probability to draw a black ball P (b1) can not derived with

certainty. However, we suppose that agents make a judgement of the probability to

draw a black ball, by considering the two possible choices which are availble (pay/not

pay in the WTP, accept/not accept in the WTA). Thus the conditional probabilities

P (bi|aj) are determined by simple arguments of statistical independence, obtaining the

same equation of the clear bet (15).

Finally, we make the hypothesis that the presence of uncertainty situations leads

to a negative phase factor cos(φ0 − φ1), thus entailing that P (b1) < 1/2. This fact is

able to explain the effects of risk aversion and ambiguity aversion, as we will show in

the following. In fact, the probability associated to the unknown event P (b1) is lowered

by the interference effect, even if all the agents would agree with the fact that the

probability to draw a black ball is 0.5.
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In figure 1 we show the interference term for three different values of P (b1|a1) (0.25,

0.5 and 0.75), corresponding to anticorrelation/no-correlation/correlation between P (b1)

and P (a1) respectively.
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Figure 1. Maximal interference term for three different values of P (b1|a1)

4.1. Prizing bets

The classic expected utility of the clear bet is defined by formula (1), and thus

uc = u(b0)P (b0) + u(b1)P (b1) = XP (b1)

We consider the experimental case of [7], where 100 dollars are given to the agents

if the guessed color (black for example) is drawn, and there are 100 balls in the urn:

u(b1) = 100 and u(b0) = 0. The classic expected payoff is calculated in the classic

formalism (where P (b0) = P (b1) = 0.5) by the following u(b0)P (b0) + u(b1)P (b1) = 50.

We want to show that the quantum formalism allows us to use the same formula

of the expected utility (1), where the judged probabilities P (bi) are obtained by the

quantum interference formula (15), in order to compute the WTA and WTP cash

equivalents. In particular, in the simple example of [7], the expected payoff is

u = u(b0)P (b0) + u(b1)P (b1) = 50 + 100I . (17)

We call the additional term the utility of uncertainty, which is able to modify the

expected value to the extreme values of 0 or 100: the utility of uncertainty can be

interpreted as the corrective amount of money that the agents add or subtract to the
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expected value in order to consider the uncertainty. The utility of uncertainty in our

example cannot be higher thanX/2 (positive interference) or lower than −X/2 (negative

interference). From our hypothesis, the negative value of the phase factor entails a

negative utility of uncertainty. The numerical difference between WTA and WTP can

be explained in the quantum formalism with the presence of two different interference

terms, and thus of different utilities of uncertainty: the interference term for WTP is

higher in modulus than the interference term for WTA, since the uncertainty to pay

(and eventually to gain nothing) is perceived as more worrying.

In general, if we call u the estimated cash equivalent (WTA or WTP) of a clear or

vague bet, X the gain in the case of drawn black ball and uc the classic expected utility,

the interference term can be obtained as

I =
u− uc
X

(18)

If the opinion state of all the decision makers is identical, the cash equivalent is the

same, leading to the same preferences for all the agents. However, a more realistic

situation requires the use of a mixed state, as in formula (13). The mean prize for a

bet is determined by the percentage of agents which set a given prize. In formula, the

expected utility for the clear and vague bets previously defined is

u =
∑

k

Pkuk =
∑

k

PkXPk(b1)

where Pk is the probability to find an agent in the preparation k, while Pk(b1) is the

estimated probability of event b1 in the preparation k. The mixed state of two different

opinion states about the same bet with different utilities of uncertainty evidences a final

utility of uncertainty which is comprised between these two utilities of uncertainty.

4.2. Risk effects

Given the clear bet described before, if the mean cash equivalent is less/equal/higher

than the expected outcome of the same lottery, we have a situation of risk

avoidance/neutrality/seeking [9]. In the quantum formalism, this implies that for the

clear bet the utility of uncertainty is negative/null/positive respectively.

In the study I of [7] the mean WTP for the clear bet, evaluated alone, is 17.94,

which is lower than 50 (the classic expected outcome). Thus we have a situation of risk

avoidance. By using equation (17), we can describe this fact by noting that the cash

equivalent is 50−100I = 17.94, obtaining I = −0.3. We can compare this experimental

result with figure 1. The estimated conditional probability P (b1|a1) = 0.5 allows us to

consider the middle part of the central panel in figure 1. The maximum interference

effect in this case is about −0.5, which is higher in modulus than -0.3. The presence

of a mixed state is sufficient to explain such a difference. Some information about

the composition of the mixed state can be obtained by considering the standard error,

which is 2.5: this is consistent with a high percentage of agents with highly negative

interference terms (risk avoidance), and a low percentage of risk seeking/neutral agents.
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In the study II of [7] (table 2) a similar test is performed by considering urns with

only two ping ping balls and by asking for the WTA. Given the winning payoff 20$,

the classic expected utility is 10$. Of couse the WTA measure leads to higher values

than WTP, which entails less strongly negative interference terms. We consider in this

subsection only the clear bet evaluated alone (noncomparative case), which has a WTA

of 7.58 (I = −0.121),

Finally, another feature influencing the interference term is the payoff. In [12], the

two-color Ellsberg experiment is performed, and the same clear bet is tested with a low

payoff (2 dollars) and a high payoff (20 dollars). The mean WTA in the low case is

1.061, evidencing a weak risk seeking effect, while in the high case is 8.37, leading to a

men interference term of −0.163.

4.3. Ambiguity

The difference between risk and ambiguity is that risk can be expressed by precise

probabilities, while ambiguity (also called unmeasurable uncertainty) cannot. Interest

in the concept of ambiguity was revived by Ellsberg [5], who showed that people generally

prefer to bet on known rather than unknown probabilities. Ambiguity aversion seems

to represent a reluctance to act on inferior knowledge, and this inferiority is brought to

mind only through a comparison with superior knowledge about other domains or of

other people. The Ellsberg’s simplest example, known as the two-color problem, clearly

shows the effect of ambiguity aversion. It involves the same experimental apparatus

described before: urn 1 contains 50 red and 50 black balls, whereas urn 2 contains 100

red and black balls in an unknown proportion. We suppose that a ball is drawn at

random from an urn and one receives $100 or nothing depending on the outcome. Most

people seem indifferent between betting on red or on black for either urn, yet they prefer

to bet on the 50-50 urn rather than on the urn with the unknown composition. This

pattern of preferences is inconsistent with expected utility theory because it implies that

the subjective probabilities of black and of red are greater in the 50-50 urn than in the

unknown urn, and therefore cannot sum to one for both urns.

4.4. The order effects and the quantum gates

Clear and vague bets, when evaluated alone, do not exhibit significantively different

WTA or WTP. This can be shown in [7], study 1 and 2 (non-comparative condition),

or in the table below, where the interference term has been calculated. In particular,

we note that the interference term is higher in modulus in the WTP, since this kind of

choice is perceived as more risky. Moreover, we note that the interference term for the

clear bet is higher in modulus than for the vague of about 0.02 (thus they are almost

equal).
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Non-comparative Study 1 of [7] (100 balls, 100$) Study 2 of [7] (2 balls, 20$)

clear WTP=17.94, I = −0.32 WTA=7.58, I = −0.12

vague WTP=18.42, I = −0.31 WTA=8.04, I = −0.10

However, when the two bets are evaluated toghether by the same agents (the compara-

tive condition), the ambiguity aversion effect appears. In the table below we evidence the

results of [7], study 1 and 2 (comparative case), with the interference terms. However,

in this experiment the order in which the two bets were presented was counterbalanced.

Comparative Study 1 of [7] (100 balls, 100$) Study 2 of [7] (2 balls, 20$)

clear WTP=24.34, I = −0.26 WTA=9.74, I = −0.01

vague WTP=14.85, I = −0.35 WTA=8.53, I = −0.07

Thus we focus our attention on the order effects in the evaluation of cash equivalents: in

study 3 of [8] (with the same experimental description of the study 2 of [7]), the WTA’s

in the order ”clear and then vague” are 8.92 and 7.50, while in the order ”vague and

then clear” they are 9.56 and 10.56. This evidences that the presence of a vague bet

after a clear bet leads to a high perceived ambiguity. On the contrary, if we evaluate

first a vague and then a clear bet, no ambiguity is perceived at first, and then ambiguity

diminishes, leading to higher WTA.

We try to explain this effect consistently with the quantum formalism by making

the hypothesis that the opinion state of agents, while evaluating the two bets in the

defined order, can be described by a single qubit. In the evaluation of the first bet,

we have a similar opinion state both in the clear and vague bets, as noted before (non-

comparative situation). However, when the second bet is introduced, we make the

hypothesis that a suitable unitary operator is applied on the previous opinion state:

this can be interpreted as the effect of the information given with the second bet.

The unitary operator we will use is a phase rotation gate R (or phase shift single-

qubit gate)

R(ξ) =

[

1 0

0 eiξ

]

, (19)

whose action is on the single qubit describing the opinion state. The opinion state after

the phase shift is
[

1 0

0 eiξ

]





1√
2
eiφ0

1√
2
eiφ1



 =





1√
2
eiφ0

1√
2
ei(φ1+ξ)



 . (20)

Thus the new interference term for the second bet contains the phase factor cos(φ1−φ0+

ξ), leading to a more/less negative utility of uncertainty. We note that if cos(φ1 − φ0)

is near to zero and ξ is very close to zero, we can use the linear approximation

cos(φ1−φ0+ ξ) = π/2− (φ1−φ0+ ξ). In the table below we rewrite the results of study

3 of [8], with the values of the interference term and of the phase shift ξ ≃ 2(I2 − I1):
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clear → vague vague → clear

1 WTA=8.92, I = −0.05 WTA=9.56, I = −0.02

2 WTA=7.50, I = −0.13 WTA=10.56, I = 0.03

ξ ≃ 0.16 ξ ≃ −0.14

4.5. The comparative ignorance hypothesis

The comparative ignorance hypothesis, first developed in [7], states that ambiguity

aversion will be present when subjects evaluate clear and vague prospects jointly, but it

will greatly diminish or disappear when they evaluate each prospect in isolation. This

is consistent with the results of the study I of [7], where the mean WTP relevant to

the vague bet, evaluated alone, is very similar to the WTP relevant to the clear bet,

evaluated alone. This situation is named the noncomparative case. The comparative case

is the situation where the clear and the vague bets are evaluated by the same agents in

the same test (the order in which the two bets were presented was counterbalanced).

The surprising result is that now the WTP for the vague bet is much lower than for

the clear bet. A similar result is obtained in the study 2 of [7] (table 2) where two urns

contain only two ping ping balls, and the cash equivalent is the WTA.

We want to show that in the comparative case the WTA are exactly the mean of

the corresponding WTA in the two possible evaluation orders. This is consistent with

the interpretation that about half of the agents evaluate with the order clear/vague,

and the other half with the opposite order vague/clear. The WTA of the vague bet in

[7] is 8.53, which is exactly equal to the mean of the values (7.50 + 9.56)/2 from [8]. In

analogous way, we have for the clear bet 9.74 = (8.92 + 10.56)/2

In [12], the two-color Ellsberg experiment is performed in a different way. First

of all the urn contains 10 balls, red or black, and the cash equivalent is WTA. Two

versions of the experiment are presented, one with the winning payoff equal to 2$, and

the other with 20$. The clear bet consists in 5 red and 5 black balls, while the vague

bets are designed in different ways: a) The number of red and black balls is unknown,

it could be any number between 0 red balls (and 10 black balls) to 10 red balls (and 0

black balls). b) The number of red and black balls is determined as follows: one ticket

is drawn from a bag containing 11 tickets with the numbers 0 to 10 written on them.

The number written on the drawn ticket will determine the number of red balls in the

third urn. For example, if the ticket drawn is 3, then there will be 3 red balls and 7

black balls. c) The color composition of balls in this urn is determined in a similar to

before. The difference is that instead of 11 tickets in the bag, there are 2, with the

numbers 0 and 10 written on them. Therefore, the urn may contain either 0 red balls

(and 10 black balls) or 10 red balls (and 0 black balls). In the table below we show the

measured mean WTA, and the relevant interference terms:
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Clear Vague a) Vague b) Vague c)

2$ WTA=1.061, I=0.03 0.878/ I=-0.06 0.929/ I=-0.0355 0.948/ I=-0.026

20$ WTA=8.37, I=-0.0815 6.66/ I=-0.167 7.25/ I=-0.137 7.74/ I=-0.113

The interference terms are more negative in the 20$ case, evidencing a stronger per-

ception of risk and ambiguity. Moreover, the vague case c) shows interference terms

lower in modulus than the other vague cases: this can be explained by the fact that

the presence of only two possibilities diminishes the ambiguity of the bet and thus the

modulus of the uncertainty utility. Vague bets a) and b) are very similar, but the case

a) has interference terms higher in modulus. In fact in b) the mechanism to determine

the number of red/black balls seems to help to reduce the perceived ambiguity.

5. Conclusion

We have developed within the quantum formalism a simple model which is able to

describe the effects of risk and ambiguity on decisions: in particular, we have used the

formula of quantum interference, which leads to an additional term in the computation

of the expected utility. The interpretation of such additional term, called the uncertainty

utility, is the utility equivalent to the uncertainty perceived by the agents. Such term

is in general negative (but in some cases it can be positive), and its absolute value

depends on the following factors: 1) it increases with the vagueness, when compared

with a clear bet, 2) it increases with the expected payoff, since the choice is perceived

as more worring, 3) it is higher for WTA than for WTP. Thus the uncertainty utility,

or the interference term, manifests a psychological nature.
Open questions which remain to be studied are: a) the link between prospect theory

and quantum formalism, b) the connection with works about order effects in belief
updating, c) the relation of the present formalism with other quantum-like approaches
such as [3], and d) an axiomatic approach consistent with quantum interference effects.
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