
Enhancing Directed Binary Trees for Multi-class
Classification

Elena Montañés, José Barranquero, Jorge Dı́ez, Juan José del Coz∗

Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
http://www.aic.uniovi.es

Abstract

One approach to multi-class classification consists in decomposing the original

problem into a collection of binary classification tasks. The outputs of these

binary classifiers are combined to produce a single prediction. Winner-takes-

all, max-wins and tree voting schemes are the most popular methods for this

purpose. However, tree schemes can deliver faster predictions because they need

to evaluate less binary models. Despite previous conclusions reported in the

literature, this paper shows that their performance depends on the organization

of the tree scheme, i.e. the positions where each pairwise classifier is placed on

the graph. Different metrics are studied for this purpose, proposing a new one

that considers the precision and the complexity of each pairwise model, what

makes the method to be classifier-dependent. The study is performed using

Support Vector Machines (SVMs) as base classifiers, but it could be extended

to other kind of binary classifiers. The proposed method, tested on benchmark

data sets and on one real-world application, is able to improve the accuracy of

other decomposition multi-class classifiers, producing even faster predictions.

Keywords: Multi-class classification, Decomposition methods, Support Vector

Machines, Directed Binary Trees, Generalization error bounds

∗Corresponding author
Email addresses: elena@aic.uniovi.es (Elena Montañés), barranquero@aic.uniovi.es

(José Barranquero), jdiez@aic.uniovi.es (Jorge Dı́ez), juanjo@aic.uniovi.es (Juan José
del Coz)

Preprint submitted to Information Sciences August 3, 2012

1. Introduction

The multi-class classification problem has been extensively studied in the

literature due to the great number of tasks that fall into this category. Two ex-

amples of this problem might be: diagnosing which of several illnesses a patient

is suffering from according to certain symptoms [38], or classifying web content

into several topics [26]. The starting point is a set of instances described by a

group of properties and labeled as belonging to a certain class. The multi-class

component appears when m > 2 different classes are involved, being an exten-

sion of the more traditional binary classification task. The goal is the same, i.e.

to obtain a classifier able to correctly predict the true class of new unlabeled in-

stances, but with more than two classes within the possibilities to choose from.

Multi-class classification is a more complex task than it may seem a priori, as

more combinations of classification errors may appear as the number of classes

increases.

Although it is possible to extend the proposal of this paper to other clas-

sifiers, we will focus here on Support Vector Machines (SVMs), due to the

extension of the analysis and to some decisions which depend on the base clas-

sifier used. In case of SVMs, two kinds of approaches are commonly adopted to

tackle multi-class classification. The first solves a single optimization problem

[7, 8, 29, 45], whereas the second decomposes the original problem into a set

of binary SVMs that must be combined after having been trained [1, 20, 37].

Although both are able to solve multi-class classification tasks, a single opti-

mization presents some learning complexities that the combination of binary

models is able to reduce [21]. Several attempts at extending binary learning al-

gorithms have been proposed to provide methods of the former kind. However,

most of them are unfeasible mainly because of their high computational cost

or due to being difficult to handle [36]; if so, experiments are limited to small

data sets [45]. Hence, the decomposition approach seems to be a better choice

for SVM multi-class classification [25], since each binary problem is sometimes

simpler —in the sense that separability between only two classes is likely to be

2

higher— and smaller in the number of examples, and hence, in the number of

constraints of the corresponding optimization problem.

To design a decomposition-based method for multi-class classification, two

decisions have to be made, namely: the decomposition technique used —the

classes involved in each binary classifier— and the combination strategy ap-

plied subsequently, i.e. how to combine their outputs. As regards decompo-

sition techniques, a wide range of studies are available in the literature. A

survey of the main decomposition strategies used to solve multi-class problems

is presented in [30]. One-vs-all [34], one-vs-one [24] and error-correcting output

coding (ECOC) [11, 46] are the most widely used. Other alternatives are Data-

driven Error Correcting Output Coding (DECOC) [47], which was presented as

an improvement of ECOC strategy, or all-and-one strategy [22] that combines

both one-vs-one and one-vs-all classifiers. Besides, hierarchical clustering [32]

or random strategies [16] have also been studied as a decomposition techniques

for building a binary tree.

As combination strategies, several ones have also been proposed. Max-wins

[20] employs a voting scheme and is usually applied together with the one-

vs-one approach, while the winner-takes-all strategy [31] is a typical approach

to combine one-vs-all classifiers. Another combination, which can be applied

after some decomposition strategies, consists in arranging the classifiers into

a hierarchical structure [5, 16, 19, 27, 32, 37]. The main advantage of such

approaches is that they reduce the time needed to predict the class of a new

instance, since a sequence of discriminations takes place. The basic idea is

to start at the top of the hierarchy and successively discard certain classes

at each level until reaching the bottom of the structure, where only one class

remains as candidate and is returned. In order to improve the performance

of these methods, some efforts have been made to find a suitable location for

each classifier in the graph [6, 42]. However, the reported experimental results

do not show a clear improvement. Finally, other alternatives employ stacked

generalization and clustering [15] to induce a multi-class classifier or a neural

network ensemble [34].

3

This paper focuses on the one-vs-one decomposition strategy and proposes

a promising combination method to locate each pairwise model in a binary

tree. We shall focus only on SVMs as base classifiers, due to the fact that

our approach is based on a metric which depends on measuring the complexity

of the pairwise models learned with a binary SVM. This makes, in turn, the

method to be classifier-dependent. However, our ideas could be applied to

other base classifier, whenever the complexity of the pairwise models induced

with this learner can be somehow quantified. The experimental results show

that our approach reduces the error rate while at the same time speeding up

the prediction process compared to max-wins and other tree-based combination

strategies; all of which use the same pairwise classifiers. Therefore, in what

follows, only pairwise classifiers are considered. This means that a total of

m(m − 1)/2 binary models must be combined in some way to obtain a multi-

class classifier. This paper mainly discusses those approaches based on the use

of trees.

Our study does not include any comparison or discussion with other de-

composition strategies, such as the one-vs-all or those based on error-correcting

output codes. There are some such studies in the literature, the most relevant

is perhaps [39], in which Rifkin and Klautau defend the one-vs-all strategy. The

main conclusion of their paper is that when binary classifiers are properly tuned,

the differences in performance are not significant, contrary to what other au-

thors claim [1, 21, 25]. However, Rifkin and Klautau admit that the one-vs-one

approach can produce more accurate results, especially on small data sets with

a large number of classes, in addition to presenting certain advantages, mainly

because it requires less training and testing time. Although the one-vs-one

strategy has the shortcoming of involving a quadratic number of classifiers in

relation to the number of classes, it trains faster than the one-vs-all approach,

since the binary problems to learn are easier and smaller on account of only

involving two of the original classes [25]. As regards error-correcting output

coding methods, which allow different configurations of binary classifications

according to a code matrix optimized for error-correction purposes, Allwein et

4

al. [1] point out that, even when such optimization is obtained, many of the

binary subproblems generated may be difficult to learn. For this reason, simpler

one-vs-one decomposition has shown comparable or superior results to those of

error-correcting output coding, as stated by Klautau et al. [28]. The combi-

nation of one-vs-all and one-vs-one classifiers, called all-and-one [22], seems to

show slightly better performance over the two strategies on their own, but at

the cost of training more classifiers. Besides, a recent study [23] of the same

authors does not include this strategy in their empirical study, restricting it to

one-vs-all, one-vs-one and ECOC techniques. In fact, they corroborates previ-

ous results present in the literature, being the main contribution of their paper

that the base classifier used has more influence on the performance than the

decomposition strategy.

The rest of the paper is organized as follows. Section 2 reviews state-of-

the-art methods that use hierarchical structures to combine the predictions of

the set of binary classifiers yielded by the one-vs-one decomposition strategy.

Section 3 provides an in-depth description of the proposals of this paper aimed

at increasing the accuracy of decomposition approaches based on the use of tree

prediction schemes. Finally, our experimental results are reported in Section 4

and some conclusions are drawn in Section 5.

2. Related Work

Decision Directed Acyclic Graphs (DDAGs) [37] and Adaptive Directed

Acyclic Graphs (ADAGs) [27] are hierarchical structures that place a classi-

fier at each internal node and a label at each leaf. Figure 1 shows an example

of these graph-based structures for combining binary classifiers in a four-classes

task.

A DDAG [37] is a directed graph with no cycles and, at most, two edges

pointing to the same node. More precisely, the nodes of a DDAG are arranged

in a triangle with a single root node at the top, two nodes in the second layer

and so on down to the final layer, which is formed by m leaves. Besides the

5

leaves, each node has an attached model, namelyMi,j , the purpose of which is

to separate the classes `i and `j . It also has two successors which will be two

leaves when i = j − 1, or two decision nodes with models Mi,j−1 and Mi+1,j

otherwise. The prediction procedure of a DDAG starts from the root (model

M1,4 in Figure 1) and decides at each node, applying model Mi,j , which of

the two classes `i and `j is preferred for a certain instance. If the former is the

winner, then the instance is evaluated over its left child node (model Mi,j−1),

so class `j is discarded. Otherwise, the instance is evaluated using the right

child node (model Mi+1,j), then class `i is discarded. The process continues

until a leaf is reached whose label is returned.

Kijsirikul and Ussivakul [27] proposed ADAG in an attempt to overcome

certain shortcomings in DDAG, that will be discussed in Section 3.2. An ADAG

is an up-side-down tree that has dm/2e nodes on the top, in which pairwise

classifiers are placed ensuring that all classes appear in that level (if the number

of classes is odd, then a node with a single class is added). For classifying a

particular instance, the outputs of the classifiers of a certain level determine

the classifiers employed in the next layer. This procedure is repeated until the

last layer (with a unique classifier) is reached, which gives the final prediction.

Hence, a different structure of the graph may be applied depending on each

instance, since the classifiers used in all levels but the first one depend on the

predictions of previous layers. In the example of Figure 1 (right), the classifier

used at node C depends on the predictions made by the models placed at nodes

A and B. Formally, if models Mi,j and Mk,l are employed in the current level

for a certain instance x, being Mi,j(x) = `r and Mk,l(x) = `s, then model

Mr,s will be used in the next layer. Notice that there are four possible models

for Mr,s: Mi,k, Mi,l, Mj,k and Mj,l. The model used at node C in Figure 1

(right) will be M1,2, M1,3, M2,4 or M3,4, depending on the instance being

classified.

Once a hierarchical structure is selected, several ways have been proposed for

deciding which models are placed at each node. For instance, in [37], the authors

defend an arbitrary criterion for a DDAG. An efficient data structure is used in

6

Figure 1: Examples of a DDAGs (left), a DBTs (center) and an ADAGs (right) in a four-classes

task

[6] to locate nodes in the graph and an improved decision algorithm is used to

perform test predictions. Also, in [42], the authors optimize the structure of a

DDAG by placing at the upper nodes the models that have a lower proportion

of support vectors. They show that this heuristic performs in a similar way to

the arbitrary criterion adopted in [37]. Similarly, Feng et al. [17] employed the

Jaakkola-Haussler error bound [4]. With regard to an ADAG, a structure is

selected based on the hard margin error in [41].

In [37], the authors hold that the way in which models are attached to the

nodes in a DDAG does not affect the accuracy performance of the algorithm.

However, they admit that the experimentation they employed was limited: only

three different data sets. Furthermore, the experimental results reported in

[42] do not show significant differences between their method and a DDAG.

However, once again, the experiments were limited to only five data sets and

no parameter tuning was carried out. This paper extends the ideas presented

in [41, 42], arguing that the pairs of classes that are easier to separate must

be placed in the upper nodes of the hierarchy. However, we employ a simpler

and more accurate method performing a more exhaustive experimentation and

finding that there are in fact significant differences.

7

3. Enhanced Directed Binary Trees

This section describes the main contributions of the paper to improve the

performance of multi-class classification decomposition methods based on the

use of tree prediction schemes. Firstly, we propose Directed Binary Trees

(DBTs) as the best tree structure to arrange the pairwise classifiers obtained

when a one-vs-one decomposition strategy is applied. This structure has been

used before for multi-class classification [16, 32], but not for placing two-class

classifiers, otherwise for placing two-group-classes ones. Also, DBTs have been

considered for placing pairwise classifiers [5], but again serving as separators of

other classes. As we shall prove, DBTs are more general than other tree struc-

tures and present a number of advantages that will be exposed in Section 3.2.

Secondly, we study different criteria to select the binary model that is attached

to each node of the tree. As experimental results will show, the arrangement of

pairwise classifiers in the tree has a major influence on the performance of the

final multi-class classifier obtained, both in terms of error rate and prediction

speed.

3.1. Directed Binary Trees

In a DBT, each internal node has one input edge and two output edges.

Figure 1 (center) depicts an example of a DBT. The root, whose model isMi,j ,

has two children. In the left one, a model Mk,l is placed and selected among

those not involving class `j . Similarly, a modelMp,q verifying p, q 6= i is chosen

for the right node. These constraints are applicable for all of their respective

descendants; for instance, no descendants of model Mk,l can include class `j .

The leaf of a branch is labeled with the only class that was not previously

removed by this sequence of consecutive decisions. The prediction procedure of

a DBT in this context works like that of a DDAG, one class is discarded at each

level and the label of the reached leaf is returned.

One of the differences with respect to a DDAG is that, when m > 3, some

binary models are attached to more than one node, since the number of decision

8

nodes (2m−1−1) is greater than the number of pairwise classifiers (m(m−1)/2).

For instance, in Figure 1, modelM2,3 is applied at the two nodes of the second

level. Obviously, this does not increase the memory requirements of the final

classifier, because it is enough to store each binary model once. Notice also that

the label of each class may appear more than once in the leaves of a DBT.

3.2. Properties of DDAGs, ADAGs and DBTs

DBTs are more general than both DDAGs and ADAGs in the sense that

it is not possible to find an equivalent DDAG or ADAG for some DBTs, but

the opposite is always possible, although it may not always be evident: every

DDAG or ADAG has an equivalent DBT. In the case of a DDAG being clearer,

it is only necessary to duplicate those nodes pointed to by two ancestor nodes.

The equivalent DBT of an ADAG is one in which the first m/2 layers house the

classifiers of the first layer of the ADAG in such a way that all the paths taken

pass through the same classifiers. That is, all the nodes of each of these levels

use the same model (see the first two layers of the DBT example in Figure 1).

Hence, there is a branch for each possibility of the second level of the ADAG,

and so on. An example of this equivalence is shown in Figure 1. Both the DBT

and ADAG depicted in this figure represent, in fact, the same classifier. Notice

that the two first layers of the DBT can be exchanged and the resulting classifier

will produce the same predictions.

From the point of view of the prediction procedure, all of these graphs are

equivalent in the case of using pairwise models. All require the evaluation of

m− 1 binary classifiers, since only one class is discarded at each decision node.

To correctly classify an instance x, the models that involve its true class, called

competent models, must provide correct predictions. The predictions of the

non-competent models do not impede the true class from being returned: the

discarded class will never be the true one if the model is non-competent. As can

be easily proved, any of these graphs misclassify an example x if, and only if,

one competent model in the prediction path followed by x fails. This situation

allows us to state that the classification performance depends on how the binary

9

classifiers are arranged inside the graph. The fact that a class is discarded at

each stage and that a different classifier can carry out this task means that

different structures obtain different decision regions.

As originally designed [37], a DDAG can be constructed by ordering (ran-

domly, for instance) the set of classes. This order determines the location of

each binary classifier and the order of the classes at the leaves of the tree. Al-

though this structure has provided good results for some multi-class problems,

it has certain disadvantages [27]. The main drawback of the DDAG structure is

that it imposes severe constraints, especially for the two classes at the extremes

of the class order (classes 1 and 4 in the example in Figure 1). To correctly

classify an instance x of one of these classes, all its m − 1 competent models

must provide correct predictions. This condition is more stringent than that

required by, for instance, the max-wins strategy, which only requires a majority

of its competent models to provide correct predictions. When the number of

classes is large, correctly classifying these examples becomes even more difficult.

Notice that whenever a competent model of x is reached in a DDAG during its

classification process, the path from that node to the leaf labeled with the true

class of x only includes its competent models. All of them must make a correct

decision in order to correctly predict the class of x.

Unlike DDAGs, ADAGs present a very interesting property as regards the

arrangement of the competent models for any given instance. In each level of an

ADAG, each class has only one competent model. Thus, since the depth of an

ADAG is dlog2me, dlog2me is also the upper bound of the number of competent

models that must be correct in order to correctly classify an instance. In the

case of a DDAG, this bound varies between dlog2me (for the class or pair of

classes just in the middle of the class order) to m − 1 (for the classes at the

extremes). Comparing all these bounds intuitively suggests that an ADAG

structure reduces the risk of misclassifying examples, especially in multi-class

problems in which the number of classes is large.

On the other hand, however, an ADAG is quite imprecise, in the sense that

only the binary models at the first layer are known beforehand; the classifiers

10

used in the following levels depend on the results of the previous layers. Actually,

an ADAG works just like a tennis tournament, in which only first-round games

are known when the draw is made. The games of the next rounds depend on

the results of the previous rounds. This is an undesirable property if we want to

select the precise binary classifier to be used at each stage of the classification

process.

DBTs constitute an alternative to DDAGs and ADAGs, the advantage of

which derives from the fact that they do not impose any constraints, in addition

to generalizing the other two structures. DBTs are less restrictive than DDAGs,

more precise than ADAGs and can be designed to have the same competent

models bound that characterizes ADAGs. Interestingly, any layout of the binary

classifiers is possible using DBTs. Thus, in what follows, we shall focus on

DBTs. The main aim of this paper is to analyze different methods to select

the adequate layout in a DBT of the binary classifiers yielded by the one-vs-one

decomposition method.

3.3. Main idea

As stated previously, these hierarchical structures discard a class each time a

model is evaluated and different examples may take different paths until reach-

ing a leaf. From the point of view of pairwise classifiers, this means that the

probability of a model being used to classify an example increases with its prox-

imity to the root. Considering this behavior, it appears intuitively reasonable

to assume that the classification ability of a DBT depends on the arrangement

of the classifiers. For instance, it may be quite dangerous to locate model Mi,j

at the root if classes `i and `j are hard to separate, because the model will

evaluate all examples of these classes. It is therefore preferable to place models

of this kind at lower levels, as they will classify less examples. Consequently,

those classes that are easier to separate must tend to be located nearer the root

node.

The purpose of this paper is thus to i) define a metric to estimate the ease

of separating a pair of classes, and ii) apply a greedy algorithm based on such a

11

metric to select the appropriate pairwise classifier at each node of a DBT. The

metric can be seen as a way of measuring the distance between two classes: the

greater the distance, the easier it will be to distinguish these classes. In what

follows, we shall discuss several alternatives to define this kind of metric.

3.4. Metrics to measure the distance between two classes

A reasonable first criterion may be to consider the classification ability of the

binary classifier. If we restrict ourselves to SVMs, the ability to generalize can be

explained by their capacity control. The VC dimension of a hyperplane can be

bounded by the margin and the diameter of the smallest sphere containing the

training set [44], which is the theoretical idea that motivates the maximization

of the margin. Thus, the generalization error bounds may be the first choice.

In [9], the authors review the main results of VC theory, which places reliable

bounds on the generalization of SVMs. In order to apply this criterion in a

practical situation, our first proposal is to adopt a soft margin bound. For

instance, it can be proved that given a binary classification data set with n

examples drawn from a probability distribution with support in a ball of radius

R around the origin, there is a constant c such that any hypothesis yielded by

a binary soft-margin SVM has an error no greater than

c

n

(
R2 + ‖ξ‖21 log(1/γ)

γ2
log2 n+ log

1

δ

)
, (1)

with probability 1− δ, γ being the margin of the model and ξ the margin slack

vector. The main problem with bounds of this kind is that they are sometimes

quite pessimistic.

A second possible alternative is to apply an empirical method for estimating

the generalization error of every binary classifier; less error implies a greater

distance. The leave-one-out procedure gives an almost unbiased estimation of

the expected error. This procedure consists in removing one instance from the

training data, constructing the model on the basis of the remaining training

data and then testing on the removed element. The process is repeated for

each training example and, finally, the average of the errors of all the models

12

is computed. The problem is that its computational cost is very high, being in

fact impracticable if we take into account the number of models that arise in

the one-vs-one decomposition approach. However, a leave-one-out upper bound

can be computed using the findings of [4],

n∑
i=1

Ψ(Ui − 1), (2)

where, once again, n is the number of training examples, Ψ is the classical step

function and Ui is an upper bound of the difference of prediction for the i-th

example considering and not considering said example in the training process.

Since a bound of the step function is 1 and Ui = 0 for the support vectors, then

the bound consisting in counting the support vectors with regard to the number

of original examples gives an idea of the performance of the classifier [44],

#sv

n
, (3)

where #sv is the number of support vectors. This bound was previously used

in [42] for optimizing DDAG structures.

Another possibility is to apply the different bounds discussed in [4]. The

Jaakkola-Haussler bound, used in [17], only works when the SVM is trained

without a threshold. The Opper-Winther bound is suitable for hard margin

SVMs without a threshold. The Radius-margin bound works well for SVMs

without a threshold and with no training errors. Thus, the more interesting one

is the span bound that includes the concept of span of support vectors and works

under the assumption that the set of support vectors remains the same during

the leave-one-out procedure. However, this bound is quite hard to compute and

so will not be considered in the experimentation process.

This paper proposes a new metric for measuring the distance between a

pair of classes. In [43], the authors present a multi-class classifier for high-

dimensional input spaces that employs a hierarchy of classes to build a decision

tree. This hierarchy is obtained employing the complete linkage method, in

which the distance between two classes is defined as the margin between them,

i.e. 2
||w|| , in which w determines the SVM hyperplane for that pair of classes.

13

This distance was adopted to configure an ADAG in [41]. However, this mea-

sure is only meaningful when the classes are known to be separable, which is

not always the case in practical situations. In [12], the authors present a gener-

alization of this distance to the non-separable case. They propose the following

expression to compute the distance between two classes:

1
1
2 ||w||2 + C

∑n
i=1 ξi

, (4)

where C is the classical regularization parameter of a soft-margin binary SVM

formulation and ξi is the slack variable of the i-th example. The idea is that

when classes are similar, the model will be complex (||w|| will be high) and/or

there will be a lot of misclassified examples or points inside the margin (
∑
ξi �

0); in which case, the distance will be small. When classes are very different,

the classifier will be a simple model (||w|| will be low) and/or the number of

misclassified examples or points inside the margin will be small (
∑
ξi → 0);

hence, the distance will be high.

It is worth noting that the metrics discussed in this section are classifier-

dependent. Specifically, the proposed metric considers two factors: the precision

and the complexity of the pairwise models learned with a binary SVM. This last

aspect is, indeed, classifier-dependent, because the complexity directly depends

on the hypothesis space that the classifier explores. For instance, measuring

the complexity of a model based on decision trees or linear classifiers is totally

different. It is not trivial to define a classifier-independent metric that considers

these two factors. However, this idea can be adapted to be used with other

base classifiers whenever the complexity of the induced pairwise models can be

quantified.

3.5. Algorithms to select the binary model at each node of a DBT

In this paper we consider two different greedy algorithms to locate the pair-

wise classifiers in a DBT structure, given any of the metrics described previ-

ously. The first algorithm is based on the most intuitive rule: at a given node,

the binary model selected will be the one involving the two classes —among

14

the remaining possible ones— that are the easiest to distinguish (with the most

distance between them). For instance, the algorithm will place model Mi,j at

the root if the distance between classes `i and `j is the biggest one. Then, the

selected model for the left branch node will beMk,l, verifying that k, l 6= j and

the distance between classes `k and `l is the biggest one among all the pairs of

classes, excluding class `j . The procedure for the right branch node will be the

same, though excluding class `i. The same rule is applied for the rest of the

nodes, always discarding those classes removed by the previous decision nodes

of that path.

The problem of this first algorithm is that a class can have more than

dlog2me competent models in some branches. As the number of models in

a branch is always m− 1, whenever a class has more than dlog2me competent

models in a branch, other classes have less competent models. If one of these

latter classes is finally predicted, the confidence of that prediction may be small.

This happens, for instance, in the DDAG in Figure 1 when the predicted class

is `2 following the left-most branch: the class `2 only has one competent model

in that branch, M1,2.

It would be desirable for our DBTs to preserve the competent-models bound

of ADAGs. This can be achieved by adding another constraint to the rule of

the first algorithm: the selected binary model will be the one involving the two

classes with the most distance between them, among those classes with less

appearances in the models of that path. This rule ensures that, at any branch

of our DBT, a class has no more than dlog2me competent models, and the class

at the leaf appears at least dlog2me − 1 times in the models of that branch. In

other words, the same desirable property of ADAGs. This produces a balanced

situation for every class, boosting the confidence of the resulting prediction.

Other more complex algorithms could be designed for this task. However,

the problem of arranging the pairwise classifiers in a DBT to obtain the tree

with maximum distance (given a metric, computed as the sum of distances be-

tween the classes of the models of all paths) is NP-hard [33]. Thus, the greedy

algorithms described here are simple and provide a good trade-off between com-

15

putational time and empirical performance, as will be shown in Section 4.

3.6. Generalization error bounds

From the point of view of learning theory, the advantage of decomposition

approaches based on the use of tree structures is that generalization error bounds

can be obtained. This is not the case with other popular decomposition methods

based on different combination strategies, like max-wins or winner-takes-all.

Platt et. al. [37] present a VC analysis of DDAGs when the node classifiers are

hyperplanes, like the models obtained if SVM is used as the base learner. The

main contribution is that the resulting bound on the test error depends on the

number of classes and on the margin achieved by the hyperplane classifiers, but

not on the dimension of the input space.

In fact, the probability of misclassifying an example of class `j , denoted by

ε`j , can be bounded according to the following theorem taken from [37]:

Theorem 1. Given a DDAG which contains hyperplane classifiers with mar-

gins γi at decision nodes and is able to correctly classify the instances of class

`j in a random data set with n examples that belong to m classes, then with

probability 1− δ,

ε`j ≤
130R2

n

(
D′ log(4en) log(4n) + log

2(2n)m−1

δ

)
(5)

where

D′ =
∑

i∈CMj

1

γ2i
, (6)

CMj being the set of m − 1 competent models for class `j and R the radius of

a ball containing the distribution’s support.

This same theorem can also be applied to ADAGs and DBTs. It implies

that we can control the capacity of these multi-class classifiers by enlarging the

margins of the binary models placed at their decision nodes. Specifically, when

the competent models of class `j have larger margins, the resulting classifier will

identify examples of that class with more accuracy. In other words, the bound

only depends on the margins of binary classifiers.

16

A similar bound, considering binary classifiers as black-boxes, was also ob-

tained [13] up to a small constant factor as a result of taking different general-

ization error bounds for a DDAG. Notice that in this last case an erratum was

announced [14] as a consequence of an incorrect application of the union bound,

which led to small modifications of the bounds. In addition, a generalization

error was obtained for an ADAG [13], also slightly affected by the erratum [14].

Once again, the bound depends on the error of competent models.

However, these bounds may be quite pessimistic: precisely by correctly ap-

plying the union bound, the obtained bounds will depend on the margins of all

the competent models (factor D′; see Equation 6). Intuitively, as was pointed

out in [37], the only margins that should matter for a given example are those of

the classifiers placed in the path of the tree followed by the classification process

of that example.

In fact, the ideas proposed in this paper head in that direction. On the one

hand, the metric of Equation 4 allows us to locate the classifiers with a larger

margin at the nodes near the root of the tree, which are the nodes shared by more

branches. On the other hand, applying the second algorithm from Section 3.5

reduces the number of competent models of any class in any branch from an

order of m in a DDAG to, at most, log2m. Both proposals taken together hence

help decrease the value of Equation 6, restricted just to the competent models

of a particular branch.

4. Experimental results

This section reports the results of the experiments carried out to evaluate the

proposed ideas for constructing a DBT multi-class classifier based on pairwise

models. The experiments were designed so as to perform an in-depth compar-

ative study of all the different tree structures described throughout the paper.

The main hypothesis we aim to prove is that the arrangement of binary models

in a tree structure affects both the classification performance and the evalua-

tion time of the resulting classifier. Section 4.1 describes the settings used in

17

the experiments: data sets, learning methods, base learner and the procedures

to set parameters. Sections 4.2 and 4.3 respectively discuss the classification

performance and the evaluation time of the compared methods on benchmark

data sets. Finally, in Section 4.4 a DBT multi-class classifier is used in a real

application.

4.1. Experimental settings

The data sets used in the experiments are described in Table 1, most of which

were taken from the UCI repository [2]. We selected those data sets having

continuous or ordinal attribute values and no more than 11000 examples, and

we excluded those with missing values and with less than 4 classes. We wished

to include the three data sets used in [37]. However, finally, only the USPS digit

data set was used, since no results were obtained in a reasonable time under

our experimental framework (see below) for the other two (Letter recognition

and Covertype) due to the high number of examples. We also employed a group

of five meteorological weather station data sets1 with a high number of classes.

One of these was finally discarded because, once again, no results were obtained

in a reasonable time.

We compared the original DDAGs proposed in [37] and the ADAGs [27]

(see Section 2), with several implementations of DBTs (see Section 3). Each

different version of a DBT comes from combining one of the two algorithms

described in Section 3.5 with one of the metrics from Section 3.4. Recall that

both algorithms differ in the rule used for selecting the binary model placed at

each node. They will be labeled as:

• DBT1x: the binary model selected is the one between the two classes with

the most distance between them.

• DBT2x: the binary model selected involves the two classes with the most

distance between them, among those classes with less appearances in the

path of that node.

1http://www.uni-marburg.de/fb12/kebi/research/repository/metstatdata.zip

18

The subindex x will describe the metric used. In the results reported here,

we have included only two of the metrics discussed (Section 3.4): Equation 3

(labeled as sv), which is based on the proportion of support vectors, and Equa-

tion 4 (labeled as d), which measures the distance between two classes according

to the value of the optimization function of their pairwise model. We do not

report the results using Equation 1 because they were significantly worse than

those obtained with the other two metrics. Thus, four different DBT versions

are compared: DBT1sv, DBT1d, DBT2sv and DBT2d.

In order to obtain a meaningful comparison, we added SVMovo[20], the one-

vs-one decomposition approach using the max-wins strategy for combining the

outputs of binary classifiers. This selection is justified because SVMovo also

learns the m(m − 1)/2 pairwise models that are needed to construct DDAGs,

ADAGs and DBTs. The base learner to build these pairwise classifiers was

SVM; the implementation used was libsvm [3] with the linear kernel.

The scores reported are the error rate or 0/1 loss estimated by means of

a 5-fold cross-validation repeated 2 times. We did not use the 10-fold proce-

dure, since certain data sets contain too few examples for some classes. The

regularization parameter C was established by performing a grid-search over

the interval C ∈ [10−2, . . . , 102], optimizing the aforementioned loss estimated

through a 2-fold cross validation repeated 5 times. We proceeded performing

two kinds of experiments with regard to parameter C. In the former, the goal is

to individually adjust the value of parameter C for each pairwise model yielded

by one-vs-one decomposition method, allowing that each of them may take a

different value. Once all pairwise classifiers are trained, then the combination

stage of each method is performed. In the latter all the pairwise classifiers of

each method use the same value of C, selecting the value that minimizes the

error rate of the whole multi-class classifier, which includes the combination

strategy.

Following [10], a two-step statistical test procedure was carried out. The

first step consists of a Friedman test of the null hypothesis that states that all

approaches perform equally. Then, in the case of this hypothesis being rejected,

19

a Nemenyi test is performed to compare the methods in a pairwise way. Both

tests are based on the ranks average. The comparison includes 7 algorithms

over 23 data sets, so the critical differences (CD) in the Nemenyi test are 1.8786

and 1.7155 for significance levels of 5% and 10%, respectively.

4.2. Classification performance

The first experiment consists in learning the m(m − 1)/2 pairwise models

yielded by the one-vs-one decomposition approach, adjusting the value of pa-

rameter C to minimize the error rate of each pairwise classifier. Notice that

different values of C can be used for different models. These models are then

used to build all the compared approaches. This guarantees that all the methods

are using exactly the same pairwise classifiers and only differ in the combination

strategy. The scores are summarized in Table 2.

As can be seen, the DDAG algorithm is in general not competitive. In terms

of the average ranks, all the other algorithms outperform DDAG. This is even

clearer in data sets with a larger number of classes (notice that the data sets are

ordered by this value). When the number of classes is equal to or greater than

ten, DDAG is the worst method 7 times out of 122, and in four other cases it

is the second worst algorithm. Notice that in such situations, DBT approaches

are only the worst method once (DBT1sv), while ADAG and SVMovo are the

worst methods two times apiece. Obviously, this suggests that it is in these

situations where a more elaborated arrangement of the pairwise models helps

to reduce the error rate. When the number of classes is smaller, the differences

between tree-based approaches are generally less important.

On the other hand, DBT2d and DBT1sv are the best and the worst tree-

based methods, respectively. It should be noted that the DBTs using the metric

derived from Equation 4, DBT1d and DBT2d, obtain better results than their

counterpart approaches, respectively DBT1sv and DBT2sv based on Equation 3.

2We do not include the results of the wine data set in this statistic because all the ap-

proaches perform equally.

20

Figure 2: Comparison of the error rate in the first experiment of all the methods using the

Nemenyi test. All the approaches use the same pairwise models (the value of parameter C

is adjusted for each pairwise model isolated from the rest). The scale from 1 to 7 shows the

average rank of each method. Those classifiers that are not significantly different at p = 0.05

(above, CD = 1.8786) and at p = 0.10 (below, CD = 1.7155) are linked by a bold line

Similarly, when the DBTs are constructed with the second algorithm from Sec-

tion 3.5, DBT2d and DBT2sv, the results are better than when the first algo-

rithm is used, DBT1d and DBT1sv. All these facts support the finding that the

best performance is obtained using the metric of Equation 4 with the second

greedy algorithm proposed.

Although all the approaches in this experiment use the same pairwise mod-

els, sometimes the differences are quite big. This happens again more clearly

when the number of classes is larger. For instance, in the case of the libras-

movement data set, the difference can be of up to two points, in a problem with

an error rate of around 20%. Of course, the differences are much smaller in

other cases. In fact, all the methods perform equally in three data sets (soy-

21

beansmall, dermatology and wine), which means that the combination strategy

sometimes does not make any difference and the errors are only due to the

pairwise classifiers.

Analyzing the results shown in Figure 2 from a statistical perspective, the

Friedman test suggests that there are significant differences between the meth-

ods and the Nemenyi test indicates that DDAG is significantly worse than

SVMovo (at a confidence level of 95%) and than DBT2d and DBT1d (90%). It

should be stressed here that there are no significant differences between SVMovo

and all the DBT approaches, a fact that also occurs with ADAG.

It is well known that C is a crucial parameter when learning SVM classifiers.

Therefore, in order to better analyze the studied combination strategies, in the

second experiment each multi-class classifier adjusts the value of C as a whole.

In this case, the selection is made considering the accuracy of the whole multi-

class classifier, including the combination scheme. Notice that now, pairwise

models for a multi-class classifier will have the same value of C, but it can be

different for the pairwise models of other multi-class classifier method. Table 3

shows these scores.

The first conclusion is that the differences between the approaches are now

greater. Only in the soybeansmall data set do all the methods obtain the same

result. The error reduction between the worst and the best algorithm is 8.3%

on average, while in the previous experiment it was just 4.7%. In the first

experiment, this kind of reduction was greater than 10% in only three data sets;

whereas in the second experiment this occurs eight times. For instance, this

reduction is 19.98% in the librasmovement data set, from 22.22 for DDAG to

17.78 for DBT2sv. This means that the differences between these methods can

sometimes be greater in practice that one might expect.

In the second experiment, the best algorithm is not SVMovo, but DBT2d.

Moreover, two other DBT versions, DBT1d and DBT2sv perform almost the

same as SVMovo. This suggests that DBT approaches benefit more than SVMovo

from adjusting the value of C, although it should be noted that the differences

between them are quite small. However, these differences increase if we consider

22

Figure 3: Comparison of the error rate in the second experiment of all the methods using

the Nemenyi test. The compared approaches may use different pairwise models (the value of

parameter C is adjusted for the whole multi-class classifier). The scale from 1 to 7 shows the

average rank of each method. Those classifiers that are not significantly different at p = 0.05

(above, CD = 1.8786) and at p = 0.10 (below, CD = 1.7155) are linked by a bold line

only data sets with ten or more classes. The average rank in these problems is

3.69 for SVMovo and 2.77 for DBT2d. If one goes up, then the other goes down,

but still the difference is not statistically significant.

As regards DBT methods, the second greedy algorithm and the metric of

Equation 4 once more seem to be the best options. In this experiment, DBT1d

and DBT2sv perform almost equally. On the other hand, DDAG once again

continues to be the worst method, more clearly so in data sets with a larger

number of classes. Even when the method can search for a proper value for

the learning parameters, the results are still worse. This clearly implies that

the shortcomings of this method are due to the imposed constraints of the tree

structure.

23

From a statistical point of view (see Figure 3) the conclusions of this ex-

periment are similar to those of the first experiment: there are no differences

between the DBT approaches, SVMovo and ADAG, while the Nemenyi test in-

dicates that DDAG is significantly worse than DBT2d (at a confidence level of

95%) and SVMovo, DBT1d and DBT2sv (90%).

The main conclusions to be drawn from both experiments are that DBT

algorithms improve the classification performance of decomposition approaches

based on trees and are very competitive with respect to the one-vs-one approach.

This study also reveals that this does not occur with previous methods based on

trees, particularly in the case of DDAG. Moreover, the algorithms proposed in

Section 3.5 do not imply any computational overhead, so DBT approaches can

be considered by practitioners in real-world applications, mainly in multi-class

tasks in which the number of classes is large.

4.3. Evaluation time

An advantage of multi-class classifiers based on tree-combination schemes is

that they speed up testing predictions. In order to compare the evaluation time

employed for each method, we used the number of kernel evaluations. This is a

good indicator of evaluation time when the base learner is a kernel method, like

SVM, because the lower the number of kernel evaluations, the lower the time

required for the testing stage. This approach was previously used in the same

context by Platt et al. [37].

Table 4 shows the number of kernel evaluations of the different methods in

the testing stage. The scores correspond to the first experiment reported in

the previous section, in which all the methods use the same pairwise models.

Consequently, the differences are due only to the combination strategy. We

included an additional method, called QWeighted [35] and labelled as SVMqw,

which intelligently evaluates only the pairwise classifiers that are actually nec-

essary to predict the same class as SVMovo. The main idea underlying this

method is that, during the voting procedure of SVMovo, there exist many situa-

tions in which some classes may be excluded from the set of possible most-voted

24

Figure 4: Comparison of the number of kernel evaluations of all the methods using the Nemenyi

test. Notice that 8 algorithms are compared in this case. Thus, the critical differences are

now CD = 2.1893, p = 0.05 (above), and CD = 2.0080 at p = 0.10 (below)

classes, even if they would win their remaining evaluations. This reduced the

evaluations needed from m(m − 1)/2 to only m logm in practice. To the best

of our knowledge, QWeighted is the fastest algorithm to implement the testing

procedure of SVMovo.

The behavior of SVMovo was clearly expected, since all pairwise models need

to be evaluated. Similarly, it was also presumed that DBT1sv would perform

well, seeing as this method accurately attaches classifiers with less support vec-

tors to nodes belonging to the upper levels of the DBT. These nodes are the

ones that evaluate the most number of examples. Therefore, it is worth noting

that DBT1d had the fastest evaluation, better than DBT1sv. The difference

between them is quite small, but it means that Equation 4 is not only better in

25

terms of accuracy, but also as good as Equation 3 as regards evaluation time.

Furthermore, the differences between all the tree-based algorithms are small,

the biggest difference being between DBT1d and ADAG, which is a factor of 1.5

times slower.

The differences with respect to other approaches are greater: DBT1d is a

factor of 5.8 times faster to evaluate than SVMovo, and 1.8 faster than SVMqw.

These factors respectively increase to 6.62 and 1.87 if we consider only data

sets with ten or more classes. Notice that in contrast to SVMqw, DBT1d pro-

vides a deterministic and fixed testing strategy, while SVMqw needs to run the

QWeighted algorithm to test every example. We did not consider this additional

computational time here.

The Friedman-Nemenyi test (see Figure 4) indicates that DBT1d and DBT1sv

are significantly better in terms of kernel evaluations than DDAG, ADAG,

SVMqw and SVMovo. There are no differences between DBT approaches, while

DDAG and ADAG are only significantly better than SVMovo, but not with

respect to SVMqw.

4.4. Real application

We also tested our proposal in a real application. Data consist of a col-

lection of spectra obtained using near infrared reflectance microscopy (NIRM)

[40] from animal feed samples taken at the Department of Animal Nutrition,

Grasslands and Forages of the Regional Institute for Research and Agro-Food

Development in Spain. These spectra were collected using a Fourier transform

near infrared reflectance (FT-NIR) instrument attached to a microscope with

an optical system designed to increase the efficiency of radiation transmission.

Each spectrum is a set of absorbances (capacity of a substance to absorb light)

in an interval of wavelengths. The interest of dealing with these data lies in

detecting the ingredient of animal feed samples in an attempt on the part of the

European Union of stopping the spread of bovine spongiform encephalopathy.

In fact, NIRM has been proposed as an alternative of classical microscopy for

identifying ingredients in animal feeds.

26

The data consists of 196 samples of 13 ingredients (classes), whose spectra

were averaged after removing the trend of each spectrum and where each in-

gredient had at least 5 samples. The scores reported in Table 5 are the error

rate and the average number of kernel evaluations using the same setting of the

second experiment.

As it can be seen, DBT2d shows better performance than the rest of meth-

ods, also ameliorating the results reported in [18]. With regard to SVMovo,

DBT2d slightly improves the error rate and, at the same time, it considerably

reduces the number of kernel evaluations (in more than 80%). Indeed, these

results confirm some conclusions derived from the experiments performed over

benchmark data sets. For instance, the ranking orders in terms of error rate

and kernel evaluations keep similar. Moreover, these results also corroborate

that DBT2d performs particularly well when the number of classes is large.

5. Conclusions and future work

This paper analyzes the influence of the arrangement of the pairwise classi-

fiers in tree structures. Placing classifiers of classes that are hard to separate

in the lower levels of the tree leads to an improvement in the generalization

ability of the resulting multi-class classifier. Among several structures, Directed

Binary Trees (DBTs) are preferable, since they impose less constraints while at

the same time they increase their flexibility.

The experiments carried out clearly show that the original random choice

for the location of the models is not a good practice either in terms of error rate

or prediction time, particularly for problems with a large number of classes.

Hence, a guided arrangement leads to an overall improvement. In terms of

the error rate, the methods proposed in this paper for locating the pairwise

models are comparable and sometimes better than the one-vs-one decomposition

approach combined with max-wins strategy. They also outperform previous

tree-based methods such as DDAG and ADAG. As regards the computational

time employed in the test stage, DBTs are faster than the rest of the compared

27

approaches. They may therefore be very useful in the highly time-consuming

experimental processes commonly performed by practitioners to estimate the

true error of several algorithms for a given task.

In summary, DBT multi-class classifiers improve the classification perfor-

mance and evaluation time of previous decomposition approaches based on trees

and are very competitive with respect to the one-vs-one approach. This is even

truer for multi-class data sets in which the number of classes is large. Our as-

sumption is that DBTs are very well-suited for problems of this kind, because

instead of taking into account the predictions of all pairwise models, they can

mainly consider the decision of the binary classifier involving the two principal

candidate classes, for instance, whether said model is placed near or just before

the leaves.

The study has been particularized to the special case of using Support Vector

Machines (SVMs) as binary classifiers. In this sense, it would be interesting as

future work to extend the proposal to other binary classifiers in order to check

if the performance of the DBTs and the strategy proposed remain.

Acknowledgments

The research reported in this paper has been partially supported by Spanish

Ministerio de Economı́a y Competitividad (grant TIN2011-23558). Besides, we

would like to thank Begoña de la Roza and Ana Soldado from the Department of

Animal Nutrition, Grasslands and Forages of the Regional Institute for Research

and Agro-Food Development (SERIDA) for providing us with their animal feed

data set.

References

[1] E. Allwein, R. Schapire, Y. Singer, Reducing multiclass to binary: A unify-

ing approach for margin classifiers, Journal of Machine Learning Research

1 (2001) 113–141.

[2] A. Asuncion, D. Newman, UCI machine learning repository, 2007.

28

[3] C. Chang, C. Lin, LIBSVM: a library for support vector machines, 2001.

[4] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple

parameters for support vector machines, Machine Learning 46 (2002) 131–

159.

[5] J. Chen, C. Wang, R. Wang, Adaptive binary tree for fast svm multiclass

classification, Neurocomputing 72 (2009) 3370 – 3375.

[6] P. Chen, s. Liu, An improved dag-svm for multi-class classification, in:

International Conference on Natural Computation (ICNC ’09), volume 1,

pp. 460–462.

[7] K. Crammer, Y. Singer, On the algorithmic implementation of multiclass

kernel-based vector machines, Journal of Machine Learning Research 2

(2001) 265–292.

[8] K. Crammer, Y. Singer, On the learnability and design of output codes for

multiclass problems, Machine Learning 47 (2002) 201–233.

[9] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Ma-

chines and other kernel-based learning methods, Cambridge University

Press, 2000.

[10] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine Learning Research 7 (2006) 30.

[11] T. Dietterich, G. Bakiri, Solving multiclass learning problems via error-

correcting output codes, Journal of Artificial Intelligence Research 2 (1995)

263–286.

[12] J. Dı́ez, J. del Coz, A. Bahamonde, O. Luaces, Soft margin trees, in:

W. Buntine, M. Grobelnik, D. Mladenic, J. Shawe-Taylor (Eds.), Machine

Learning and Knowledge Discovery in Databases, volume 5781 of Lecture

Notes in Computer Science, Springer Berlin / Heidelberg, 2009, pp. 302–

314.

29

[13] J. Fakcharoenphol, B. Kijsirikul, Constructing multiclass learners from bi-

nary learners: A simple black-box analysis of the generalization errors,

in: S. Jain, H.U. Simon, E. Tomita (Eds.), Algorithmic Learning Theory,

volume 3734 of Lecture Notes in Computer Science, Springer Berlin / Hei-

delberg, 2005, pp. 135–147.

[14] J. Fakcharoenphol, B. Kijsirikul, Erratum: Constructing multiclass learners

from binary learners: A simple black-box analysis of the generalization

errors, in: Proceedings of the 19th international conference on Algorithmic

Learning Theory, ALT ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp.

464–466.

[15] N. Farajzadeh, G. Pan, Z. Wu, M. Yao, Multiclass classification based on

meta probability codes, IJPRAI 25 (2011) 1219–1241.

[16] B. Fei, J. Liu, Binary tree of svm: a new fast multiclass training and classi-

fication algorithm, IEEE Transactions on Neural Networks (2006) 696–704.

[17] J. Feng, Y. Yang, J. Fan, Fuzzy multi-class svm classifier based on opti-

mal directed acyclic graph using in similar handwritten chinese characters

recognition, in: International Symposium on Neural Networks (ISNN ’05),

volume 3496, pp. 875–880.

[18] V. Fernández-Ibáñez, T. Fearn, E. Montañés, J. Quevedo, A. Soldado,

B. de la Roza-Delgado, Improving the discriminatory power of a near-

infrared microscopy spectral library with a support vector machine clas-

sifier, Applied Spectroscopy 64 (2010) 46–52.

[19] E. Frank, S. Kramer, Ensembles of nested dichotomies for multi-class prob-

lems, in: International Conference of Machine Learning (ICML ’04), pp.

305–312.

[20] J. Friedman, Another approach to polychotomous classification, Technical

Report, Department of Statistics, Stanford University, 1996.

30

[21] J. Fürnkranz, Round robin classification, Journal of Machine Learning Re-

search 2 (2002) 721–747.

[22] N. Garćıa-Pedrajas, D. Ort́ız-Boyer, Improving multiclass pattern recogni-

tion by the combination of two strategies, Pattern Analysis and Machine

Intelligence, IEEE Transactions on 28 (2006) 1001 –1006.

[23] N. Garćıa-Pedrajas, D. Ort́ız-Boyer, An empirical study of binary classifier

fusion methods for multiclass classification, Inf. Fusion 12 (2011) 111–130.

[24] T. Hastie, R. Tibshirani, Classification by pairwise coupling, in: NIPS ’97,

MIT Press, Cambridge, MA, USA, 1998, pp. 507–513.

[25] C. Hsu, C. Lin, A comparison of methods for multiclass support vector

machines, IEEE Transactions on Neural Networks 13 (2002) 415–425.

[26] T. Joachims, Text categorization with support vector machines: learning

with many relevant features, in: C. Nédellec, C. Rouveirol (Eds.), Pro-

ceedings of ECML-98, 10th European Conference on Machine Learning,

Springer, Heidelberg et al., 1998, pp. 137–142.

[27] B. Kijsirikul, N. Ussivakul, Multiclass support vector machines using adap-

tive directed acyclic graph, in: Int. Joint Conf. on Neural Networks (IJCNN

’02), pp. 980–985.

[28] A. Klautau, N. Jevtić, A. Orlitsky, On nearest-neighbor error-correcting

output codes with application to all-pairs multiclass support vector ma-

chines, Journal of Machine Learning Research 4 (2003) 1–15.

[29] Y. Lee, Y. Lin, G. Wahba, Multicategory Support Vector Machines: The-

ory and Application to the Classification of Microarray Data and Satellite

Radiance Data., Journal of the American Statistical Association 99 (2004)

67–82.

[30] A. Lorena, A. Carvalho, J. Gama, A review on the combination of binary

classifiers in multiclass problems, Artificial Intelligence Review 30 (2008)

19–37.

31

[31] W. Maass, On the Computational Power of Winner-Take-All, Neural Com-

putation 12 (2000) 2519–2535.

[32] G. Madzarov, D. Gjorgjevikj, I. Chorbev, A multi-class svm classifier uti-

lizing binary decision tree., Informatica (Slovenia) 33 (2009) 225–233.

[33] O. Murphy, R. McCraw, Designing storage efficient decision trees, Com-

puters, IEEE Transactions on 40 (1991) 315 –320.

[34] T.H. Oong, N.A.M. Isa, One-against-all ensemble for multiclass pattern

classification, Applied Soft Computing 12 (2012) 1303 – 1308.

[35] S.H. Park, J. Fürnkranz, Efficient pairwise classification, in: J.N. Kok,

J. Koronacki, R. López de Mántaras, S. Matwin, D. Mladenić, A. Skowron

(Eds.), Proceedings of 18th European Conference on Machine Learning

(ECML-07), Springer-Verlag, Warsaw, Poland, 2007, pp. 658–665.

[36] A. Passerini, M. Pontil, P. Frasconi, New results on error correcting output

codes of kernel machines, IEEE Transactions on Neural Networks 15 (2004)

45–54.

[37] J. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGs for multiclass

classification, in: NIPS ’00, pp. 547–553.

[38] J. Quevedo, A. Bahamonde, M. Pérez-Enciso, O. Luaces, Disease liability

prediction from large scale genotyping data using classifiers with a reject

option, Computational Biology and Bioinformatics, IEEE/ACM Transac-

tions on 9 (2012) 88 –97.

[39] R. Rifkin, A. Klautau, In defense of one-vs-all classification, Journal of

Machine Learning Research 5 (2004) 101–141.

[40] B. de la Roza-Delgado, A. Soldado, A. Mart́ınez-Fernandez, F. Vicente,

A. Garrido-Varo, D. Pérez-Maŕın, M. de la Haba, J. Guerrero-Ginel, Ap-

plication of near-infrared microscopy (nirm) for the detection of meat and

32

bone meals in animal feeds: A tool for food and feed safety, Food Chemistry

105 (2007) 1164–1170.

[41] W.R. T. Phetkaew, B. Kijsirikul, Reordering adaptive directed acyclic

graphs: an improved algorithm for multiclass support vector machines, in:

International Joint Conference on Neural Networks (IJCNN ’03), volume 2,

pp. 1605–1610.

[42] F. Takahashi, S. Abe, Optimizing directed acyclic graph support vector

machines, in: Artificial Neural Networks in Pattern Recognition (ANNPR

’03), pp. 166–170.

[43] R. Tibshirani, T. Hastie, Margin trees for high-dimensional classification,

Journal of Machine Learning Research 8 (2007) 637–652.

[44] V. Vapnik, The nature of statistical learning theory, Springer-Verlag New

York, Inc., New York, NY, USA, 1995.

[45] J. Weston, C. Watkins, Support vector machines for multi-class pattern

recognition, in: Proceedings of the 6th European Symposium on Artificial

Neural Networks (ESANN).

[46] T. Windeatt, R. Ghaderi, Coding and decoding strategies for multi-class

learning problems, Information Fusion 4 (2003) 11 – 21.

[47] J. Zhou, H. Peng, C.Y. Suen, Data-driven decomposition for multi-class

classification, Pattern Recognition 41 (2008) 67 – 76.

33

Table 1: Statistics for the multi-class data sets used in the experiments, ordered by the number

of classes

Data set #classes #att. #ex.

soybeansmall 4 35 47

vehicle 4 18 846

car evaluation 4 6 1728

pageblocks 5 10 5473

glass 6 9 214

dermatology 6 33 366

landsat 6 36 6435

zoo 7 16 101

image seg. 7 19 2310

ecoli 8 7 336

wine 10 13 178

led1000 10 7 1000

yeast 10 8 1484

semeion 10 256 1593

optdigits 10 64 5620

usps 10 257 9298

pendigits 10 16 10992

vowel 11 11 990

metStatLocRST 12 3 336

metStatLocSunshine 14 12 422

metStatTemperature 15 12 673

librasmovement 15 91 360

metStatLocRainfall 16 12 4748

34

T
a
b

le
2
:

E
rr

o
r

p
er

ce
n
ta

g
e

o
f

co
m

p
a
re

d
m

et
h

o
d

s,
a
ll

o
f

w
h

ic
h

u
se

th
e

sa
m

e
p

a
ir

w
is

e
cl

a
ss

ifi
er

s
(p

a
ra

m
et

er
C

w
a
s

es
ta

b
li
sh

ed
to

m
in

im
iz

e
th

e
er

ro
r

ra
te

o
f

ea
ch

in
d

iv
id

u
a
l

p
a
ir

w
is

e
cl

a
ss

ifi
er

).
T

h
e

n
u

m
b

er
in

p
a
re

n
th

es
es

b
eh

in
d

th
e

er
ro

r
ra

te
is

th
e

ra
n

k
(i

n
d

ec
re

a
si

n
g

o
rd

er
)

o
f

th
e

m
et

h
o
d

o
n

th
e

co
rr

es
p

o
n

d
in

g
d

a
ta

se
t.

T
h

e
a
v
er

a
g
e

ra
n

k
is

th
e

a
v
er

a
g
e

o
f

th
e

ra
n

k
s

a
cr

o
ss

a
ll

d
a
ta

se
ts

S
V

M
o
v
o

D
D

A
G

D
B

T
1
s
v

D
B

T
1
d

A
D

A
G

D
B

T
2 s

v
D

B
T

2
d

D
at

a
se

t
0
/1

R
an

k
0/

1
R

an
k

0/
1

R
a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k

so
y
b

ea
n

sm
al

l
0
.0

0
(4

)
0.

00
(4

)
0.

0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

ve
h

ic
le

19
.9

8
(7

)
19
.8

0
(5
.5

)
1
9
.5

0
(3

)
1
9.

5
0

(2
)

1
9.

4
5

(1
)

1
9.

8
0

(5
.5

)
1
9
.7

4
(4

)

ca
r

14
.2

9
(2

)
14
.9

3
(6

)
1
5.

3
9

(7
)

1
4.

1
5

(1
)

1
4.

3
5

(3
.5

)
1
4
.4

7
(5

)
1
4.

3
5

(3
.5

)

p
ag

eb
lo

ck
s

3
.5

3
(1

)
3.

54
(2

)
3.

6
5

(6
)

3.
5
7

(4
)

3.
7
0

(7
)

3.
5
5

(3
)

3.
5
9

(5
)

gl
as

s
33
.4

3
(4
.5

)
3
3
.8

9
(6
.5

)
3
3
.4

3
(4
.5

)
3
3
.2

0
(2

)
3
3.

8
9

(6
.5

)
3
3
.1

9
(1

)
3
3.

2
0

(3
)

d
er

m
at

ol
og

y
3.

55
(4

)
3.

55
(4

)
3.

5
5

(4
)

3.
5
5

(4
)

3.
5
5

(4
)

3.
5
5

(4
)

3.
5
5

(4
)

la
n

d
sa

t
13
.0

5
(4

)
13
.0

1
(2

)
1
3.

1
2

(6
.5

)
1
3
.1

2
(6
.5

)
1
2
.9

8
(1

)
1
3.

0
5

(4
)

1
3.

0
5

(4
)

zo
o

4.
98

(5
)

4.
98

(5
)

4.
9
8

(5
)

3.
9
8

(1
.5

)
4
.9

8
(5

)
3.

9
8

(1
.5

)
4
.9

8
(5

)

im
ag

e
4.

00
(1

)
4.

09
(4

)
4.

1
1

(5
.5

)
4
.1

1
(5
.5

)
4
.0

5
(2
.5

)
4
.0

5
(2
.5

)
4
.1

3
(7

)

ec
ol

i
11
.7

5
(2

)
11
.9

0
(5
.5

)
1
1
.9

0
(5
.5

)
1
1
.7

5
(2

)
1
1.

9
0

(5
.5

)
1
1
.7

5
(2

)
1
1.

9
0

(5
.5

)

w
in

e
3
.6

7
(4

)
3.

67
(4

)
3.

6
7

(4
)

3.
6
7

(4
)

3.
6
7

(4
)

3.
6
7

(4
)

3.
6
7

(4
)

le
d

10
00

27
.9

0
(2

)
27
.8

5
(1

)
2
8.

8
5

(7
)

2
8.

5
5

(5
)

2
8.

4
5

(4
)

2
8.

8
0

(6
)

2
8.

1
5

(3
)

ye
as

t
41
.5

4
(7

)
41
.4

7
(6

)
4
1.

4
1

(4
)

4
1.

4
4

(5
)

4
1.

2
4

(1
.5

)
4
1
.3

1
(3

)
4
1.

2
4

(1
.5

)

se
m

ei
on

6
.5

6
(2

)
6.

81
(6

)
6.

5
3

(1
)

6.
6
9

(4
)

6.
8
8

(7
)

6.
6
9

(3
)

6.
7
5

(5
)

op
td

ig
it

s
1
.8

6
(1

)
2.

04
(7

)
1.

9
6

(4
)

1.
9
8

(5
)

1.
9
0

(2
)

2.
0
0

(6
)

1.
9
2

(3
)

u
sp

s
4
.1

5
(4

)
4.

23
(7

)
4.

1
5

(3
)

4.
1
1

(1
)

4.
1
6

(5
)

4.
1
6

(6
)

4.
1
2

(2
)

p
en

d
ig

it
s

1
.7

6
(1

)
1.

99
(7

)
1.

8
4

(5
)

1.
8
4

(4
)

1.
8
7

(6
)

1.
8
3

(3
)

1.
8
0

(2
)

vo
w

el
19
.1

4
(1

)
20
.4

6
(7

)
1
9.

8
5

(5
)

1
9.

7
5

(4
)

1
9.

5
5

(2
.5

)
1
9
.9

5
(6

)
1
9.

5
5

(2
.5

)

m
S

L
o
cR

S
T

61
.1

7
(1

)
62
.0

6
(7

)
6
1.

6
1

(4
)

6
1.

1
7

(2
)

6
1.

6
1

(3
)

6
1.

9
1

(5
.5

)
6
1
.9

1
(5
.5

)

m
S

L
o
cS

u
n

.
29
.9

8
(7

)
29
.9

8
(6

)
2
9.

8
6

(5
)

2
9.

7
4

(4
)

2
9.

2
7

(1
)

2
9.

7
4

(3
)

2
9.

5
1

(2
)

m
S

T
em

p
.

23
.6

2
(3

)
24
.2

9
(6

)
2
4.

0
7

(5
)

2
3.

5
5

(2
)

2
4.

3
7

(7
)

2
3.

7
0

(4
)

2
3.

3
3

(1
)

li
b

ra
sm

ov
e.

19
.1

7
(5
.5

)
20
.5

6
(7

)
1
8.

4
7

(3
)

1
9.

0
3

(4
)

1
9.

1
7

(5
.5

)
1
7
.7

8
(1

)
1
8.

3
3

(2
)

m
S

L
o
cR

ai
n

.
22
.8

8
(1
.5

)
23
.0

8
(7

)
2
2.

9
1

(3
)

2
3.

0
3

(5
)

2
3.

0
5

(6
)

2
3.

0
3

(4
)

2
2.

8
8

(1
.5

)

A
v
g.

ra
n

k
(3
.2

4)
(5
.3

3
)

(4
.5

2
)

(3
.5

4
)

(4
.1

1
)

(3
.7

8
)

(3
.4

8
)

35

T
a
b

le
3
:

E
rr

o
r

p
er

ce
n
ta

g
e

o
f

th
e

co
m

p
a
re

d
m

et
h

o
d

s
u

si
n

g
d

iff
er

en
t

p
a
ir

w
is

e
cl

a
ss

ifi
er

s
(p

a
ra

m
et

er
C

w
a
s

es
ta

b
li
sh

ed
to

m
in

im
iz

e
th

e
er

ro
r

ra
te

o
f

ea
ch

m
et

h
o
d

).
T

h
e

n
u

m
b

er
in

p
a
re

n
th

es
es

b
eh

in
d

th
e

er
ro

r
ra

te
is

th
e

ra
n

k
(i

n
d

ec
re

a
si

n
g

o
rd

er
)

o
f

th
e

m
et

h
o
d

o
n

th
e

co
rr

es
p

o
n

d
in

g
d

a
ta

se
t.

T
h

e

a
v
er

a
g
e

ra
n

k
is

th
e

a
v
er

a
g
e

o
f

th
e

ra
n

k
s

a
cr

o
ss

a
ll

d
a
ta

se
ts

S
V

M
o
v
o

D
D

A
G

D
B

T
1
s
v

D
B

T
1
d

A
D

A
G

D
B

T
2 s

v
D

B
T

2
d

D
at

a
se

t
0
/1

R
an

k
0/

1
R

an
k

0/
1

R
a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k
0/

1
R

a
n

k

so
y
b

ea
n

sm
al

l
0
.0

0
(4

)
0.

00
(4

)
0.

0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

0.
0
0

(4
)

ve
h

ic
le

19
.4

4
(1

)
19
.5

6
(2

)
2
0.

1
6

(6
)

1
9.

6
8

(3
)

2
0.

0
4

(5
)

2
0.

2
7

(7
)

1
9.

9
8

(4
)

ca
r

14
.4

4
(4

)
14
.7

6
(6

)
1
5.

3
9

(7
)

1
4.

2
4

(1
)

1
4.

3
2

(2
)

1
4.

6
4

(5
)

1
4.

3
8

(3
)

p
ag

eb
lo

ck
s

3
.2

7
(1

)
3.

64
(6

)
3.

7
6

(7
)

3.
3
2

(2
)

3.
4
9

(4
)

3.
5
7

(5
)

3.
4
6

(3
)

gl
as

s
36
.9

1
(6

)
37
.1

4
(7

)
3
3.

2
0

(2
.5

)
3
5
.5

1
(5

)
3
3.

4
3

(4
)

3
3.

2
0

(2
.5

)
3
2
.7

4
(1

)

d
er

m
at

ol
og

y
3.

56
(6

)
3.

28
(1

)
3.

5
5

(3
.5

)
3
.6

9
(7

)
3.

5
5

(3
.5

)
3
.5

5
(3
.5

)
3
.5

5
(3
.5

)

la
n

d
sa

t
13
.1

2
(4
.5

)
1
3
.1

7
(7

)
1
3.

1
2

(4
.5

)
1
3
.1

4
(6

)
1
3.

0
9

(3
)

1
3.

0
5

(1
)

1
3.

0
9

(2
)

zo
o

4.
95

(4
)

4.
48

(3
)

4.
9
8

(6
)

3.
9
8

(1
.5

)
4
.9

8
(6

)
4.

9
8

(6
)

3.
9
8

(1
.5

)

im
ag

e
3.

70
(1

)
3.

79
(2
.5

)
4
.1

6
(6
.5

)
3
.7

9
(2
.5

)
4
.1

3
(5

)
4.

0
9

(4
)

4.
1
6

(6
.5

)

ec
ol

i
10
.9

9
(1
.5

)
11
.1

4
(3

)
1
1.

9
0

(6
.5

)
1
0
.9

9
(1
.5

)
1
1
.7

5
(4
.5

)
1
1
.7

5
(4
.5

)
1
1
.9

0
(6
.5

)

w
in

e
3
.6

7
(4

)
3.

94
(5

)
3.

3
8

(1
.5

)
3
.6

6
(3

)
3.

9
5
2

(6
.5

)
3
.3

8
(1
.5

)
3
.9

5
(6
.5

)

le
d

10
00

28
.1

0
(2

)
28
.5

0
(5

)
2
8.

6
0

(6
)

2
8.

4
0

(4
)

2
8.

0
0

(1
)

2
8.

8
0

(7
)

2
8.

2
0

(3
)

ye
as

t
41
.9

5
(6

)
42
.1

2
(7

)
4
1.

5
8

(4
)

4
1.

8
1

(5
)

4
1.

5
4

(3
)

4
1.

4
8

(2
)

4
1.

3
7

(1
)

se
m

ei
on

6
.8

1
(5

)
7.

19
(7

)
6.

5
3

(1
)

6.
8
4

(6
)

6.
7
5

(4
)

6.
6
9

(3
)

6.
6
2

(2
)

op
td

ig
it

s
1
.9

1
(2

)
2.

03
(7

)
1.

9
6

(4
)

1.
8
9

(1
)

2.
0
0

(5
.5

)
2
.0

0
(5
.5

)
1
.9

2
(3

)

u
sp

s
4
.3

4
(6

)
4.

36
(7

)
4.

1
5

(2
)

4.
3
3

(5
)

4.
1
7

(4
)

4.
1
6

(3
)

4.
1
2

(1
)

p
en

d
ig

it
s

1
.8

7
(4

)
2.

12
(7

)
1.

8
4

(3
)

1.
9
7

(6
)

1.
8
9

(5
)

1.
8
3

(2
)

1.
7
9

(1
)

vo
w

el
19
.0

9
(1

)
20
.7

1
(7

)
2
0.

0
0

(5
)

1
9.

5
0

(2
)

2
0.

0
1

(6
)

1
9.

9
5

(4
)

1
9.

5
5

(3
)

m
S

L
o
cR

S
T

61
.1

7
(1

)
61
.4

6
(3

)
6
1.

6
2

(5
)

6
1.

1
7

(2
)

6
2.

0
6

(7
)

6
1.

9
1

(6
)

6
1.

6
1

(4
)

m
S

L
o
cS

u
n

.
29
.9

8
(7

)
29
.8

6
(6

)
2
9.

8
6

(5
)

2
9.

7
4

(4
)

2
9.

1
5

(1
)

2
9.

7
4

(3
)

2
9.

5
1

(2
)

m
S

T
em

p
.

23
.0

2
(3

)
23
.6

9
(7

)
2
3.

6
2

(6
)

2
2.

8
8

(2
)

2
3.

0
2

(4
.5

)
2
2
.7

3
(1

)
2
3.

0
2

(4
.5

)

li
b

ra
sm

ov
e.

21
.1

1
(6

)
22
.2

2
(7

)
1
8.

4
7

(3
)

1
8.

8
9

(4
)

1
9.

5
8

(5
)

1
7.

7
8

(1
)

1
8.

3
3

(2
)

m
S

L
o
cR

ai
n

.
22
.8

1
(1

)
23
.3

6
(7

)
2
2.

9
3

(4
)

2
3.

0
2

(6
)

2
2.

9
7

(5
)

2
2.

8
7

(2
)

2
2.

9
0

(3
)

A
v
g.

ra
n

k
(3
.5

2)
(5
.3

7
)

(4
.4

8
)

(3
.6

3
)

(4
.2

8
)

(3
.6

3
)

(3
.0

9
)

36

T
a
b

le
4
:

N
u

m
b

er
o
f

k
er

n
el

ev
a
lu

a
ti

o
n

s
in

th
e

te
st

in
g

st
a
g
e

fo
r

a
ll

th
e

m
et

h
o
d

s.
T

h
e

n
u

m
b

er
in

p
a
re

n
th

es
es

is
th

e
ra

n
k

(s
ee

ex
p

la
n

a
ti

o
n

in
T

a
b

le
2
)

S
V
M

o
v
o

S
V
M

q
w

D
D
A
G

D
B
T
1
s
v

D
B
T
1
d

A
D
A
G

D
B
T
2
s
v

D
B
T
2
d

D
a
ta

se
t

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

#
e
v
a
l.

R
a
n
k

so
y
b
e
a
n
sm

a
ll

3
4
3
.6

(8
)

2
2
2
.9

(7
)

1
8
6
.4

(6
)

1
7
1
.2

(1
)

1
7
5
.2

(3
)

1
8
4
.4

(5
)

1
7
7
.6

(4
)

1
7
2
.9

(2
)

v
e
h
ic
le

6
1
4
8
7
.0

(8
)

3
4
1
7
4
.1

(5
)

3
0
6
8
3
.8

(4
)

2
9
4
1
7
.8

(1
)

2
9
4
4
1
.2

(2
)

2
9
9
7
5
.3

(3
)

3
8
6
5
7
.8

(7
)

3
6
7
4
6
.7

(6
)

c
a
r

2
1
2
5
1
0
.2

(8
)

1
9
1
5
6
7
.0

(7
)

1
5
1
4
8
4
.8

(1
)

1
6
3
7
2
0
.6

(4
)

1
5
2
8
3
9
.7

(2
)

1
7
4
2
7
0
.3

(5
.5
)

1
5
3
2
9
7
.2

(3
)

1
7
4
2
7
0
.3

(5
.5
)

p
a
g
e
b
lo
ck

s
3
6
6
2
5
3
.6

(8
)

2
8
1
8
9
0
.6

(7
)

1
5
6
0
1
3
.2

(2
)

2
7
9
6
3
5
.4

(6
)

1
4
2
2
9
7
.1

(1
)

1
7
6
0
8
3
.0

(4
)

1
9
4
9
0
8
.3

(5
)

1
7
5
0
2
9
.6

(3
)

g
la
ss

9
2
1
5
.8

(8
)

5
7
6
7
.5

(7
)

4
2
6
1
.5

(6
)

3
8
9
6
.4

(2
)

3
8
4
9
.0

(1
)

4
2
3
4
.9

(5
)

3
9
6
8
.5

(4
)

3
9
5
9
.6

(3
)

d
e
rm

a
to

lo
g
y

1
3
1
2
3
.5

(8
)

5
7
6
3
.3

(7
)

4
4
9
3
.8

(4
)

4
2
2
0
.6

(2
)

4
1
7
1
.0

(1
)

4
5
9
8
.0

(6
)

4
5
9
2
.2

(5
)

4
3
1
9
.5

(3
)

la
n
d
sa

t
2
5
6
0
2
2
9
.1

(8
)

1
0
1
8
8
7
1
.6

(5
)

1
4
4
3
9
1
5
.1

(7
)

6
0
1
6
5
5
.8

(1
)

6
0
2
6
5
5
.1

(2
)

1
3
9
3
7
1
0
.5

(6
)

7
0
0
4
3
6
.2

(3
.5
)

7
0
0
4
3
6
.2

(3
.5
)

z
o
o

2
1
9
0
.8

(8
)

7
7
8
.7

(7
)

6
3
9
.9

(4
)

5
7
4
.8

(2
)

6
2
5
.9

(3
)

6
9
2
.5

(6
)

6
6
9
.6

(5
)

5
5
9
.6

(1
)

im
a
g
e

1
3
8
1
8
4
.2

(8
)

5
8
5
1
9
.0

(7
)

4
5
9
3
0
.5

(5
)

3
2
8
6
8
.9

(1
)

3
4
1
7
7
.3

(2
)

4
7
9
8
9
.8

(6
)

4
0
2
6
5
.8

(4
)

3
9
3
8
9
.7

(3
)

e
c
o
li

1
3
0
4
2
.2

(8
)

5
9
8
7
.3

(6
)

5
6
6
7
.6

(5
)

4
5
1
7
.0

(3
)

4
0
7
7
.7

(1
)

7
1
0
2
.1

(7
)

4
4
3
0
.2

(2
)

4
5
2
3
.0

(4
)

w
in
e

1
3
2
8
.2

(8
)

1
0
2
6
.3

(7
)

9
6
6
.6

(5
.5
)

8
1
3
.3

(2
.5
)

8
1
3
.3

(2
.5
)

9
6
6
.6

(5
.5
)

8
1
3
.3

(2
.5
)

8
1
3
.3

(2
.5
)

le
d
1
0
0
0

4
8
2
3
0
0
.0

(8
)

1
3
5
0
8
5
.9

(7
)

1
0
0
0
6
7
.7

(5
)

8
4
4
7
9
.7

(1
)

8
5
1
1
4
.2

(2
)

1
0
2
3
2
5
.7

(6
)

9
0
0
8
9
.4

(3
)

9
4
0
1
4
.3

(4
)

y
e
a
st

6
4
7
5
7
9
.6

(8
)

4
4
8
9
8
2
.6

(7
)

2
2
7
7
1
1
.1

(4
)

2
2
4
8
5
9
.9

(3
)

2
0
3
9
6
4
.1

(1
)

2
4
1
5
4
1
.5

(6
)

2
2
2
1
6
1
.2

(2
)

2
3
6
9
2
6
.0

(5
)

se
m
e
io
n

7
4
8
6
8
0
.7

(8
)

2
0
4
3
3
9
.6

(7
)

1
5
6
1
5
1
.1

(5
)

1
3
3
2
4
8
.6

(1
)

1
3
7
2
8
8
.9

(2
)

1
6
2
3
0
5
.6

(6
)

1
4
0
4
1
5
.5

(3
)

1
4
3
3
5
0
.9

(4
)

o
p
td

ig
it
s

1
3
6
8
8
0
7
.2

(8
)

3
7
0
2
2
9
.3

(7
)

2
9
4
5
6
6
.4

(5
)

2
3
5
9
2
6
.9

(1
)

2
4
1
3
4
7
.3

(2
)

3
0
2
2
8
1
.5

(6
)

2
5
3
4
1
3
.8

(3
)

2
6
4
9
3
0
.8

(4
)

u
sp

s
8
9
0
0
2
3
2
.4

(8
)

2
3
2
5
5
5
4
.1

(7
)

1
9
0
6
8
9
6
.6

(6
)

1
4
6
1
2
8
4
.7

(2
)

1
4
3
8
0
4
3
.6

(1
)

1
8
1
1
0
2
8
.4

(5
)

1
6
0
8
0
0
9
.9

(4
)

1
6
0
7
4
5
7
.1

(3
)

p
e
n
d
ig
it
s

2
3
0
4
1
4
7
.0

(8
)

7
1
9
5
9
3
.8

(7
)

4
4
2
6
0
5
.0

(6
)

3
5
0
1
9
7
.5

(1
)

3
5
6
4
0
7
.6

(2
)

4
2
8
1
4
4
.3

(5
)

4
2
0
3
0
5
.3

(4
)

4
0
4
8
6
6
.3

(3
)

v
o
w
e
l

1
7
6
6
1
6
.0

(8
)

5
7
2
8
7
.3

(7
)

3
4
3
6
6
.1

(5
)

2
3
2
8
2
.4

(1
)

2
4
6
4
6
.2

(2
)

3
5
9
9
6
.8

(6
)

2
5
8
8
7
.5

(3
)

2
6
5
3
3
.3

(4
)

m
S
L
o
c
R
S
T

7
0
4
6
0
.7

(8
)

2
0
4
7
9
.8

(7
)

1
7
6
0
0
.7

(5
)

1
2
1
3
6
.4

(2
)

1
0
9
6
6
.5

(1
)

1
7
9
5
1
.6

(6
)

1
3
4
6
4
.6

(4
)

1
2
9
9
5
.1

(3
)

m
S
L
o
c
S
u
n
.

7
0
9
4
5
.4

(8
)

1
5
9
3
5
.2

(7
)

1
3
3
9
4
.9

(6
)

9
3
5
5
.2

(2
)

8
5
5
2
.0

(1
)

1
2
9
7
7
.4

(5
)

9
6
1
5
.0

(3
)

9
7
8
8
.8

(4
)

m
S
T
e
m
p
.

1
0
9
7
2
3
.6

(8
)

4
2
5
9
8
.0

(7
)

1
8
1
0
8
.0

(5
)

1
5
1
4
4
.1

(4
)

1
3
4
0
1
.7

(1
)

1
8
6
7
5
.8

(6
)

1
4
2
4
2
.1

(2
)

1
4
9
4
3
.6

(3
)

li
b
ra

sm
o
v
e
.

6
3
9
6
4
.8

(8
)

1
9
6
2
6
.7

(7
)

8
6
2
9
.5

(5
)

6
8
9
8
.6

(1
)

7
8
0
3
.8

(3
)

8
7
8
3
.0

(6
)

7
5
1
6
.8

(2
)

8
4
0
4
.5

(4
)

m
S
L
o
c
R
a
in
.

4
8
2
4
3
5
9
.9

(8
)

1
2
3
3
8
4
5
.0

(7
)

9
2
7
6
1
2
.4

(5
)

5
0
3
0
6
8
.4

(2
)

4
5
6
5
4
3
.2

(1
)

9
4
1
6
6
5
.3

(6
)

6
2
3
8
4
0
.5

(3
)

7
1
0
3
9
3
.5

(4
)

A
v
g
.
ra

n
k

(8
)

(6
.7
8
)

(4
.8
5
)

(2
.0
2
)

(1
.7
2
)

(5
.5
7
)

(3
.5
2
)

(3
.5
4
)

37

Table 5: Results of the compared methods for animal feed data set. The first row shows the

error rate (%) and standard error for each method, and the second row the average number

of kernel evaluations
SVMovo DDAG DBT1sv DBT1d ADAG DBT2sv DBT2d

Error rate 16.10± 1.93 16.60± 1.78 16.35± 1.86 15.85± 2.00 16.35± 1.86 16.60± 1.78 15.59± 1.98

Kernel eval. 21590± 814 3803± 40 2941± 42 3341± 57 4064± 59 3086± 37 3502± 57

38

