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Abstract
A system is context-aware if it can extract, interpret and use context informa-

tion and adapt its functionality to the current context of use. Multi-agent planning
generalizes the problem of planning in domains where several agents plan and act
together, and share resources, activities, and goals. This contribution presents a
practical extension of a formal theoretical model for Context-Aware Multi-Agent
Planning based upon an argumentation-based defeasible logic. Our framework,
named CAMAP, is implemented on a platform for open multi-agent systems and
has been experimentally tested, among others, in applications of ambient intelli-
gence in the field of health-care. CAMAP is based on a multi-agent partial-order
planning paradigm in which agents have diverse abilities, use an argumentation-
based defeasible contextual reasoning to support their own beliefs and refute the
beliefs of the others according to their context knowledge during the plan search
process. CAMAP shows to be an adequate approach to tackle ambient intelligence
problems as it gathers together in a single framework the ability of planning while
it allows agents to put forward arguments that support or argue upon the accuracy,
unambiguity and reliability of the context-aware information.

Keywords:
Context-aware reasoning, ambient intelligence, multi-agent planning, defeasible
argumentation.

1. Introduction

Context-aware is concerned with the acquisition of context information, the
abstraction and understanding of this information, and application of behaviour
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based on the recognized context information[6, 23]. Much of the work on context-
aware has been focused more deeply on perceiving the context as a matter of user
location. This trend has put the emphasis on research fields as location awareness
[13] and on the manifold ways, such as sensors, network information or smart
devices, to extract the context information. However, in the last few years, the
notion of context-aware has been extended to describe not only the ability of the
computer to sense and extract information in the field, but also to enable selective
responses such as triggering actions based on context [40].

The work we present here lays on the adaptive and intelligent behavior of
context-aware systems; particularly, on the contextual behavior of Ambient Intel-
ligence (AmI) applications. AmI is an emerging discipline that brings intelligence
to our everyday environments and makes those environments sensitive to us. In
AmI environments, technology becomes invisible and people are surrounded with
networks of embedded intelligent devices that can sense the available context in-
formation, anticipate, and adapt to their needs [1, 2]. As an example, Easishop
is an ubiquitous commerce application for assistance in everyday shopping that
emerges as a juxtaposition of AmI and e-commerce [24]. Easishop autonomously
and proactively provides assistance to the user by seeking out shops that sell the
items on the user’s shopping list. To realize such ubiquitous applications with
optimal usability, context-aware behaviour is seen as the key enabling factor.

The use of agent technology is becoming very popular in AmI applications
because they can be seen as involving entities as autonomous agents that extract,
process, change and share the available context information [8]. While software
agents have been used before for building AmI middleware, hardware agents are
recently being used for the design of multi-agent architectures for AmI Systems
[44] or in multi-agent based simulations for testing and validating large-scale AmI
systems in dangerous environments [41]. We can find various examples of AmI
systems concerning the coordination of agents associated to devices in order to re-
solve complex tasks that no agent can do by itself; for instance, the AmbieAgents
infrastructure [26] for context-based information services, or the SpacialAgents
platform [39] which uses mobile agents to offer services on the user’s devices
when the user enters a place that offers certain capabilities. In general, in all these
applications, ambient agents are entities associated to a device which extract raw
context-data, offer services and share the context information, but they are not en-
dowed with reasoning capabilities to achieve the desired context-aware behavior.
Thus, agents are simply conceived as sources of information that extract, share and
exchange data but contextual adaptive behaviour is usually designed as a single-
agent and independent process that takes as input the context-data collected by

2



the ambient agents. This is reasonable if we consider that in most applications
ambient agents are not other than device agents.

We want to exploit the use of agent technology in AmI applications, partic-
ularly on the field of health-care problems [43]. Homecare applications are be-
coming very popular, above all among elderly people [10], because they allow
synchronizing an electronic agenda with a central system that collects the daily
reports and interfaces the central systems. However, we want to go a step further
and design ambient agents not only as device agents associated to blood pressure
or temperature monitors, but as entities like doctors or nurses that receive the mon-
itor readings, perform context inferences to find out the real patient’s conditions
and exchange their findings for a more accurate diagnosis. Put another way, the
final objective is to have agents involved in designing a plan to stabilize a patient
accordingly to their raw context-data and context inferences. Thus, we explore
the application of Artificial Intelligence planning techniques [21] as planning is a
desired ability in AmI systems in order to achieve a goal-oriented behavior. More
particularly, our aim is to apply multi-agent planning [11] to decide the course of
action to meet the needs of the patient.

Very few applications are actually able to offer a plan for fixing anomalies
detected during monitoring the vital signs of a patient. Amigoni et al. present a
centralized planner to assist a diabetic patient [3] where device agents do not take
part in the planning activity but they are simply device agents. Therefore, agents
in [3] are not able to do context inference nor distributed planning. It is also
important to remark the imperfect nature of the context in AmI environments,
the inherently distributed nature of health-care assistance, where several agents
intervene in the problem, and the heterogeneity of local context theories. Thus, it
is required to introduce mechanisms for agents to exchange, discuss and solve the
potential conflicts that may arise from the interaction of different contexts [9]. We
opt for using argumentation [49] as a defeasible reasoning mechanism that will
allow agents to defeasibly support their decisions, interact to each other and come
up with a joint solution plan for the patient.

In this paper, we present Context-Aware Multi-Agent Planning (CAMAP), an
approach for multi-agent planning that applies argumentation mechanisms to de-
cide the most appropriate course of action according to the context information
distributed among the agents. CAMAP is applied to a real-world application of
AmI in the field of health-care. The remainder of this paper is divided as follows.
After a brief review of the related work and background, we introduce the basic
elements of the CAMAP system. We then describe a real-life AmI scenario to deal
with a person suffering from a heart disease. Following, we present the CAMAP
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protocol applied to the AmI scenario. The next section presents the experiments
carried out to test and validate the planning model. Finally, the last section con-
cludes and presents some directions for future work.

2. Related Work

In this section, we briefly review related work on AmI in health-care, multi-
agent planning and argumentation, the three main topics related to CAMAP. We
only focus on works that combine at least two of the above topics, without paying
special attention to the large amount of specific works on each research topic.

Argumentation can be viewed as a powerful tool for reasoning about incom-
plete and inconsistent contextual information through a rational interaction of ar-
guments for and against some conclusion derived by an ambient agent. An argu-
ment is a chain of reasoning that concludes one piece of information (conclusion)
on the basis of some other pieces of information (premises). Argumentation has
been successfully proved in AmI applications as exposed by A. Bikakis [8] and
P. Moraitis [28]. Specifically, A. Bikakis proposes an argumentation model to de-
cide if a context-aware mobile phone should ring (in case of incoming calls) based
on the context of the owner of the phone. In [28], authors propose a different ar-
gumentation model to decide the type of public transportation that a person, who
uses a wheelchair and has heart problems, should take according to the specific
context. The main idea of these relevant works is very similar; they use context
information for building arguments for or against a given action in a given con-
text. Their reasoning process is focused only on one action but not on a course of
action (planning).

The work presented by D.R. García [18] combines argumentation (as a mecha-
nism for reasoning about context) and a centralized planner that follows a Partial-
Order Planning (POP) approach [34] although this framework has not been ex-
perimentally tested in real applications yet. Unlike [18], F. Amigoni presents a
planner applied to an AmI environment in the field of health-care [3], which is
used to monitoring and responding to the needs of a diabetic patient. More specif-
ically, F. Amigoni assumes that only one agent is endowed with planning abilities,
but considers several device agents which have no responsibilities in building the
plan due to its limitations in processing and communication. The work in [3],
however, does not use argumentation. On the other hand, the work of A. Bahrani
[4, 5], which follows a mixed initiative planning approach [16], proposes a plan-
ning model that enables to analyze contextual information exclusively referred to
military situations. Specifically, it uses a graphical tool to visualize the contextual

4



information through which the user may decide whether this information should
be taken into account in the planning for military tasks. All the aforementioned
approaches present an important limitation; they are centralized planning models
which do not allow automated reasoning with multiple agents in a distributed way.

The motivation for introducing distributed reasoning in a multi-agent environ-
ment is threefold. First, multi-agent systems can be beneficial in many domains,
particularly when a system is composed of multiple entities that are distributed
functionally or spatially [15, 33]. Second, a multi-agent system allows for re-
alizing multiple device agents that read raw context data and perform their own
context inferences on the basis of the monitor readings as well as improve the
ability to more rapidly detect context information changes. Third, distributed exe-
cution promotes the efficiency of parallel processing of actions, the robustness of
the system to cope with complex planning problems and the simplicity of an incre-
mental construction across a network of interconnected agents, thus avoiding the
critical failures and resource limitations of centralized systems. In Multi-Agent
Planning (MAP), an ambient agent is usually executed on an independent host
and can encompass several devices. This increases the communication capacity
as well as autonomy and endow agents with the necessary abilities to pose a goal
and build a plan for this goal. Typically, MAP approaches have been conceived
as:

(1) Plan Selection: Agents construct independent plans for the same common
goal and a centralized algorithm is used to select the best solution plan. In
this case, MAP emphasizes the problem of selecting the best solution plan.

(2) Plan Merging: Agents construct independent plans for different subgoals
and a centralized algorithm is used to merge these plans. In this case, MAP
emphasizes the problem of controlling and coordinating a posteriori local
plans of independent agents.

(3) Plan Construction: Agents propose iteratively refinements to a base plan
until a consistent joint plan that solves the problem goals is obtained. In
this case, MAP is about an incremental construction of a joint plan among
several agents that have incomplete views of the world, which prevents them
from coming up with complete local plans for themselves.

With respect to (1), A. Belesiotis [7] proposes dialogue protocols that enable
agents to discuss candidate plans and reach agreements. Specifically, they intro-
duce the defeasible situation calculus, a novel formalism based on the combination
of situation calculus and defeasible logic programming for reasoning about plans
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based on contradictory planning beliefs. Secondly, with respect to (2), one of
the most well-known approaches for the coordination of plans is the partial global
planning framework [14] and its extension, the generalized partial global planning
approach [12]. In addition, A. Toniolo [45, 46] presents an argumentation-based
model for deliberative dialogues based on argumentation schemes. This work fo-
cuses on conflicts among the plans of agents, which may be caused by concurrent
actions, plan constraints or norms the agents must adhere to. Finally, as we will
see in Section 3, the works in [30, 31, 32] follow a MAP approach based on (3).

The benefits and advantages of (3) with respect to (1) and (2) are widely dis-
cussed in the works [47, 48]. Basically, the MAP model (3) can be successfully
applied in problems where agents have little iteration to each other to solve the
planning problem (loosely-coupled problems) as well as problems where agents
have necessarily to interact to engage their respective sub-plans (tightly-coupled
problems). The underlying principle of this general-purpose MAP model is in-
terleaving planning and coordination continuously. It is empirically demonstrated
in [47] that (1) and (2) are not appropriate approaches for solving tightly-coupled
planning problems. In order to be able to solve any type of planning problem,
CAMAP relies on a MAP model (3). On the other hand, none of the works that
follows one of these three MAP approaches have been designed and tested to cope
with the requirements of AmI applications in health-care.

Table 1 summarizes the approaches presented in this section. As we can see,
the novelty of this contribution is the combination of all the topics into the same
model, which results in a CAMAP system for intelligent environments. To the
best of our knowledge there are no works that combine all of these topics, let
alone implementations or empirical evaluation.

 

 

 

 Ambient 
Intelligence 

Health-Care 
System 

Argumentation Multi-Agent 
System 

Planning 

F. Amigoni Yes Yes No No Yes 

A. Bikakis Yes No Yes Yes No 

A. Bahrani Yes No No No Yes 

A. Belesiotis No No Yes Yes MAP (1) 

A. Toniolo No No Yes Yes MAP (2) 

D.R. García No No Yes No Yes 

P. Moraitis Yes No Yes Yes No 

Our proposal Yes Yes Yes Yes MAP (3) 

Table 1: Summary of the related work.
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2.1. Contributions of our model
This paper contributes with the design, implementation and evaluation of a

model for Context-Aware Multi-Agent Planning (CAMAP) particularly applied
to health-care scenarios in AmI environments, which uses a special type of argu-
mentation, known as defeasible argumentation [35]. Particularly:

a) CAMAP tackles planning problems in AmI environments where several am-
bient agents extract raw context-data, make context inferences, and cooper-
ate in the planning process.

b) The model can be used in many real applications where the capabilities
of perceiving the context and planning are distributed across the ambient
agents.

c) CAMAP is capable of solving problems with different levels of complexity
and coupling level (loosely-coupled and tightly-coupled).

d) Agents involved in the problem put forward their opinions about the plan
construction by using defeasible argumentation. This allows agents to grad-
ually interact and discuss the impact and consequences of the context in-
formation in the actions of the plan and present arguments for or against a
particular action choice.

e) Agents are able to take the best action choice for the plan under construction
by taking into account the context information of the other agents.

3. Background

In this section, we summarize the foundations and previous works which the
present contribution is based on. Our framework, CAMAP, builds upon the for-
malism DeLP [17] for the definition and specification of the defeasible argumen-
tation mechanism. DeLP, a defeasible logic programming formalism, is one of the
most popular approaches to make context inferences by using defeasible argumen-
tation. The key element of DeLP are the defeasible rules (Head −� Body), which
are used to represent a deductive relation between pieces of knowledge that could
be defeated once another piece of knowledge is considered. For instance, a defea-
sible rule like emergency−� patient-high-fever represents the belief of an ambient
agent that if he holds a fact that the monitor reading returns the patient has high
fever then there are provable reasons to declare an emergency. The defeasible rule
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∼emergency−� {normal-pulse, conscious, correct-breathing} provides reasons to
believe the contrary, in whose case we say that the first piece of information is
acknowledged to fail in case {normal-pulse, conscious, correct-breathing} hold
in the context. However, assuming that another ambient agent knows that the pa-
tient is vomiting blood, i.e., {bloody-vomit} holds in the context, then he might
derive the patient does not have a normal pulse by following the defeasible rules
{∼normal-pulse−� internal-bleeding; internal-bleeding−� bloody-vomit}, which
entails an attack to the defeasible rule whose conclusion is ∼emergency. Thus,
arguments are combinations of defeasible rules and facts which may result in con-
flicting pieces of information. In this case, arguments are evaluated and compared
to each other to decide which one prevails.

Partial-Order Planning (POP) is a suitable planning approach to address the
requirements derived from a distributed planning thanks to the application of the
least commitment principle [34], which delays commitment of action orderings
until such commitments become necessary to resolve inconsistencies. In POP, a
plan is represented as a set of actions and a set of ordering constraints defining a
partial order between actions. The POP paradigm has been widely used in archi-
tectures for planning and execution, information gathering, planning and schedul-
ing or temporal planning. In [42], authors argue that POP-based frameworks offer
a more promising approach for handling domains with durative actions and tem-
poral and resource constraints as compared to other planning approaches. Even
for simple planning tasks, partial-order planners offer a higher degree of execution
flexibility. For these reasons, the underlying planning model of ambient agents in
CAMAP is a POP planner.

A theoretical extension of POP with DeLP-style argumentation, denoted as
DeLP-POP, was introduced in [18], where both actions and arguments may be
used to enforce some goal, if their conditions (are known to) apply and arguments
are not defeated by other arguments applying. Unlike actions, arguments are not
only introduced to intentionally support some step of a plan, but they are also
used to defeat or defend other supporting arguments in the plan. When actions
and arguments are combined in a partial-order plan, new types of interferences or
threats appear, which need to be identified and resolved in order to obtain valid
plans [18].

The works in [30, 31, 32] propose a theoretical extension of the DeLP-POP to
a multi-agent environment. Specifically, these works present a dialogue based on
a logic formalism for argumentative plan search, by which agents exchange plan
proposals and arguments for or against such proposals, taking into account their
context information. To the best of our knowledge, these theoretical works have
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neither been implemented nor tested on real-world domains like AmI applications.
This contribution presents CAMAP, a context-aware system that combines,

implements and evaluates features of multi-agent defeasible argumentation and
multi-agent planning in AmI applications. CAMAP extends the theoretical works
in [30, 31, 32] with some additional capabilities to account for the requirements
of a context-aware system. Finally, CAMAP is implemented and experimentally
tested in a real-world context as a health-care application.

4. Definition of Components of the Context-Aware System

In this section, we provide definitions for all the elements used in the CAMAP
framework.

4.1. Ambient Agents and Ambient Artifacts
In CAMAP, ambient agents act as planning agents that hold different beliefs

encoded in the form of defeasible rules and facts, and capabilities encoded as
planning actions. Thus, we assume that the capabilities to extract the raw context-
data, make context inferences, and plan actions are distributed across the ambient
agents.

An ambient artifact is an entity which acts as a mediator between an ambient
agent and a smart device of the environment [36]. The aim of artifacts is to allow
agents to easily interact with the context in order to: (a) extract the context infor-
mation and encode it in the form of facts that will be then provided to the agents;
(b) achieve a goal-oriented behavior, by which artifacts generate goals as input to
the planning process; and, (c) execute actions of a solution plan. We distinguish
between informative artifacts for the tasks (a) and (b) and executor artifacts for
the task (c). In CAMAP, an ambient agent interacts with one or more artifacts.

4.2. Context-Aware Information
The representational scheme used by CAMAP to model components of the

AmI environment is based on a state-variable representation, where variables map
to a finite domain of values which represent the problem objects. A state-variable
representation is equivalent to a classical planning representation in expressive
power and it is also useful in non-classical planning problems as a way to handle
numbers, functions and time. In this paper, we will restrict our attention to only
non-numeric variables. Since planning actions change the state of the world and
defeasible rules make assumptions about the state of the world, actions and de-
feasible rules are most naturally modeled as elements that change the values of
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the state variables. The variable-value pair 〈vi, vli〉 denotes that the value vli is
assigned to the variable vi. For instance, the variable-value pair 〈 at-amb, pH 〉
indicates that the location of the ambulance amb is the patient’s home, pH; that
is, the value of the variable denoting the position of the ambulance is the patient’s
home.

In what follows, we define the elements used to represent the agent’s context
information:

(i) The set of objects, O, represents the elements of the planning task involved
in the planning actions and defeasible rules.

(ii) The set of state variables, V, are used to model the state of the world. Each
state variable vi ∈ V is mapped to a finite domain of mutually exclusive
values Dvi , where ∀vi ∈ V, Dvi ⊆ O.

(iii) The initial state of the problem, Ψ, is a consistent set of facts, represented
as variable-value pairs. A variable which has not been assigned a value in
the initial state is assumed to have an unknown value.

(iv) The set of defeasible rules, ∆, where each rule δ follows the form 〈head(δ)−�
body(δ)〉. If the set of variable-value pairs in body(δ) is warranted, i.e.,
if the variables that model the problem state have the values specified in
body(δ), then δ is applicable in such state, and for each 〈vi, vli〉 that ap-
pears in the head of the rule, vi is assigned the value vli.

(v) The set of planning actions, A, such that an action is represented as α =
〈P(α),X(α)〉, where P(α) is a set of preconditions encoded as variable-
value pairs that must be satisfied in the problem state in order to achieve the
effects in X(α), also encoded as variable-value pairs 〈vi, vli〉.

4.3. Planning Tasks
A MAP task is defined to find, collaboratively, a sequence of actions that trans-

form the initial world state to a state satisfying a given goal condition. In CAMAP,
a MAP task M is a 5-tuple 〈AG,Ψ,∆,A,G〉 consisting of:

1. AG = {Ag1 . . .Agn} | n = |AG| is a finite non-empty set of ambient agents
with planning and argumentation capabilities. It is assumed that agents are
fully cooperative.
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2. Ψ is a set of values assigned to the state variables in V and represents the
initial state of M. Each ΨAgi ⊆ Ψ represents the partial view of the initial
state of agent Agi such that Ψ =

⋃
∀Agi∈AG

ΨAgi is a consistent set.

3. ∆ is a finite set of (non-deterministic) defeasible rules. ∆Agi ⊆ ∆ is the
set of rules known by agent Agi such that ∆ =

⋃
∀Agi∈AG

∆Agi is a set of possibly

contradictory rules.
4. A is a finite set of deterministic planning actions. AAgi ⊆ A is the set of

actions known by agent Agi such that A =
⋃

∀Agi∈AG
AAgi .

5. G is a set of global goals that denotes the needs of a user in an AmI envi-
ronment. G is expressed as a set of pairs variable-value, indicating that each
variable is expected to take on the corresponding value in the final state.
Unlike the rest of elements, G is known by all of the ambient agents.

The group of agents AG involved in the resolution of the AmI application form
a planning team since it is assumed that agents are fully cooperative, i.e., agents
are not self-interested in CAMAP.

4.4. Arguments versus Actions
In what follows, we briefly introduce the theoretical framework underlying

the context-aware system (for a more detailed description, see [18, 31, 32]). In
the rest of the paper, we will use letters A,B, . . . ,Z to denote arguments, and
alpha symbols α1, α2, . . . αn, αΨ and αG to represent actions. Both actions and
arguments may be used to enforce some task goal in CAMAP. As illustrated in
Figure 1, an argument A for 〈vi, vli〉 proposed by an ambient agent Ag1, is de-
noted as AAg1 = ({concl(AAg1)}, {rules(AAg1)}), where concl(AAg1) = 〈vi, vli〉
is the argument conclusion and rules(AAg1) is a subset of defeasible rules such that
rules(AAg1) ⊆ ∆Ag1 . AAg1 is consistent if there exists a defeasible derivation for
〈vi, vli〉 from base(AAg1) ∪ rules(AAg1), where base(AAg1) is the argument base,
the set of variable-value pairs that must be warranted in the agent’s context infor-
mation. The existence of an argument AAg1 does not suffice to warrant its con-
clusion 〈vi, vli〉, this depends on the interactions among arguments from different
agents as we will see in Section 6.2. We semantically distinguish between sup-
porting arguments (also known as argument steps) as the argument that agents
specifically use to support some goal of the plan, and attacking arguments (also
known as defeaters) which are only introduced to attack some argument step pre-
viously introduced in the plan by an ambient agent.
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d0 

d1 

... 

... 

... 

Figure 1: An argument AAg1 for 〈vi, vli〉 by using two defeasible rules, among others: δ0 =
{〈vi, vli〉} −� {〈vj , vlj〉} and δ1 = {〈vj , vlj〉} −�{〈vk, vlk〉}, such that vi 6= vj , vj 6= vk and
{vi, vj , vk} ⊆ Vx.

The difference between a conclusion 〈vi, vli〉 derived by an argument or de-
rived by an action is that in the case of a planning action the conclusion or effect
is indisputable because it reflects a modification stated in the planning task mod-
elling; however, the confirmation of a conclusion derived by an argument depends
on the interaction with other attacking arguments. Put another way, planning ac-
tions are intended to express the physics of a domain so the effects of an action
reflect the changes that will be produced in the world when the action is executed.
However, an argument represents a belief inferred by an agent according to the
knowledge and partial world view of such an agent so the belief may be invali-
dated if another agent puts forward an opposite conclusion.

4.5. Plans
In POP, a partial-order plan Π is a set of partially ordered actions (denoted by

the relation ≺) which actually encodes multiple linear plans. More specifically,
a plan Π is a tuple Π = (A(Π),AR(Π), G(Π), OC(Π),CL(Π), SL(Π)), where
A(Π) denotes the set of action steps, AR(Π) represents the set of argument steps,
G(Π) is the set of goals of the planning task (the user’s needs), OC(Π) is a set
of ordering constraints between actions in A(Π) (denoted by the relation ≺), and
CL(Π) and SL(Π) represent the sets of causal and support links, respectively.

The initial state, Ψ, and goals, G, of a planning task, M, are encoded as dummy
actions {αΨ ≺ αG} where αΨ is also refereed to as the initial step of the plan and
αG to as the final step of the plan, with X(αΨ) = Ψ, P(αG) = G, and P(αΨ) =
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X(αG) = ∅.
Let 〈vi, vli〉 be an open goal (unsupported precondition) of some plan Π, mo-

tivated by some action step αG ∈ A(Π), i.e., 〈vi, vli〉 ∈ P(αG); let 〈vk, vlk〉
be another open goal, motivated by some argument step AAg1 ∈ AR(Π), i.e.,
〈vk, vlk〉 ∈ base(AAg1) (Figure 2). The goal 〈vi, vli〉 ∈ P(αG) and must be sup-
ported by an argument, argument AAg1 in Figure 2, which introduces the support
link (AAg1 , 〈vi, vli〉, αG) ∈ SL(Π), where SL(Π) ⊆ ∆×G(Π)×A. In contrast, the
goal 〈vk, vlk〉must be supported by an action, α1 in Figure 2, which introduces the
causal link (α1, 〈vk, vlk〉,AAg1) ∈ CL(Π), where CL(Π) ⊆ A×G(Π)×∆. Specif-
ically, in Figure 2, the real effects of α1 (X(α1) = 〈vi, vli〉) are encoded through
a supporting argument AAg1 such that concl(AAg1) = 〈vi, vli〉; rules(AAg1) =
{〈vi, vli〉−�〈vk, vlk〉}; and base(AAg1) is satisfied with 〈vk, vlk〉, a fictitious effect
of the action α1. The generation of 〈vk, vlk〉 is actually used as an indication that
action α1 has been executed while 〈vi, vli〉, the real effects of α1, are supported
through an argument to let other agents discuss about the successful achievement
of 〈vi, vli〉 when α1 is executed. This is an implicit way of accounting for the
qualification problem [22], an open way for the rest of agents to be able to attack
the supporting argument, as an indication that agents have their concerns regard-
ing that the execution of α1 will actually achieve 〈vi, vli〉. However, it is important
to note that supporting arguments are not only used as an intermediate step to de-
rive the real effects of actions, but also as supporters to directly satisfy the open
goal of an action step. In other words, open goals of action steps can be indirectly
supported with the effects of another action through the use of an argument, or
directly supported with the conclusion of an argument. This latter case means
that the agent supports the goal with a belief of its own so he believes it is not
necessary to introduce an action for this purpose.

Let’s suppose that an Emergency Medical Service (EMS) has been requested
to assist injured people in an accident. CAMAP creates and runs a planning team,
AG, to obtain a plan that satisfies the goal 〈 at-EMS, accident-place 〉, i.e., a plan
to assist and treat people involved in the accident. 〈 at-EMS, accident-place 〉 is
the goal of the planning task; at-EMS is a state variable and accident-place is the
value the variable is expected to take on the final state. For this purpose, Ag1 ∈ AG
constructs a partial plan that contains a supporting argument AAg1 that derives 〈
at-EMS, accident-place 〉, whose base(AAg1) is supported by the fictitious effect of
an action α1 that sends the ambulance amb11 from the hospital H1 to the accident
place. Thus, 〈 at-amb11, H1 〉 ∈ P(α1) is the precondition of α1, and the effects,
X(α1), are supported byAAg1 that derives the conclusion 〈 at-EMS, accident-place
〉. At this point, the plan proposed by Ag1 still has some open goals to be achieved,
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specifically the unsupported precondition 〈 at-amb11, H1 〉 of α1. The addition
of new actions in the plan will eventually require preconditions such as having a
doctor, a nurse or an ambulance driver available in H1 to form the EMS that will
be sent to the accident place.

Agents build attacking arguments for or against a supporting argument when
they have beliefs (derived through their defeasible rules) that sustain or contradict
the validity of the supporting argument. More specifically, BAg2 = ({concl(BAg2)},
{rules(BAg2)}) in Figure 2 is an attacking argument acting as a defeater of AAg1

(BAg2 attacks AAg1), where concl(BAg2) = 〈vi, vli′〉 | vli 6= vli′ , and vi is a single-
valued variable. This means that if an action α1 is executed in a state in which
〈vs, vls〉 holds (Figure 2 where 〈vs, vls〉 ∈ base(BAg2)), then, Ag2 has enough rea-
sons to believe 〈vi, vli′〉, which will cause α1 to fail in the current context and
thus not to produce its intended effect 〈vi, vli〉. The blue triangle in Figure 2,
AAg1 , represents an argument supporting the precondition 〈vi, vli〉 of action αG;
and the yellow triangle, BAg2 , represents an argument attacking AAg1 . Rectan-
gles represent action steps, i.e., actions that support the base of an argument step.
The existence of BAg2 means that agent Ag2 has reasons to believe that ambulance
amb11 will not reach the accident place; this would occur, for instance, if accord-
ing to Ag2’s knowledge amb11 is not available. On the other hand, Ag2 might
also propose another plan with a supporting argument, AAg2 , which also derives 〈
at-EMS, accident-place 〉 and whose base(AAg2) is supported by the effects of an
action α2 that sends another ambulance, amb21, from hospital H2, and which Ag2

knows it is available.
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Figure 2: An example solving the qualification problem.

In our approach, goals must always be supported by the conclusion of an ar-
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gument step, and the argument base must be satisfied by an action step (including
the initial step). This way, a typical causal link in POP is now replaced by a causal
link and a support link. Note that this representation allows us to implicitly ad-
dress the qualification problem as every precondition of a planning action is now
supported by an argument step rather than directly by an action effect. The de-
fault approach in traditional planning to the qualification problem is to assume the
world will behave as expected, that no unexpected circumstances may at any time
prevent the successful performance of an action and, therefore, the achievement
of the desired effects. In CAMAP, accounting for the unexpected circumstances
that may happen in the context where the plan is being constructed is done via
argumentation, allowing agents to build an attacking argument against the argu-
ment that supports the effect of an action α. This way, an attack to an argument
stands for any unexpected contingency that would prevent α from being success-
fully executed, i.e., for any precondition not listed in P(α) that would prevent the
execution of α from having its intended effects. Ambient agents are thus enabled
to attack any step of the plan under construction.

Finally, we distinguish between the notions of threat and attack that may arise
during the plan construction: a threat is a conflict that arises during the planning
process, an interference between a support link and an argument step; an attack
is a conflict that arises during the argumentative process, an interference between
a support link and an attacking argument. This is referred to as planning threats
(threats) versus argumentation threats (attacks) in [31].

5. Overview of the Ambient Intelligence Application Scenario

This section provides a brief overview of the AmI application upon which
the framework CAMAP will be applied. We highlight the fact that CAMAP is
a domain-independent planning system but in this paper we apply CAMAP to a
specific application of AmI in the field of health-care.

The emerging advances in pervasive computing technologies hold great po-
tential for improving people’s quality of life. One of the most promising area
of applications of these technologies is home health-care [10, 37, 43]. In recent
years, remote monitoring of patients (hospitalized at home) in real-time via wear-
able health monitoring devices has become a special focus of interest [38]. For
instance, monitoring people prone to suffer from heart diseases gives rise to a
task of periodically controlling the patient’s heart in order to prevent a premature
death. Here, we assume that the patient’s home is equipped with appropriate tech-
nologies to create the AmI environment. The patient is monitored with a bracelet,
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which collects the patient’s physical activity and wirelessly transmits it to a device
responsible for monitoring patient’s heart rate.

Health-care applications are more concerned with the wearable technology re-
quired for patient monitoring [38], but the real problem arises when an anomaly
is detected in the monitor readings, e.g., an extremely low level of the patient’s
physical activity which may end up in a heart attack. These situations claim the
construction of a plan that: i) sends a health service to the place where the pa-
tient is, ii) assists the patient, and iii) moves the patient to a hospital, in case this
is necessary. The construction of a plan to tackle this type of situations is still a
challenge for health-care systems in AmI. In fact, to the best of our knowledge,
there are no works that apply an automated planning process in context-aware en-
vironments with multiple intervening entities. In this paper, we propose to execute
CAMAP for assisting a patient whose monitor readings report some disfunctions.

5.1. Modeling the Health-Scenario with a Planning Language
CAMAP uses a language based on the latest version of PDDL (Planning Do-

main Definition Language), PDDL3.1 [25], which was introduced in the context
of the 2008 International Planning Competition. Unlike its predecessors, that
model a planning domain through logical predicates, PDDL3.1 also incorporates
state variables by adding object fluents that map a tuple of objects to an object of
the problem.

PDDL, the most popular language for modeling planning tasks, allows for the
specification of the components of a planning task, namely type of objects speci-
fied in a structure called :types; objects specified in a structure called :objects;
predicates specified in a structure called :predicates; single-valued state vari-
ables specified in a structure called :functions; planning actions specified in a
structure called :action; the initial state specified in a structure called :init and
goal state of the task specified in a structure called :global-goal. Additionally,
we have extended PDDL3.1 in order to introduce some functionalities required
in a multi-agent planning task. Specifically, we incorporate new structures in the
language to define:

(a) The multi-agent features of the planning task; this requires the specification
of multiple planning problems, one per agent, defining the abilities, initial
state and planning context of each agent. Since information of the planning
task is distributed across agents, we have also created specific structures to
define the information that agents will exchange between each other during
the planning process.
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(b) The set of defeasible rules of the agents is defined through the additional
structure :def-rule.

In this section, we focus on the definition of the following elements: AG, the
ambient agents, V, the state variables, ∆, the defeasible rules, A, the planning
actions, O, the planning objects, Ψ, the initial state, and G, the goal state.

5.1.1. Object Types and Ambient Agents
Planning objects are the basic entities of a MAP task. In PDDL, it is possible

to define object types and create a hierarchy of types. As shown in Listing 1, we
define the following principal object types:

• hospital, is an object type that represents the existing infrastructure of
a hospital. By hospital we refer to all the components that constitute a
hospital entity, i.e., hospital rooms, units of the hospital, staff working in
the hospital, etc.

• the type emergency-medical-transportation comprises the vehicles that
hospitals utilize for assisting an emergency; e.g., ambulance, helicopter,
etc. In turn, ambulances are divided into ALS (Advanced Life Support) and
BLS (Basic Life Support) depending on the equipment of the ambulance.

• patient, represents the injured patients. It includes those who are hospital-
ized in hospital and those who are hospitalized at home.

• patient-disease, represents different types of diseases. It is divided into
seven types of diseases.

• address is a type that represents the address of the locations.

• density is a type that represents the density of traffic.

• distance is a type that represents the distance between two places.

In our health application, we have the following types of ambient agents:

(a) Transport agents, whose main function is to guide the ambulance/helicopter
to follow the best route to reach the patient’s home.

(b) Communication agents in charge of using telecommunication devices such
as a cell telephone to call the emergency services.
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(c) Assistant agents, who are responsible for controlling an automated external
defibrillator, an activity tracking device, a position tracking device, etc. to
interact with both the environment and the user.�

(:types
[hospital emergency-medical-transportation] - object
[patient patient-disease address density distance] - object
[patient-home patient-hospital] - patient
[hospital-name hospital-tower hospital-floor hospital-unit] - hospital
[hospital-bed hospital-room EMS-team hospital-staff] - hospital
[doctor nurse driver first-aid-assistants security-guards] - hospital-staff
[critical-patient-unit deceased-patient-unit other-unit] - hospital-unit
[intensive-care neonatology reanimation burnt] - critical-patient-unit
[ambulance helicopter] - emergency-medical-transportation
[BLS-ambulance ALS-ambulance] - ambulance
[BLS-EMS-team ALS-EMS-team] - EMS-team
[mentally-illness chronic-illness terminal-illness] - patient-disease
[short-illness long-illness minor-illness] - patient-disease) 
� �

Listing 1: Types of objects.

In the particular scenario case we present in this paper, we deal with only one
transport agent (Ag1), one communication agent (Ag2) and one assistant agent
(Ag3).

5.1.2. State Variables
In PDDL3.1, state variables are specified as functions with any number of

parameters. Listing 2 shows the definition of some of the functions we use in our
health-care scenario. For instance, (pos ?a - ambulance) - address specifies
a state variable that represents the position of an ambulance, and the value of this
variable is an object of type address. And (deviceTraffic ?ad1 - address

?ad2 - address) - density is a state variable that returns the traffic density
between two given addresses. As we can see in Listing 2, state variables are
defined as functions where the first element is the function name and the rest of
elements are typed parameters.�
(:functions

(pos ?a - ambulance) - address
(pos ?m - EMS-team) - address
(pos ?p - patient) - address
(location ?h - hospital-name) - address
(moved ?a - ambulance ?ad - address) - address
(moved ?m - EMS-team ?ad - address) - address
(deviceTraffic ?ad1 - address ?ad2 - address) - density
(deviceDistance ?ad1 - address ?ad2 - address) - distance
...) 
� �

Listing 2: Single-valued variables represented as functions.
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Additionally, particular pieces of information are modelled with predicates
as shown in Listing 3. For instance, (carpoolLaneBetween ?ad1 - address

?ad2 - address) is a predicate that indicates whether or not there is a carpool
lane (an express lane) that emergency vehicles can use to quickly reach a location.�
(:predicates

(trafficJamBetween ?ad1 - address ?ad2 - address)
(carpoolLaneBetween ?ad1 - address ?ad2 - address)
(isFarFrom ?ad1 - address ?ad2 - address)
(assistingThePatient ?p - patient)
(toBeAssisted ?p - patient)
...) 
� �

Listing 3: Predicates.

Finally, CAMAP language also supports multi-functions, i.e., state variables
that can take on several values (multi-valued variables). This is done trough the
additional structure :multi-functions. Listing 4 shows one of the multi-valued
variables denoting the sanitary coverage area of a hospital. The area covered by
each hospital includes several addresses although one same address may belong
to different sanitary coverage areas.�
(:multi-functions

(sanitaryCoverage ?h - hospital) - address
...) 
� �

Listing 4: Multi-valued variables represented as multi-functions.

5.1.3. Defeasible Rules and Actions
Listing 5 and listing 6 show the structure of a planning action and a defeasible

rule of agent Ag1, respectively. As we can see in the listings, the symbol = is used
to check whether the value of a single-valued variable matches a specific value,
while member is used to test if a multi-valued variable contains a specific value.
Both = and member are the comparison operators in CAMAP for single-valued and
multi-valued variables, respectively. On the other hand, assign is used to assign
a value to a state variable, either in an action rule or defeasible rule. For the ease
of specification, we will continue using the notation variable-value pair 〈vi, vli〉
to refer to preconditions and effects of actions as well as the body and head of
defeasible rules within the text.

Action moving-BLS-medical-assistance in Listing 5 represents the move-
ment of a BLS-ambulance from one location to another. The effects of this action
are actually fictitious conclusions that are used for a defeasible rule to derive the
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real effects of the action, i.e., to have the ambulance and the EMS team at the
patient’s home and the patient being assisted. Recall that the effects of an action
are used to support the base of an argument, which in turn is used as a mecha-
nism to allow agents dispute about the successful execution of an action (see our
interpretation of the qualification problem in Section 4.5). Listing 6 shows the de-
feasible rule moved-BLS-medical-assistance that derives the real effects of the
action moving-BLS-medical-assistance and whose body matches the fictitious
conclusions of that action.

Agents have different capabilities according to their role so they will con-
tribute with different actions in the plan construction. On the other hand, the
beliefs of an agent are the derivations of its defeasible rules, and these may relate
to any aspect of the context information. That is, agents can make assumptions on
the current status of the application regarding any issue of the AmI environment.�
(:action moving-BLS-medical-assistance

:parameters (?a - BLS-ambulance ?h - hospital-name ?ad1 - address ?ad2 - address
?m - BLS-EMS-team ?p - patient-home)
:precondition (and (member (sanitaryCoverage ?h) ?ad2)

(= (pos ?a) ?ad1)
(= (pos ?m) ?ad1)
(= (pos ?p) ?ad2)
(= (location ?h) ?ad1))

:effect (and (assign (moved ?a ?ad1) ?ad2)
(assign (moved ?m ?ad1) ?ad2)
(toBeAssisted ?p))) 
� �

Listing 5: An action for moving an ambulance from a location to another.�
(:def-rule moved-BLS-medical-assistance

:parameters(?a - BLS-ambulance ?ad1 - address ?ad2 - address ?m - BLS-EMS-team
?p - patient-home)
:body (and (= (moved ?a ?ad1) ?ad2)

(= (moved ?m ?ad1) ?ad2)
(toBeAssisted ?p))

:head (and (assistingThePatient ?p)
(assign (pos ?a) ?ad2)
(assign (pos ?m) ?ad2))) 
� �

Listing 6: The body of the defeasible rule matches the effects of the action moving-BLS-medical-
assistance to deal with the qualification problem.

5.1.4. Objects, Initial State and Goals
Listing 1 displays the object types of our health-care scenario. Particularly, in

our problem we model three hospitals in a city {H1, H2, H3} (Listing 7). Each
hospital disposes of two ambulances out of 6 ambulances available in the prob-
lem {amb11, amb12, amb21, amb22, amb31, amb32}. One ambulance is equipped
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with an ALS equipment, and the other is equipped with a BLS equipment. Each
hospital has also one emergency helicopter out of three helicopters available in
the problem {he1, he2, he3}. Moreover, there are two EMS teams on call in each
hospital from the set {t11, t12, t21, t22, t31, t32}: one handles the ALS emer-
gency equipment, and is formed by an ambulance driver, a nurse and a physician;
the other handles the BLS equipment and is formed by an ambulance driver and a
nursing assistant.�
(:objects

[amb11 amb21 amb31] - BLS-ambulance
[amb12 amb22 amb32] - ALS-ambulance
[he1 he2 he3] - helicopter
[H1 H2 H3] - hospital-name
[t11 t21 t31] - BLS-EMS-team
[t12 t22 t33] - ALS-EMS-team
[high medium low] - density
[long normal short] - distance
[p1 p2 ... p50] - patient-home
[aH1 aH2 aH3 pH1 pH2 ... pH50] - address
...) 
� �

Listing 7: The objects that encodes the elements of the planning task.

In CAMAP, as in many MAP systems, agents do not have a complete view
of the world and, consequently, some details of the problem may be unknown to
them. In this sense, unlike most planning representations that adopt the closed-
world assumption, here we associate each piece of information with three possible
truth values: true, false and unknown. Particularly, if a single-valued variable vi
is assigned the value vli then the variable-value pair 〈vi, vli〉 is true, and the pair
〈vi, vlj〉 | vlj 6= vli is false because the variable is not assigned the value vlj . In
case the variable has not yet been assigned a value, any pair 〈vi, vli〉 is unknown.
Since we now allow for three possible logic states of the information, we have
to explicitly represent the true and false information, leaving the unknown state
to the information that does not appear explicitly in the representation of a world
state. Specifically, the initial state of an ambient agent in CAMAP is composed of:
(i) the positive and negative values of the single-valued variables in the structure
:functions; (ii) one or more values for the multi-valued variables specified in the
structure :multi-functions; and, (iii) the positive and negative facts specified
in the structure :predicates.

For instance, in our health-care domain, the state variable pos-p1 indicates the
location of a patient p1, which is assigned a value of type address; otherwise,
while the variable is not assigned a value, all possible 〈 pos-p1, vlpos−p1〉 pairs are
unknown. Values pH1, pH2, etc. denote the home address of patients hospitalized
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at home whereas aH1, aH2, etc. are addresses of the hospitals in which patients
are hospitalized (this is the case, for instance, of patients with a serious health
deterioration). Listing 8 shows a partial description of the information that the
transport agent, Ag2, knows about the initial state (Ψ2). Ψ2 represents a situa-
tion in which patient p1 is not being assisted yet (〈 assistingThePatient-p1, false
〉), there is a high traffic density between the hospital (denoted by address aH1),
and the patient’s home (denoted by address pH1), and the two locations are far
away from each other (long distance between them). Consequently, the pairs 〈
deviceTraffic-aH1-pH1, medium 〉 and 〈 deviceTraffic-aH1-pH1, low 〉 are false.
The symbol = is used in Listing 8 to assign a value to a variable according to
PDDL3.1 specifications.�
(:init

(= (pos p1) pH1)
(= (location H1) aH1)
(not (assistingThePatient p1))
(= (deviceTraffic aH1 pH1) high)
(not (deviceTraffic aH1 pH1) medium)
(not (deviceTraffic aH1 pH1) low)
(= (deviceDistance aH1 pH1) long)
...) 
� �

Listing 8: Initial state of agent Ag2.

Let’s assume that the health of patient p1, who is hospitalized at home (〈
pos-p1, pH1 〉) and monitored from a hospital, suddenly worsens considerably.
CAMAP is then required to build a plan to assist the patient p1; this is represented
by defining the goal 〈 assistingThePatient-p1, true 〉 as shown in Listing 9.�
(:global-goals

(assistingThePatient p1)
...) 
� �

Listing 9: Global goals.

6. Context-Aware Multi-Agent Planning Protocol

In this section, we outline the CAMAP protocol that works in three steps; a
planning stage, an argumentation stage and a selection stage.

Given a set of global goals, G, representing the requirements of an AmI appli-
cation, agents build their own partial view of the planning task M so that they will
contribute differently to the construction of the joint solution plan. The CAMAP
protocol starts with a plan, Π0 = {αΨ ≺ αG}, that is initially empty and searches
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through a space of possible plans. A successful search terminates with a solu-
tion plan, i.e., a plan in which all action step preconditions are necessarily true.
The search space is characterized as a POP tree, T, where each node corresponds
to a plan and each arc corresponds to a plan transformation [27]. We denote by
OpNodes(T) the set of leaf nodes of T, i.e., the candidate nodes that have not
been expanded yet. Initially, OpNodes(T) = {Π0}. The plan Π selected from
OpNodes(T) at each time is called the base plan, and this is the plan over which
the agents will create their refinements.

The overall idea of CAMAP protocol is to collaboratively and progressively
refine the base plan until it becomes a solution plan. Given the base plan Π, the
first step is to select an open goal Φ ∈ G(Π) of the planning task (Goal Selection
Process in Figure 3). Then it comes the planning stage (Plan Proposal Process
in Figure 3) where agents put forward and exchange different partial-order plans
that would potentially solve Φ. Following, agents become involved in an argu-
mentative dialogue (Plan Evaluation Process in Figure 3) in which they expose
their arguments for or against each of the plan proposals. This Plan Evaluation
Process performs a warranty procedure to determine which proposals do not re-
ceive attacks, or otherwise, the received attacks do not succeed. Subsequently,
ambient agents reach an agreement about the next base plan Π ∈ OpNodes(T)
to be refined (Plan Selection Process in Figure 3) and they continue the search
exploration. The process is repeated until a solution plan is found.
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Figure 3: Overview of the CAMAP protocol.
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6.1. Plan Proposal Process

Plan refinements, or simply refinements, denote the plan proposals put forward
by ambient agents to solve a selected open goal Φ of a base plan Π ∈ OpNodes(T).
This stage follows a process similarly to a plan-space planning process that builds
a POP tree, except that each refinement or successor of Π can be generated now
by a different agent. Another distinguishing characteristic of CAMAP is that the
nodes also contain argument steps, as explained in Section 4.5, to support action
preconditions; this argument structure of the plans will be later used in the Plan
Evaluation Process. We denote by Ref(Π,Φ) the set of refinement proposed by
the agents to solve an open goal Φ of a base plan Π.

The Plan Proposal Process finishes when all agents come up with their plan
proposals at their turn and these are communicated to the rest of agents. Then,
agents update their set of actions with the information appearing in the refinements
proposed by the other agents, and the elements in the set Ref(Π,Φ) are added to
OpNodes(T).

Let’s suppose that ambient agents are asked to solve the open goal P(αG) = 〈
assistingThePatient-p1, true 〉 in our AmI scenario described in Section 5. Agent
Ag1, the transport agent, generates at least 6 refinement plans (3 hospitals x 2
ambulances) by using the planning action and defeasible rule shown in Listings 5
and 6, respectively, among others. As shown Figure 4(a), one of the refinements
proposed by agent Ag1 is Πr ∈ Ref(Π,P(αG)) such that OC(Πr) = {αΨ ≺ α1;
α1 ≺ AAg1 ; AAg1 ≺ αG}, where:

• AAg1 is an argument built by using the defeasible rule moved-BLS-medical-
assistance such that:

– concl(AAg1) = {〈 assistingThePatient-p1, true 〉, 〈 pos-t11, pH1 〉,
〈 at-amb11, pH1 〉} ⊇ P(αG).

– base(AAg1) = {〈 moved-amb11-aH1, pH1 〉,
〈 moved-t11-aH1, pH1 〉, 〈 toBeAssisted-p1, true 〉}.

• α1 is a ground action out of moving-BLS-medical-assistance such that:

– X(α1) = {〈 moved-amb11-aH1, pH1 〉, 〈 moved-t11-aH1, pH1 〉,
〈 toBeAssisted-p1, true 〉} that matches base(AAg1).

– P(α1) = {〈 sanitaryConverage-H1, {pH1} 〉, 〈 at-amb11, aH1 〉,
〈 pos-t11, aH1 〉, 〈 pos-p1, pH1 〉, 〈 pos-H1, aH1 〉}.
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Figure 4: Examples of the (a) Plan Proposal Process, and (b) Plan Evaluation Process.

The conclusion of argumentAAg1 derives the real effects of the action α1, and
base(AAg1) is supported by the fictitious effects of the action α1, X(α1) (Figure
4(a)).

In most MAP systems [7, 45, 46], open goals are supported by the inclusion of
an action whose effects match the open goals. However, as we said in Section 4.5,
CAMAP allows agents to directly enforce action preconditions with their beliefs,
meaning that agents believe these preconditions can be supported with their
context inferences, without having to consider taking action to meet them. For
example, suppose that an agent extracts information from a car position tracking
device that there is already an ambulance available at the patient’s home. In this
case, the agent will meet the open goal 〈 assisting-ThePatient-p1, true 〉 with
an argument that reflects its belief that an ambulance is already at the patient’s.
As the rest of agents do not own this information, their proposals would claim
the inclusion of a planning action that moves an ambulance or helicopter to the
indicated place.

6.2. Plan Evaluation Process

At the Plan Evaluation Process, agents become engaged in a series of argu-
mentative dialogues aimed at evaluating the guarantee of a successful execution
of a plan proposal. Specifically, argumentation occurs when agents believe it is
likely that unexpected circumstances will prevent the action from achieving its
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intended effects or when they are against a belief that has been used to meet some
open goal. Agents will build their arguments on the basis of their context infor-
mation and inferences, which may differ to each other. Therefore, agents may not
agree on the evaluation of a plan proposal at some point during the plan construc-
tion.

The Plan Evaluation Process generates as many argumentative dialogues as
argument steps are present in a refinement. An argumentative dialogue is an ex-
change of arguments for or against the fulfillment of a particular argument step
AAgi ∈ AR(Πr) such that Πr ∈ OpNodes(T) and Agi ∈ AG.

In CAMAP, an argumentative dialogue is encoded as a tree structure, called
Plan Argument Dialogue (PAD) tree. Specifically, the PAD tree to evaluate an
argument AAgi in plan Πr, is denoted as T AAgi

Πr
. The nodes of a PAD tree T AAgi

Πr

are labeled with an argument that attacks the argument represented by its parent
node and whose bases are supported in the plan Πr. More specifically:

1. The root node of the tree is labeled with [AAgi ] such that AAgi ∈ AR(Πr).
2. A child node [BAgj ] of the parent node [AAgi ] represents an attacking argu-

ment against the argument AAgi in plan Πr, i.e., BAgj is a defeater of AAgi .
Consequently, each child node of [AAgi ] stands for a defeater of the root
argument [AAgi ],

3. A child node [CAgz ] of the parent node [BAgj ] indicates an attack to argument
BAgj , so this new node is actually a supporter of the root argument AAgi .

And so on for the rest of nodes. The leaves of the PAD tree correspond to
undefeated arguments. Informally, we might see a PAD tree for an argument
step AAgi as generating a dialectical tree for AAgi in order to determine whether
argument AAgi is warranted or not [17]. Unlike the dialectical trees of a general
argumentative process, the nodes in our PAD tree are contextualized within a plan.
Every linear path from the root to a leaf corresponds to one different acceptable
argumentation line. Circular argumentation (also known as fallacious argumen-
tation) is avoided by applying both conditions from [17]: no argument can be
reintroduced in the same argumentation line and argument concordance must be
guaranteed.

Following, we will explain an example of the Plan Evaluation Process to eval-
uate the argument step AAg1 in plan Πr of Section 6.1. This is graphically shown
in Figure 4(b). Ag1 starts the process by sending the PAD tree T AAg1

Πr
, which only

contains the root node [AAg1 ], to the rest of ambient agents. When T AAg1

Πr
is re-

ceived by ambient agent Ag2, it reads the traffic density between the hospital loca-
tion aH1 and the patient’s location pH1 from a smart device connected to the AmI
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system, and the reading returns a high traffic density between the two locations. In
addition, Ag2 knows the two locations are far away from each other thanks to the
a web mapping service as Google Maps. Both informations, which are unknown
to ambient agent Ag1, may be a reason for Ag2 to believe that an ambulance, ini-
tially located at the hospital aH1 will not arrive at pH1 in time for assisting the
patient p1. More specifically, Ag2 puts forward an attacking argument BAg2 =({〈
assistingThePatient-p1, false 〉, not(〈 pos-amb11, pH1 〉), not(〈 pos-t11, pH1 〉)},
{δ0; δ1; δ2}) that attacks AAg1 , as shown in Figure 4(b); this attack is derived from
the defeasible rules in Listing 10 where:

• δ0 =(and 〈 assistingThePatient-p1, false 〉 not(〈 pos-amb11, pH1 〉) not(〈
pos-t11, pH1 〉)) −� (and 〈 moved-amb11-aH1, pH1 〉 〈 moved-t11-aH1,
pH1 〉 〈 toBeAssisted-p1, true 〉 〈 trafficJamBetween-aH1-pH1, true 〉 〈isFarFrom-
aH1-pH1, true〉).

• δ1 =〈 trafficJamBetween-aH1-pH1, true 〉 −�〈deviceTraffic-aH1-pH1, high〉.

• δ2 =〈 isFarFrom-aH1-pH1, true 〉 −� 〈 deviceDistance-aH1-pH1, long 〉.�
(:def-rule moved-BLS-medical-assistance-denied

:parameters(?a - BLS-ambulance ?ad1 - address ?ad2 - address ?m - BLS-EMS-team
?p - patient-home)
:body (and (= (moved ?a ?ad1) ?ad2)

(= (moved ?m ?ad1) ?ad2)
(toBeAssisted ?p)
(trafficJamBetween ?ad1 ?ad2)
(isFarFrom ?ad1 ?ad2))

:head (and (not (assistingThePatient ?p))
(not (pos ?a) ?ad2)
(not (pos ?m) ?ad2)))

(:def-rule traffic-jam
:parameters(?ad1 - address ?ad2 - address)
:body (= (deviceTraffic ?ad1 ?ad2) high)
:head (trafficJamBetween ?ad1 ?ad2))

(:def-rule is-far-away
:parameters(?ad1 - address ?ad2 - address)
:body (= (deviceDistance ?ad1 ?ad2) long)
:head (isFarFrom ?ad1 ?ad2)) 
� �

Listing 10: Defeasible rules of agent Ag2 for representing situations in which the ambulance may
not arrive on time.

Assuming that {〈 deviceTraffic-aH1-pH1, high 〉, 〈 deviceDistance-aH1-pH1,
long 〉} ⊆ ΨAg2 , as shown in Listing 8 of Section 5.1.4, Ag2 sends [BAg2 ] to Ag1,
who manages the argumentative dialog. The first argumentative round ends here
since no other agent disputes [AAg1 ].
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In the next round of the dialogue, Ag1 updates the PAD tree T AAg1

Πr
with [BAg2 ]

and sends it to the rest of agents. T AAg1

Πr
is received by ambient agent Ag3, but it

knows about the existence of a carpool lane between aH1 and pH1, which is a rea-
son for Ag3 to believe that the ambulance amb11 can skip the traffic congestion on
the way to reach the patient’s home (Listing 11). Thus, Ag3 builds a new attacking
argument CAg3 = ({〈 trafficJamBetween-aH1-pH1, false 〉},{〈 trafficJamBetween-
aH1-pH1, false 〉 −� 〈 carpoolLaneBetween-aH1-pH1, true 〉}) that defeats BAg2 ,
such that 〈 carpoolLaneBetween-aH1-pH1, true 〉 ∈ ΨAg3 (Figure 4(b)). Ag3 sends
[CAg3 ] to agent Ag1.�
(:def-rule carpool-lane

:parameters(?ad1 - address ?ad2 - address)
:body (carpool-lane-between ?ad1 ?ad2)
:head (not (traffic-jam-between ?ad1 ?ad2))) 
� �

Listing 11: Defeasible rule used by Ag3 that derives the possibility of avoiding a traffic congestion
situation if a carpool lane exits between two locations.

In another argumentation line against AAg1 , Ag2 might argue that patient p1
is in a critical state according to its context information. In this case, Ag2 has
reasons to believe that p1 should be attended by a physician who could immedi-
ately diagnose and treat the patient. However, since the BLS medical equipment is
only formed by an ambulance driver and a nursing assistant (Section 5.1.4), Ag2

builds a new attacking argument DAg2 against AAg1 such that concl(DAg2) = 〈
assistingThePatient-p1, false 〉. Ag1 will update the PAD tree T AAg1

Πr
with the new

received defeaters and will send it back again to the rest of ambient agents.
The dialogue process continues until none of the ambient agents has more

arguments against any of the arguments in the PAD tree T AAg1

Πr
. Then, CAMAP

invokes the warrant procedure in order to check whether the argument AAg1 is
defeated or undefeated: label with a U (for undefeated) each terminal node in
the PAD tree (i.e., each argument with no defeaters at all). Then, in a bottom-up
fashion, CAMAP labels a node with: U if each of its successors is labeled with a
D; and D (for defeated) otherwise. Note that the evaluation of AAg1 is a key issue
in the overall process as the patient’s stabilization will most likely depend on a
correct plan execution, specifically on the timely arrival of an ambulance.

A refinement plan is labeled as an undefeated refinement plan if the root
node of the PAD tree of each argument in the plan results undefeated. Otherwise,
the plan is provisionally labeled as a defeated refinement plan in the POP tree.
Undefeated plans are obviously preferred over defeated plans as they represent a
plan with no expectation of failures according to the ambient agents. Nevertheless,
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defeated plans are maintained in the POP tree as their arguments may become
undefeated as long as the problem evolves and information changes. Finally, each
ambient agent updates its initial facts and defeasible rules with the information
exchanged during the argumentative process.

6.3. Plan and Goal Selection Process

The aim of the Plan Selection Process is to select the best plan Π from the
list OpNodes(T) and then choose a goal to solve from this plan (Goal Selection
Process). Once this is done, the CAMAP protocol starts all over again with the
Plan Proposal Process.

In order to select the next best plan, we consider a compromise between dif-
ferent parameters: maximizing the likelihood of a successful execution of the so-
lution plan; and, minimizing both the computational overhead and the total time
of the search. The application of the first parameter discards the plans evaluated
as defeated in the Plan Evaluation Process. With respect to the second param-
eter, we apply a heuristic function over the undefeated plans resulting from the
first filtering. We use two of the most popular heuristics in planning: SUM and
MAX heuristics [29]. The SUM heuristic estimates the cost of a plan as the sum
of the cost of the pending open goals in the plan whereas the MAX heuristic es-
timates the cost of the plan as the cost of the most costly open goal in the plan.
Plans whose heuristic estimation is above a certain threshold are discarded from
consideration.

On the other hand, the aim of the Goal Selection Process is to choose an open
goal Φ from the selected base plan Π. Specifically, Φ can be a goal of the planning
task M or a subgoal that appears in Π as a result of the planning process. Among
all the pending open goals in G(Π), we apply a heuristic function that selects
the most costly open goal. Afterwards, CAMAP proceeds with the Plan Proposal
Process unless Π becomes a solution plan, in which case CAMAP stops.

7. Experimental Evaluation

The purpose of this section is to compare CAMAP with a Traditional Multi-
Agent Planning (TMAP) system with no argumentation mechanism for reasoning
about the context information. The final objective is to analyze the benefits and
limitations of both approaches.
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7.1. Experimental Settings
We carried out several experiments considering three different levels of dif-

ficulty of the planning problems: small-size problems (composed of 8 ground
actions1 and 50 ground defeasible rules), medium-size problems (composed of 16
ground actions and 100 ground defeasible rules) and large-size problems (com-
posed of 24 ground actions and 150 ground defeasible rules). We used teams of
agents of different size ranging from 1 (single-agent) to 5 agents. Planning actions
are associated to the agents according to the type of agent (transport, communi-
cation, assistant). Defeasible rules are distributed among agents independently of
the agent type, thus making agents be able to extract context inferences about any
issue of the AmI environment. This implies that the more agents, the more dis-
tributed the context information and, consequently, the fewer choices for an agent
to link information and derive beliefs (arguments). As we will see later in Section
7.2, this has an impact on the obtained results.

We performed several tests varying the number of agents of each type in the
AmI environment, and we took the median values over 20 repetitions for each set
of experiments with n agents, independently of the type of agent. We used the
SUM heuristic in the Plan Selection Process.

7.2. Experimental Results
In this section, we show the assessment measures we used for testing CAMAP

and TMAP. Specifically, we are interested in assessing the performance and scal-
ability of both systems, the quality and feasibility of the solution plans, and the
level of trust and contribution among agents.

7.2.1. Performance and Scalability
For evaluating the performance and scalability, we measured the computa-

tional time of CAMAP and TMAP to find a solution plan. Figure 5 shows the
average time spent by each system on each stage. Figures do not include the time
of parsing the problem file and grounding the actions and defeasible rules. The
horizontal axis depicts, for each protocol, the number of ambient agents and the
size of the planning problem. The vertical axis displays the time in seconds to find
a solution plan.

As expected, CAMAP always takes more time than TMAP to find a plan due
to the following reasons:

1A ground action is a planning action with all its parameters instantiated. Similarly with de-
feasible rules.
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Figure 5: Evaluating the average time spent on each stage.

(i) in the Plan Proposal Process, ambient agents in CAMAP do not only have to
reason about which actions would achieve the selected open goal, but also
about which arguments would support it;

(ii) since TMAP does not involve argumentation, the Plan Evaluation Process
is not carried out in this protocol;

(iii) in the Plan Selection Process, TMAP simply applies the SUM heuristic to
select the base plan whereas CAMAP previously executes a procedure to
filter out the defeated plans from the Plan Evaluation Process; and,

(iv) in the Goal Selection Process, ambient agents in CAMAP work with a larger
number of open goals, including those motivated by the argument steps.

Figure 5 also shows the evolution of the computational cost as the number of
agents in a team increases. Obviously, the more agents in a team, the more mes-
sages exchanged between them, making each stage be much more costly. Figure
6 corroborates this fact. The horizontal axis of Figure 6 depicts the number of am-
bient agents, the protocol (the first three bars show CAMAP results and the other
three bars represent TMAP results), as well as the size of the planning problems
(green for small, red for medium, and blue for large problems); the vertical axis
displays the number of exchanged messages. As it can be observed, the number
of exchanged messages is far larger in CAMAP than TMAP due to the exchange
of arguments, which are encapsulated as messages as well.
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Figure 6: Evaluating the total number of exchanged messages between ambient agents.
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Figure 7: Evaluating the quality of the solution plans obtained for large difficulty: average number
of action steps and average number of time steps.

7.2.2. Quality of the Solution Plans
In this section, we assess the quality of the solution plans according to two

parameters:

• the cost of the solution plans; we assume that all action steps have one-unit
cost and argument steps have no added cost.

• the number of time steps or execution steps of the solution plan; at each
time step several actions can be executed in parallel by different agents.

We only show the results for large-size problems as the results are similar
for small-size and medium-size problems. In order to evaluate the cost of the
solution plan, Figure 7 shows, for each agent team and system, the average number
of action steps in a solution plan. For example, for 2-agent teams, the average
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number of action steps of a CAMAP solution plan is 4.6 (first bar) and 6.6 for
TMAP (second bar). In general, Figure 7 shows that the average number of action
steps in solution plans of CAMAP is lower or equal than the average number in
solution plans of TMAP. The reason is that in TMAP, an open goal that is not
a threat, can only be achieved by an action step, while in CAMAP the open goal
can also be supported by an argument step whose base is guaranteed in some state
of the world generated during the planning process. In these cases, the cost of
CAMAP plans is smaller because it contains fewer actions since agents’ beliefs
are also used to support the fulfillment of an open goal. In CAMAP, we can also
observe that the average number of action steps in 4-agent and 5-agent teams is
significantly higher than for the rest of team sizes. As we explained in Section 7.1,
when defeasible rules are widely distributed among agents, they are likely not to
have enough information to link and build an argument step, thus increasing the
number of action steps in the plan.

Regarding the comparison of time steps, plans of the of the 1-agent team are
sequential plans as only one action can be executed at a time by the single agent
of the team. This result contrasts with the time steps of the other teams, where
actions in the plan can be executed in parallel depending on the number of agents.
Obviously, the number of time steps for the 1-agent team is far more larger than
for the rest of teams. On the other hand, the difference of time steps between
CAMAP and TMAP is rather noticeable because it is usually the case that the
fewer actions in a plan, the fewer time steps.

7.2.3. Feasibility of the Solution Plans
Given a context and a TMAP solution plan, we say that a plan is feasible

if it does not contain actions that would be otherwise discarded in a CAMAP
solution. That is, feasibility is a rough measure to know if a TMAP solution would
contain action steps that CAMAP has labeled as failing actions as a result of the
argumentative dialogues among the agents (defeated arguments) and according
to the context information. Obviously, depending on the environment, feasibility
can be more or less important. In our health-care scenario, feasibility is a very
relevant issue. In this sense, we wanted to compare the plans returned by both
systems and see how many plans, and actions correspondingly, of TMAP were
actually discarded by the agents in CAMAP during the argumentative dialogues.

We carried out an experiment to count the number of actions in a TMAP so-
lution plan that were discarded in the CAMAP counterpart. The results of this
experiment are shown in Figure 8. As can be seen, TMAP solutions included at
least 30% of action steps that CAMAP agents acknowledged not to be success-
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Figure 8: Evaluating the % of failing actions of the obtained solution plans.

fully executed. For medium and large size problems, this percentage increases
considerably. However, there are hardly differences in the number of failing ac-
tions between the agent teams, an indication that feasibility is not dependent on
whom proposes the actions or how many agents a team has.

7.2.4. Trust and Contribution
Finally, we were also interested in checking the contribution and trust level

achieved by ambient agents in CAMAP. More specifically:

• The trust level for an agent is calculated as the number of undefeated ar-
gument steps in all of the plans proposed by an agent divided by the total
number of argument steps proposed by the same agent in the Plan Proposal
Process.

• The contribution level of an agent to a solution plan is calculated as the
number of action and argument steps contributed by the agent to the solution
plan divided by the total number of plan steps.

Our hypothesis is that agents with a high level of trust would normally have a
high degree of contribution in the solution plan. Figure 9 shows the trust level of
each agent (depicted in the vertical axis) in each experiment. We performed one
experiment per team size and problem size. The results shown in Figure 9 indicate
that the more defeasible rules known by the agents, the lower trust level achieved
by the agents. For instance, in Figure 9 (2-agent team), agent Ag2 obtains 33%
of trust level in small-size problems but 12% in large-size problems. The reason
is that in large problems, agents have more defeasible rules and so they can build
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Ag5 0% 0% 33%

Ag4 20% 10% 0% 11% 11% 11%

Ag3 20% 20% 20% 20% 40% 8% 0% 0% 0%
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Figure 9: Evaluating the agents’ trust level based on their proposed argument steps.

Ag5 0% 0% 25%

Ag4 0% 0% 0% 0% 25% 25%

Ag3 25% 50% 25% 25% 50% 25% 0% 0% 0%

Ag2 50% 75% 100% 50% 50% 75% 50% 25% 50% 50% 50% 25%

Ag1 100% 100% 100% 50% 25% 0% 25% 0% 0% 25% 25% 25% 50% 25% 25%

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large

CAMAP 1-agent CAMAP 2-agents CAMAP 3-agents CAMAP 4-agents 5-agents

Figure 10: Evaluating the agents’ contribution level in the solution plans.

more context inferences about the environment, which in turn means they are
likely to have more information to attack the proposal of other agents; in short,
this results in fewer undefeated arguments.

Figure 10 shows the contribution of each agent in the solution plan returned
by each team. For instance, in the 3-agent team for small problems, the individual
level of contribution to the solution plan is as follows: 25% steps proposed by
ambient agent Ag1, 50% proposed by Ag2 and 25% proposed by Ag3. According
to our hypothesis, if Ag2 is the agent with the highest contribution in this solution
plan, then Ag2 should have a high individual trust level in this team. As we can
see in Figure 9, Ag2 has the highest individual trust level for this experiment.

7.3. Discussion
This section shows the advantages and disadvantages of CAMAP with respect

to other existing approaches. Specifically, the experimental results support two
main advantages of CAMAP:

(1) since each plan step of a plan proposal is collaboratively argued, CAMAP
returns plans whose actions are not likely to fail at execution time according
to the information and beliefs of the ambient agents; and

(2) since open goals can also be supported by the beliefs of the agents, the
context information and defeasible contextual reasoning of agents provide
a means to satisfy goals of the problem. This contrasts with a classical
planning system where goals must always be supported by the inclusion of
an action that achieves the desired effect. Therefore, CAMAP introduces a
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very important functionality: it allows agents to use their knowledge and
context inferences to actually infer that a goal holds in the environment and
that no planning action is needed to meet the goal.

It is important to highlight the relevance of aspect (1) in health-care applica-
tions where the patient’ life depends, in many cases, on a timely successful execu-
tion of the plan. We can conclude that planning systems that ignore the changes in
the context information are not adequate to tackle health-care applications. On the
other hand, the only limitation of CAMAP in comparison to classical MAP sys-
tems is that it requires more exchange of messages between agents, which results
in an increase of the computational cost.

8. Conclusions and Future Work

This article presents the specification, implementation and an exhaustive ex-
perimentation of CAMAP, a cooperative and distributed planning framework that
uses defeasible argumentation to reason about the context information on smart
environments. Our most relevant contribution is to come up with a fully imple-
mented MAP framework that has been extensively tested in AmI environments,
particularly on health-care applications. CAMAP realizes three independent but
cooperative processes in order to propose, criticize, defend and select alternative
plan proposals. All in all, the novelty in CAMAP is that of proposing a multi-
agent system where ambient agents have the ability of planning while simultane-
ously doing context-aware reasoning. This allows agents to continuously adapt
a health-care plan by performing defeasible argumentation on the beliefs of the
other agents.

As future work, we would like to extend CAMAP to allow agents to put for-
ward arguments that support or argue upon the accuracy, unambiguity and relia-
bility of the context aware information as well as the trust level between ambient
agents. Trust can be used as a preference criterion for comparing attacking argu-
ments and resolving conflicts by prioritizing the argument with the highest trust
level. Finally, we also intend to augment CAMAP to include agents’ preferences
and, thus, return the solution plans most preferable by the ambient agents [19, 20].
For instance, an elderly patient may prefer to be hospitalized at home rather than
in a hospital. This kind of preferences may be taken into account by ambient
agents during the construction of the plan.
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