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Abstract

This paper presents a novel method for analysing the behaviour of multiagent sys-
tems on the basis of the semantically rich information provided by agent commu-
nication languages and interaction protocols specified at the knowledge level. More
low-level communication mechanisms only allow for a quantitative analysis of the
occurrence of message types, the frequency of message sequences, and the empirical
distributions of parameter values. Quite differently, the semantics of languages and
protocols in multiagent systems can help to extract qualitative properties of ob-
served conversations among agents. This can be achieved by interpreting the logical
constraints associated with protocol execution paths or individual messages as the
context of an observed interaction, and using them as features of learning samples.
The contexts “mined” from such analyses, or context models, can then be used for
various tasks, e.g. for predicting others’ future responses (useful when trying to make
strategic communication decisions to achieve a particular outcome), to support on-
tological alignment (by comparing the properties of logical constraints attached to
messages across participating agents), or to assess the trustworthiness of agents (by
verifying the logical coherence of their behaviour). This paper details a formal ap-
proach that describes our notion of context models in multiagent conversations, an
implementation of this approach in a practical tool for mining qualitative context
models, and experimental results to illustrate its use and utility.
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1 Introduction

One of the cornerstones of agent technology is the loose coupling between
agents achieved by introducing standardized high-level agent communication
languages (ACLs, e.g. FIPA-ACL [6]) and interaction protocols. As opposed
to low-level interaction mechanisms for computer systems (like those used in
traditional distributed computing), these advanced languages and protocols
attempt to capture shared meaning for messages exchanged in multiagent sys-
tems. This helps to ensure that, despite the heterogeneity among individual
agents who cannot observe each other’s internal states, some level of inter-
operability can be achieved in practice, so that large-scale open multiagent
systems can be implemented in the real world.

At the same time, when it comes to analysing agent-based systems, the open-
ness of these systems limits the available data to what goes on among agents
(i.e. observations of message exchanges, at least if we assume that the observer
does not have access to all internal details of all agents in the system [15]).
However, the structure and “knowledge-level” assumptions captured in ACLs
and interaction protocols is semantically rich and can be used to partially
compensate for the loss of transparency caused by agent-level encapsulation,
which makes the mental states of an agent opaque to others.

As an example of this, consider a message inform(A,B,X) with the usual
meaning that agent A informs B of a fact X (where X is taken from some
domain ontology or “content language”). The use of this message type is usually
tied to preconditions like (Bel A X ) stating that A in fact believes X to be
true. While B is unable to verify whether this is actually the case (or A
is lying/has a different interpretation of the Bel modality), the use of the
message entitles B to operate under the assumption that (Bel A X ) is true for
A. For example, if B contested X, it would be unreasonable for a protocol to
allow A to state that she never claimed X. Therefore, at a pragmatic level, any
semantic “annotations” (pre- and post-conditions) of messages that an agent is
uttering can be used as assumptions about that agent’s mental state (or, e.g.
in commitment-based semantics [7], about their perception of a social state).

Quite surprisingly, this aspect of data analysis has been overlooked in the
existing literature (see section 2). Existing approaches remain at the quantita-
tive level, i.e. any measurements they take are based on assessing the observed
values of some attributes of the interaction. A binary distinction between “in-
teraction was successful or not” is often employed, sometimes also a measure-
ment of the quality of different attributes along numerical scales, e.g. speed,
price, reliability etc. While in non-agent scenarios this may be the only kind
of data that is available, if one focuses only on quantitative analysis, a lot of
additional structural information goes “to waste” in a sense when considering
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ACL-based multiagent system interactions.

The contribution of this paper is to fill this gap by exploring the use of data
mining techniques over semantically rich interaction protocols defined using
typical ACLs. By using semantic elements of protocols as features of inter-
action traces, which are available as data samples from past interactions, we
can inductively derive what we call context models i.e. logical theories that
capture regularities in previously observed interactions. Note that the proto-
col definition or protocol model needs to include semantic annotations to allow
the approach presented in this paper to build an effective context model au-
tomatically, and, in this paper, we will make the assumption that protocol
specifications include such annotations.

Context models, which essentially capture generalised information about the
conditions under which a protocol reaches a certain outcome, can be used for
various purposes: (1) to make predictions about future behaviour (e.g. under
what circumstances a peer is likely to deliver a product of reasonable quality);
(2) to infer the definitions other agents use when validating logical constraints
during an interaction (e.g. when acceptance of a certain type of offer indicates
the range of a variable X for which the predicate acceptable(X) holds true
for an agent); and (3) to analyse the reliability and trustworthiness of agents
based on the logical coherence of their utterances (e.g. if an agent has been
observed to suggest that both P (o) and ¬P (o) are true of the same object o).
Moreover, by simply grouping the data from interactions with several agents
together and analysing it with a data mining algorithm, it is easy to generalise
over individual “theories” held by them to develop a more global picture of
the views held by an entire set of agents.

The remainder of the paper is structured as follows: After reviewing related
work in section 2, we define the formal machinery that is needed to develop
qualitative data mining methods for interaction protocols in section 3. Sec-
tions 4 and 5 discuss an implemented system for qualitative data mining over
interaction protocols, and empirical results obtained in a case study, respec-
tively. Section 6 concludes.

2 Related work

Most existing work on run-time agent systems analysis typically addresses the
testing, debugging, validation and verification of these systems [17].

Regarding the analysis of single agents, the literature is heavily influenced by
the BDI (Beliefs, Desires, Intentions) model. Sudeikat et al [20] propose to
check the consistency of beliefs, the achievement of goals and the process of
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plan execution in the JADEX agent platform. A similar analysis is enabled
by the Agent Factory framework [5] which offers run-time views of the agent’s
internal state through its agent viewing tool. The INGENIAS platform [9] also
provides run-time mental state inspection and testing besides static checking
of the specification.

As far as interaction analysis is concerned, many agent development frame-
works offer graphical tools that can be used for visual inspection, and ways
of filtering messages to reduce the amount of data shown (e.g. [11]). As the
amount of data increases and manual inspection becomes impractical, auto-
mated analysis methods are needed. Here, existing approaches focus on ver-
ification of observed interactions against a predefined model, and on manual
debugging based on identification of incorrect protocol executions. Padgham
et al [13], for example, propose methods for translating protocols specified
in AUML to a Petri-net based formalism, and to report errors when pro-
tocol specifications are not followed correctly during execution. In a similar
vein, Chopra et al [4] have recently formalised the semantic relationship be-
tween agents and protocols in order to verify whether a protocol supports the
achievement of particular agent goals and whether the specification of the par-
ticipating agents supports the satisfaction of particular commitments. These
contributions provide verification mechanisms that can be used by the de-
signer at runtime. With a stronger focus on design-time analysis, Wooldridge
et al [22] propose a language for the design and automatic verification of
multi-agent systems called MABLE. This imperative programming language
uses the SPIN model checker to automatically verify properties of multiagent
systems.

Despite their important contributions, the main limitation of these approaches
is that they can only verify the correctness of protocol executions based on
observed interactions, but they cannot derive any additional knowledge about
the emergent behaviour of the system apart from whether agents are behaving
correctly or not.

There is also work that focuses on measuring the performance of a multiagent
system in terms of the frequency of message types or message patterns [15].
These measurements are used to identify problems in the system, or for de-
riving probabilistic models of communication behaviour in terms of so-called
expectation networks [12]. These networks provide compact tree-like stochastic
models of the ways in which protocols are used in an agent society. While they
make use of logical constraints as conditions along the branches of these trees
and generalise over ground instances by using variables in message structures,
the analysis still mainly concentrates on regularities in the “surface structure”
of execution traces. That is, while the inferred models attempt to generalise
over different runs to capture summary information in a concise way, they do
not analyse the semantic properties of the observed interactions. A similar ap-
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proach that makes use of data mining techniques is that suggested by Serrano
et al [16], who have used it in the context of testing and debugging agent-
based systems. This approach uses data mining techniques to identify groups
of agents which behave in a similar manner, and to identify the most impor-
tant agents within an agent society, but it also focuses on a purely quantitative
analysis of the system.

Some recent work in the area of ontology mapping [1,2] is closer in spirit to
our work. There, hypotheses about the possible meanings of unknown terms
used by the other agent are filtered by using structural information about the
protocols. This is achieved by either looking at the ontological relationships
between candidate concepts based on the terms that appear earlier on in the
same dialogue or in previous dialogues, or by reasoning about the overall
syntactic structure of the protocol. However, this kind of reasoning is only
used to resolve ontological conflict, and not to infer more general emergent
properties of interactions like the ones we are interested in.

All these contributions disregard semantic elements of interactions, such as the
assessment of constraints used by the agents, which cause a concrete protocol
execution to take a specific course. Also, they fail to induce compact theories
about the ways in which interaction is unfolding in a system. As Symeonidis
et al [21] argue, transferring such knowledge extracted using data mining into
newly created agents could be useful for agent design.

3 Qualitative approach to multiagent systems analysis

3.1 Protocol models

To describe our overall approach, it is necessary to formalise what kinds of
agent interaction protocols it assumes. While the implementation of the ap-
proach uses a specific protocol specification language (see section 4), it is
sufficient for the general framework to represent protocols in a very general
way. Our approach considers protocols as graphs whose

• nodes are speech-act like message placeholders,
• edges define transitions among messages, and
• edges are labelled with logical constraints and conditions.

A path in the protocol (or graph) defines a sequence of messages (nodes) where
the constraints (logical conditions along path edges) must be satisfied to make
the path admissible.
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More formally, we define a protocol model as a graph G = (V,E) where each
node v ∈ V is labelled with a message m(v) = q(X, Y, Z) with performative
q (a string) and sender/receiver/content variables X, Y , and Z. Each edge is
labelled with a (conjunctive) list of (say, n) constraints

c(e) = {c1(t1, . . . , tk1), . . . , cn(t1, . . . tkn)} (1)

where each constraint ci(. . .) has arity ki, head ci and arguments tj which
may contain constants, functions or variables (in general the label of an edge
could be an arbitrary formula φ ∈ L of a first-order logical language L). All
variables that occur in such constraints are implicitly universally quantified.
We also assume that all outgoing edges of a node result in messages with
distinct performatives, i.e. for all (v, v′) ∈ E, (v, v′′) ∈ E

(m(v′) = q(. . .) ∧m(v′′) = q(. . .))⇒ v′ = v′′ (2)

so that each observed message sequence corresponds to (at most) one path
in G by virtue of its performatives. The requirement for performatives to
be different is needed in order to be able to distinguish different paths in
the protocol model. If only propositional content was different, this would
be modelled as an attribute of the message, and could be generalised over
different cases.

Figure 1 shows an example protocol model in this generic format for illustra-
tion purposes. In this negotiation protocol model agent A specified the terms
T (e.g. product, quality) of a desired product, and requests T from agent B.
The initial response from B depends on availability: if the terms T cannot be
satisfied, A and B go through an iterative process of negotiating new terms
for the item, which is determined by the definitions of the keepNegotiating ,
altAcceptable, and alternative predicates the agents use. In case of acceptance,
the negotiation process is repeated to agree on a price P for the product. Edge
constraints are annotated with the variable representing the agent that has
to validate them (subscript A or B). Different out-edges represent XOR if
constraints are mutually exclusive, and OR else. For brevity, we will use some
additional (redundant) shorthand notation ci/mj for constraints and messages
in this example below.

3.2 Context of a protocol model

Next, we need to define a notion of context in a conversation based on the
semantics of the protocol models. For this, the semantics of a protocol model
G can be defined as follows: Consider a finite path

π = v1
e1→ v2

e2→ . . .
en−1→ vn (3)
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termsWantedA(T) inStockB(T)

alternativeB(T) altAcceptableA(T)

keepNegotiatingA(T)ר

priceWantedA(T,P)

inStockB(T,P)

alternativeB(T,P)
altAcceptableA(T,P)

keepNegotiatingA(T,P)ר

altAcceptableA(T) ^ keepNegotiatingA(T)ר

altAcceptableA(T,P) ^ keepNegotiatingA(T,P)ר

Fig. 1. A simple negotiation protocol model

in the graph G (which may include unfolding of cycles, assuming that all vari-
able names are replaced by fresh variables whenever a node is encountered
another time). If m = 〈m1, . . . ,mn〉 are the (ground, i.e. variable-free) mes-
sages perceived in a run, define G(m) = 〈π, θ〉 as a function that returns: (1)
the (unique) path π that can be traced in G following the observed messages;
and (2) θ, the most general unifier of the set

{m1, . . . ,mn} ∪ {m(vi)|1 ≤ i ≤ n}. (4)

In other words, the pair 〈π, θ〉 returns the path and variable substitution that
the message sequence m corresponds to in protocol model G.

With this, we can define the context of m as

C(G(m)) =
n−1∧
i=1

c(ei)θ (5)

where m = 〈m1, . . . ,mn〉, G(m) = 〈π, θ〉, and c are constraints associated
with each edge as defined in equation 1.

In other words, the resulting conjunction of edge constraints happened in an
execution of a protocol model is true if: (1) we determine the unifier θ that
makes the perceived messages mi and the protocol model labels m(vi) match;
and (2) we apply θ as a substitution to the variables of the constraints along the
edges of the path π that match the observed message sequence. Any variables
that remain free after application of θ are implicitly existentially quantified.
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As an example, consider an execution of the protocol described in figure 1 that
has ended with the message cannotOffer (or m4) without iterating in the loop
of the protocol model. In this case, the observed path is π =

c1→ m1
¬c2∧¬c3→ m4.

Therefore, the context of the execution are the observed ground terms (for A,
B, and T ) which make the constraints we encounter along this path true (c1,
¬c2 and ¬c3).

Note that the ground terms may contain variable symbols when these are
allowed in the content language, e.g. an agent may ask another to return
the value of 3+5 with the message “calc_request(a1, a2, 3 + 5 =?X)”, but we
assume that in this case terms like ?X, supposed to denote a non-ground
value, are, in fact, ground objects of the content language and should not be
confused with (meta-)variables of the protocol description language (i.e. they
will not be affected by the substitutions we consider here).

3.3 Context models and mining protocol executions

The basic method for applying data mining methods to interaction protocols
as specified above is as follows: Consider a protocol model G, and message
sequences m obtained from past executions of G. Any such sequence can be
translated to a pair G(m) = 〈π, θ〉 (we assume that only sequences allowed
by G occur; if not, G can be modified on the fly to accommodate unexpected
messages by adding extra constraint-free edges and message nodes). Assuming
that a set of such substitution-annotated paths is used as a training data set
D, an inductive learning algorithm L : D → H can be used to map any
concrete data set D ⊆ D, where D is the set of all possible observations, to
a learning hypothesis h ∈ H taken from the hypothesis space of the machine
learning algorithm in question [10].

The extension proposed in this paper to this very general view is to augment
the learning data by the logical context of the data samples, i.e. to include the
logical formula C(G(m)) in the data samples, which can be directly inferred
using the logical constraints provided by the definition of G. An “outcome”
variable must also be added to the training data to use classification algo-
rithms. For example, outcome ∈ {S, F,N} to denote Successful completion of
the protocol model, Failure to complete or a Neutral outcome. In this way,
the context model CM, which is obtained by using data mining techniques
over this augmented learning data, is capable of linking a specific context ob-
served in the execution of a protocol model with the result of the protocol.
In other words, the data mining task involved in obtaining a context model
is a classification problem where the class attributes are (1) labels reflecting
the outcome of a protocol, or (2) constraints occurring within the protocol.
The context model obtained in both cases must relate the messages sent in
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the protocol, their content, and the context that made them possible to the
output observed. As explained in the introduction, the goal of obtaining such
a model is to perform a number of qualitative analysis tasks such as making
predictions about future behaviour, inferring the constraint definitions other
agents use, or assessing the reliability and trustworthiness of agents based on
the logical coherence of their utterances.

Determining the most suitable learning algorithm for a particular context min-
ing task is beyond the scope of this paper, and our method does not depend
on the use of a specific algorithm. Also, we do not aim to improve the un-
derlying machine learning algorithms employed to obtain context models. For
example, figure 2 shows the context model for the constraint altAcceptableA of
the protocol described in figure 1 when used in a car trading system (section
5 describes this experiment). In this case, a decision tree algorithm has been
employed to learn a specific constraint in the protocol.

1 persons = 2: F (158)
2 persons = 4: F (158)
3 persons = more
4 | lug_boot = small
5 | | doors = 2: F (8)
6 | | doors = 3: F (7)
7 | | doors = 4: F (8)
8 | | doors = 5-more: T (105)
9 | lug_boot = med

10 | | doors = 2: F (13)
11 | | doors = 3: F (8)
12 | | doors = 4: F (13)
13 | | doors = 5-more: T (120)
14 | lug_boot = big: T (402)

Fig. 2. Context model of the altAcceptableA constraint, obtained using the J48
decision tree algorithm after 1000 negotiations using the protocol described in figure
1. The notation a =v : T/F denotes that “if a has value v the target predicate has
value T/F”. Every leaf includes the number of instances classified under a certain
path in parentheses.

In general, the result of the constraints (but not the arguments of these con-
straints) should be removed when the learning algorithm tries to predict the
“outcome” value. Without this modification, a learning algorithm applied over
the context of the protocol described in figure 1 would quickly learn that
altAcceptableA(T, P )→ outcome = S , or that

¬altAcceptableA(T, P ) ∧ ¬keepNegotiatingA(T, P )→ outcome = F .

This information is explicit in the definition of the protocol. Moreover, such
trivial inferences may hinder the learning technique from relating the details
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of constraint argument values to the general outcome of the protocol. On the
other hand, samples that include these truth values can be used to predict
the satisfaction of these constraints for given argument values. This could be
useful when the objective is not to learn the overall outcome of the protocol,
but definitions of constraints themselves (as figure 2 shows). Section 5 includes
experiments that illustrate the use of both strategies.

3.4 Capturing data to build context models

Due to the nature of multiagent interaction, additional design decisions have
to be made before standard data mining machinery can be used, which are
related to the details of how exactly training data is constructed from raw
protocol execution traces. This is discussed in the following sections.

3.4.1 Training data with multiple agents

The first issue that arises in defining the datasets to be used for protocol min-
ing is how to deal with the presence of multiple agents. In principle, treating
all messages and context models that occur in observed interactions as features
of learning samples with corresponding variable instantiations as feature val-
ues amounts to an attempt to derive globally valid interaction patterns. This
learning strategy implies that a shared theory regarding logical constraints
and a shared ontological understanding of all terms used in communication
exists among agents. In many cases, however, one may want to infer defini-
tions of constraints or behavioural patterns that are specific to an agent, or a
group of agents.

To be able to make these distinctions, we need a method for filtering data
obtained from protocol executions according to individual agents or group of
agents. Assume an assignment σ : Var → Ag where Var is the set of all
variables occurring as sender/receiver variables in nodes of the graph, and Ag
the set of agent names. Then for any agent a ∈ Ag , Vσ(a) are the nodes that
correspond to messages sent by agent a under role assignment σ, and Eσ(a)
are the incoming edges to those messages (formally, Eσ(a) = {(v, v′) ∈ E|v′ ∈
Vσ(a)}). We generalise these notions to Vσ(A)/Eσ(A) for A ⊆ Ag by taking
the union over the respective sets for a set of agents A.

The “maximally cautious” form of data filtering in this setting is to reduce
the path π of every sample to those nodes and edges that pertain to the
learning agent ai, including only contextual information C(Gai(m)) from the
restricted graph Gai = 〈Vσ(ai), Eσ(ai)〉) that ai can safely verify herself along
π (so that all logical constraints verified by other agents are dropped). Note,
however, that the path π and substitution θ used in the learning sample are still
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based on the full graph, as the observed messages were objectively perceived,
i.e. G(m) = 〈π, θ〉. This procedure is safe against both deliberate misuse of
constraints and messages in the protocol specification by the other agent(s)
and (non-malicious) divergence between the meaning constraints have for the
different parties involved. But it also discards a lot of information that could
be useful in learning a predictive logical theory about the circumstances under
which different interaction outcomes are achieved.

At the other end of the spectrum, if ai fully trusts the other agent(s) and can
safely assume that all agents’ ontologies and logical theories are fully aligned, it
can use the entire path information as part of each learning sample, assuming
that the definitions of constraints are common to all agents and that every
agent verifies the constraints reliably and honestly.

These filtering approaches can be generalised to make arbitrary distinctions
between subsets of agents whose messages and edge constraints are pooled
together when generating feature-value pairs in learning samples.

3.4.2 Training data with paths, loops, and variables

Typical machine learning and data mining algorithms assume a fixed number
of attributes (features) and values. In the case of protocol mining, as the
attributes will be logical constraints and messages along a path π, and their
values will be specified by the ground terms observed as instances of their
variables as given by θ, a number of issues arise that require further design
decisions to be made.

Firstly, when collecting different paths to be added in the training data set D,
their labels (messages/constraints) may differ. The use of “unknown” values
for unused variables is valid, although it may give misleading results. In many
practical cases, it will be more appropriate to create a different data set Dπ

for each observed path π avoiding this problem. Finally, at a domain-specific
level, one can merge data across different paths into a single set while only
observing a fixed set of certain messages and constraints, potentially even
ignoring different messages along the path.

Secondly, many common interaction protocols (e.g. negotiation protocols like
auction and bargaining protocols) involve iterations of sub-sequences that can
be repeated an arbitrary number of times. The existence of a loop in a protocol
means that variables occurring in a logical constraint or message used in the
loop can have several constants as ground instantiations in the same execution
{g1, g2, ..., gn}, where n is the number of iterations in the loop which may
vary for different samples in D. A possible strategy is storing N “copies” of
each variable, where N is the maximum number of iterations observed in a
protocol. In every path with fewer iterations than N , the remaining variables
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will have to be assigned a value of “unknown”. The redundancy introduced
by this strategy can be avoided considering only the first/last ground term
g1/gn for a specific variable V in a loop. In many cases, such as most kind
of negotiations, this is enough since intermediate steps are less important for
the outcome of the interaction. Selecting one of these strategies or a different
one depends on the specific protocol model, its purpose and the context. For
example, in some bidding systems, the second highest bidder would win. In
that case, the lowest bid, the second highest and the highest bid are of interest
and should be recorded before building a context model.

3.5 Analysing interactions using context models

As explained in section 3.3, the context models introduced in this paper have
the primary purpose of making predictions about future behaviour. These
predictions allow agents or developers to design strategies to enhance inter-
actions in multi-agent systems. Although these predictions and strategies are
dependent on the specific interaction protocol, this section offers an example
of strategy for the protocol displayed in figure 1. The strategy is designed from
the point of view of the customer (A in the protocol) and aims at choosing a
good seller for the requested product.

According to this strategy, A performs the following processing steps: (1)
compute a context model CM relating the interaction outcome to terms T ,
price P and seller B; (2) produce tuples with the desired values for terms
T , price P and the expected outcome; each of these tuples will differ in the
ground value B, one for each known seller; (3) use CM to classify the data
obtained in (2). If the predicted outcome for a tuple matches the output
desired by the customer, the ground term for B in this tuple is selected as an
agent to interact with; (4) after interacting, if the prediction of CM does not
match the observed interaction, re-build CM from scratch to include more
recent information in the training data; (5) if a seller was not chosen, update
T and P according to the customer’s preferences, and repeat from (1) for a
pre-defined number of attempts before choosing a seller randomly.

The strategy explained above can be fully automated using our approach
enables a customer to identify sellers who have not only engaged in successful
interactions with the customer, but where these successful interactions were
observed under specific, desirable negotiation terms. We will return to this
example strategy in section 5 where we evaluate its utility more quantitatively.
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1 a(participant , B) ::
2 request(X) <= a(initiator , A) then
3 (agree(X) => a(initiator , A) <- consider(X) then
4 (informDone(Y) => a(initiator , A) <- performed(X,Y))
5 or
6 (failure () => a(initiator , A))
7 )
8 or
9 (refuse () => a(initiator , A))

Fig. 3. LLC implementation of the “participant” role in the FIPA Request Interaction
Protocol

4 Implementation

ProtocolMiner is a prototypical tool which we have developed to implement
qualitative context mining. ProtocolMiner is implemented as a plugin for the
OpenKnowledge platform [19], a protocol specification and execution platform
designed for large-scale heterogeneous multiagent systems. ProtocolMiner au-
tomates the registration and recovery of the training data for any protocol
implemented and executed in OpenKnowledge. While the tool itself is de-
signed for use by a human designer, an application programming interface
(API) is also provided to allow agents to exploit knowledge extracted from
past interactions.

We first briefly introduce the definition of semantically annotated protocols
that ProtocolMiner is designed to operate on. This is followed by details about
how the tool implements the approach described in section 3. Finally, the
stages in the use of the tool that a user has to go through to perform qualitative
protocol execution analysis are detailed.

4.1 Defining protocols and capturing data in ProtocolMiner

ProtocolMiner (and OpenKnowledge) uses a protocol definition language called
the Lightweight Coordination Calculus or LCC [14], a language that uses
declarative Prolog-like constraints in protocol specifications.

As an example, an implementation of the “participant” role in the FIPA Re-
quest Interaction Protocol 1 in LCC would have the format shown in figure
3. This specification defines a role a(participant,B) (binding the concrete
agent identifier to variable B at runtime when the agent adopts the role) in

1 See www.fipa.org/specs/fipa00026/
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Fig. 4. ProtocolMiner user interface

terms of the message sequences allowed for that role. Incoming/outgoing mes-
sages are denoted by double arrows <= and => from/to another role identifier,
and guards (preconditions) on messages appear on the right hand side of a
message exchange, prefixed by a single arrow <- (the language also allows for
postconditions prefixed by -> not used in the above example). Sequential con-
catenation, disjunction, and iteration are captured by keywords then, or and
Prolog-like recursive calls of role clauses, respectively. In this specific example,
the constraint consider(X) is used to determine whether to agree or refuse
the request for X.

Although ProtocolMiner has been implemented for use with LCC-based pro-
tocol specifications, other interaction platforms can be used as data sources as
long as their specification mechanism can be translated to the protocol model
graph structures defined in section 3.1.

4.2 Qualitative analysis in ProtocolMiner

This section shows how the tool presented implements the formal approach
described in section 3. The ProtocolMiner user interface is shown in figure 4
after logging executions of the case study presented for evaluation purposes in
the following section.

As explained above, ProtocolMiner allows a developer to define a protocol
which meets the requirements specified in section 3.1 by using LCC language.
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ProtocolMiner automatically logs the results of constraint validation by par-
ticipating agents based on the values assigned to variables such as X and Y
in the example shown in figure 3.

The strategies to prepare training data described in section 3.4 are also im-
plemented in the tool. The ProtocolMiner GUI, shown in figure 4, allows a
developer or agent to select the agents considered in the dataset through SQL
expressions in order to undertake the different strategies detailed in section
3.4.1. For example, if the developer is only interested in agents a1 and a2, the
“add filter” option can be used to introduce A=‘a1’ and B=‘a2’. Addition-
ally, the list of selected attributes in the dataset allows for arbitrary selections
of subsets of constraints (or edges) to be considered by the data mining algo-
rithm. The tool also enables a developer or agent to select the paths considered
in the data set as described in the first part of section 3.4.2 by using “accept
paths”. A label can be added to the accepted paths by means of the option
“add label”. Moreover, several paths can be selected and merged to a single
path using the “join paths” option. Furthermore, the tool can be configured to
use one of several strategies to deal with loops discussed in section 3.4.2: (1)
log all the values given to an attribute along a path (every value is stored in
a new attribute), (2) log only the first and last values along a path, or (3) log
only the last value given to an attribute at the end of a protocol execution.
As explained above, selecting the correct strategy depends on the specific pro-
tocol model defined and its purpose (e.g. some bidding systems may require
extracting not only the highest bidder but also the second highest).

Finally, ProtocolMiner also integrates the Weka [3] algorithms allowing the
tool to use a large number of data mining techniques to obtain the context
models described in section 3.3.

4.3 Phases in the use of ProtocolMiner

This section shows an overview of the interaction analysis workflow using
ProtocolMiner, figure 5 depicts the main phases.

• Assuming agents that run on an OpenKnowledge platform, these share the
OK kernel that provides the core infrastructure for distributed interaction,
and which has been modified to provide the necessary interfaces to Proto-
colMiner, which is integrated with the kernel. Phase 1 in the figure shows
how the designer implements OK components [19] to support agent imple-
mentations provided by the same designer.
• Phase 2 shows the interactions that agents Ai, designed by the developer,

contribute to in an open and distributed multi-agent system which also
contains agents Bj provided by other parties.
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Fig. 5. ProtocolMiner use. Main stages are labelled 1-6.

• In phase 3, interaction data is sent to a relational database by the Pro-
tocolMiner code included in the OK kernel. This data basically includes
information about paths taken in the protocol, messages sent and received
with their argument values, and the truth values of constraints contained in
the protocols. The values assigned to arguments of messages sent by agents
Bj are trivially obtained from the reception of these messages by known
agents. On the other hand, results and arguments of constraints evaluated
by unknown agents are not directly available in the general case. Nonethe-
less, some of these values can be recovered by observing the evolution of
the interaction in many cases allowing ProtocolMiner to register them. For
example, in figure 1, if the cannotOffer message arrives to an agent with
the ProtocolMiner tool, the tool infers that alternativeB is false based on
the protocol specification in LCC (see section 4).
• In phase 4, the designer specifies the options to build the training data, see

section 3.4, determining which filters should be applied to the raw data.
• ProtocolMiner generates a dataset based on this filtering strategy (phase 5)

and invokes a learning algorithm which returns a hypothesis regarding the
target query based on the dataset (phase 6).
• These hypotheses, which ideally represent useful theories about hidden prop-

erties of the system, are used by the developer to modify agent design and
the whole analysis cycle is repeated if needed when new interactions produce
new data.

Note that the developer can include a pre-designed strategy for the first phase
when designing agents that use the ProtocolMiner infrastructure, so that the
remaining phases, which are fully automated, can be used by artificial agents.
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For example, section 3.5 presents a procedure which allows agents to use con-
text models to improve their interactions themselves, assuming that these
agents are able to select a strategy to capture the data and a learning algo-
rithm to build the context model.

5 Case study

To illustrate the usefulness of our approach, we have analysed data generated
in a car selling domain, where agents negotiate over cars using the protocol
shown in figure 1. We first describes the scenario and the decisions taken to
generate context models following the formal approach presented in section
3. We then report on experiments that analyse the predictively ability of
the context models derived for a specific constraint in an unknown agent. A
second set of experiments is performed to show the capacity of context models
to predict the overall outcome of a protocol model. Finally, experiments are
conducted that show how interactions in this case are improved when agents’
interaction decisions are informed by context models.

5.1 Description of the case study

In our example scenario, we use a well-known database for car evaluation [8] 2 .
This database includes the technical characteristics and prices which are used
in the system. More specifically, a potential customer (role A) is requesting
offers from a car selling agent (role B) where T specifies the technical charac-
teristics including number of doors, capacity in terms of persons to carry, the
size of the luggage boot and the estimated safety of the car. For the interactions
analysed in the case study, we assume that the values for car characteristics
are given as a tuple T = (doors , persons , lug_boot , safety) where

• doors ∈ {2 , 3 , 4 , 5 -more}
• persons ∈ {2 , 4 ,more}
• lug_boot ∈ {small ,med , big}
• safety ∈ {low ,med , high}

After negotiating the car’s technical features, the agents use the protocol to
negotiate the price and maintenance terms (below we refer to these as “price
terms”). Specifically, the potential customer (role A) requests price terms P
from a car selling agent (role B) for the negotiated features T . Price terms are
given as a tuple P = (buying ,maint) where

2 Car Evaluation Data Set http://archive.ics.uci.edu/ml/datasets/Car+
Evaluation.
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• buying ∈ {v -high, high,med , low}
• maint ∈ {v -high, high,med , low}

We specify five customer agent preferences regarding T and P , which we call
mental states (MS). These preferences are used to define how the constraints
are evaluated by customers in the protocol.

• MS 1(T ) = (persons = more ∧ lug_boot = big) ∨ (doors = 5-more ∧
persons = more)
• MS 1(P ) = (buying = low ∧maint = low)∨ (buying = med ∧maint = med)
• MS 2(T ) = (doors = 5-more ∧ safety = high) ∨ (doors = 4 ∧ safety = high)
• MS 2(P ) = (maint = med) ∨ (buying = med)
• MS 3(T ) = (persons = more∧doors = 5-more)∨ (lug_boot = big ∧safety =

high)
• MS 3(P ) = (buying = low)
• MS 4(T ) = (true)
• MS 4(P ) = (buying = low ∧maint = low)
• MS 5(T ) = (door = 5-more ∧ persons = more) ∨ (persons = more ∧

lug_boot = big) ∨ (safety = high)
• MS 5(P ) = (buying = low ∧ maint = low) ∨ (buying = low ∧ maint =

med) ∨ (buying = med ∧maint = low)

We define ten customer agents Ci, where 1 ≤ i ≤ 10, with associated mental
states Ci := MS i mod 5. That is, agents C1 and C6 have mental state MS 1, C2

and C7 have mental state MS 2, and so on.

For the purposes of this case study, we assume that a single seller (S) is
analysing the system evolution from its local point of view, aiming to pre-
dict the different outcomes of its interactions based on perceived regularities
regarding the observed behaviour of the customers.

In the following sections, we outline how qualitative context mining is per-
formed in this particular setting.

5.2 Decisions for the generation of context models

In converting raw sequences of message exchanges to training data samples
(see section 3.4), we make the following design choices, which effectively imply
the most simple and general data generation method implemented in Proto-
colMiner.

Firstly, we consider the agent B = S (S is the seller agent name) who performs
the analysis to obtain knowledge about the others agents’ (opaque) mental
states. Therefore, the learning input is restricted to Vc(A) and Ec(A), where
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c is the customer role in the protocol and A is any agent participating in this
role (see section 3.4.1).

As far as variables occurring in constraints are concerned, we uniformly record
all attributes contained in “terms” descriptions T and P , including a “?” (un-
known) value for those not mentioned in a given execution trace. This is
feasible in the given protocol model as the amount of unspecified data is man-
ageable. The strategy to deal with loops is to only record the last value of every
variable occurring in multiple iterations over the alternative-request sub-
sequence for the technical or the price terms negotiation, as we are primarily
interested in the final offer accepted or rejected by the customer (see section
3.4.2).

The given protocol allows for the following five different final messages: (1)
m4 = cannotOffer, (2) m6 = quit, (3) m10 = cannotOffer, (4) m12 =
fail and (5) m11 = succeed. All iterations of the alternative-request
loop are merged into a single path model. Therefore, ProtocolMiner obtains
the following five path models (constraint and message abbreviations as in
figure 1):

• π1 =
c1→ m1(

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧¬c3→ m4

• π2 =
c1→ m1(

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
¬c4∧¬c5→ m6

• π3 =
c1→ m1(((

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
c4→)|( c2→ m2 →))m5

c6→ m7(
¬c7∧c8→

m9
¬c9∧c10→ m7)

∗ ¬c7∧¬c8→ m10

• π4 =
c1→ m1(((

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
c4→)|( c2→ m2 →))m5

c6→ m7(
¬c7∧c8→

m9
¬c9∧c10→ m7)

∗ ¬c7∧c8→ m9
¬c9∧¬c10→ m12

• π5 =
c1→ m1(((

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
c4→)|( c2→ m2 →))m5

c6→ m7(((
¬c7∧c8→

m9
¬c9∧c10→ m7)

∗ ¬c7∧c8→ m9
c9→)|( c7→ m8 →))m11

Based on this information, we introduce an “outcome” variable outcome ∈
{S, F,N} (see section 3.3) to denote Successful completion of the negotiation
(path π5), Failure to complete (paths π1 and π2) or a Neutral outcome (the
remaining paths). This classification is biased by the seller’s point of view,
as she is specifically interested in failures of the customer agent, not in own
choices that led to premature termination of the negotiation procedure.

These choices result in a data set with the following set of 15 attributes: val-
ues A, B, doors(T ), persons(T ), lug_boot(T ), safety(T ), c1, c4, c5, buying(P ),
maint(P ), c6, c9, c10 (some constraints are not present due to a restriction to
the seller’s context model), and outcome. Here, we adopt a simplified nota-
tion attr(T ) = v to denote attr = v in terms T . Omitting the attributes
with unknown values, an example of a sample thus obtained from a tuple cor-
responding to π1 in a transaction between C1 and the seller agent could be
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represented by the substitution

θ = {A/C1, B/S, T/T2, Outcome/F}

and the context (see section 3.2) would be

termsWantedC1(T1 ) ∧ ¬altAcceptableC1
(T2 ) ∧ ¬keepNegotiatingC1

(T2 )

where T1 and T2 are ground terms for the technical features of the car.

While determining the most suitable learning algorithms for a particular con-
text mining task is beyond the scope of this paper, we experiment with three
open source implementations of data mining techniques included in Proto-
colMiner via the Weka tool [3]. These experiments use the default parameters
in these techniques to illustrate the impact of using different algorithms in an
exemplary way, and also to show that our approach does not depend on the
use of a specific learning algorithm. More specifically, we use the J48 decision
tree algorithm (an implementation of the C4.5 algorithm), the NNge classifi-
cation rules algorithm (Nearest neighbour like algorithm) and the BayesNet
algorithm (a Bayesian network classifier) [3].

5.3 Accuracy of a context model for a constraint

In our first experiment, the seller tries to learn a context model for a single
constraint, c4 = altAcceptableA(T ), and a single customer agent, C1. As ex-
plained in section 3.3, the outcome attribute used in this case is satisfaction of
the constraint (c4). All remaining attributes that involve truth values of other
constraints are removed from the samples (see section 3.3). Also, attributes
which appear after c4 (values for P ) are removed from the samples, just like
attributes with a single value across all samples, in this case A = C1 and
B = S. Notice that all this preprocessing can be automated after selecting
which specific constraint to analyse.

The output of the J48 algorithm after 1000 protocol executions is shown in
figure 2. The time taken to build the model (on a 2.4 Ghz 4GB RAM machine)
is 0.01 seconds and a tree with 15 nodes is obtained as the hypothesised mental
state that corresponds to the logical formula

altAcceptableC1(T )⇔(persons(T ) = more ∧ lug_boot(T ) = small ∧ doors(T ) = 5-more)∨
(persons(T ) = more ∧ lug_boot(T ) = med ∧ doors(T ) = 5-more)∨
(persons(T ) = more ∧ lug_boot(T ) = big)
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It is easy to verify that this is logically equivalent to MS 1(T ), i.e. the actual
preferences of agent C1 (see section 5.1).

The model generated with the NNge technique is shown in figure 6. Although
the results of NNge are less legible than the ones of the decision tree, we obtain
exactly the same results as before, a context model logically equivalent to the
mental state.

Finally, a ten-fold cross-validation applied to a model obtained with the Bayes-
Net method returns a 94.3% of correctly classified instances, a mean absolute
error 3 of 0.07 and a relative absolute error of 16.31%.

These experiments demonstrate that good context models can be obtained
for isolated constraints independently of the learning algorithm used (with
a probabilistic Bayesian method naturally performing a bit worse than crisp
methods in this case where the customer agent’s behaviour is deterministic in
terms of the constraint in question).

A possible strategy that the seller could follow to employ this context model for
her own benefit is: generating all the acceptable options for C1, ordering the list
by a utility function for the seller (e.g. selling price), and offering an alternative
based on this ranking. The seller might even choose to strategically lie about
the availability of a car with a low value in the utility function if they can be
sure that there are higher-value cars in the database that satisfy the inferred
context model and which could be successfully offered to the customer. Of
course this assumes extensive interaction with a single customer and a simple
decision-making procedure on the customer’s side, but the example illustrates
the potential for using our method in practical agent reasoning.

5.4 Accuracy of a context model for a whole protocol model

In this experiment, a seller tries to learn a model for the overall outcome
of the protocol. For this, we consider a ten-customer scenario with the five
mental states described in section 5.1 and outcome ∈ {S, F,N}. To focus on

3 The mean absolute error is calculated as follows: n∑
i=1

nc∑
j=1

[|actual(instancei, classj)− predicted(instancei, classj)|/nc]

 /n

where n is the number of instances in the test set, nc the number of classes or
outcome labels, actual returns 1 if an instancei has the class number classj and
0 in other case, and finally, predicted returns 1 if an instance instancei has been
classified as the class number classj by the model and 0, else.
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1 class F IF : doors in {2,3,4,5-more} ^ persons in {2} ^
lug_boot in {small ,med ,big} ^ safety in {low ,med ,

high} (158)
2 class T IF : doors in {5-more} ^ persons in {more} ^

lug_boot in {small ,med ,big} ^ safety in {low} (134)
3 class T IF : doors in {5-more} ^ persons in {more} ^

lug_boot in {small ,med ,big} ^ safety in {med ,high}
(252)

4 class F IF : doors in {3,4} ^ persons in {4,more} ^
lug_boot in {small ,med} ^ safety in {med ,high} (65)

5 class F IF : doors in {2,5-more} ^ persons in {4} ^
lug_boot in {small ,med ,big} ^ safety in {low ,med ,
high} (68)

6 class T IF : doors in {2} ^ persons in {more} ^
lug_boot in {big} ^ safety in {med ,high} (43)

7 class F IF : doors in {3,4} ^ persons in {4} ^ lug_boot
in {small ,med ,big} ^ safety in {low} (30)

8 class T IF : doors in {4} ^ persons in {more} ^
lug_boot in {big} ^ safety in {med ,high} (49)

9 class T IF : doors in {3} ^ persons in {more} ^
lug_boot in {big} ^ safety in {med ,high} (60)

10 class T IF : doors in {2} ^ persons in {more} ^
lug_boot in {big} ^ safety in {low} (23)

11 class F IF : doors in {2,3,4} ^ persons in {more} ^
lug_boot in {small ,med} ^ safety in {low} (20)

12 class T IF : doors in {4} ^ persons in {more} ^
lug_boot in {big} ^ safety in {low} (28)

13 class F IF : doors in {3,4} ^ persons in {4} ^ lug_boot
in {big} ^ safety in {med ,high} (22)

14 class T IF : doors in {3} ^ persons in {more} ^
lug_boot in {big} ^ safety in {low} (38)

15 class F IF : doors in {2} ^ persons in {more} ^
lug_boot in {small ,med} ^ safety in {med ,high} (10)

Fig. 6. NNge output for 1000 negotiations with customer C1 modelling the
altAcceptableA constraint. Every rule includes the number of instances classified
in parentheses. class T/F denotes the truth value of the constraint.

the outcome, attributes of constraints results are removed from the samples
in this experiment (as explained in section 3.3), and the single-value attribute
B = S is not included.

Figure 7 shows the average (across 100 repeated experiments) model accuracy,
evaluated using cross-validation, for the first 10000 negotiations (top chart),
as well as the time needed to perform the experiments (bottom chart).

The experiments demonstrate that accurate models can be built using contex-
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Fig. 7. Top chart: Average model accuracy (based on cross-validation) shown across
total number of negotiation (100 experiments). Learning algorithms: J48, NNge and
BayesNet. Bottom chart: Time to build each model (classifier), averaged over 100
experiments. Error bars show standard deviation.
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tual information extracted from concrete executions of a protocol to predict
its final outcome. More specifically, after an average of 200 total negotiations
(i.e. 20 per customer), the models classified at least 80% of all instances cor-
rectly. Besides, the time needed to obtain these models can be considered
reasonable even for agents that might use our method run-time. Even NNge,
the slowest of the algorithms, builds a model for 10000 negotiations in less
than 2 seconds.

Finally, the use of three different data mining techniques demonstrates that our
method is independent of the algorithm, although the Bayes classifier clearly
yields the lowest (by around 13%) performance. The decision tree model is
the least reliable for small numbers of instances, and simultaneously, performs
best for large datasets (it classifies 98.53% of all instances correctly).

5.5 Enhancement of interactions by context models

In this section, we show how agents can use context models directly to improve
their own performance in communicative exchanges with others. For this, we
enable customers to use the models to choose a good seller for the concrete
product they are looking for. Assume that we have three sellers, S1, S2 and
S3, who are able to offer products which satisfy the following mental state
models:

• MSS1(T, P ) = (safety = med ∧ buying = low ∧maint = low)
• MSS2(T, P ) = (safety = high ∧ buying = med ∧maint = low)
• MSS3(T, P ) = (persons = more ∧ doors = 5-more ∧ lug_boot = med ∧

buying = med ∧maint = low)

The customer agents follow strategy described in section 3.5 to improve their
interactions using context models. We compare the prediction accuracy of this
strategy against two alternative analysis strategies:

• Random. The seller is chosen randomly – this provides a baseline for the
minimum performance that could be achieved without any use of context
models. An optimal strategy is not included, as 100% success constitutes
the upper bound of what can be achieved in this scenario (we ensure that
there are always sellers in the system who can provide the requested items).
• Quantitative. The seller is chosen using a distance function based on the

number of past successes and failures with them in the customer’s personal
experience. The function used is D(s, f) = 1− (1 + s

2f+1
)−1, where s is the

number of successes and f the number of failures with a particular seller,
and the seller to interact with is chosen with probability corresponding to
D(s, f) [18].
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As figure 8 shows (top chart), after 100 negotiations (10 negotiations per
customer) the use of context models greatly outperforms the random and
quantitative strategies, with the use of decision trees converging faster to op-
timal performance than the other two learning techniques. However, later con-
vergence of the NNge shows that it performs equally well in the long term,
provided sufficient data becomes available. Even the worst learning technique
in this case, the Bayes classifier, results in almost twice as many successful
interactions than the quantitative approach.

The downside of this approach is an increased runtime, at least when, as above,
context models are re-built every time a customer obtains a wrong prediction,
which happens very often, while also the datasets over which the models are
built increase over time. Figure 8 also shows (bottom chart) the time taken
on average per negotiation, which reaches around 83 seconds after 25000 ne-
gotiations for J48 and 102 seconds for NNge. While this is clearly a drawback
of our method, it is highly customisable in that the maximum amount of data
processed or the frequency with which models are re-built can be adapted as
suits the system designer (albeit at the cost of lower accuracy). The figure
also shows that the lowest performance is reached using the Bayes classifier
although the experiments in section 5.4 concluded that it was the fastest tech-
nique. The explanation for this is that its low accuracy (see figure 7) results
in a constant need to re-build (see section 3.5), which implies a much higher
overall computational effort than the other two techniques.

6 Conclusions and future work

In this paper, we have presented a novel mechanism to exploit qualitative
information provided by high-level ACLs and interaction protocols, in which
messages are associated with logical constraints, which can be used as “seman-
tic” annotations of communication in a natural way. Our work was motivated
by a lack in existing multiagent systems analysis methods which mostly ignore
this rich source of contextual information when analysing run-time multiagent
interactions. We presented a formal approach that allows us to make inter-
action data available for qualitative data mining using information about the
shared protocol models as background knowledge.

The main advantage of using the additional structure available in agent-based
communication protocols is that it allows for the use of data mining methods
to infer qualitative information from observed message exchanges at a higher
level than this is possible using traditional distributed systems protocol. We
discussed different alternatives for dealing with the specific nature of agent in-
teraction protocols when converting interaction experiences to training data,
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addressing issues such as the presence of multiple agents, varying-length ex-
ecution paths, and loops that are commonly present in common multiagent
interaction protocols. Subsequently, we presented an implementation of our
techniques with the ProtocolMiner tool, and a case study which hinted at the
potential of applying data mining in multiagent systems.

In the future, we aim to apply our analysis methods to more real-world ex-
amples in order to extract guidelines for making appropriate choices when
selecting training data extraction strategies and appropriate data mining algo-
rithms. We would also like to explore the use of more advanced machine learn-
ing methods to learn logical theories of, for example, the internal ontological
conceptualisations agents use, and to rate their competence and trustworthi-
ness based on the knowledge they appear to have based on their interaction
behaviour. We believe these to be promising practical avenues for addressing
one of the fundamental problems of open systems, which is to be able to de-
rive knowledge of the internal workings of other agents without being able to
observe their internal state.
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