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Abstract

We make a probabilistic analysis related to some inference rules which play an important role in nonmonotonic
reasoning. In a coherence-based setting, we study the extensions of a probability assessment defined on n conditional
events to their quasi conjunction, and by exploiting duality, to their quasi disjunction. The lower and upper bounds
coincide with some well known t-norms and t-conorms: minimum, product, Lukasiewicz, and Hamacher t-norms
and their dual t-conorms. On this basis we obtain Quasi And and Quasi Or rules. These are rules for which any
finite family of conditional events p-entails the associated quasi conjunction and quasi disjunction. We examine some
cases of logical dependencies, and we study the relations among coherence, inclusion for conditional events, and p-
entailment. We also consider the Or rule, where quasi conjunction and quasi disjunction of premises coincide with the
conclusion. We analyze further aspects of quasi conjunction and quasi disjunction, by computing probabilistic bounds
on premises from bounds on conclusions. Finally, we consider biconditional events, and we introduce the notion of
an n-conditional event. Then we give a probabilistic interpretation for a generalized Loop rule. In an appendix we
provide explicit expressions for the Hamacher t-norm and t-conorm in the unitary hypercube.

Keywords: coherence, lower/upper probability bounds, quasi conjunction/disjunction, t-norms/conorms,
Goodman-Nguyen inclusion relation, generalized Loop rule.

1. Introduction

In classical (monotonic) logic, if a conclusion C follows from some premises, then C also follows when the
set of premises is enlarged; that is, adding premises never invalidates any conclusions. In contrast, in (nonmono-
tonic) commonsense reasoning we are typically in a situation of partial knowledge, and a conclusion reached from
a set of premises may be retracted when some premises are added. Nonmonotonic reasoning is a relevant topic in
the field of artificial intelligence, and has been studied in literature by many symbolic and numerical formalisms
(see, e.g. [6, 8, 9, 22, 54]). A remarkable theory related to nonmonotonic reasoning has been proposed by Adams
in his probabilistic logic of conditionals ([1]). We recall that the approach of Adams can be developed with full
generality by exploiting coherence-based probabilistic reasoning ([26]). In the setting of coherence conditional prob-
abilities can be directly assigned, and zero probabilities for conditioning events can be properly managed (see, e.g.
[7, 10, 11, 12, 18, 35, 40, 44, 62]). The coherence-based approach is applied in many fields: statistical analysis,
decision theory, probabilistic default reasoning and fuzzy theory. It allows one to manage incomplete probabilistic
assignments in a situation of vague or partial knowledge (see, e.g. [13, 14, 15, 17, 19, 37, 55, 56, 64]). A basic notion
in the work of Adams is the quasi conjunction of conditionals. This logical operation also plays a relevant role in [22]
(see also [6]), where a suitable Quasi And rule is introduced to characterize entailment from a knowledge base. In
the present article, besides quasi conjunction, we study by duality the quasi disjunction of conditional events and the
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associated Quasi Or rule.
Theoretical tools which play a relevant role in artificial intelligence and fuzzy logic are t-norms and t-conorms. These
allow one to extend the Boolean operations of conjunction and disjunction to the setting of multi-valued logics. T-
norms (first proposed in [58]) and t-conorms were introduced in [63] and are a subclass of aggregation functions
([46, 47, 48]). They play a basic role in decision theory, information and data fusion, probability theory and risk
management.
In this paper we give many insights about probabilistic default reasoning in the setting of coherence, by making a
probabilistic analysis of the Quasi And, Quasi Or and Loop inference rules. Some results were already given without
proof in [39]. To begin, we recall some basic notions and results regarding coherence, probabilistic default reasoning,
and the Hamacher t-norm/t-conorm (Section 2). Then, we show that some well known t-norms and t-conorms appear
as lower and upper bounds when we propagate probability assessments on a finite family of conditional events to the
associated quasi conjunction. By these bounds we obtain the Quasi And rule. We also consider special cases of logical
dependencies associated with the Goodman-Nguyen inclusion relation ([45]) and with the compound probability theo-
rem. Then, we give two results which identify the strict relationship holding among coherence, the Goodman-Nguyen
inclusion relation, and p-entailment (Section 3). We deepen a further aspect of the Quasi And rule by determining
the probability bounds on the premises from given bounds on the conclusion of the rule (Section 4). By exploiting
duality, we give analogous results for the quasi disjunction of conditional events, and we obtain the Quasi Or rule.
We also examine the Or rule, and we show that quasi conjunction and quasi disjunction of the premises of this rule
both coincide with its conclusion (Section 5). In a similar way, we then enrich the Quasi Or rule by determining
the probability bounds on the premises from given bounds on the conclusion of the rule (Section 6). We consider
biconditional events, and we introduce the notion of an n-conditional event, by means of which we give a probabilistic
semantics to a generalized Loop rule (Section 7). Finally, we give some conclusions and perspectives on future work
(Section 8). We illustrate notions and results with a table and some figures.
The results given in this work may be useful for the treatment of uncertainty in many applications of statistics and
artificial intelligence, in particular for the probabilistic approach to inference rules in nonmonotonic reasoning, for the
psychology of uncertain reasoning, and for probabilistic reasoning in the semantic web (see, e.g., [38, 51, 57, 60, 61]).

2. Some Preliminary Notions

In this section we first discuss some basic notions regarding coherence. Then, we recall the notions of p-
consistency and p-entailment of Adams ([1]) within the setting of coherence.

2.1. Basic notions on coherence

As in the approach of de Finetti, events represent uncertain facts described by (non ambiguous) logical proposi-
tions. An event A is a two-valued logical entity which can be true (T ), or false (F). The indicator of A is a two-valued
numerical quantity which is 1, or 0, according to whether A is true, or false. We denote by Ω the sure event and by ∅ the
impossible one. We use the same symbols for events and their indicators. Moreover, we denote by A∧B (resp., A∨B)
the logical intersection, or conjunction (resp., logical union, or disjunction). To simplify notations, in many cases we
denote the conjunction between A and B as the product AB. We denote by Ac the negation of A. Of course, the truth
values for conjunctions, disjunctions and negations are obtained by applying the propositional calculus. Given any
events A and B, we simply write A ⊆ B to denote that A logically implies B, that is ABc = ∅, which means that A
and Bc cannot be both true. Given n events A1, . . . , An, as Ai ∨ Ac

i = Ω , i = 1, . . . , n, by expanding the expression∧n
i=1(Ai ∨ Ac

i ), we can represent Ω as the disjunction of 2n logical conjunctions, some of which may be impossible.
The remaining ones are the atoms, or constituents, generated by A1, . . . , An. We recall that A1, . . . , An are logically
independent when the number of atoms generated by them is 2n. Of course, in case of some logical dependencies
among A1, . . . , An the number of atoms is less than 2n. For instance, given two logically incompatible events A, B,
as AB = ∅ the atoms are: ABc, AcB, AcBc. We remark that, to introduce the basic notions, an equivalent approach
is that of considering a Boolean algebra B whose elements are interpreted as events. In this way events would be
combined by means of the Boolean operations; then to say that A1, . . . , An are logically independent would mean that
the subalgebra generated by them has 2n atoms. Concerning conditional events, given two events A, B, with A , ∅, in
our approach the conditional event B|A is defined as a three-valued logical entity which is true (T), or false (F), or void
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(V), according to whether AB is true, or ABc is true, or Ac is true, respectively. We recall that, agreeing to the betting
metaphor, if you assess P(B|A) = p, then you are willing to pay an amount p and to receive 1, or 0, or p, according
to whether AB is true, or ABc is true, or Ac is true (bet called off), respectively. Given a real function P : F → R,
where F is an arbitrary family of conditional events, let us consider a subfamily Fn = {E1|H1, . . . , En|Hn} ⊆ F , and
the vector Pn = (p1, . . . , pn), where pi = P(Ei|Hi) , i = 1, . . . , n. We denote byHn the disjunction H1 ∨ · · · ∨ Hn. As
EiHi ∨ Ec

i Hi ∨ Hc
i = Ω , i = 1, . . . , n, by expanding the expression

∧n
i=1(EiHi ∨ Ec

i Hi ∨ Hc
i ), we can represent Ω as

the disjunction of 3n logical conjunctions, some of which may be impossible. The remaining ones are the atoms, or
constituents, generated by the family Fn and, of course, are a partition of Ω. We denote by C1, . . . ,Cm the constituents
contained inHn and (ifHn , Ω) by C0 the remaining constituentHc

n = Hc
1 · · ·H

c
n, so that

Hn = C1 ∨ · · · ∨Cm , Ω = Hc
n ∨Hn = C0 ∨C1 ∨ · · · ∨Cm , m + 1 ≤ 3n .

Interpretation with the betting scheme. With the pair (Fn,Pn) we associate the random gain G =
∑n

i=1 siHi(Ei − pi),
where s1, . . . , sn are n arbitrary real numbers. We observe that G is the difference between the amount that you
receive,

∑n
i=1 si(EiHi + piHc

i ), and the amount that you pay,
∑n

i=1 si pi, and represents the net gain from engaging each
transaction Hi(Ei − pi), the scaling and meaning (buy or sell) of the transaction being specified by the magnitude and
the sign of si respectively. Let gh be the value of G when Ch is true; of course, g0 = 0. Denoting by GHn = {g1, . . . , gm}

the set of values of G restricted toHn, we have

Definition 1. The function P defined on F is said to be coherent if and only if, for every integer n, for every finite
sub-family Fn ⊆ F and for every s1, . . . , sn, one has: min GHn ≤ 0 ≤ max GHn .

Notice that the condition min GHn ≤ 0 ≤ max GHn can be written in two equivalent ways: min GHn ≤ 0, or
max GHn ≥ 0. As shown by Definition 1, a probability assessment is coherent if and only if, in any finite combination
of n bets, it does not happen that the values g1, . . . , gm are all positive, or all negative (no Dutch Book).

Coherence with penalty criterion. An equivalent notion of coherence for unconditional events and random quanti-
ties was introduced by de Finetti ([24, 25, 26]) using the penalty criterion associated with the quadratic scoring rule.
Such a penalty criterion has been extended to the case of conditional events in [30]. With the pair (Fn,Pn) we asso-
ciate the loss L =

∑n
i=1 Hi(Ei − pi)2; we denote by Lh the value of L if Ch is true. If you specify the assessment Pn on

Fn as representing your belief’s degrees, you are required to pay a penalty Lh when Ch is true. Then, we have

Definition 2. The function P defined on F is said to be coherent if and only if there does not exist an integer n, a
finite sub-family Fn ⊆ F , and an assessment Pn

∗ = (p∗1, . . . , p∗n) on Fn such that, for the loss L∗ =
∑n

i=1 Hi(Ei − p∗i )2,
associated with (Fn,P

∗
n), it results L∗ ≤ L and L∗ , L; that is L∗h ≤ Lh , h = 1, . . . ,m , with L∗h < Lh in at least one

case.

We can develop a geometrical approach to coherence by associating, with each constituent Ch contained inHn, a
point Qh = (qh1, . . . , qhn), where qh j = 1, or 0, or p j, according to whether Ch ⊆ E jH j, or Ch ⊆ Ec

j H j, or Ch ⊆ Hc
j .

Then, denoting by I the convex hull of Q1, . . . ,Qm, the following characterization of coherence w.r.t. penalty criterion
can be given ([30, Theorem 4.4], see also [12, 31])

Theorem 1. The function P defined on F is coherent if and only if, for every finite sub-family Fn ⊆ F , one has
Pn ∈ I.

Equivalence between betting scheme and penalty criterion. The betting scheme and the penalty criterion are equiva-
lent, as can be proved by the following steps ([34]):
1. The condition Pn ∈ I amounts to solvability of the following system (Σ) in the unknowns λ1, . . . , λm

(Σ)
{ ∑m

h=1 qh jλh = p j , j = 1, . . . , n ;∑m
h=1 λh = 1 , λh ≥ 0 , h = 1, . . . ,m.

We say that system (Σ) is associated with the pair (Fn,Pn).
2. Let x = (x1, . . . , xm), y = (y1, . . . , yn)t and A = (ai j) be, respectively, a row m−vector, a column n−vector and a
m×n−matrix. The vector x is said semipositive if xi ≥ 0, ∀ i, and x1 + · · ·+ xm > 0. Then, we have (cf. [28, Theorem
2.9])
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Theorem 2. Exactly one of the following alternatives holds.
(i) the equation xA = 0 has a semipositive solution;
(ii) the inequality Ay > 0 has a solution.

3. By choosing ai j = qi j − p j, ∀ i, j, the solvability of xA = 0 means that Pn ∈ I, while the solvability of Ay > 0
means that, choosing si = yi, ∀ i, one has min GHn > 0. Hence, by applying Theorem 2 with A = (qi j − p j), we obtain
max GHn ≥ 0 if and only if (Σ) is solvable. In other words, max GHn ≥ 0 if and only if Pn ∈ I. Therefore, Definition
1 and Definition 2 are equivalent.

2.2. Coherence Checking
Given the assessment Pn on Fn, let S be the set of solutions Λ = (λ1, . . . , λm) of the system (Σ). Then, assuming

S , ∅, define
Φ j(Λ) = Φ j(λ1, . . . , λm) =

∑
r:Cr⊆H j

λr , j = 1, . . . , n ; Λ ∈ S ;
M j = maxΛ∈S Φ j(Λ) , j = 1, . . . , n ; I0 = { j : M j = 0} .

We observe that, assuming Pn coherent, each solution Λ = (λ1, . . . , λm) of system (Σ) is a coherent extension of the
assessment Pn on Fn to the family {C1|Hn, . . . , Cm|Hn}. Then, by the additive property, the quantity Φ j(Λ) is the
conditional probability P(H j|Hn) and the quantity M j is the upper probability P∗(H j|Hn) over all the solutions Λ of
system (Σ). Of course, j ∈ I0 if and only if P∗(H j|Hn) = 0. Notice that I0 ⊂ {1, . . . , n}. We denote by (F0,P0) the pair
associated with I0. Given the pair (Fn,Pn) and a subset J ⊂ Jn = {1, . . . , n}, we denote by (FJ ,PJ) the pair associated
with J and by ΣJ the corresponding system. We observe that (ΣJ) is solvable if and only if PJ ∈ IJ , where IJ is the
convex hull associated with the pair (FJ ,PJ). Then, we have ([32, Theorem 3.2]; see also [10, 33])

Theorem 3. Given a probability assessmentPn on the familyFn, if the system (Σ) associated with (Fn,Pn) is solvable,
then for every J ⊂ {1, . . . , n}, such that J \ I0 , ∅, the system (ΣJ) associated with (FJ ,PJ) is solvable too.

The previous result says that the condition Pn ∈ I implies PJ ∈ IJ when J \ I0 , ∅. We observe that, if Pn ∈ I,
then for every nonempty subset J of Jn \ I0 it holds that J \ I0 = J , ∅; hence, by Theorem 1, the subassessment PJn\I0

on the subfamily FJn\I0 is coherent. In particular, when I0 is empty, coherence of Pn amounts to solvability of system
(Σ), that is to condition Pn ∈ I. When I0 is not empty, coherence of Pn amounts to the validity of both conditions
Pn ∈ I and P0 coherent, as shown by the result below ([32, Theorem 3.3])

Theorem 4. The assessment Pn on Fn is coherent if and only if the following conditions are satisfied: (i) Pn ∈ I; (ii)
if I0 , ∅, then P0 is coherent.

2.3. Basic notions on probabilistic default reasoning
Given a conditional knowledge base Kn = {Hi |∼ Ei , i = 1, 2, . . . , n}, we denote by Fn = {Ei|Hi , i = 1, 2, . . . , n}

the associated family of conditional events. We give below, in the setting of coherence, synthetic definitions of the
notions of p-consistency and p-entailment of Adams, which are related with [8, Theorem 4.5, Theorem 4.9], [41,
Theorem 5], [42, Theorem 6].

Definition 3. The knowledge base Kn = {Hi |∼ Ei , i = 1, 2, . . . , n} is
p-consistent if and only if the assessment (p1, p2, . . . , pn) = (1, 1, . . . , 1) on Fn is coherent.

Definition 4. A p-consistent knowledge base Kn = {Hi |∼ Ei , i = 1, . . . , n} p-entails the conditional A |∼ B,
denoted Kn ⇒p A |∼ B, if and only if, for every coherent assessment (p1, p2, . . . , pn, z) on Fn ∪ {B|A} such that
(p1, p2, . . . , pn) = (1, 1, . . . , 1), it holds that z = 1.

The previous definitions of p-consistency and p-entailment are equivalent (see [35, Theorem 8], [41, Theorem 5],
[42, Theorem 6]) to that ones given in [35].

Remark 1. We say that a family of conditional events Fn p-entails a conditional event B|A when the associated
knowledge base Kn p-entails the conditional A|∼ B.

Definition 4 can be generalized to p-entailment of a family (of conditional events) Γ from another family F in the
following way.
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Definition 5. Given two p-consistent finite families of conditional events F and S, we say that F p-entails S if F
p-entails E|H for every E|H ∈ S.

We remark that, from Definition 4, we trivially have that F p-entails E|H, for every E|H ∈ F ; then, by Definition
5, it immediately follows

F ⇒p S , ∀S ⊆ F . (1)

Probabilistic default reasoning has been studied by many authors (see, e.g.,[6, 8, 9, 22, 54]); methods and results
based on the maximum entropy principle have been given in [50, 65].

2.4. Hamacher t-norm and t-conorm

We recall that the Hamacher t-norm, with parameter λ = 0, or Hamacher product, T H
0 is defined as ([49])

T H
0 (x, y) =

{
0, (x, y) = (0, 0),

xy
x+y−xy , (x, y) , (0, 0). (2)

We also recall that the Hamacher t-conorm, with parameter λ = 0, S H
0 is

S H
0 (x, y) =

{
1, (x, y) = (1, 1),
x+y−2xy

1−xy , (x, y) , (1, 1). (3)

As is well known, t-norms overlap with copulas ([3, 59]); indeed, commutative associative copulas are t-norms and
t-norms which satisfy the 1-Lipschitz condition are copulas. We also recall that some well-known families of t-norms
receive a different name in the literature when considered as families of copulas. In particular, the Hamacher product
is a copula because it satisfies the following necessary and sufficient condition ([3, Theorem 1.4.5]):

Theorem 5. A t-norm T is a copula if and only if it satisfies the Lipschitz condition: T (x2, y) − T (x1, y) ≤ x2 − x1,
whenever x2 ≤ x1.

Hamacher product is called Ali-Mikhail-Haq copula with parameter 0 ([2, 46, 52, 59]). Further details on t-norms
and t-conorms are given in the Appendices.

3. Lower and Upper Bounds for Quasi Conjunction

We recall below the notion of quasi conjunction of conditional events as defined in [1].

Definition 6. Given any events A,H, B,K, with H , ∅,K , ∅, the quasi conjunction of the conditional events A|H
and B|K is the conditional event C(A|H, B|K) = (AH ∨ Hc) ∧ (BK ∨ Kc)|(H ∨ K), or equivalently C(A|H, B|K) =

(AHBK ∨ AHKc ∨ HcBK)|(H ∨ K).

Table 1 shows the truth-table of the quasi conjunction C(A|H, B|K) and of the quasi disjunction D(A|H, B|K) (see
Section 5). In general, given a family of n conditional events Fn = {Ei|Hi, i = 1, . . . , n}, we have

C(Fn) = C(E1|H1, . . . , En|Hn) =

n∧
i=1

(EiHi ∨ Hc
i )
∣∣∣( n∨

i=1

Hi) .

Quasi conjunction is associative; that is, for every subset J ⊂ {1, . . . , n}, it holds that C(Fn) = C(FJ ∪ FΓ) =

C[C(FJ),C(FΓ)], where Γ = {1, . . . , n} \ J. An interesting analysis of many three-valued logics studied in the lit-
erature has been given by Ciucci and Dubois in [16]. In such a paper the definition of conjunction satisfies left
monotonicity, right monotonicity and conformity with Boolean logic; then the authors show that there are 14 different
ways of defining conjunction and only 5 of them (one of which defines quasi conjunction) satisfy commutativity and
associativity.
Assuming A,H, B,K logically independent, we have ([36], see also [37]):
(i) the probability assessment (x, y) on {A|H, B|K} is coherent for every (x, y) ∈ [0, 1]2;
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(ii) given a coherent assessment (x, y) on {A|H, B|K}, the extension P = (x, y, z) on F = {A|H, B|K,C(A|H, B|K)}, with
z = P[C(A|H, B|K)], is coherent if and only if z ∈ [l, u], with

l = TL(x, y) = max(x + y − 1, 0), u = S H
0 (x, y) =

{ x+y−2xy
1−xy , (x, y) , (1, 1),

1, (x, y) = (1, 1),
(4)

where TL is the Lukasiewicz t-norm (see Appendix A) and S H
0 is the Hamacher t-conorm1, with parameter λ = 0.

The lower bound TL for the quasi conjunction is the Fréchet-Hoeffding lower bound; both l and u coincide with the
Fréchet-Hoeffding bounds if we consider the conjunction of conditional events in the setting of conditional random
quantities, as made in [43]. The lower and upper bounds, l, u, of z = P[C(A|H, B|K)] can be obtained by studying the
coherence of the assessment P = (x, y, z), based on the geometrical approach described in Section 2. The constituents
generated by the family {A|H, B|K,C(A|H, B|K)} and the corresponding points Qh’s are given in columns 2 and 6 of
Table 1. In [36] (see also [37]) the values l, u are computed by observing that the coherence of P = (x, y, z) simply
amounts to the geometrical condition P ∈ I, where I is the convex hull of the points Q1,Q2, . . . ,Q8 (associated with
the constituents C1,C2, . . . ,C8 contained in H ∨ K). We observe that in this case the convex hull I does not depend
on z. Figure 1 shows, for given values x, y, the convex hull I and the associated interval [l, u] for z = P[C(A|H, B|K)].

h Ch A|H B|K C(A|H, B|K) Qh D(A|H, B|K) Qh

0 HcKc Void Void Void (x, y, z) Void (x, y, z)
1 AHBK True True True (1, 1, 1) True (1, 1, 1)
2 AHKc True Void True (1, y, 1) True (1, y, 1)
3 AHBcK True False False (1, 0, 0) True (1, 0, 1)
4 HcBK Void True True (x, 1, 1) True (x, 1, 1)
5 HcBcK Void False False (x, 0, 0) False (x, 0, 0)
6 AcHBK False True False (0, 1, 0) True (0, 1, 1)
7 AcHKc False Void False (0, y, 0) False (0, y, 0)
8 AcHBcK False False False (0, 0, 0) False (0, 0, 0)

Table 1: Truth-Table of the quasi conjunction and of the quasi disjunction with the associated points Qh’s.

Remark 2. Notice that, if the events A, B,H,K were not logically independent, then some constituents Ch’s (at least
one) would become impossible and the lower bound l could increase, while the upper bound u could decrease. To
examine this aspect we will consider some special cases of logical dependencies.

3.1. The Case A|H ⊆ B|K
The notion of logical inclusion among events has been generalized to conditional events by Goodman and Nguyen

in [45]. We recall below this generalized notion.

Definition 7. Given two conditional events A|H and B|K, we say that A|H implies B|K, denoted by A|H ⊆ B|K, iff
AH true implies BK true and BcK true implies AcH true; i.e., iff AH ⊆ BK and BcK ⊆ AcH.

Remark 3. Denoting by t(·) the truth value function and assuming the order False < Void < True, then it can be
easily verified that

A|H ⊆ B|K ⇔ AHBcK = HcBcK = AHKc = ∅ ,
A|H ⊆ B|K ⇔ t(A|H) ≤ t(B|K)⇔ t(Bc|K) ≤ t(Ac|H)⇔ Bc|K ⊆ Ac|H .

Given any conditional events A|H, B|K, we denote by Πx the set of coherent probability assessments x on A|H, by
Πy the set of coherent probability assessments y on B|K and by Π the set of coherent probability assessments (x, y) on
{A|H, B|K}; moreover we indicate by Tx≤y the triangle {(x, y) ∈ [0, 1]2 : x ≤ y}. We have

1The coincidence between the upper bound u and Hamacher t-conorm S H
0 (x, y) was noticed by Didier Dubois.
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Figure 1: The convex hull I associated with the pair (F ,P) in case of quasi conjunction without logical dependencies. The interval [l, u] for
z = P[C(A|H, B|K)] is the range of the third coordinate z of each P ∈ PlPu = {(x, y, z) : z ∈ [TL(x, y), S H

0 (x, y)]}. The segment PlPu is the
intersection between the segment {(x, y, z) : z ∈ [0, 1]} and the convex hull I.

Theorem 6. Given two conditional events A|H, B|K, we have

Π ⊆ Tx≤y ⇐⇒ A|H ⊆ B|K, or AH = ∅, or BcK = ∅ . (5)

Proof. (⇒) We will prove that

A|H * B|K , AH , ∅ , BcK , ∅ =⇒ Π * Tx≤y . (6)

We observe that AH = ∅ if and only if Πx = {0} and that BcK = ∅ if and only if Πy = {1}. Moreover, by Remark 3 it
holds

A|H * B|K ⇐⇒ AHBcK ∨ HcBcK ∨ AHKc , ∅ .

Then, in order to prove formula (6), we distinguish three cases:
(i) AHBcK , ∅; (ii) HcBcK , ∅ , AH , ∅; (iii) AHKc , ∅ , BcK , ∅.
In case (i), the assessment (1, 0) on {A|H, B|K} is coherent. In case (ii), as AH , ∅ we have {1} ⊆ Πx; then, the
assessment (1, 0) on {A|H, B|K} is coherent. In case (iii), as BcK , ∅ we have {0} ⊆ Πy; then, the assessment (1, 0) on
{A|H, B|K} is coherent. Then, in each of the three cases the assessment (1, 0) is coherent and hence Π * Tx≤y.
(⇐) We distinguish three cases:
(a) A|H ⊆ B|K; (b) AH = ∅; (c) BcK = ∅.
(a) The constituents generated by {A|H, B|K} and contained in H ∨ K belong to the family:

{AHBK,HcBK, AcHBK, AcHKc, AcHBcK} .

The corresponding points Qh’s belong to the set {(1, 1), (x, 1), (0, 1), (0, y), (0, 0)}, which has the triangle Tx≤y as convex
hull; hence the convex hull Π of the points Qh’s is a subset of Tx≤y.
(b) Since Πx = {0} it follows that Π ⊆ {(0, y) : y ∈ [0, 1]} ⊆ Tx≤y.
(c) Since Πy = {1} it follows that Π ⊆ {(x, 1) : x ∈ [0, 1]} ⊆ Tx≤y.

The next result, related with Theorem 6 and with the inclusion relation, characterizes the notion of p-entailment
between two conditional events.
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Theorem 7. Given two conditional events A|H, B|K, with AH , ∅, the following assertions are equivalent:
(a) (A|H ⇒p B|K) ; (b) A|H ⊆ B|K, or K ⊆ B ; (c) Π ⊆ Tx≤y.

Proof. As AH , ∅, from Theorem 6 the assertions (b) and (c) are equivalent; hence, we only need to show the
equivalence between (a) and (b).
((a)⇒ (b)). We will prove that

A|H * B|K , AH , ∅ , BcK , ∅ =⇒ A|H ;p B|K .

Assume that A|H * B|K, BcK , ∅. Then, as in the proof of Theorem 6, we distinguish three cases:
(i) AHBcK , ∅; (ii) HcBcK , ∅ , AH , ∅; (iii) AHKc , ∅ , BcK , ∅.
In all three cases the assessment (1, 0) is coherent; thus A|H ;p B|K.
((b) ⇒ (a)). We preliminarily observe that {A|H} is p-consistent. Now, if A|H ⊆ B|K, then p-entailment of B|K
from A|H follows from monotonicity of conditional probability w.r.t. inclusion relation. If K ⊆ B, then trivially A|H
p-entails B|K.

Example 1. Given any events A, B, for the conditional events A ∨ B, B|Ac it holds that B|Ac = (A ∨ B)|Ac ⊆ A ∨ B.
Then, for the assessment P(A ∨ B) = x, P(B|Ac) = y, the necessary condition of coherence 0 ≤ y ≤ x ≤ 1 must be
satisfied. Of course, P(A∨B) ’high’ does not imply P(B|Ac) ’high’; for instance, it is coherent to assign P(B|Ac) = 0.2
and P(A ∨ B) = 0.8. Then, the inference of the conditional event B|Ac from the disjunction A ∨ B may be ’weak’. A
probabilistic analysis characterizing the cases in which such an inference is ’strong’ has been made in [38].

Remark 4. We observe that, under the hypothesis A|H ⊆ B|K, the constituents generated by {A|H, B|K} belong to the
family

H = {AHBK,HcBK, AcHBK, AcHKc, AcHBcK,HcKc} .

The quasi-conjunction is C(A|H, B|K) = (AH ∨ HcBK) | (H ∨ K) and, as shown by Table 1, for any constituent in H
it holds that

t(A|H) ≤ t(C(A|H, B|K)) ≤ t(B|K) .

Then, we have (see Remark 3)
A|H ⊆ B|K =⇒ A|H ⊆ C(A|H, B|K) ⊆ B|K . (7)

As conditional probability is monotonic w.r.t. inclusion relation among conditional events ([45]), it holds that
P(A|H) ≤ P[C(A|H, B|K)] ≤ P(B|K). As shown by Theorem 6, in our coherence-based approach the monotonic
property is obtained without assuming that P(H) and P(K) are positive. The next result establishes that P[C(A|H, B|K)]
can coherently assume all the values in the interval [P(A|H), P(B|K)]. We have

Proposition 1. Let be given any coherent assessment (x, y) on {A|H, B|K}, with A|H ⊆ B|K and with no further logical
relations. Then, the extension z = P[C(A|H, B|K)] is coherent if and only if l ≤ z ≤ u, where

l = x = min(x, y) = TM(x, y) , u = y = max(x, y) = S M(x, y) .

Proof. We recall that, apart from A|H ⊆ B|K, there are no further logical relations; thus it holds that Π = Tx≤y (i.e.
0 ≤ x ≤ y ≤ 1). Denoting by [l, u] the interval of coherent extensions of the assessment (x, y) to C(A|H, B|K), by
(7) it holds that [l, u] ⊆ [x, y]. In order to prove that [l, u] = [x, y] it is enough to verify that both the assessments
Pl = (x, y, x) and Pu = (x, y, y) are coherent. Given any assessment P = (x, y, z), with x ≤ y, we study the coherence
of P by the geometrical approach described in Section 2. The constituents generated by the family and contained in
H ∨ K are:

C1 = AHBK ,C2 = HcBK ,C3 = AcHBK ,C4 = AcHKc ,C5 = AcHBcK .

The corresponding points Qh’s are

Q1 = (1, 1, 1) ,Q2 = (x, 1, 1) ,Q3 = (0, 1, 0) ,Q4 = (0, y, 0) ,Q5 = (0, 0, 0) ,

and, in our case, the coherence of P simply amounts to the geometrical condition P ∈ I, where I is the convex hull
of the points Q1,Q2, . . . ,Q5.
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It can be verified that Pl = xQ1 + (y − x)Q3 + (1 − y)Q5, so that Pl ∈ I; hence l = x. Concerning Pu, we first observe
that when (x, y) = (1, 1) we have Pu = (1, 1, 1) = Q1, so that Pu ∈ I; hence u = y = 1. Assuming (x, y) , (1, 1), it can
be verified that Pu =

x−xy
1−x Q1 +

y−x
1−x Q2 + (1 − y)Q5, so that Pu ∈ I; hence u = y. Therefore, [l, u] = [x, y].

We remark that the lower/upper bound above, l, u, may change if we add further logical relations; for instance,
if H = K, it is C(A|H, B|H) = A|H, in which case l = u = x. Finally, in agreement with Remark 2, we observe
that TL(x, y) ≤ min(x, y) ≤ max(x, y) ≤ S H

0 (x, y). We also recall that TM(x, y) = min(x, y) is the largest t-norm and
S M(x, y) = max(x, y) is the smallest t-conorm ([53]). Figure 2 shows the convex hull I for given values x, y, with the
associated interval [l, u] for z = P[C(A|H, B|K)], when A|H ⊆ B|K.

Figure 2: The convex hull I associated with the pair (F ,P) when A|H ⊆ B|K. The interval [l, u] for z = P[C(A|H, B|K)] is the range of the third
coordinate z of eachP ∈ PlPu = {(x, y, z) : z ∈ [TM(x, y), S M(x, y)]}. The segmentPlPu is the intersection between the segment {(x, y, z) : z ∈ [0, 1]}
and the convex hull I. This intersection is empty for x > y because of Π ⊆ Tx≤y, .

3.2. Compound Probability Theorem

We now examine the quasi conjunction of A|H and B|AH, with A, B, H logically independent events. As it can
be easily verified, we have C(A|H, B|AH) = AB|H; moreover, the probability assessment (x, y) on {A|H, B|AH} is co-
herent, for every (x, y) ∈ [0, 1]2. Hence, by the compound probability theorem, if the assessment P = (x, y, z) on F =

{A|H, B|AH, AB|H} is coherent, then z = xy; i.e., l = u = x · y = TP(x, y).
In agreement with Remark 2, we observe that TL(x, y) ≤ xy ≤ S H

0 (x, y).
We observe that A|H = AH|H, B|AH = ABH|AH, AB|H = ABH|H; as z = xy, {AH|H, ABH|AH} p-entails ABH|H
(transitive property). Moreover AB|H ⊆ B|H; hence {A|H, B|AH} p-entails B|H (cut rule).

3.3. Lower and Upper Bounds for the Quasi Conjunction of n Conditional Events

In this subsection we generalize formula (4). Let be given n conditional events E1|H1, . . . , En|Hn. By the as-
sociative property of quasi conjunction, defining Fk = {E1|H1, . . . , Ek |Hk}, for each k = 2, . . . , n it holds that
C(Fk) = C(C(Fk−1), Ek |Hk). Then, we have
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Theorem 8. Given a probability assessment Pn = (p1, p2, . . . , pn) on Fn = {E1|H1, . . . , En|Hn}, let [lk, uk] be the
interval of coherent extensions of the assessment Pk = (p1, p2, . . . , pk) on the quasi conjunction C(Fk), where Fk =

{E1|H1, . . . , Ek |Hk}. Then, assuming E1,H1, . . . , En,Hn logically independent, for each k = 2, . . . , n, we have

lk = TL(p1, p2, . . . , pk) = max(p1 + p2 + . . . + pk − (k − 1), 0) , (8)

uk = S H
0 (p1, p2, . . . , pk) =


1, pi = 1 for at least one i,∑k

i=1
pi

1−pi∑k
i=1

pi
1−pi

+1
, pi < 1 for i = 1, . . . , k. (9)

Proof. Of course, from (4) it is l2 = TL(p1, p2) , u2 = S H
0 (p1, p2). We recall that both TL and S H

0 are associative.
Moreover, as

C(F3) = C(C(F2), E3|H3) , l2 ≤ P[C(F2)] ≤ u2 ,

defining P[C(F2)] = x and observing that the quantities TL(x, p3) , S H
0 (x, p3) are non-decreasing functions of x, we

have
l3 = TL(l2, p3) = TL(TL(p1, p2), p3) = TL(p1, p2, p3) ,

u3 = S H
0 (u2, p3) = S H

0 (S H
0 (p1, p2), p3) = S H

0 (p1, p2, p3) .

Considering any k > 3, we proceed by induction. Assuming

lk−1 = TL(p1, p2, . . . , pk−1) , uk−1 = S H
0 (p1, p2, . . . , pk−1) ,

as C(Fk) = C(C(Fk−1), Ek |Hk) and lk−1 ≤ P[C(Fk−1)] ≤ uk−1, defining P[C(Fk−1)] = x and observing that the quantities
TL(x, pk) and S H

0 (x, pk) are non-decreasing functions of x, we have

lk = TL(lk−1, pk) = TL(p1, p2, . . . , pk),
uk = S H

0 (uk−1, pk) = S H
0 (p1, p2, . . . , pk).

The explicit values of lk and uk in (8) and (9) follow by Appendix B and Appendix C.

Notice that (p1, p2, . . . , pn) = (1, 1, . . . , 1) implies TL(p1, p2, . . . , pn) = 1. Then, from Theorem 8, we obtain the
following Quasi And rule (see also [41, Theorem 4]).

Corollary 1. Given a p-consistent family of conditional events Fn, we have

(Quasi And) Fn ⇒p C(Fn) . (10)

We observe that, from (1), we obtain ([42, Theorem 5])

Fn ⇒p C(S) , ∀S ⊆ Fn . (11)

Of course, (11) still holds when there are logical dependencies because in this case the lower bound for quasi conjunc-
tion does not decrease, as observed in Remark 2. In the next example we illustrate the key role of quasi conjunction
when we study p-entailment. This example has been already examined in [35], by using the inference rules of System
P in the setting of coherence.

Example 2 (Linda’s example). We start with a given p-consistent family of conditional events F ; then, we use the
quasi conjunction to check the p-entailment of some further conditional events from F . The family F concerns
various attributes for a given party (the party is great, the party is noisy, Linda and Steve are present, and so on). We
introduce the following events:

L = “Linda goes to the party”; S = “Steve goes to the party”;
G = “the party is great”; N = “the party is noisy” ,

which are assumed to be logically independent. Then, we consider the family F = {G|L, S |L,Nc|LS , L|S ,Gc|Nc} and
the family of further conditional events

K = {Nc|L, Lc|Ω, GNc|LS , Nc|S , Nc|(L ∨ S )} .
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It can be verified that the assessment (1, 1, 1, 1, 1) on F is coherent, i.e. the family F is p-consistent. By exploiting
quasi conjunction, we can verify that F p-entails K ; that is F p-entails each conditional event in K . Indeed:
(a) concerning Nc|L, for the subset S = {S |L,Nc|LS } we have C(S) = NcS |L ⊆ Nc|L; thus: F ⇒p C(S)⇒p Nc|L;
(b) concerning Lc|Ω, for the subset S = {G|L, S |L,Nc|LS ,Gc|Nc} we have C(S) = GcLcNc|(L ∨ Nc) ⊆ Lc|Ω; thus:
F ⇒p C(S)⇒p Lc|Ω;
(c) concerning GNc|LS , for the subset S = {G|L, S |L,Nc|LS } we have C(S) = GNcS |L ⊆ GNc|LS ; thus: F ⇒p

C(S)⇒p GNc|LS ;
(d) concerning Nc|S , for the subset S = {Nc|LS , L|S } we have C(S) = LNc|S ⊆ Nc|S ; thus: F ⇒p C(S)⇒p Nc|S ;
(e) concerning Nc|(L ∨ S ), for the subset S = {S |L,Nc|LS , L|S } we have C(S) = LNcS |(L ∨ S ) ⊆ Nc|(L ∨ S ); thus:
F ⇒p C(S)⇒p Nc|(L ∨ S ).
We point out that the p-entailment ofK from F can be also verified by applying Algorithm 2 in [42]. We also observe
that, using the basic events L, S ,G,N, we can define conditional events which are not p-entailed from F . For instance,
concerning G|N, associated with the conditional “if the party is noisy, then the party is great”, it can be proved that F
does not p-entail G|N. Indeed, there is no subset S ⊆ F , with S , ∅, such that C(S)⇒p G|N (see [42, Theorem 6]).

3.4. The Case E1|H1 ⊆ E2|H2 ⊆ . . . ⊆ En|Hn

In this subsection we give a result on quasi conjunctions when Ei|Hi ⊆ Ei+1|Hi+1, i = 1, . . . , n − 1. We have

Theorem 9. Given a family Fn = {E1|H1, . . . , En|Hn} of conditional events such that E1|H1 ⊆ E2|H2 ⊆ . . . ⊆
En|Hn, and a coherent probability assessment Pn = (p1, p2, . . . , pn) on Fn, let C(Fk) be the quasi conjunction of
Fk = {Ei|Hi, i = 1, . . . , k}, k = 2, . . . , n. Moreover, let [lk, uk] be the interval of coherent extensions on C(Fk) of
the assessment (p1, p2, . . . , pk) on Fk. We have: (i) E1|H1 ⊆ C(F2) ⊆ . . . ⊆ C(Fn) ⊆ En|Hn; (ii) by assuming no
further logical relations, any probability assessment (z2, . . . , zk) on {C(F2), . . . ,C(Fk)} is a coherent extension of the
assessment (p1, p2, . . . , pk) on Fk if and only if p1 ≤ z2 ≤ · · · ≤ zk ≤ pk , k = 2, . . . , n; moreover

lk = min(p1, . . . , pk) = p1 , uk = max(p1, . . . , pk) = pk , k = 2, . . . , n .

Proof. (i) By iteratively applying (7) and by the associative property of quasi conjunction, we have C(Fk−1) ⊆ C(Fk) ⊆
Ek |Hk , k = 2, . . . , n;
(ii) by exploiting the logical relations in point (i), the assertions immediately follow by applying a reasoning similar
to that in Remark 4.

3.5. Generalized Compound Probability Theorem

In this subsection we generalize the result obtained in Subsection 3.2. Given the family
F = {A1|H, A2|A1H, . . . , An|A1 · · · An−1H}, by iteratively exploiting the associative property, we have

C(F ) = C(C(A1|H, A2|A1H), A3|A1A2H, . . . , An|A1 · · · An−1H) =

= C(A1A2|H, A3|A1A2H, . . . , An|A1 · · · An−1H) = · · · = A1A2 · · · An|H ;

thus, by the compound probability theorem, if the assessment P = (p1, . . . , pn, z) on F ∪ {C(F )} is coherent, then

z = l = u = p1 p2 · · · pn = TP(p1, p2, . . . , pn).

4. Further Aspects on Quasi Conjunction: from Bounds on Conclusions to Bounds on Premises in Quasi And
rule

In this section, we study the propagation of probability bounds on the conclusion of the Quasi And rule to its
premises. We start with the case of two premises A|H and B|K, by examining probabilistic aspects on the lower and
upper bounds, l and u, for the probability of the conclusion C(A|H, B|K). More precisely, given any number γ ∈ [0, 1],
we find:
(i) the set Lγ of the coherent assessments (x, y) on {A|H, B|K} such that, for each (x, y) ∈ Lγ, one has l ≥ γ;
(ii) the setUγ of the coherent assessments (x, y) on {A|H, B|K} such that, for each (x, y) ∈ Uγ, one has u ≤ γ.
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Case (i). Of course, L0 = [0, 1]2; hence we can assume γ > 0. It must be l = max{x + y − 1, 0} ≥ γ, i.e., x + y ≥ 1 + γ
(as γ > 0); hence Lγ coincides with the triangle having the vertices (1, 1), (1, γ), (γ, 1); that is

Lγ = {(x, y) : γ ≤ x ≤ 1, 1 + γ − x ≤ y ≤ 1} .

Notice that L1 = {(1, 1)}; moreover, for γ ∈ (0, 1), (γ, γ) < Lγ.
Case (ii). Of course, U1 = [0, 1]2; hence we can assume γ < 1. We recall that u = S H

0 (x, y), then in order the
inequality S H

0 (x, y) ≤ γ be satisfied, it must be x < 1 and y < 1. Thus, u ≤ γ if and only if x+y−2xy
1−xy ≤ γ. Given any

x < 1, y < 1, we have

u − x =
y(1 − x)2

1 − xy
≥ 0 , u − y =

x(1 − y)2

1 − xy
≥ 0 ; (12)

then, from u ≤ γ it follows x ≤ γ, y ≤ γ; henceUγ ⊆ [0, γ]2. Then, taking into account that x ≤ γ and hence

1 − (2 − γ)x = 1 − 2x + γx ≥ 1 − 2x + x2 = (1 − x)2 > 0 ,

we have
x + y − 2xy

1 − xy
≤ γ ⇐⇒ y ≤

γ − x
1 − (2 − γ)x

; (13)

therefore

Uγ =

{
(x, y) : 0 ≤ x ≤ γ , y ≤

γ − x
1 − (2 − γ)x

}
.

Notice thatU0 = {(0, 0)}; moreover, for x = y = γ ∈ (0, 1), it is u =
2γ

1+γ
> γ; hence, for γ ∈ (0, 1),Uγ is a strict subset

of [0, γ]2.
Of course, for every (x, y) < Lγ ∪Uγ, it is l < γ < u. Figure 3 displays the sets Lγ,Uγ when γ = 0.6.

Figure 3: The sets Lγ,Uγ.

In the next result we determine in general the sets Lγ,Uγ.

Theorem 10. Given a coherent assessment (p1, p2, . . . , pn) on the family {E1|H1, . . . , En|Hn}, where E1,H1, . . . , En,Hn
are logically independent, we have

Lγ = {(p1, . . . , pn) ∈ [0, 1]n : p1 + · · · + pn ≥ γ + n − 1} , γ > 0 ,

Uγ = {(p1, . . . , pn) ∈ [0, 1]n : 0 ≤ p1 ≤ γ , pk+1 ≤ rk , k = 1, . . . , n − 1} , γ < 1 ,
(14)
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where rk =
γ−uk

1−(2−γ)uk
, uk = S H

0 (p1, . . . , pk), with L0 = U1 = [0, 1]n.

Proof. Of course, L0 = [0, 1]n, so that we can assume γ > 0. It must be ln = max(p1 + · · · + pn − (n − 1), 0) ≥ γ, that
is, as γ > 0, p1 + · · · + pn ≥ γ + n − 1. Hence: Lγ = {(p1, . . . , pn) ∈ [0, 1]n : p1 + · · · + pn ≥ γ + n − 1}.
We observe that Lγ is a convex polyhedron with vertices the points

V1 = (γ, 1, . . . , 1), V2 = (1, γ, 1, . . . , 1), · · · ,
Vn = (1, . . . , 1, γ), Vn+1 = (1, 1, . . . , 1) .

Moreover, the convex hull of the vertices V1, . . . ,Vn is the subset of the points (p1, . . . , pn) of Lγ such that ln = γ, that
is such that p1 + · · · + pn = γ + n − 1.
Now, let us determine the setUγ. Of course,U1 = [0, 1]n, so that we can assume γ < 1. We recall that u2, . . . , un are
the upper bounds on C(F2), . . . ,C(Fn) associated with (p1, . . . , pn). Then, from the relations

C(Fk+1) = C(C(Fk), Ek+1|Hk+1) , k = 2, . . . , n − 1 ,

by applying (12) with x = uk, y = pk+1, we have that in order the inequality uk+1 ≤ γ be satisfied,it must be uk ≤

γ, pk+1 ≤ γ, k = 2, . . . , n − 1. Therefore

un ≤ γ =⇒ p1 ≤ γ, . . . , pn ≤ γ, u2 ≤ γ, . . . , un−1 ≤ γ ,

so thatUγ ⊆ [0, γ]n. By iteratively applying (13), we obtain

0 ≤ p1 ≤ γ , p2 ≤
γ − p1

1 − (2 − γ)p1
=⇒ u2 ≤ γ ,

0 ≤ u2 ≤ γ , p3 ≤
γ − u2

1 − (2 − γ)u2
=⇒ u3 ≤ γ ,

...

0 ≤ un−1 ≤ γ , pn ≤
γ − un−1

1 − (2 − γ)un−1
=⇒ un ≤ γ .

Therefore, observing that u1 = p1,

Uγ = {(p1, . . . , pn) ∈ [0, 1]n : 0 ≤ p1 ≤ γ , pk+1 ≤
γ − uk

1 − (2 − γ)uk
, k = 1, . . . , n − 1} .

We observe thatU0 = {(0, . . . , 0)}; moreover, for p1 = · · · = pn = γ ∈ (0, 1), we obtain (by induction)

u2 =
2γ

1 + γ
> γ , u3 =

3γ
1 + 2γ

> γ , · · · , un =
nγ

1 + (n − 1)γ
> γ ;

hence, for γ ∈ (0, 1),Uγ is a strict subset of [0, γ]n.
Of course, for every (p1, . . . , pn) < Lγ ∪Uγ, it is ln < γ < un. As an example, for p1 = · · · = pn = γ ∈ (0, 1), one has

ln = max(nγ − (n − 1), 0) < γ < un =
nγ

1 + (n − 1)γ
.

5. Lower and Upper Bounds for Quasi Disjunction

We recall below the notion of quasi disjunction of conditional events as defined in [1].

Definition 8. Given any events A,H, B,K, with H , ∅,K , ∅, the quasi disjunction of the conditional events A|H and
B|K is the conditional eventD(A|H, B|K) = (AH ∨ BK)|(H ∨ K).
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The constituents generated by the family {A|H, B|K,D(A|H, B|K)} and the corresponding points Qh’s are given
in columns 2 and 8 of Table 1. In general, given a family of n conditional events Fn = {Ei|Hi, i = 1, . . . , n}, it is
D(Fn) = D(E1|H1, . . . , En|Hn) = (

∨n
i=1 EiHi)

∣∣∣(∨n
i=1 Hi). Quasi disjunction is associative; that is, for every subset

J ⊂ {1, . . . , n}, we haveD(Fn) = D(FJ ∪ FΓ) = D[D(FJ),D(FΓ)], where Γ = {1, . . . , n} \ J.

Remark 5. We recall that the quasi conjunction of A|H and B|K can also be written as C(A|H, B|K) = (A∨Hc)∧ (B∨
Kc)|(H ∨ K); then, based on the usual negation operation (E|H)c = Ec|H, it holds that

[C(Ac|H, Bc|K)]c = [(Ac ∨ Hc) ∧ (Bc ∨ Kc)|(H ∨ K)]c =

= (AH ∨ BK)|(H ∨ K) = D(A|H, B|K) , (15)

which represents the De Morgan duality between quasi conjunction and quasi disjunction. We also haveD(A|H, B|K)∨
C(Ac|H, Bc|K) = Ω|(H ∨ K) andD(A|H, B|K) ∧ C(Ac|H, Bc|K) = ∅|(H ∨ K). From (15) it follows

P[D(A|H, B|K)] = 1 − P[C(Ac|H, Bc|K)] , (16)

which will be exploited in the next result.

Proposition 2. Assuming A,H, B,K logically independent, we have:
(i) the probability assessment (x, y) on {A|H, B|K} is coherent for every (x, y) ∈ [0, 1]2;
(ii) given a coherent assessment (x, y) on {A|H, B|K}, the assessment P = (x, y, z) on F = {A|H, B|K,D(A|H, B|K)},
with z = P[D(A|H, B|K)], is a coherent extension of (x, y) if and only if z ∈ [l, u], where

l = T H
0 (x, y) =

{ xy
x+y−xy , (x, y) , (0, 0),
0, (x, y) = (0, 0),

u = S L(x, y) = min(x + y, 1) .

Proof. We observe that, by (4), the extension γ = P[C(Ac|H, Bc|K)] of the assessment P(A|H) = x, P(B|K) = y is
coherent if and only if γ′ ≤ γ ≤ γ′′, where γ′ = TL(1 − x, 1 − y), γ′′ = S H

0 (1 − x, 1 − y). Then, based on (16) and on
the results given in Appendix A, it follows that

l = 1 − S H
0 (1 − x, 1 − y) = T H

0 (x, y) , u = 1 − TL(1 − x, 1 − y) = S L(x, y) .

In Figure 4 is shown the convex hullI for given values x, y, with the associated interval [l, u] of coherent extensions
z = P[D(A|H, B|K)]. As for quasi conjunction, the convex hull I does not depend on z. In the next subsections we
examine some particular cases.

5.1. The Dual of Compound Probability Theorem
Given any logically independent events A, B, H, with AcH , ∅, the assessment (x, y) on {A|H, B|AcH} is coherent,

for every (x, y) ∈ [0, 1]2. We have D(A|H, B|AcH) = (A ∨ B)|H and, defining z = P(A ∨ B|H), by (16) and by the
results in Subsection 3.2, we have

z = P(D(A|H, B|AcH)) = 1 − P(C(Ac|H, Bc|AcH)) =

= 1 − TP(1 − x, 1 − y) = x + y − xy = S P(x, y) ;

that is z is equal to the probabilistic sum of x, y.

5.2. The case A|H ⊆ B|K
From A|H ⊆ B|K we have D(A|H, B|K) = (BK) | (H ∨ K). Then, as shown by Table 1 and by Remark 4), it holds

that
t(A|H) ≤ t(C(A|H, B|K)) ≤ t(D(A|H, B|K)) ≤ t(B|K) .

Then: A|H ⊆ B|K implies A|H ⊆ C(A|H, B|K) ⊆ D(A|H, B|K) ⊆ B|K. We recall that, by Remark 3, A|H ⊆ B|K
amounts to Bc|K ⊆ Ac|H; then, given the assessment P(A|H) = x, P(B|K) = y, where x ≤ y, by applying Proposition 1
to the family {Bc|K, Ac|H}, the extension γ = P[C(Bc|K, Ac|H)] of (x, y) is coherent if and only if γ′ ≤ γ ≤ γ′′, where
γ′ = 1 − y, γ′′ = 1 − x. Then, by (16), the extension z = P[D(A|H, B|K)] of (x, y) is coherent if and only if l ≤ z ≤ u,
where l = x = min(x, y) , u = y = max(x, y).
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Figure 4: The convex hull I associated with the pair (F ,P) in case of quasi disjunction without logical relations. The interval [l, u] for z =

P[D(A|H, B|K)] is the range of the third coordinate z of each P ∈ PlPu = {(x, y, z) : z ∈ [T H
0 (x, y), S L(x, y)]}. The segment PlPu is the intersection

between the segment {(x, y, z) : z ∈ [0, 1]} and the convex hull I.

5.3. Quasi Conjunction, Quasi Disjunction and Or Rule.
We recall that in Or rule with premises H |∼ A and K |∼ A the conclusion is H ∨ K |∼ A. Moreover, for the

conditional events A|H and A|K associated with the premises, we have

C(A|H, A|K) = D(A|H, A|K) = A|(H ∨ K) ,

which is the conditional event associated with the conclusion H ∨ K |∼ A of Or rule. In [35] it has been proved that,
under logical independence of A,H,K, the assessment z = P(A|(H ∨ K) is a coherent extension of the assessment
(x, y) on {A|H, A|K} if and only if z ∈ [l, u], with

l = T H
0 (x, y) , u = S H

0 (x, y) . (17)

The convex hull I for given values x, y and the associated interval [l, u] for z = P[D(A|H, A|K)] are shown in Figure
5.

5.4. Lower and Upper Bounds for the Quasi Disjunction of n Conditional Events
Given the family Fn = {E1|H1, . . . , En|Hn}, let us consider the quasi disjunctionD(Fn) of the conditional events in

Fn. By the associative property of quasi disjunction, defining Fk = {E1|H1, . . . , Ek |Hk}, for each k = 2, . . . , n it holds
that D(Fk) = D(D(Fk−1), Ek |Hk). Then, denoting by T H

0 the Hamacher t-norm with parameter λ = 0 and by S L the
Lukasiewicz t-conorm (see Appendix B and Appendix C), we have

Theorem 11. Given a probability assessment Pn = (p1, p2, . . . , pn) on Fn = {E1|H1, . . . , En|Hn}, let [lk, uk] be the
interval of coherent extensions of the assessment Pk = (p1, p2, . . . , pk) on the quasi disjunction D(Fk), where Fk =

{E1|H1, . . . , Ek |Hk}. Then, assuming E1,H1, . . . , En,Hn logically independent, for each k = 2, . . . , n, we have

lk = T H
0 (p1, p2, . . . , pk) , uk = S L(p1, p2, . . . , pk) .

Proof. Of course, from Proposition 2 it is l2 = T H
0 (p1, p2) and u2 = S L(p1, p2). The rest of the proof is similar to that

one in Theorem 8.
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Figure 5: Convex hull I associated with the pair (F ,P) for the Or rule. The interval [l, u] for z = P[D(A|H, A|K)] = P[C(A|H, A|K)] is the range
of the third coordinate z of each P ∈ PlPu = {(x, y, z) : z ∈ [T H

0 (x, y), S H
0 (x, y)]}. The segment PlPu is the intersection between the segment

{(x, y, z) : z ∈ [0, 1]} and the convex hull I.

Remark 6. Given any conditional events A|H and B|K, as shown in Table 1, it holds that t(C(A|H, B|K)) ≤ t(D(A|H, B|K)),
which amounts to C(A|H, B|K)) ⊆ D(A|H, B|K). In general, given a finite family of conditional events Fn, we have
t(C(Fn)) ≤ t(D(Fn)), that is C(Fn) ⊆ D(Fn), so that P[C(Fn)] ≤ P[D(Fn)]. Thus, if the family Fn is p-consistent,
then Fn ⇒p C(Fn)⇒p D(Fn) and we obtain the following Quasi Or rule

(Quasi Or) Fn ⇒p D(Fn) . (18)

We observe that Quasi Or rule also follows directly from Theorem 11.

5.5. General Or Rule

Let us consider the general Or rule (see [37]), where the premises are the conditional events E|H1, . . . , E|Hn and
the conclusion is the conditional event E|(H1 ∨ H2 ∨ . . . ,∨Hn). By the associative property of quasi disjunction,
defining Fk = {E|H1, . . . , E|Hk}, for each k = 2, . . . , n it holds that

D(Fk) = D(D(Fk−1), Ek |Hk) = E|(H1 ∨ H2 ∨ . . . ,∨Hk) .

We also observe thatD(Fk) = C(Fk). Then, by exploiting the notions of t-norm, t-conorm, quasi disjunction and quasi
conjunction, Theorem 9 in [37] can be written as

Theorem 12. Given a probability assessment Pn = (p1, p2, . . . , pn) on Fn = {E|H1, E|H2, . . . , E|Hn}, let [lk, uk] be
the interval of coherent extensions of the assessment Pk = (p1, p2, . . . , pk) on the quasi disjunction D(Fk), where
Fk = {E|H1, . . . , E|Hk}. Then, assuming E,H1, . . . ,Hn logically independent, for each k = 2, . . . , n, we have

lk = T H
0 (p1, p2, . . . , pk) , uk = S H

0 (p1, p2, . . . , pk) .

Proof. Of course, from (17) it is l2 = T H
0 (p1, p2) and u2 = S H

0 (p1, p2). The rest of the proof is similar to that one in
Theorem 8.
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In [37, Theorem 9]), by implicitly assuming (p1, . . . , pk) ∈ (0, 1)k, it has been proved by a direct probabilistic
analysis that

lk =
1

1 +
∑k

i=1
1−pi

pi

, uk =

∑k
i=1

pi
1−pi

1 +
∑k

i=1
pi

1−pi

.

By adopting the conventions 1
∞

= 0, 1
0 = ∞ , ∞

∞
= 1, the previous formulas hold in general for every (p1, . . . , pk) ∈

[0, 1]k. In Appendix C the previous expressions for the Hamacher t-norm and t-conorm have been derived by using
the notion of additive generator.

Example 3. An application of Or rule is obtained by imagining a medical scenario with a disease E and n symptoms
H1, . . . ,Hn, with P(E|Hi) = pi, i = 1, . . . , n, and P(E|(H1 ∨ · · · ∨Hn) ∈ [ln, un]. If, for instance, p1 = · · · = pn = 1− ε,
from Theorem 12 it follows ln = T H

0 (1− ε, . . . , 1− ε) = 1−ε
1+(n−1)ε and un = S H

0 (1− ε, . . . , 1− ε) =
n(1−ε)
ε+n(1−ε) . Then: (i) for

ε→ 0, we have ln → 1 and un → 1; (ii) for n→ +∞we have ln → 0 and un → 1. As we can see, in the second case the
interval [ln, un] gets wider and wider as the number of premises increases. An interesting related phenomenon where
additional information leads to less informative conclusion is the pseudodiagnosticity task, studied in the psychology
of uncertain reasoning ([51, 66]).

6. Further Aspects on Quasi Disjunction: from Bounds on Conclusions to Bounds on Premises in Quasi Or
rule

In this section, we study the propagation of probability bounds on the conclusion of the Quasi Or rule to its
premises. We start with the case of two premises A|H and B|K, by examining probabilistic aspects on the lower and
upper bounds, l and u, for the probability of the conclusionD(A|H, B|K). More precisely, given any number γ ∈ [0, 1],
we find:
(i) the set Lγ of the coherent assessments (x, y) on {A|H, B|K} such that, for each (x, y) ∈ Lγ, one has l ≥ γ;
(ii) the set Uγ of the coherent assessments (x, y) on {A|H, B|K} such that, for each (x, y) ∈ Uγ, one has u ≤ γ.
Case (i). Let be given γ ∈ [0, 1]. We denote by Lγ the set of coherent assessments (x, y) on {A|H, B|K} which imply
z ≥ γ. Of course, L0 = [0, 1]2; hence we can assume γ > 0. We recall that l = T H

0 (x, y), then in order the inequality
T H

0 (x, y) ≥ γ be satisfied, it must be x > 0 and y > 0. Thus, l ≥ γ if and only if xy
x+y−xy ≥ γ. We have

x − l =
x2(1 − y)
x + y − xy

≥ 0 , y − l =
y2(1 − x)
x + y − xy

≥ 0 ; (19)

then, from l ≥ γ it follows x ≥ γ, y ≥ γ; thus Lγ ⊆ [γ, 1]2. Then, taking into account that x ≥ γ and hence
x(1 + γ) − γ > 0, we have

xy
x + y − xy

≥ γ ⇐⇒ y ≥
γx

x(1 + γ) − γ
; (20)

therefore

Lγ =

{
(x, y) : γ ≤ x ≤ 1 , y ≥

γx
x − γ + γx

}
.

Notice that L1 = {(1, 1)}; for x = y = γ ∈ (0, 1), it is l =
γ

2−γ < γ; hence, for γ ∈ (0, 1), Lγ is a strict subset of [γ, 1]2.
Case (ii). Of course, U1 = [0, 1]2; hence we can assume γ < 1. It must be u = min{x + y, 1} ≤ γ, i.e., x + y ≤ γ (as
γ < 1); hence Uγ coincides with the triangle having the vertices (0, 0), (0, γ), (γ, 0); that is

Uγ = {(x, y) : 0 ≤ x ≤ γ, 0 ≤ y ≤ γ − x} .

Notice that U0 = {(0, 0)}; moreover, for γ ∈ (0, 1), (γ, γ) < Uγ.
Of course, for every (x, y) < Lγ ∪ Uγ, it is l < γ < u.
Figure 6 displays the sets Lγ,Uγ when γ = 0.4. In the next result we determine in general the sets Lγ,Uγ.
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Figure 6: The sets Lγ,Uγ .

Theorem 13. Let be given the family Fn = {E1|H1, . . . , En|Hn}, with the events E1,H1, . . . , En,Hn logically indepen-
dent. Moreover, for any given γ ∈ [0, 1] let Lγ (resp. Uγ) be the set of the coherent assessments (p1, p2, . . . , pn) on Fn
such that, for each (p1, p2, . . . , pn) ∈ Lγ (resp. (p1, p2, . . . , pn) ∈ Uγ), one has l ≥ γ (resp. u ≤ γ), where l is the lower
bound (resp. u is the upper bound) of the coherent extensions z = P[D(Fn)]. We have

Uγ = {(p1, . . . , pn) ∈ [0, 1]n : p1 + · · · + pn ≤ γ} , γ < 1 ,

Lγ = {(p1, . . . , pn) ∈ [0, 1]n : γ ≤ p1 ≤ 1 , rk ≤ pk+1 , k = 1, . . . , n − 1} , γ > 0 ,
(21)

where rk =
γlk

lk−γ+γlk
, lk = T H

0 (p1, . . . , pk), with L0 = U1 = [0, 1]n.

Proof. Of course, U1 = [0, 1]n, so that we can assume γ < 1. It must be un = min(p1 + · · · + pn, 1) ≤ γ, that is, as
γ < 1, p1 + · · · + pn ≤ γ. Hence: Uγ = {(p1, . . . , pn) ∈ [0, 1]n : p1 + · · · + pn ≤ γ}.
We observe that Uγ is a convex polyhedron with vertices the points

V1 = (γ, 0, . . . , 0), V2 = (0, γ, 0, . . . , 0), · · · ,
Vn = (0, . . . , 0, γ), Vn+1 = (0, 0, . . . , 0) .

Moreover, the convex hull of the vertices V1, . . . ,Vn is the subset of the points (p1, . . . , pn) of Uγ such that un = γ, that
is such that p1 + · · · + pn = γ.

Of course, L0 = [0, 1]n, so that we can assume γ > 0. We recall that l2, . . . , ln are the lower bounds on
D(F2), . . . ,D(Fn) associated with (p1, . . . , pn). Then, from the relations

D(Fk+1) = D(D(Fk), Ek+1|Hk+1) , k = 2, . . . , n − 1 ,

by applying (19 ) with x = lk, y = pk+1, we have that in order the inequality lk+1 ≥ γ be satisfied, it must be
lk ≥ γ, pk+1 ≥ γ, k = 2, . . . , n − 1. Therefore

ln ≥ γ =⇒ p1 ≥ γ, . . . , pn ≥ γ, l2 ≥ γ, . . . , ln−1 ≥ γ ,

so that Lγ ⊆ [γ, 1]n. By iteratively applying (20), we obtain
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γ ≤ p1 ≤ 1 , p2 ≥
γp1

p1(1 + γ) − γ
=⇒ l2 ≥ γ ,

γ ≤ l2 ≤ 1 , p3 ≥
γl2

l2(1 + γ) − γ
=⇒ l3 ≥ γ ,

...

γ ≤ ln−1 ≤ 1 , pn ≥
γln−1

ln−1(1 + γ) − γ
=⇒ ln ≥ γ.

Therefore, observing that l1 = p1, we have,

Lγ = {(p1, . . . , pn) ∈ [0, 1]n : γ ≤ p1 ≤ 1 , pk+1 ≥
γlk

lk(1 + γ) − γ
, k = 1, . . . , n − 1} .

We observe that L1 = {(1, . . . , 1)}; moreover, for p1 = · · · = pn = γ ∈ (0, 1), we obtain (by induction)

l2 =
γ

2 − γ
< γ , l3 =

γ

3 − 2γ
< γ , l4 =

γ

4 − 3γ
· · · , ln =

γ

n − (n − 1)γ
< γ ;

hence, for γ ∈ (0, 1), Lγ is a strict subset of [0, γ]n.

7. Biconditional Events, n-Conditional Events and Loop Rule

We now examine the quasi conjunction of A|B and B|A, with A, B logically independent events. We have

C(A|B, B|A) = (AB ∨ Bc) ∧ (BA ∨ Ac) | (A ∨ B) = AB | (A ∨ B) .

We observe that the conditional event AB | (A ∨ B) captures the notion of biconditional event2 A a` B considered by
some authors as the “conjunction” between A|B and B|A and has the same truth table of the “defective biconditional”
discussed in [29]; see also [27]. It can be easily verified that, for every pair (x, y) ∈ [0, 1]×[0, 1] the probability assess-
ment (x, y) on {A|B, B|A} is coherent. Given any coherent assessment (x, y) on {A|B, B|A}, the probability assessment
z = P(A a` B), is a coherent extension of (x, y) if and only if

z =

{
0 (x, y) = (0, 0),

xy
x+y−xy (x, y) , (0, 0).

We can study the coherence of the assessment P = (x, y, z) on the family

F = {A|B, B|A, A a` B} = {A|B, B|A, AB | (A ∨ B)} ,

by the geometrical approach described in Section 2. In such a case, as the events of the family are not logically
independent, the constituents generated by the family and contained in A ∨ B are: C1 = AB, C2 = ABc, C3 = AcB.
We distinguish two cases: (i) (x, y) , (0, 0); (ii) (x, y) = (0, 0).
(i) If (x, y) , (0, 0) the corresponding points Qh’s are Q1 = (1, 1, 1), Q2 = (x, 0, 0), Q3 = (0, y, 0), and, in our case, the
coherence of P simply amounts to the geometrical condition P ∈ I, where I is the triangle with vertices Q1,Q2,Q3.
Based on the equation of the plane containing I, we have that P is coherent if and only if: z =

xy
x+y−xy .

(ii) If (x, y) = (0, 0), then Q2 = Q3 = (0, 0, 0) and the convex hull I is the segment Q1Q2. Then, P = (0, 0, z) is

2The representation of a biconditional event as a quasi conjunction was noticed in a private communication between A. Fugard and A. Gilio
(January 2010).
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coherent if and only if z = 0.
Then, the value z is a coherent extension of (x, y) if and only if

z = T H
0 (x, y) =

{
0 (x, y) = (0, 0),

xy
x+y−xy (x, y) , (0, 0) ,

where T H
0 (x, y) is the Hamacher t-norm, with parameter λ = 0, defined by formula (2). In agreement with Remark 2,

we observe that
TL(x, y) ≤ T H

0 (x, y) ≤ S H
0 (x, y).

7.1. Generalizing Biconditional Events: An Application to Loop rule

As shown before, given any (non impossible) events A1, A2, the biconditional event associated with them is given
by

A1 a` A2 = C(A2|A1, A1|A2) = A1A2 | (A1 ∨ A2) .

The notion of biconditional event can be generalized by defining the
n-conditional event associated with n (non impossible) events A1, . . . , An as

A1 a` A2 a` · · · a` An = C(A2|A1, . . . , An|An−1, A1|An) .

Let C0,C1, . . . ,Cm be the constituents generated by the conditional events A2|A1, . . . , An|An−1, A1|An. We set C0 =

Ac
1Ac

2 · · · A
c
n and C1 = A1A2 · · · An; then, for each h = 2, . . . ,m, it is Ch = Ai1 · · · Air A

c
ir+1
· · · Ac

in
, with 1 ≤ r < n. As

it can be easily verified, the truth value of the n-conditional associated with Ch is true, or false, or void, according to
whether h = 1, or h > 1, or h = 0; then it holds that

C(A2|A1, . . . , An|An−1, A1|An) = A1 · · · An | (A1 ∨ · · · ∨ An) .

In ([36]), where also the relationship with conditional objects ([22]) has been studied, the previous formula has been
obtained by a suitable inductive reasoning, by showing that:
(i) C(A2|A1, . . . , An|An−1) = (E0 ∨ · · · ∨ En−1)|(A1 ∨ · · · ∨ An−1),
where E0 = A1 · · · An , E1 = Ac

1A2 · · · An , . . . , En−2 = Ac
1 · · · A

c
n−2An−1An , En−1 = Ac

1 · · · A
c
n−1;

(ii) then
C(A2|A1, . . . , An|An−1, A1|An) = C[(E1 ∨ · · · ∨ En)|(A1 ∨ · · · ∨ An−1), A1|An] =

= A1 · · · An|(A1 ∨ · · · ∨ An) . (22)

Of course, for any given derangement (a permutation with no fixed point) (i1, i2, . . . , in) of (1, 2, . . . , n), we have

C(Ai1 |A1, . . . , Ain−1 |An−1, Ain |An) = C(A2|A1, . . . , An|An−1, A1|An) ;

that is, the n-conditional A1 a` A2 a` · · · a` An can be represented as the quasi conjunction of the conditional events
A2|A1, . . . , An|An−1, A1|An, or equivalently as the quasi conjunction of the conditional events Ai1 |A1, . . . , Ain−1 |An−1, Ain |An.
In particular for (i1, i2, . . . , in) = (n, 1, 2, . . . , n − 1) we have

C(A1|A2, . . . , An−1|An, An|A1) = C(A2|A1, . . . , An|An−1, A1|An) . (23)

As a consequence, we can immediately obtain the probabilistic interpretation of Loop rule ([54]). Given n logically
independent events A1, A2, . . . , An, Loop rule is the following one:

A1 |∼ A2 , A2 |∼ A3 , · · · , An |∼ A1 =⇒ A1 |∼ An . (24)

In [54] it has also been proved that, for every i, j = 1, 2, . . . , n, it holds that

A1 |∼ A2 , A2 |∼ A3 , · · · , An |∼ A1 =⇒ Ai |∼ A j . (25)
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7.2. Probabilistic Aspects on Loop Rule
In our probabilistic approach, formula (25), which generalizes formula (24), can be obtained by the following

steps:
- given any p-consistent family of conditional events F , from Corollary 1 it holds that F p-entails C(F );
- defining F = {A2|A1, . . . , An|An−1, A1|An}, it can be checked that F is p-consistent; then, for every i, j = 1, 2, . . . , n,
by (22) C(F ) ⊆ Ai|A j; hence C(F ) p-entails Ai|A j; moreover, F p-entails C(F ) and then F p-entails Ai|A j.

Remark 7. By Definition 5 and formulas (23) and (25), for any given derangement (i1, i2, . . . , in) of (1, 2, . . . , n), we
obtain the following inference rule (Generalized Loop)

{A2|A1, . . . , An|An−1, A1|An}
⇒p

⇐p
{Ai1 |A1, . . . , Ain−1 |An−1, Ain |An} (26)

The Loop rule has been studied by a direct probabilistic reasoning in [36], by exploiting a suitable probabilistic
condition named Császár’s condition, studied in the framework of an axiomatic approach to probability in [20]. This
condition in a particular case reduces to the third axiom of conditional probabilities. A numerical inference rule named
generalized Bayes theorem, connected with Császár’s condition and with Loop rule, has been studied in [4]; see also
[5, 23]. Below, we reconsider an example introduced in [36] to illustrate the generalized Loop rule and p-entailment
of n-conditionals.

Example 4. Five friends, Linda, Janet, Steve, George, and Peter, have been invited to a party. We define the events:
A1 =“Linda goes to the party’, . . . , A5 =Peter goes to the party; moreover, we assume that A1, . . . , A5 are logically
independent. We consider the following knowledge base: {“if Linda goes to the party, then Janet will do the same”,
. . . , “if George goes to the party, then Peter will do the same”, “if Peter goes to the party, then Linda will do the
same”}. Then, for the associated (p-consistent) family of conditional events F = {A2|A1, . . . , A5|A4, A1|A5}, we have

C(F ) = A1A2 · · · A5|(A1 ∨ A2 ∨ · · · ∨ A5) = A1 a` A2 a` · · · a` A5 .

By generalized Loop rule, for every derangement (i1, . . . , i5) of (1, . . . , 5), it holds that

{A2|A1, . . . , A5|A4, A1|A5}
⇒p

⇐p
{Ai1 |A1, . . . , Ai4 |A4, Ai5 |A5} .

For any given subset {B1, . . . , Bn} ⊂ {A1, . . . , A5}, n = 2, 3, 4, we have B1 a` · · · a` Bn = B1 · · · Bn|(B1 ∨ · · · ∨ Bn). This
n-conditional is associated with the conditional assertion “if at least one of n given friends among Linda, Janet, Steve,
George, and Peter, goes to the party, then all n friends will go to the party”. We have

A1 · · · A5|(A1 ∨ · · · ∨ A5) ⊆ B1 · · · Bn|(B1 ∨ · · · ∨ Bn) ;

therefore A1 a` · · · a` A5 p-entails B1 a` · · · a` Bn. Finally, as F p-entails C(F ), we have that for every subset
{B1, . . . , Bn}, n = 2, 3, 4, the family F p-entails the n-conditional B1 a` · · · a` Bn.

8. Conclusions

In this paper we have examined probabilistic concepts connected with the inference rules Quasi And, Quasi Or,
Or, and generalized Loop. These are linked with Adams’ probabilistic analysis of conditionals, and play an impor-
tant role in applications to nonmonotonic reasoning, to the psychology of uncertain reasoning and to semantic web.
We have considered, in a coherence-based setting, the extensions of a given probability assessment on n conditional
events to their quasi conjunction and quasi disjunction, by also examining some cases of logical dependencies. In
our probabilistic analysis we have shown that the lower and upper probability bounds computed in the different cases
coincide with some well known t-norms and t-conorms: minimum, product, Lukasiewicz and Hamacher t-norms, and
their dual t-conorms. We have shown that, for the Or rule, the quasi conjunction and quasi disjunction of the premises
are equal. Moreover, they coincide with the conclusion of the rule. We have identified the relationships among coher-
ence, inclusion relation and p-entailment. Finally, we have considered biconditional events and we have introduced
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the notion of n-conditional event, by obtaining a probabilistic interpretation for a generalized Loop rule. In Appendix
C we give explicit expressions for the Hamacher t-norm and t-conorm in the unitary hypercube [0, 1]k. As a "take
home message", the results obtained in our coherence-based probabilistic approach can be exploited in all researches
in nonmonotonic reasoning, as made for instance in [38, 51, 60, 61]. Future work should deepen the theoretical aspects
and applications which connect conditional probability with t-norms and t-conorms, in relation to inference patterns
in nonmonotonic reasoning. In particular, the representation of probability bounds for the conditional conclusions of
some inference patterns involving conditionals in terms of t-norms and t-conorms is a topic that could be expanded.
Finally, a relevant topic for further research concerns the study of more general definitions for the logical operations
of conjunction and disjunction among conditionals. Such new logical operations should be defined in a way such that
the usual probabilistic properties be preserved. Some results on this topic have been given in [43].
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Appendix A. t-norms and t-conorms.

We recall below the notions of t-norm and t-conorm (see [48, 52, 53]).

Definition 9. A t-norm is a function T : [0, 1]2 −→ [0, 1] which satisfies, for all x, y, z ∈ [0, 1], the following four
axioms:

(T1) T (x, y) = T (y, x), (commutativity)
(T2) T (x,T (y, z)) = T (T (x, y), z), (associativity)
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z, (monotonicity)
(T4) T (x, 1) = x. (boundary condition)

We recall below some basic t-norms, namely, the minimum TM (which is the greatest t-norm), the product TP, the
Lukasiewicz t-norm TL:

TM(x, y) = min(x, y), TP(x, y) = x · y , TL(x, y) = max(x + y − 1, 0).

We also recall that the Hamacher t-norm T H
λ , with parameter λ ∈ [0,∞], is

T H
λ (x, y) =


TD(x, y), λ = ∞,
0, λ = 0 and (x, y) = (0, 0)

xy
λ+(1−λ)(x+y−xy) , otherwise,

(A.1)

where the t-norm TD(x, y) (drastic product) is defined as

TD(x, y) =

{
0, (x, y) ∈ [0, 1)2,
min(x, y), otherwise .

In particular, the Hamacher t-norm T H
1 is the product t-norm Tp.

Definition 10. A t-conorm is a function S : [0, 1]2 −→ [0, 1] which satisfies, for all x, y, z ∈ [0, 1], (T1) − (T3) and

(S 4) S (x, 0) = x. (boundary condition)

T-conorms can be equivalently introduced as dual operations of t-norms. A function S : [0, 1]2 −→ [0, 1], is a
t-conorm if and only if there exists a t-norm T such that for all (x, y) ∈ [0, 1]2 either one of the two equalities holds:
S (x, y) = 1 − T (1 − x, 1 − y) ,T (x, y) = 1 − S (1 − x, 1 − y) . Then, the dual t-conorm of TM is the maximum S M , i.e.
S M(x, y) = max(x, y). The dual t-conorm of TP is the probabilistic sum S P, i.e.

S P(x, y) = 1 − (1 − x)(1 − y) = x + y − x · y.

The Lukasiewicz t-conorm, which is the dual t-conorm of TL, is

S L(x, y) = min(x + y, 1) .

Moreover, the Hamacher t-conorm S H
λ with parameter λ ∈ [0,∞], which is the dual t-conorm of T H

λ , is

S H
λ (x, y) =


S D(x, y), λ = ∞,
1, λ = 0 and x = y = 1,

x+y−xy−(1−λ)xy
1−(1−λ)xy , otherwise,

(A.2)

where the t-conorm S D(x, y) (drastic sum) is defined as

S D(x, y) =

{
1, (x, y) ∈ (0, 1]2,
max(x, y), otherwise.

In particular, the Hamacher t-conorm S H
1 is the probabilistic sum S p.
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Appendix B. t-norms and t-conorms in [0, 1]k.

We recall that since t-norms and t-conorms are associative they can be easily extended in a unique way to a k-
ary operation for arbitrary integer k ≥ 2 by induction (see [46, 48, 53]). Let T be a t-norm (introduced as a binary
operator), for any integer k ≥ 2 the extension of T is defined as

T (p1, p2, . . . , pk) =

{
T (T (p1, . . . , pk−1), pk), if k > 2,
T (p1, p2), if k = 2.

Let S be a t-conorm (introduced as a binary operator), for any integer k ∈ N
⋃
{0} the extension of S is defined as

S (p1, p2, . . . , pk) =

{
S (S (p1, . . . , pk−1), pk), if k > 2,
S (p1, p2), if k = 2.

If (T, S ) is a pair of mutually dual t-norms and t-conorms, then

S (p1, . . . , pk) = 1 − T (1 − p1, . . . , 1 − pk) ,
T (p1, . . . , pk) = 1 − S (1 − p1, . . . , 1 − pk) .

Finally, we recall that

TM(p1, . . . , pk) = min(p1, . . . , pk), S M(p1, . . . , pk) = max(p1, . . . , pk) ,
Tp(p1, . . . , pk) = p1 · · · pk, S p(p1, . . . , pk) = 1 − (1 − p1) · · · (1 − pk),
TL(p1, p2, . . . , pk) = max(p1 + p2 + . . . + pk − (k − 1), 0),
S L(p1, p2, . . . , pk) = min(p1 + p2 + . . . + pk, 1).

Appendix C. Hamacher t-norm and t-conorm in [0, 1]k

In this appendix, by using the notion of additive generator, we give self contained constructions of the extensions
of the Hamacher t-norm and t-conorm with λ = 0 to [0, 1]k.
We recall the notion of an additive generator (if any) of a t-norm ([52, 53]).

Definition 11. An additive generator t : [0, 1] −→ [0,∞] of a t-norm T is a strictly decreasing function which is also
right continuous in 0 and satisfies t(1) = 0, such that for all (x, y) ∈ [0, 1]2 we have

t(x) + t(y) ∈ Ran(t) ∪ [t(0),∞] and T (x, y) = t−1(t(x) + t(y)) ,

where Ran(t) = {t(x) : x ∈ [0, 1]} and t−1 is the pseudo inverse of t.

If t is an additive generator of some t-norm T , then we have

T (p1, p2, . . . , pk) = t−1(t(p1) + t(p2) + . . . + t(pk)) . (C.1)

We first observe that: if (x = 0, y = 0), then T H
0 (x, y) = 0; if (x = 0, y > 0) or (x > 0, y = 0), then T H

0 (x, y) =
xy

x+y−xy = 0; if (x > 0, y > 0), then

T H
0 (x, y) =

xy
x+y−xy =

xy
x(1−y)+y(1−x)+xy = 1

1−x
x +

1−y
y +1

> 0.

Thus, T H
0 can be equivalently redefined as

T H
0 (x, y) =

 0, (x = 0) ∨ (y = 0) ,
1

1−x
x +

1−y
y +1

, (x , 0) ∧ (y , 0) . (C.2)

We have (see also [46, 52])
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Proposition 3. Let T H
0 be the Hamacher t-norm with λ = 0. Given an integer k ≥ 2, the extension of T H

0 to [0, 1]k is

T H
0 (p1, p2, . . . , pk) =

 0, pi = 0 for at least one i,
1∑k

i=1
1−pi

pi
+1
, pi > 0 for i = 1, . . . , k . (C.3)

Proof. We observe that, considering the function t : [0, 1] −→ [0,+∞] defined as t(x) = 1−x
x , with the convention that

t(0) = limx→0+
1−x

x = +∞, it holds t−1(s) = 1
1+s , if s ∈ [0,∞], with t−1(+∞) = 0. Then, by applying the conventions

1
∞

= 0, 1
0 = ∞ and recalling (C.2), for every (x, y) ∈ [0, 1]2 we have

t−1(t(x) + t(y)) =
1

1 + 1−x
x +

1−y
y

= T H
0 (x, y);

As the function t(x) = 1−x
x is the additive generator of T H

0 , we have

T H
0 (p1, p2, . . . , pk) = t−1(

∑k
i=1 t(pi)) = t−1(

∑k
i=1

1−pi
pi

) = 1
1+

∑k
i=1

1−pi
pi

.

Now, we observe that: if x = 1 and y = 1, then S H
0 (x, y) = 1; if (x = 1, y < 1) or (x < 1, y = 1), then

S H
0 (x, y) =

x+y−2xy
1−xy = 1; if x < 1 and y < 1 we have

S H
0 (x, y) =

x+y−2xy
1−xy =

x(1−y)+y(1−x)
x(1−y)+y(1−x)+(1−x)(1−y) =

x
(1−x) (1−x)(1−y)+ y

(1−y) (1−x)(1−y)
x

(1−x) (1−x)(1−y)+ y
(1−y) (1−x)(1−y)+(1−x)(1−y) =

x
(1−x) +

y
(1−y)

x
(1−x) +

y
(1−y) +1 < 1 .

Thus, the Hamacher t-conorm S H
0 : [0, 1]2 −→ [0, 1] can be equivalently redefined as

S H
0 (x, y) =

 1, (x = 1) ∨ (y = 1),
x

(1−x) +
y

(1−y)
x

(1−x) +
y

(1−y) +1 , (x < 1) ∧ (y < 1). (C.4)

By observing that S (p1, p2, . . . , pk) = 1 − T (1 − p1, 1 − p2, . . . , 1 − pk), it immediately follows

Proposition 4. Let S H
0 be the Hamacher t-conorm with λ = 0. Given an integer k ≥ 2, for any vector (p1, p2, . . . , pk) ∈

[0, 1]k it holds that

S H
0 (p1, p2, . . . , pk) =


1, pi = 1 for at least one i,∑k

i=1
pi

1−pi∑k
i=1

pi
1−pi

+1
, pi < 1 for i = 1, . . . , k. (C.5)

Remark 8. We observe that the Hamacher t-norm T H
0 and Hamacher

t-conorm S H
0 coincide, respectively for α = 1 and α = −1, with the Dombi operator defined as ([21]):

o(p1, . . . , pk) =
1

1 +
(∑k

i=1

(
1−pi

pi

)α) 1
α

.
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