arXiv:1202.1639v1 [cs.DS] 8 Feb 2012

FastSIR Algorithm: A Fast Algorithm for simulation of epité
spread in large networks by using SIR compartment model

Nino Antulov-Fantulif!#, Alen Langi®, Hrvoje Stefanti€, Mile Sikicd-e-2

aDivision of Electronics, Laboratory for Information Systs,
Rudjer Boskovit Institute, Zagreb, Croatia
bFaculty of Science, Department of Mathematics, Univesiit#agreb, Zagreb, Croatia
CTheoretical Physics Division, Rudjer Boskovic Ins#fuifagreb, Croatia
dFaculty of Electrical Engineering and Computing, Departhef Electronic Systems and Information Processing,
University of Zagreb, Croatia
eBioinformatics Institute, A*STAR, Singapore, RepubliSmigapore

Abstract

The epidemic spreading on arbitrary complex networks idistliin SIR (Susceptible Infected
Recovered) compartment model. We propose our implementafia Naive SIR algorithm for
epidemic simulation spreading on networks that uses datetstes éiciently to reduce running
time. The Naive SIR algorithm models full epidemic dynanmacsl can be easily upgraded to
parallel version. We also propose novel algorithm for epibesimulation spreading on net-
works called the FastSIR algorithm that has better average nning time than the Naive SIR
algorithm. The FastSIR algorithm uses novel approach toaedverage case running time by
constant factor by using probability distributions of themmber of infected nodes. Moreover,
the FastSIR algorithm does not follow epidemic dynamicgiret but still captures all infection
transfers. Furthermore, we also propose féicient recursive method for calculating probability
distributions of the number of infected nodes. Average casaing time of both algorithms
has also been derived and experimental analysis was madeeadifferent empirical complex
networks.

Keywords: SIR compartment model, Epidemic spreading simulation, Qutational
epidemiology

1. Introduction

Complex networks represent structure of communicatiowaows [1] [2] or social contact
interactions|[3][4] very well. Therefore, it is reasonabdestudy computer virus propagation
or epidemic spreading on complex networks [5] [€] [7]. Mddglthe spread of an epidemic

*Corresponding author.
**Corresponding author.
Email addressesaino.antulov@irb.hr (Nino Antulov-Fantulin),alen@student .math.hr (Alen Lan&ic),
shrvoje@thphys.irb.hr (Hrvoje Stefangit)mile.sikicefer.hr (Mile Sikic)
1p.0.B. 180, HR-10002, Zagreb
230 Biopolis Street, 07-01 Matrix, Singapore 138671

Preprint submitted to Elsevier May 23, 2018

http://arxiv.org/abs/1202.1639v1

in a population is usually done by dividing individuals oetpopulation into subdivision with
some common characteristic features called compartmé&h&sSIR model is a good model for
many infectious diseases where each individual in a pojpulaian be in one of three ftierent
compartments. Those who are susceptible to the diseasa #re Busceptible compartment,
those who are infected and can transmit the disease to @heia the Infected compartment
and those who have recovered and are immune and those wheraoead from population
are in the Recovered compartment. Some infectious disemsedescribed with models that
have diterent number of compartments like SIS model (Susceptiliéetad Susceptible) where
individuals can not have long lasting immunity and therefBecovered compartment does not
exist.

Different mathematical models have been used to study epidpneiading. Under the as-
sumption of homogeneous mixing among individuals insidéetiént compartments (Kermack-
McKendrick model) diferential equations can be applied to understand epidemimndigs|[12].
Contact network epidemiology applies bond percolation amdom graphs (not on arbitrary
structure) to model epidemic spreading on heterogenequdgtion (epidemic dynamics is ne-
glected) [13] [14] [6]. Small world network property! [8] arstale-free network propertyl[9]
[10] have great impact on epidemic spreading outcome. Soadecomplex networks exhibit no
epidemic threshold below which the infection cannot pradegidemic outbreak (endemic state)
in SIS modell[11].

Realistic epidemic simulations (EpiFastl[16], EpiSims][did EpiSindemics [18]) have be-
come very important application of high-performance cotimgin epidemic predictions. These
are just a few examples of parallel algorithms that can be us@ublic health studies. Some
studiesl|[19]/[20] used contact network models between uchigas (cities are connected through
airline transportation network) and homogeneous mixingehimside urban cities and examined
influence of interventions (antiviral drugs and containisgto worldwide spread of pandemic.

Recently, the phase diagrams of epidemic spreading wittstRemodel on complex net-
works were introduced as a useful tool for epidemic spregpdivalysisi[21]. To predict expected
value of the number of infected nodes in epidemic spreadingrbitrary network, we should
repeat simulations till standard deviation of the numbehefinfected nodes fiiciently reduces
(in unimodal part of the epidemic phase diagram) or conwetgaonzero value (in bimodal part
of the epidemic phase diagram). Due to the high number @titers needed to predict expected
epidemic outcome, average case running time of the epidsimiglation algorithm should be
as low as possible. In this paper we describe our implementaf a Naive SIR algorithm to
simulate epidemic spreading (SIR model) on arbitrary netvetructure with low average case
running time. Our implementation of the Naive SIR algorithses data structuresfieiently
to reduce running time. This algorithm models full dynamitgpidemic spreading and can be
upgraded easily to parallel version. Main contributiontg§tpaper is a novel algorithm called
the FastSIR algorithm which uses probability distribuiaf the number of infected nodes to
speed up recovery of infected nodes to one discrete stepgisimulation of epidemic spreading
to reduce running time. Moreover, the FastSIR algorithnmsda# follow epidemic dynamics in
time, but still captures all infection transfers.

In section 2 we formally define an epidemic simulation prablend other concepts used
in this paper. Sectionl 3 describes our implementation of/&&IR algorithm along with the
running time and the space complexity analysis. In se¢fleve4describe our novel FastSIR
algorithm along with the running time and the space compfexnalysis. Correctness of the
FastSIR algorithm was proven with four steps of equality. Mé® described how tofféciently
implement probability distributions of the number of infed nodes by a recursive method. In

2

sectior b we described results of the performance profilindyanalysis of our algorithms on
five empirical complex networks. In sectidds 6 amd 7 we dbscrpossible applications of our
algorithms along with discussion of results and conclusion

2. Epidemic simulation problem

We define contact-network as undirected and non-weightahgs(N, L) (N-set of nodes,
L-set of links). Link (i, v) exists only if two nodes andv are in contact during epidemic time.
We also assume that the contact-network during epidemaegrais static one, but the algorithms
and other results can also be applied even for dynamic nkswdio simulate epidemic propa-
gation through contact-network, we use standard stoch&H& model. In this model each node
at some time can be in one of the following states: suscep(t®), infected (I) and recovered
(R). A discrete time model is used. Time needed for the epiclérstop spreading defines one
epidemic simulation. At the beginning of each epidemic $ation all nodes from grap& are
in susceptible state except arbitrary set of nodes, whiendrally infected, with some epidemic
parameterp andqg. These initial conditions we denote with letterEpidemic parametgp is a
probability that an infected nodeinfects adjacent susceptible noda one discrete time step.
Epidemic parameteay is a probability that an infected node recovers in one disdime step.
At the end of an epidemic simulation all nodes can be in onoffollowing states: susceptible
or recovered. Epidemic simulation 06,(1) is a random instance of epidemic stochastic pro-
cessES HG, 1). Epidemic simulations are mutually independent. Xdte a random variable
that measures a number of infected nodes of epidemic sticipascessES G, 1). Given a
ES RG, 1), the epidemic simulation problem is to compute firshoments of random variable
X. We will also often use the notatidh(X, = k), which denotes the probability that the infected
node infectsk neighbours out of totah susceptible neighbours in the limit of the time. This
probability has the following analytical form [21] in theSimodel:

k

~ ~ n K (1 _ p)n—k+|
P (X = K) = q(k) D (l)(—n' PR]

1=0

3. The Naive SIR algorithm

In standard algorithm for SIR model, an infected node triemfect its neighbors sequen-
tially. For each neighboring node a pseudo random numberdezt 0 and 1 is calculated. If the
number is smaller or equal fovalue, the neighboring node is infected. At the end we chick i
the node recovers according to a new pseudo random number@ardmeter. In this paper we
call this algorithm the Naive SIR algorithm.

In our implementation (see Algorithin 1) we use a queue fostteof infected nodelsand
an array structuré& for indication of susceptible nodes. If the array value attipalar node is
"1” that node is susceptible. Vice versa, the node is infdcterecovered. The network was
represented using an adjacency list.

3.1. Time and space complexity analysis of the Naive SIRitigo

Here, we examine the average case running time and spacdecimpf the Naive SIR
algorithm. For order of growth of average case running tilgerithm analysis we use standard
big-O notation (asymptotic upper bound within a constant fad().

3

Algorithm 1 The Naive SIR algorithm
Input: (G, 2) whereG is contact network and represents the initial conditions. Initial con-
ditions consist ofp, g, | a queue of initally infected nodes a&qv) is an array indicator of
susceptible nodes.
Output: array indicator of recovered nodRév)
while | is not emptydo
dequeue(u, 1)
for each contactv of nodeu do
if S(v) is equal to lthen
let transmission of infection = v occur with probabilityp
if u= vdoes occuthen
updateS(v)andR(v)
enqueudyv, 1)
end if
end if
end for
update state af from infected to recovered with probability
if uis not recoverethen
enqueuéu, 1)
end if
end while
outputR(v)

The average case running time of the Naive SIR algorith([X] , k, q) is equal to:

TUEX].K 0 = 0(%?“] 1)

whereEE [X] denotes total expected number of infected nodeskadehotes average degree.

To explain this statement, let us start with the case of ofeziad node wittk neighbors. In
one cycle it tries to transmit infection to each of its neigi® The run-time calculation cost of
that is proportional t&. At the end of each cycle a random number is compared qitli the
number is greater thamthe node is moved to set of recovered nodes. Total runnirgdostT.
for some infected node is sum of costs over all time steps where nedeas infected. Hence,
it can been seen that number of cycles the node is in infetétel is a sample from geometric
distribution with expectation /ij. Because of that, total average running time for one intecte
node isT? = O(k/g). Let E[X] be the expected number of infected nodes in the network.
Because main while loop of the Naive SIR algorithm execusggientially total average case
running timeT, is sum ofT_. for all infected nodes;. The sumT, = T: + T2+ ... + T2 hasE [X]
terms. Therefore average case running firaés O(E [X] k2).

For a network with cycles, it is #icult to analyticaﬂy calculate the expected number of
infected nodes, but we can calculate it for a regular m-agg.t To that end, we will us¥,,
random variable of a number of directly infected susceetitnides by the infected node of degree
n [21]. It can be easily verified th&t [X,] = nE [X;1] = nP (X; = 1).

Proposition 3.1. The average case running time of the Naive SIR algoritg(® [T,] , k) for a
4

m-arry tree of depth n is equal to:
T(E[Ta].K) = O(E[Ta] K),

where T, is a random variable that measures time needed for epidemstdp spreading in
regular m-arry tree of depth n arkldenotes average degree.
In particular the expectation of jTsatisfies the relation:

1me (% = D]" - 1

E[To] < 4 PG = 1)

where the expressi (&jll))izl = E[X] is the expected total number of infected nodes [21].

Proor. The upper bound on the expected value of a random varble calculated by ap-
plying law of total expectation with partitiofiXm, =i :0< i< m}; in caseXy, = 0 follows
E[TolXn=0] = E[Tg] = % and otherwise [Ty |Xm =k] < E[Tg] + E max T } - the

expected value of time needed for epidemic to stop spreaatimgot level plus the expected
value of maximum of times needed for epidemic to stop sprepiti each ofk subtrees with
depthn -1, wherek = 1,2,....m

E[Tn] = Zm:IE[Tnlxmz IPKn=1) SE[To]P(Xm=0)+
i=0

max T,ﬁj_)l])P(Xm =i) =

m
+ ; (IE [Tol + E | ma
ZT(I)

m
() el
1@% Tnl} P(Xm=1i) < q le)

P (X =) =

1 o .
a+E[Tn,1];| P On=D) =3 L E[Ty i E[X] =

1[mP (X = 1)]" -
q mP(X1=1)-

_ % FME[Toa] P = 1) = E[Ta] <

The space complexit$ of the Naive SIR algorithm with respect to the number of lihks
and the number of nodés¢ is equal to:

SILLN]J~ 2L + N + N + N =2L+3N,
G | S(v) R(v)

where the first term denotes space complexity of contacter&t® (adjacency list), the second
term denotes space complexity of a queue of infected niqdis third term denotes space com-
plexity of an array indicator of susceptible no@&s) and the last term denotes space complexity
of an array indicator of recovered node®). Note, thatS(v) andR(v) can be implemented as a
bitset structure to further reduce memory consumption.
In connected networkls > N and then the space complexByof the Naive SIR algorithm
is:
S[L, N] = O(L).
5

4. The FastSIR algorithm

The main goal of this article is to find a faster algorithm (#égorithm[2) for determining
the total number of infected nodes in epidemic, in which tloelsastic simulation of epidemic
spreading dynamics is not used explicitly. Looking at caewrftl of Algorithm[d, we can see that
possible speed up of sequential version of the algorithmbeaabtained only by reducing the
1/qg part. Since we know how to calculate the probability disttibns for the number of infected
nodes|[21], the idea is to choose that number from distaibuti he probability that the infected
node infectk neighbours out of total susceptible neighbours in the limit of the time is:

o n k K | (1-p n—k+l
]P)(Xn = k) = Q(k) IZ(; (l)(_l) 1— (1 _ q) (1 _ p)n—k+l : (2)

For the calculation of cumulative distributi@ (k) = P (X, < k), p, g andk should be known.
These values can be calculated on the fly, but they can alsalba@ated in advance and saved
on disk. In that case we do not need to repeat calculatiorhfosame k values. Furthermore,
since we use a few thousand simulations for each 3-tpplg, k, it is easy to see a benefit
of the precalculated distributions. Distributions shobtprecalculated only once and can be
used for several networks. The cost of calculation of a ibistions for eachk up to some
kmax is proportional tokma,?>. However, the benefit of precalculation is evident in cashsrw

it is necessary to run simulation usingfdrent starting parametets [28]. Furthermore, since
contact social networks usually hakig,x up to tens of thousand, it is necessary to precalculate
distribution once for all of them.

Algorithm 2 The FastSIR algorithm
Input: (G, 4, C) whereG is contact network and represents the initial condition§, is cu-
mulative distribution fomp, q and allk values in the network. Initial conditions consistmfq,
I a queue of initially infected nodes af&qv) is an array indicator of susceptible nodes.
Output: array indicator of recovered nodBév)
while | is not emptydo
dequeue(u, 1)
draw a pseudo random value
find from C(k, p, g) a maximal value ok; such thatC(ky, p,q) < r, wherek; is number of
infected neighbors
draw fromk neighbors; nodeswv
for each w do
if S(w) is equal to Zthen
updateS(w) andR(w)
enqueuew,)
end if
end for
end while
outputR(v)

A distinction between simulations in the Naive SIR algaritand the FastSIR algorithm is
in the parameter that orders the execution of the simulatior Naive SIR the simulation is
ordered in (discrete) time: the simulation follows the dymes of infection transfer as it unfolds

6

in time. In the case of FastSIR, the parameter ordering tieewtion of the simulation is the
parameter that we call the generation index. All infectedasocan be classified into generations
according to number of infection transfers from the inffiahfected node. In particular, the
initially infected node has a generation index 0O, the notles it infects have the generation
index 1 and so on. In FastSIR, the simulation starts fromrfilly infected node (generation
0) and using probability distributions for the number ofiafed nodes, nodes from generation 1
are determined and the node from generation 0 is recovendtieIn-th step of the simulation,
starting from the nodes from generatior 1, the nodes from generatiorare determined using
probability distributions for the number of infected nod@&en the nodes from the generation
n — 1 are recovered and the simulation proceeds to the next &sgentially, as a stochastic
process, FastSIR captures all infection transfers hapgeniNaive SIR using dierent ordering
(generation versus time).

4.1. Correctness of the FastSIR algorithm

To see correctness of the FastSIR algorithm (see Algofihme2change Naive algorithm
in a couple of steps that guarantee equality with respedl tofaction transfers happening in
Naive SIR process.

¢ First, all nodes infected directly by initially infected ds can not recover nor infect their
neighbors until the last of the initially infected nodes éeaovered. Then, process is re-
peated so that all infected nodes in moment of recovery ofatstanitially infected node
are defined as the initially infected nodes. It is clear thahis way the probability of in-
fection of any neighbor of initially infected nodes dirgdbly any of initially infected nodes
remains unchanged. Since all probabilities of direct fierf infection remain unchanged
until the end of the algorithm, we conclude that this modifaraleaves a probability of
infection of any node unchanged.

e The second step filers from the first step of modifying the Naive SIR algorithnilire
way that all nodes except the initially infected node camaobver nor infect their neigh-
bors until the chosen initially infected node is recovergétien we choose another node
that plays the role of the initially infected node and repbat process. Probabilities of
direct infection of any of the neighbors of initially infext nodes are not changed because
the probability of transmission of infection from each iialtly infected node to any of its
neighboring nodes remained the same, and the order in whédreme chosen initially in-
fected nodes does nafact the probability of infection of susceptible neighbdrimdially
infected nodes.

e The third step is the reduction of all the steps of recovergtudsen initially infected
node to a single step; if the initially infected node masusceptible neighbors, by using
a distribution of a random variable of infection we can detiee the realization of the
number of infected nodes, and then realization of that numtiafected nodes among the
susceptiblen. The probability of direct transmission of infection remaunchanged due
to the construction of a random variable of infection.

e Fourth step uses the principle which we prove in the follayimoposition. It states that
in the previous step, numberof adjacent nodes can be taken instead of numbef
susceptible nodes, as long as only susceptible adjaceasrd infected in the process.

7

Proposition 4.1. Let node v have n neighbors of whigh s ., sy are susceptible anghiy, . . ., in
cannot be infected, and let Y be a random variable of humberodes infected directly by
node v. Alternatively, let node v have the same n neighbqurs.$Sy, im:1, . - ., in Which are
susceptible, and let Z be a random variable of number of nadfested directly by node v
among nodes;s..., Sy. Then Y i Z are identically distributed random variables.rfiermore,
in both instances node bas the same probability of being directly infected by noflerall i,
1<i<m.

Proor. Let nodev havem susceptible neighbours and degree Probability thatk out of m
susceptible neighbours end up being infected by nagd®bviouslyP (Xm, = k). Probability that
by infectingn neighbours, out of whicln can be infected and — m can not, is obtained as
follows:

Probability that predetermined nodes outm$usceptible nodes become infecte®i¢X, = i).
We know that onlym out of n nodes are actually susceptible, so we have to chiomseof thatk
nodes which are in the set ofsusceptible nodes, and remainingk in the set olh — mwhich
can not be infected. That can be don¢if')(}) different ways. Probability that in the end there
are going to bé& infected nodes in the set of susceptible nodes is

n—m+k

2 (R o =0= 2 (1R o=

i=0 i=k
The only thing left to do is compare these two expressions wilNeise following relations:

. (n Kk K (1_p)n—k+l
Fla=k= q(k).Z:o: (I)H)I 1-1-g@-p"*! @

P(xn=k)=(E)P* (%0 =K (5)
P00 =R =) - (1- - (-) - o ©®)
u=0

We have .
POt = K20 Y (1= (L P - P ™ (L - g =

=q) (1-1-pHA-p)**)™ 1 - gy«

ngk

3 =

n—

(" Ma-a- e e

n—-m-i

o

=1

=) (1-@- M) (@ - P @ ay
u=0

n—m+k ’ ;
(R TR

i=k

00 n—m+k . .
- qz (1-qg) Z (r: : r;)(l —a- p)l+/1)|((1 B p)l+/l)n—| _
p=0

i=k

n—m+k co) . n—m+k
- (Tj[f);)q(l— @) (a-p) e =) (1R =
—P+(Xy=i)
which implies
P* (X = K) = nzm‘:k(r.‘ - m)]P’* (X = i) @)
4 \i - k
and obvioushy(?) = @)
n—-m+k
n-mm . . .
Pon=k= 3, (1 0l o= ®

By takingm = 1 in both instances in equatioff§ and(8) we obtain the same probability of
nodes being directly infected by nodefor all i, 1 <i < m.

4.2. Time and space complexity analysis of the FastSIR ighgor

Here, we examine the average case running time and spacdesttympf the FastSIR al-
gorithm. For order of growth of average case running timeutigm analysis we use standard
big-O notation (asymptotic upper bound within a constant fadid).

Proposition 4.1. The average case running time of the FastSIR algorithris equal to:
Ti = OE[X]K),
whereE [X] denotes total expected number of infected nodeskandrage degree in network.

Proor. Let us start with one infected node andktédegree) susceptible neighbors. Since dis-
tribution of number of infected neighbors is precalculaded it is possible to access to data
with O(1) we can neglect that to overall cost. The first step is unifg choosing a value for a
cumulative distribution. Since the parameterpod andk are known we should find appropriate
number of infected nodésg for that realisation. From the fact that there krel possible values
we can findk; in log(k) steps using binary search algorithm. In the next step, da@rsample
of ky nodes should be chosen, that would be infected, fkarfithem. For that operation, calcu-
lation cost is proportional tmin(ky, k — k1) [22]. In the last step, infection should be transmitted
to k; neighboring nodes. So the calculation cost is proportitbmkd. The overall running time
for one infected nodﬁfl andk susceptible neighbors can be calculated from the sum of émst
all three steps and it is equal to

Tt = cilog(k) + comin(ky, k — ky) + czky = O(K) 9)

wherecy, ¢; andcs are constants. Sindg < k, using big O notation it can be seen that
average case running time for one nod®(g). Hence, it does not depend oyl Total average

case running tim@&j is the sum of average tim§$ for all infected nodes; because main while

loop of the FastSIR algorithm (see Algoritiiin 2) executesisetjally. This sunT_fl+T_§+ +T_}1
hasE [X] terms which havé®(k) average case running time. Therefore average case rutimiag
T; is equal to the O E[X] k) .

If asymptotic running times of FastSIR and Naive algorithma eompared, it can be seen
that asymptotic upper bound average case running time ¢&Fas 1/qtimes lower. However,
if we look in more detail in the running time for the case wheaquals one and we have an
infected node ankl of its neighbors, their asymptotic upper bounds of averagaing times are
the same. But, it can be seen that there is a run-tiffierdince. Let that running times ratio
between FastSIR and Naive SIR algorithmsevherer is a value that depends on epidemic
parameters and the network structure. Let thée big enough. In the case wherequals
one we have!. For FastSIR running time is equal to the sum in equafidon Fy. the Naive
SIR algorithm that running time i$; = c;k andr! = T{/TZ. For FastSIR the first part of
running time is from finding appropriate value for obtained random value of the cumulative
distribution, the second part is from random selectioksafeighbors, while the last part is from
the process of transmission of infectionkpneighbors. Since, the code for the last part of the
FastSIR algorithm is almost equal to code of the Naive SIRritlym, we can take that; and
c3 are approximately equal. Wherdas k for very small values of parametpr it is expected
thatr! < 1. For some middle range pfvaluesk; is aroundk/2. For that case, it can be seen that
r! can be greater than 1d§ > c3. Whenp s near 1k; ~ k, so the middle element of the sum is
neglected and' value is around 1 or slightly greater.

The value ok; is also dependent apparameter. In the case of samdor smaller value of,
ki would be larger and vice versa. We can conclude that worsteinéle of epidemic parameters
for duration of execution of the FastSIR algorithm wouldépwandq values for whickk; ~ k/2.

The network structure has an influence on the ratio too. Lmplit the for loop part of
both algorithms we can see branching that depends of the (stasceptible or not susceptible)
of the neighbouring node. Although upper bound valueszadndc, constants can be easily
determined, their true values depend on the network streictiistructure has form of a tree or a
chain, the infection can be transmitted only from one dioectThe values of; andc, are half
the value and over half the value of upper bound in the casgsaif and tree, respectively. When
the network structure has a lot of cycles, the infection catrédnsmitted from many directions
and values o3 andc, are lower. Also, it is important to emphasise tbais independent on
the network structure. In accordance with above analysi§#stSIR algorithm would be slower
than Naive Algorithm, for some specific values of epidemiapzeters, if and only i€, > cs.
Hence, for the networks with more cycles there is a greatanch that, for some values of
infected parameters, the Naive SIR algorithm would be faste

The space complexitg of the FastSIR algorithm with the respect to the number ddslin,
the number of nodeld and the sum of all distinct degrees in netwétks equal to:

SILLN,K]~ 2L + K + N + N + N =2L+K+3N,
G c I S(v) R(v)
10

where the first term denotes space complexity of contacter&t® (adjacency list), the second
term denotes space complexity of cumulative distributi@risr all distinct degreek; in G, the
third term denotes the space complexity of a queue of inflecteled , the next term denotes the
space complexity of a vector indicator of susceptible ndsi@$ and the last term denotes the
space complexity of a vector indicator of recovered nd®{gs Note, that theS(v) andR(v) can
be implemented as a bitset structure to further reduce meoomsumption.

In connected networkis > N and 2. > K and then the space complexyof the FastSIR
algorithm is:

S[L, N, K] = O(L).

The values of, N andK for studied networks are presented in Tdble 5.

4.3. Implementation of distribution precalculation

Looking at the cumulative distribution formula it can berséfeat calculation cost is propor-
tional tokmax'. Speed up can be achieved using the fact that binomidlicieat values and the
fraction part of the formula are repeated so caching themameobtain lower calculation costs.
However, we achieved further speed up using a recursiveuiaifi0.

Proposition 4.1. For each k# 0

n-k+1

n
B(Xn = K) = L P(Xn-1 = k=1) = =

P(X, = k- 1) (10)

Proor.

P (X, =K) = q(E) Izk(; (Il() . _(le)_l(j)zlpznpk:kn
[e

(),Zk:(k 1) - ((11)l(;) (1p)“;<:l _ Q(E) Izk(; (kT 1) - _((_11)_I(;-);1p3n::_ _

=Sy oS
n k +1 n k-1 (_1)I(1 _ p)n,(k71)+|
S) =
1 () |ZO“ ()1 -1-9@1- p)n—(k71)+|
n-k+1
k

TP (X = k- 1)
n) K7 (k=1) (-1)'(1-p
527 (k)z()1—(1—q)(1_pnk+'
n(n-1 kel q (-1)'(1 - p)m-D-G-D+
B Eq(k - 1) ; (|)1 —(1-q)(1- p)(n—l)—(kfl)Jrl

n-k+1
k

_ E]P(x,,,l —K=1) =P (X, = k) = EP(X,H —Kk-1)- P (X, = k- 1)

11

Using this recursive formula the computation cost is prtipoal tokma,?. It is very impor-
tant to mention that in programming of cumulative distribatone should be very careful with
precision. Because of that we use multiple precision liofar this calculation. Empirically we
obtained that it is safe to set the precision to be at leastif@s degree bits. The minimum
precision is 64 bits. During the testing of calculation time noticed that cost for large degree
values predominantly depended on the precision used. Thalative distribution values should
be precalculated for a specific maximum degree only oncetaddan be used for all networks
that have degrees less then maximum one. We consider th@®5®@igh enough value of de-
gree for majority of networks. Similar recursive formulandze used when random variable of
time of recovery for each node is distributed as negativernial probability distribution.

4.4. Parallelization of the algorithm

Like in similar algorithms|[16], parallelization can be fimmed by partition of networks
using MPI. Since we used a large number of repetitions it aalbo naively parallelized per-
forming each repetition on a separate core. The precaicnlaf distribution is also naturally
parallelizable. Parallelization using GPUs is a very arading task and it will be the scope of
one of our next investigations.

5. Experimental results

In this section, we describe some detailed performancelipgfaind analysis of FastSIR
implementation on our test server. The server has 4 QuadZ41@Hz Intel E5330 processors
and 50 GB of RAM memory. For test purposes we use only one aoredch test. Algorithms
are implemented in C using igraph [23] and gmp libraries [24]

The analysis was performed on several empirical networksetaork of 2003 condensed
matter collaborations (cond-mat 2003) introduced_in [4],umdirected, unweighted network
representing the topology of the US Western States Powelr (Bower grid) [3], a network of
coauthorships between scientists posting preprints oAstrephysics E-Print Archive between
Jan 1, 1995 and December 31, 1999 (astro physics) [4], a synmetesnapshot of the structure
of the Internet at the level of autonomous systems, recactsitl from BGP tables posted by the
University of Oregon Route Views Project (Internet)|[27daa network of Live Journal users
(Live Journal)[[29]. Tablg]1l shows the basic informationdbove mentioned networks.

Table 1: Basic network parameters

Network no of nodes| no of links | Kmax k sum of distinct degrees
Power grid 4941 6 594 19 2.7 142
Cond-mat 2003 27519 116 181 202 8.4 8619
Astro physics 14 845 119 652 360 | 16.1 16 737
Internet 22 963 48 436 2390 | 4.2 32118
Live Journal 5189809 | 77 365447| 15023 | 29.6 2503 563

For each analysis we measured running time of the Naive SBrithm and the FastSIR
algorithm. Loading network structure data (adjacency fistm disc was not measured in run-
ning time analysis for both algorithms. However, loadinggaiculated probability distributions

12

Table 2: Running time in seconds for 2000 simulations, ®2,0.5,0.8 and g= 0.1

Network . p=0.2 . p=0.5 . p=08
Naive SIR | FastSIR| Naive SIR| FastSIR| Naive SIR | FastSIR
Power grid 3.2 0.4 7.0 0.9 7.1 0.9
Cond-mat 2003 67.7 9.6 63.3 8.6 61.2 7.9
Astro Physics 44.1 7.0 41.2 5.9 39.9 5.1
Internet 42.5 5.0 41.6 49 40.5 4.7
Live Journal 50683 6 699 48 373 5635 47531 5078

from disc was measured in running time analysis for the FRsa®orithm. Also, we measured
execution time for distribution precalculation. We stutthe entire p, g) parametric space of
the SIR model: a [01] x [0, 1] square. The step value for both p and q was 0.1. Each simula-
tion was started from the same node, and it was performed 2®@8. Upper bound memory
consumption for all experiments was 9 GB. Although some @rstluse only a several dozen
of repetitions, we consider that is not enough for stablaltesn the bimodal part of the phase
space. The results of running time forvalues of 0.2, 0.5 and 0.8 agdralue of 0.1 for all tested
networks are presented in Table 2. In addition in Thble 3 eesgnted results fgrvalues of 0.2,
0.5 and 0.8 and values between 0.1 and 1. Graphs of results obtained f@lues of 0.2, 0.5
and 0.8 and dierent values ofj for all networks are presented in Figlide 1, Figure 2 and eigur
[3, respectively. Those figures show ratio of running timeveen Naive SIR and FastSIR.

Table 3: Running time in seconds for Live Journal network:aReeters: 2000 simulations,#0.2, 0.5 and 0.8, & 0.1
tol

p=0.2 p=0.5 p=0.8

q Naive SIR | fastSIR | Naive SIR | fastSIR| Naive SIR| fastSIR
0.1 50683 6 699 48 373 5635 47 531 5078
0.2 25841 7 200 24 398 6 314 24 067 5357
0.3 18 550 7 200 16 580 6 841 16 276 5609
0.4 13 686 6 987 12 870 7 259 12 329 5843
0.5 13197 6 704 10 394 7591 9951 6 060
0.6 9394 6 400 8720 7 859 8 345 6 253
0.7 8 301 6073 7513 8072 7 185 6 429
0.8 8744 5805 6 622 8 250 6 293 6 592
0.9 7521 5508 5869 8555 5597 6 749

1 5291 5259 5064 8 666 5082 7777

Results difer between networks, but the trend is that the ratio is apprabely proportional
to 1/g. Whenq value is near one, the running time rati¢fdis dependingly on the network and
the value ofp. In can been seen that results are in accordance with the aoalysis. Whep is
small (p = 0.2), the FastSIR algorithm is faster or equal to Naive SIR flog&alues. But, when
p has value of 0.5, the Naive SIR algorithm is faster for laygalues for almost all networks.
In addition whenp has value 0.8 the Naive SIR algorithm can be faster only foresnetworks

13

Figure 1: Running time ratio for Naive SIR and the FastSIFalgm. Parameters: 2000 simulationsz|®.2, q= 0.1
to 1 (Online version in colour).

9.00

8.00)(

7.00 A \
6.00

\ == Astro Physics
5.00

\)\ ==fe=Cond-mat 2003
4.00 =>é=|nternet

N\ ==ie=Power grid
3.00
k =@=Live journal
- \Nx—
1.00 ¥ ¥ >

0.00 T T T T T T T T T]

Figure 2: Running time ratio for Naive SIR and the FastSIRalgm. Parameters: 2000 simulationsz 9.5, q= 0.1
to 1 (Online version in colour).

10.00
9.00
8.00
7.00
6.00 == Astro Physics
=== Cond-mat 2003
5.00
=3é=|nternet
4.00 =3ié=Power grid
3.00 =@®=Live journal
2.00
1.00
0.00 T T T T T T T T T)
01 02 03 04 05 06 07 08 09 10

Figure 3: Running time ratio for Naive SIR and the FastSIRalgm. Parameters: 2000 simulationsz 9.8, g= 0.1
to 1 (Online version in colour).

10.00
9.00 q
8.00 -
7.00 \\
6.00 == Astro Physics
==fe=Cond-mat 2003
5.00
==>é&=|nternet
4.00 == Power grid
3.00 =@==Live journal
2.00
1.00
0.00 T T T T T T T T T ,
01 02 03 04 05 06 07 08 09 10

Figure 4: Running time ratio for Naive SIR and the FastSIR@tgm on parametric space on Internet network (Online
version in colour).

9
X 4
’ 3
2
0.1 02 0.3 0.4 05 06 0.7 038 0.9
p

15

®

~

)

o

Figure 5: Running time ratio for Naive SIR and the FastSIR&algm on parametric space on Astro Physics network,
white line represents border of the area of the parametecesprhere running time ratio is strictly less than one (@nlin
version in colour).

1

0.9

0.8

0.7

0.6

o

05

0.4

03

0.2

0.1

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

andq values very close to one. However, for sntpllalues the FastSIR algorithm is much faster
and i.e. forg value of 0.1, the ratio is between 7 and 9.5 depending on ttveonleand the value
of p.

Above analysis of the running time ratio between Naive SIR the FastSIR algorithm can
be summarised in Figures[4,[5[®, 7 ahd 8. In these Figuresave smning time ratio on entire
parametric spacep(q) (averaged over 2000 simulations) and denote area of tlaenedric space
(white line) where running time ratio is strictly less thameo It can also be seen that speed-up is
dependent on the network structure. In accordance witlysisah Sectiofi4, Naive algorithm is
rarely faster than the FastSIR algorithm for networks ofchibstructure is tree-like (Internet) or
chain (Power grid). For networks with more cycles (i.e. Liairnal) Naive Algorithm is faster
for more epidemic parameters.

Itis very important to emphasise that results for Live Jalinetwork of 5 mil. nodes and 77
mil. links are very fast. Average case running time for omewusation for p of 0.2 was between
2 and 4 seconds for the FastSIR algorithm. The worst obtaiesalt for entire p, q) space
was 5 seconds. Even results for the Naive SIR algorithm far tietwork did not exceed 30
seconds for one simulation. Furthermore, it should be stethat results are achieved without
parallelization. Hence, implementations of both alganithcan be used for large networks.

6. Application

Our version of the Naive SIR algorithm models full epidemicesading dynamics and has
low average case running time. Therefore, the Naive SIRrilgo is a core algorithm that
models epidemic spreading and can easily be upgraded tgbaexsion with interventions.
Interventions represent all sort of measures that are dgppeipose in order to influence impact

16

Figure 6: Running time ratio for Naive SIR and the FastSIR@igm on parametric space Cond-mat 2003 network,
white line represents border of the area of the parametecesprhere running time ratio is strictly less than one (@nlin
version in colour).

Figure 7: Running time ratio for Naive SIR and the FastSIFbaigm on parametric space on Live Journal network,
white line represents border of the area of the parametecesprhere running time ratio is strictly less than one (@nlin
version in colour).

17

Figure 8: Running time ratio for Naive SIR and the FastSIR&i{gm on parametric space on Power grid network, white
line represents border of the area of the parametric spaesewtinning time ratio is strictly less than one (Online i@Ts
in colour).

| .
0.9 7

0.8

0.7

0.6

o

05

0.4

03

0.2 2

0.1

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

of epidemic spreading like using antiviral drugs or cormaémt measures. This algorithm has
wide areas of application in virus propagation, epidemiamwledge spreading with SIR model.
The FastSIR algorithm uses precalculated probabilityriBistions of the number of infected
nodes to reduce average case running time by a constant fabFastSIR algorithm has been
used in study of the influence of the initially infected nodepidemic impacts due to its speed
up when all nodes in network should be examined as initiafiggted node to calculate epidemic
risks over entire parametrip(q) spacel[28]. This also has practical importance since tb&eh

of the initially infected node may describefi@irence between a random outbreak and a terrorist
attack.

7. Discussion and conclusions

In this paper we have described how to construct our verditmed\aive SIR algorithm and
we have proposed completely new FastSIR algorithm for epiciepreading simulations (SIR
model) on an arbitrary network structure with reduced rogrime. Running time of the Naive
SIR algorithm was reduced by using two data structures (gaea array) simultaneously for
storing node states. This algorithm models full epidemicaiyics and thus can be easily up-
graded to a parallel version with interventions (antivitalgs and containments). Upper bound
of the average case running time of the Naive SIR algorithmmearry tree has been analytically
derived.

We propose a novel FastSIR algorithm to reduce the averageraaning time of the Naive
SIR algorithm by approximately constant factggin one huge area of parametric spapgeq).
We also showed that average case running time of the FaskgiRthm is equal to total expected
number of infected nodes times average node degree. Thiavevage case running time was

18

accomplished by using precalculated probability distidns of the number of infected nodes
along with binary search and a simple sampling algorithmrré&xness of this new algorithm
has also been proven in four steps of equality of two algorithPrecalculation of probability
distributions of the number of infected nodes should be deitie caution to avoid numerical
errors. Itis very important to mention that the FastSIR gthm can be used in the same manner
when time od recovery for each infected node is distributetha negative binomial probability
distribution.

It should also be clear that Naive SIR and FastSIR algorittems$e merged to a Hybrid SIR
algorithm due to four steps of equivalence between Naivea®liRFastSIR algorithms. In one
segment of the phase diagram Naive SIR can be faster thaBRaatgorithm. Therefore Hybrid
SIR algorithm could use one of two algorithms depending @itjom of an infective agent in the
phase diagram in order to decrease running time. For theesgigwfithe phase diagram where
it is expected that Naive can be faster, we can estimateidarat both algorithm for a few
simulations and then use the faster one for all other sinogiadaptive control).

Experimental analysis was made on fiv&elient empirical complex network on a single core
processor. To the best of our knowledge our algorithms hdae ghorter total running time per
epidemic simulation than other algorithms. Parallel@atdf this algorithms was not in scope
of this research and was left for future work. Empirical tesshow that the FastSIR algorithm
is approximately faster than the Naive SIR algorithm kg tonstant factor for a great part of
parametric spacey(q) which is in the excellent agreement with our expectations.

Acknowledgements

The work of MS. is financed by Ministry of Education Science and Sporta@Republic of
Croatia under Contract No. 036-0362214-1987, 098-119P860 and by BMRC of A*STAR,
Republic of Singapore. The work of 8. is supported by the Ministry of Education Science and
Sports of the Republic of Croatia under Contract No. 0982828-2863.

References

[1] R. Augert, H. EonG anp A.-L. Barasasi , Nature 401, 130 (1999).

[2] A. Brober, R. Kumar, F. MagrouL, P. RagHAVAN, S. RajagopaLaN, R. Stata, A. Tomkins anp J. WiENEr, Computer
Networks 33, 309 (2000).

[3] F. Lmwseros, C. R. Bbuing, L. A. N. AmaraL, H. E. SiaNLey anp Y. ABerG, Nature 411, 907 (2001).

[4] M. E.J. Newman , Proc. Natl. Acad. Sci USA 98, 404 (2001).

[5] R. Ausert anp A.-L. BaraBAst, Rev. Mod. Phys. 74, 47 (2002).

[6] M. E.J. Newman, SIAM Rev. 45, 167 (2003).

[7] J. F. F. MenpEes, S. N. DoroGovtsey, A. V. Gorrsev, Rev. Mod. Phys 80, 1275 (2008).
[8] D.J.Warrs anp S. H. Srocarz, Nature 393, 440 (1998).
[9] A.-L. Barasasi anp R. Ausert, Science 286, 508 (1999).
[10] S. N. Dorocovrsey, J. F. F. Minpes anp A. N. SamukhiN, Phys. Rev. Lett. 85, 4633 (2000).

[11] R. Ristor-Satorras anp A. VEspigNant Phys. Rev. Lett. 86, 3200 (2001).

[12] W. O. Kermack anp A. G. McKenprick Proc. Roy. Soc. Lond. A 115, 700 (1927).

[13] L. A. Mevers Bulletion of The American Mathematical Society, 44, 63 {200

[14] L. A. Mevers, M. E. J. Nswman anp B. PoursonLour Journal of Theoretical Biology, 240, 400 (2006).

[15] M. NEwman SIAM Rev. 45, 167 (2003).

[16] K.R. Bisser, J. Gien, X. Feng, V. S. A. Kumar anp M. V. M aratae Proceedings of the 23rd international conference
on Supercomputing, 430 (2009).

[17] C.L.Barrert, K. R. Bisser, S. EuBank, X. Feng, anp M. V. M aratue Proceedings of the AGMEEE Conference on
High Performace Computing (SC), 37 (2008).

[18] S. BuBank, H. guciy, V. S. A. Kumar, M. V. Maratag, A. Srintvasan, T. Z., anp N. Wane Nature, 429, 180 (2004)

19

[19] V. Couizza, A. BARRAT, M. BARTHELEMY, A. J. VALLERON AND A. VEspiNant Plos Medicine 4, 95 (2007).

[20] V. Couizza, A. BARrRAT, M. BaRTHELEMY, A. J. VALLERON AND A. VEspigNant Proc. Natl. Acad. Sci. USA 103, 2015
(2006).

[21] A. Lancic, N. Anturov-Fantuny, M. Skic anp H. Sreranéic Physica A (2010), 390, 65,
doi:10.101¢.physa.2010.06.024

[22] J. S. VitterCommun. ACM, 27, 7 (1984)

[23] G. Gsror anp T. Nepusz InterJournal Complex Systems, 1695, (2006).

[24] |http;/gmplib.org| (2010).

[25] M. E. J. Newman Proc. Natl. Acad. Sci. USA 98, 404 (2001).

[26] D.J. Warts anp S.H. Srocarz Nature 393, 440 (1998).

[27] M. E. J. Newman httpy/Avww-personal.umich.egemejnhetdata (2006).

[28] A.Lanci¢, N.AntuLov-FanTuLiN, M. Sixi¢, H. Sterancic Epidemic centrality - identifying "superspreaders” in
complex networks (in preparation).

[29] A. MisLove, M. Marcon, K. P. Guommabr, P. DruscreL anp B. Buartacuariee Proceedings of the 5th AGMsenix
Internet Measurement Conference (IMC'07), (2007).

[30] T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stewv Introduction to algorithms, 2nd, McGraw-Hill Higher Eduiban,
2001, ISBN: 0070131511

20

http://gmplib.org/
http://www-personal.umich.edu/~mejn/netdata/

	1 Introduction
	2 Epidemic simulation problem
	3 The Naive SIR algorithm
	3.1 Time and space complexity analysis of the Naive SIR algorithm

	4 The FastSIR algorithm
	4.1 Correctness of the FastSIR algorithm
	4.2 Time and space complexity analysis of the FastSIR algorithm
	4.3 Implementation of distribution precalculation
	4.4 Parallelization of the algorithm

	5 Experimental results
	6 Application
	7 Discussion and conclusions

