
ar
X

iv
:1

20
2.

16
39

v1
 [

cs
.D

S
]

8
F

eb
 2

01
2

FastSIR Algorithm: A Fast Algorithm for simulation of epidemic
spread in large networks by using SIR compartment model

Nino Antulov-Fantulina,1,∗, Alen Lančićb, HrvojeŠtefančićc, Mile Šikićd,e,2,∗∗

aDivision of Electronics, Laboratory for Information Systems,
Rudjer Bošković Institute, Zagreb, Croatia

bFaculty of Science, Department of Mathematics, Universityof Zagreb, Zagreb, Croatia
cTheoretical Physics Division, Rudjer Bošković Institute, Zagreb, Croatia

dFaculty of Electrical Engineering and Computing, Department of Electronic Systems and Information Processing,
University of Zagreb, Croatia

eBioinformatics Institute, A*STAR, Singapore, Republic ofSingapore

Abstract

The epidemic spreading on arbitrary complex networks is studied in SIR (Susceptible Infected
Recovered) compartment model. We propose our implementation of a Naive SIR algorithm for
epidemic simulation spreading on networks that uses data structures efficiently to reduce running
time. The Naive SIR algorithm models full epidemic dynamicsand can be easily upgraded to
parallel version. We also propose novel algorithm for epidemic simulation spreading on net-
works called the FastSIR algorithm that has better average case running time than the Naive SIR
algorithm. The FastSIR algorithm uses novel approach to reduce average case running time by
constant factor by using probability distributions of the number of infected nodes. Moreover,
the FastSIR algorithm does not follow epidemic dynamics in time, but still captures all infection
transfers. Furthermore, we also propose an efficient recursive method for calculating probability
distributions of the number of infected nodes. Average caserunning time of both algorithms
has also been derived and experimental analysis was made on five different empirical complex
networks.

Keywords: SIR compartment model, Epidemic spreading simulation, Computational
epidemiology

1. Introduction

Complex networks represent structure of communication networks [1] [2] or social contact
interactions [3] [4] very well. Therefore, it is reasonableto study computer virus propagation
or epidemic spreading on complex networks [5] [6] [7]. Modeling the spread of an epidemic

∗Corresponding author.
∗∗Corresponding author.

Email addresses:nino.antulov@irb.hr (Nino Antulov-Fantulin),alen@student.math.hr (Alen Lančić),
shrvoje@thphys.irb.hr (Hrvoje Štefančić),mile.sikic@fer.hr (Mile Šikić)

1P.O.B. 180, HR-10002, Zagreb
230 Biopolis Street, 07-01 Matrix, Singapore 138671

Preprint submitted to Elsevier May 23, 2018

http://arxiv.org/abs/1202.1639v1

in a population is usually done by dividing individuals of the population into subdivision with
some common characteristic features called compartments.The SIR model is a good model for
many infectious diseases where each individual in a population can be in one of three different
compartments. Those who are susceptible to the disease are in the Susceptible compartment,
those who are infected and can transmit the disease to othersare in the Infected compartment
and those who have recovered and are immune and those who are removed from population
are in the Recovered compartment. Some infectious diseasesare described with models that
have different number of compartments like SIS model (Susceptible Infected Susceptible) where
individuals can not have long lasting immunity and therefore Recovered compartment does not
exist.

Different mathematical models have been used to study epidemic spreading. Under the as-
sumption of homogeneous mixing among individuals inside different compartments (Kermack-
McKendrick model) differential equations can be applied to understand epidemic dynamics [12].
Contact network epidemiology applies bond percolation on random graphs (not on arbitrary
structure) to model epidemic spreading on heterogeneous population (epidemic dynamics is ne-
glected) [13] [14] [6]. Small world network property [8] andscale-free network property [9]
[10] have great impact on epidemic spreading outcome. Scale-free complex networks exhibit no
epidemic threshold below which the infection cannot produce epidemic outbreak (endemic state)
in SIS model [11].

Realistic epidemic simulations (EpiFast [16], EpiSims [17] and EpiSindemics [18]) have be-
come very important application of high-performance computing in epidemic predictions. These
are just a few examples of parallel algorithms that can be used in public health studies. Some
studies [19] [20] used contact network models between urbancities (cities are connected through
airline transportation network) and homogeneous mixing model inside urban cities and examined
influence of interventions (antiviral drugs and containments) to worldwide spread of pandemic.

Recently, the phase diagrams of epidemic spreading with theSIR model on complex net-
works were introduced as a useful tool for epidemic spreading analysis [21]. To predict expected
value of the number of infected nodes in epidemic spreading on arbitrary network, we should
repeat simulations till standard deviation of the number ofthe infected nodes sufficiently reduces
(in unimodal part of the epidemic phase diagram) or converges to nonzero value (in bimodal part
of the epidemic phase diagram). Due to the high number of iterations needed to predict expected
epidemic outcome, average case running time of the epidemicsimulation algorithm should be
as low as possible. In this paper we describe our implementation of a Naive SIR algorithm to
simulate epidemic spreading (SIR model) on arbitrary network structure with low average case
running time. Our implementation of the Naive SIR algorithmuses data structures efficiently
to reduce running time. This algorithm models full dynamicsof epidemic spreading and can be
upgraded easily to parallel version. Main contribution of this paper is a novel algorithm called
the FastSIR algorithm which uses probability distributions of the number of infected nodes to
speed up recovery of infected nodes to one discrete step during simulation of epidemic spreading
to reduce running time. Moreover, the FastSIR algorithm does not follow epidemic dynamics in
time, but still captures all infection transfers.

In section 2 we formally define an epidemic simulation problem and other concepts used
in this paper. Section 3 describes our implementation of Naive SIR algorithm along with the
running time and the space complexity analysis. In section 4we describe our novel FastSIR
algorithm along with the running time and the space complexity analysis. Correctness of the
FastSIR algorithm was proven with four steps of equality. Wealso described how to efficiently
implement probability distributions of the number of infected nodes by a recursive method. In

2

section 5 we described results of the performance profiling and analysis of our algorithms on
five empirical complex networks. In sections 6 and 7 we described possible applications of our
algorithms along with discussion of results and conclusion.

2. Epidemic simulation problem

We define contact-network as undirected and non-weighted graphG(N, L) (N-set of nodes,
L-set of links). Link (u, v) exists only if two nodesu andv are in contact during epidemic time.
We also assume that the contact-network during epidemic process is static one, but the algorithms
and other results can also be applied even for dynamic networks. To simulate epidemic propa-
gation through contact-network, we use standard stochastic SIR model. In this model each node
at some time can be in one of the following states: susceptible (S), infected (I) and recovered
(R). A discrete time model is used. Time needed for the epidemic to stop spreading defines one
epidemic simulation. At the beginning of each epidemic simulation all nodes from graphG are
in susceptible state except arbitrary set of nodes, which are initially infected, with some epidemic
parametersp andq. These initial conditions we denote with letterλ. Epidemic parameterp is a
probability that an infected nodeu infects adjacent susceptible nodev in one discrete time step.
Epidemic parameterq is a probability that an infected node recovers in one discrete time step.
At the end of an epidemic simulation all nodes can be in one of two following states: susceptible
or recovered. Epidemic simulation on (G, λ) is a random instance of epidemic stochastic pro-
cessES P(G, λ). Epidemic simulations are mutually independent. LetX be a random variable
that measures a number of infected nodes of epidemic stochastic processES P(G, λ). Given a
ES P(G, λ), the epidemic simulation problem is to compute firstn moments of random variable
X. We will also often use the notationP (Xn = k), which denotes the probability that the infected
node infectsk neighbours out of totaln susceptible neighbours in the limit of the time. This
probability has the following analytical form [21] in the SIR model:

P (Xn = k) = q

(

n
k

) k∑

l=0

(

k
l

)

(−1)l (1− p)n−k+l

1− (1− q) (1− p)n−k+l
.

3. The Naive SIR algorithm

In standard algorithm for SIR model, an infected node tries to infect its neighbors sequen-
tially. For each neighboring node a pseudo random number between 0 and 1 is calculated. If the
number is smaller or equal top value, the neighboring node is infected. At the end we check if
the node recovers according to a new pseudo random number andq parameter. In this paper we
call this algorithm the Naive SIR algorithm.

In our implementation (see Algorithm 1) we use a queue for theset of infected nodesI and
an array structureS for indication of susceptible nodes. If the array value of particular node is
”1” that node is susceptible. Vice versa, the node is infected or recovered. The network was
represented using an adjacency list.

3.1. Time and space complexity analysis of the Naive SIR algorithm

Here, we examine the average case running time and space complexity of the Naive SIR
algorithm. For order of growth of average case running time algorithm analysis we use standard
big-O notation (asymptotic upper bound within a constant factor)[30].

3

Algorithm 1 The Naive SIR algorithm
Input: (G, λ) whereG is contact network andλ represents the initial conditions. Initial con-
ditions consist ofp, q, I a queue of initally infected nodes andS(v) is an array indicator of
susceptible nodes.
Output: array indicator of recovered nodesR(v)
while I is not emptydo

dequeue(u, I)
for each contactv of nodeu do

if S(v) is equal to 1then
let transmission of infectionu⇒ v occur with probabilityp
if u⇒ v does occurthen

updateS(v)andR(v)
enqueue(v, I)

end if
end if

end for
update state ofu from infected to recovered with probabilityq
if u is not recoveredthen

enqueue(u, I)
end if

end while
outputR(v)

The average case running time of the Naive SIR algorithmTc(E [X] , k, q) is equal to:

Tc(E [X] , k, q) = O





E [X] k
q



 (1)

whereE [X] denotes total expected number of infected nodes andk denotes average degree.
To explain this statement, let us start with the case of one infected node withk neighbors. In

one cycle it tries to transmit infection to each of its neighbors. The run-time calculation cost of
that is proportional tok. At the end of each cycle a random number is compared withq. If the
number is greater thanq the node is moved to set of recovered nodes. Total running time costT i

c
for some infected nodevi is sum of costs over all time steps where nodevi was infected. Hence,
it can been seen that number of cycles the node is in infected state is a sample from geometric
distribution with expectation 1/q. Because of that, total average running time for one infected
node isT1

c = O(k/q). Let E [X] be the expected number of infected nodes in the network.
Because main while loop of the Naive SIR algorithm executes sequentially total average case

running timeTc is sum ofT i
c for all infected nodesvi . The sumTc = T1

c +T2
c + ...+Tn

c hasE [X]
terms. Therefore average case running timeTc is O(E [X] k1

q).
For a network with cycles, it is difficult to analytically calculate the expected number of

infected nodes, but we can calculate it for a regular m-arry tree. To that end, we will useXn,
random variable of a number of directly infected susceptible nodes by the infected node of degree
n [21]. It can be easily verified thatE [Xn] = nE [X1] = nP (X1 = 1).

Proposition 3.1. The average case running time of the Naive SIR algorithmTc(E [Tn] , k) for a
4

m-arry tree of depth n is equal to:

Tc(E [Tn] , k) = O(E [Tn] k),

where Tn is a random variable that measures time needed for epidemic to stop spreading in
regular m-arry tree of depth n andk denotes average degree.

In particular the expectation of Tn satisfies the relation:

E [Tn] 6
1
q

[mP (X1 = 1)]n − 1
mP (X1 = 1) − 1

where the expression[mP(X1=1)]n−1
mP(X1=1)−1 = E [X] is the expected total number of infected nodes [21].

Proof. The upper bound on the expected value of a random variableTn is calculated by ap-
plying law of total expectation with partition{Xm = i : 0 6 i 6 m}; in caseXm = 0 follows

E [Tn |Xm = 0] = E [T0] = 1
q and otherwiseE [Tn |Xm = k] 6 E [T0] + E

[

max
16 j6k

T(j)
n−1

]

- the

expected value of time needed for epidemic to stop spreadingat root level plus the expected
value of maximum of times needed for epidemic to stop spreading in each ofk subtrees with
depthn− 1, wherek = 1, 2, ...,m

E [Tn] =
m∑

i=0

E [Tn |Xm = i] P (Xm = i) 6 E [T0] P (Xm = 0)+

+

m∑

i=1

(

E [T0] + E

[

max
16 j6i

T(j)
n−1

])

P (Xm = i) =

=
1
q
+

m∑

i=1

E

[

max
16 j6i

T(j)
n−1

]

P (Xm = i) 6
1
q
+

m∑

i=1

E





i∑

j=1

T(j)
n−1




P (Xm = i) =

=
1
q
+ E [Tn−1]

m∑

i=1

i · P (Xm = i) =
1
q
+ E [Tn−1] E [Xm] =

=
1
q
+mE [Tn−1] P (X1 = 1)⇒ E [Tn] 6

1
q

[mP (X1 = 1)]n − 1
mP (X1 = 1) − 1

The space complexityS of the Naive SIR algorithm with respect to the number of linksL
and the number of nodesN is equal to:

S[L,N] ≈ 2L
︸︷︷︸

G

+ N
︸︷︷︸

I

+ N
︸︷︷︸

S(v)

+ N
︸︷︷︸

R(v)

= 2L + 3N,

where the first term denotes space complexity of contact network G (adjacency list), the second
term denotes space complexity of a queue of infected nodesI , the third term denotes space com-
plexity of an array indicator of susceptible nodesS(v) and the last term denotes space complexity
of an array indicator of recovered nodesR(v). Note, thatS(v) andR(v) can be implemented as a
bitset structure to further reduce memory consumption.

In connected networksL > N and then the space complexityS of the Naive SIR algorithm
is:

S[L,N] = O(L).
5

4. The FastSIR algorithm

The main goal of this article is to find a faster algorithm (seeAlgorithm 2) for determining
the total number of infected nodes in epidemic, in which the stochastic simulation of epidemic
spreading dynamics is not used explicitly. Looking at complexity of Algorithm 1, we can see that
possible speed up of sequential version of the algorithm canbe obtained only by reducing the
1/q part. Since we know how to calculate the probability distributions for the number of infected
nodes [21], the idea is to choose that number from distribution. The probability that the infected
node infectsk neighbours out of totaln susceptible neighbours in the limit of the time is:

P (Xn = k) = q

(

n
k

) k∑

l=0

(

k
l

)

(−1)l (1− p)n−k+l

1− (1− q) (1− p)n−k+l
. (2)

For the calculation of cumulative distributionCn(k) = P (Xn ≤ k), p, q andk should be known.
These values can be calculated on the fly, but they can also be calculated in advance and saved
on disk. In that case we do not need to repeat calculation for the same k values. Furthermore,
since we use a few thousand simulations for each 3-tuplep, q, k, it is easy to see a benefit
of the precalculated distributions. Distributions shouldbe precalculated only once and can be
used for several networks. The cost of calculation of a distributions for eachk up to some
kmax is proportional tokmax

2. However, the benefit of precalculation is evident in cases when
it is necessary to run simulation using different starting parameters [28]. Furthermore, since
contact social networks usually havekmax up to tens of thousand, it is necessary to precalculate
distribution once for all of them.

Algorithm 2 The FastSIR algorithm
Input: (G, λ,C) whereG is contact network andλ represents the initial conditions,C is cu-
mulative distribution forp, q and allk values in the network. Initial conditions consist ofp, q,
I a queue of initially infected nodes andS(v) is an array indicator of susceptible nodes.
Output: array indicator of recovered nodesR(v)
while I is not emptydo

dequeue(u, I)
draw a pseudo random valuer
find fromC(k, p, q) a maximal value ofk1 such thatC(k1, p, q) ≤ r, wherek1 is number of
infected neighbors
draw fromk neighborsk1 nodesw
for each w do

if S(w) is equal to 1then
updateS(w) andR(w)
enqueue (w, I)

end if
end for

end while
outputR(v)

A distinction between simulations in the Naive SIR algorithm and the FastSIR algorithm is
in the parameter that orders the execution of the simulation. For Naive SIR the simulation is
ordered in (discrete) time: the simulation follows the dynamics of infection transfer as it unfolds

6

in time. In the case of FastSIR, the parameter ordering the execution of the simulation is the
parameter that we call the generation index. All infected nodes can be classified into generations
according to number of infection transfers from the initially infected node. In particular, the
initially infected node has a generation index 0, the nodes that it infects have the generation
index 1 and so on. In FastSIR, the simulation starts from the initially infected node (generation
0) and using probability distributions for the number of infected nodes, nodes from generation 1
are determined and the node from generation 0 is recovered. In the n-th step of the simulation,
starting from the nodes from generationn− 1, the nodes from generationn are determined using
probability distributions for the number of infected nodes. Then the nodes from the generation
n − 1 are recovered and the simulation proceeds to the next step.Essentially, as a stochastic
process, FastSIR captures all infection transfers happening in Naive SIR using different ordering
(generation versus time).

4.1. Correctness of the FastSIR algorithm

To see correctness of the FastSIR algorithm (see Algorithm 2) we change Naive algorithm
in a couple of steps that guarantee equality with respect to all infection transfers happening in
Naive SIR process.

• First, all nodes infected directly by initially infected nodes can not recover nor infect their
neighbors until the last of the initially infected nodes is recovered. Then, process is re-
peated so that all infected nodes in moment of recovery of thelast initially infected node
are defined as the initially infected nodes. It is clear that in this way the probability of in-
fection of any neighbor of initially infected nodes directly by any of initially infected nodes
remains unchanged. Since all probabilities of direct transfer of infection remain unchanged
until the end of the algorithm, we conclude that this modification leaves a probability of
infection of any node unchanged.

• The second step differs from the first step of modifying the Naive SIR algorithm inthe
way that all nodes except the initially infected node cannotrecover nor infect their neigh-
bors until the chosen initially infected node is recovered.Then we choose another node
that plays the role of the initially infected node and repeatthe process. Probabilities of
direct infection of any of the neighbors of initially infected nodes are not changed because
the probability of transmission of infection from each initially infected node to any of its
neighboring nodes remained the same, and the order in which we have chosen initially in-
fected nodes does not affect the probability of infection of susceptible neighbors of initially
infected nodes.

• The third step is the reduction of all the steps of recovery ofchosen initially infected
node to a single step; if the initially infected node hasm susceptible neighbors, by using
a distribution of a random variable of infection we can determine the realization of the
number of infected nodes, and then realization of that number of infected nodes among the
susceptiblem. The probability of direct transmission of infection remains unchanged due
to the construction of a random variable of infection.

• Fourth step uses the principle which we prove in the following proposition. It states that
in the previous step, numbern of adjacent nodes can be taken instead of numberm of
susceptible nodes, as long as only susceptible adjacent nodes are infected in the process.

7

Proposition 4.1. Let node v have n neighbors of which s1, . . . , sm are susceptible and im+1, . . . , in
cannot be infected, and let Y be a random variable of number ofnodes infected directly by
node v. Alternatively, let node v have the same n neighbours s1, . . . , sm, im+1, . . . , in which are
susceptible, and let Z be a random variable of number of nodesinfected directly by node v
among nodes s1, . . . , sm. Then Y i Z are identically distributed random variables. Furthermore,
in both instances node si has the same probability of being directly infected by node vfor all i,
1 6 i 6 m.

Proof. Let nodev havem susceptible neighbours and degreen. Probability thatk out of m
susceptible neighbours end up being infected by nodev is obviouslyP (Xm = k). Probability that
by infectingn neighbours, out of whichm can be infected andn − m can not, is obtained as
follows:

Probability thati predetermined nodes out ofn susceptible nodes become infected isP
∗ (Xn = i).

We know that onlymout ofn nodes are actually susceptible, so we have to choosei out of thatk
nodes which are in the set ofm susceptible nodes, and remainingi − k in the set ofn−m which
can not be infected. That can be done in

(
n−m
i−k

)(
m
k

)

different ways. Probability that in the end there
are going to bek infected nodes in the set ofm susceptible nodes is

n∑

i=0

(

n−m
i − k

)(

m
k

)

P
∗ (Xn = i) =

n−m+k∑

i=k

(

n−m
i − k

)(

m
k

)

P
∗ (Xn = i) (3)

The only thing left to do is compare these two expressions . Wewill use following relations:

P (Xn = k) = q

(

n
k

) k∑

l=0

(

k
l

)

(−1)l (1− p)n−k+l

1− (1− q) (1− p)n−k+l
(4)

P (Xn = k) =

(

n
k

)

P
∗ (Xn = k) (5)

P (Xn = k) = q

(

n
k

) ∞∑

µ=0

(

1− (1− p)1+µ
)k(

(1− p)1+µ
)n−k

(1− q)µ (6)

We have

P
∗(Xm = k)

5,6
= q

∞∑

µ=0

(1− (1− p)1+µ)k((1− p)1+µ)m−k(1− q)µ =

= q
∞∑

µ=0

(1− (1− p)1+µ)k((1− p)1+µ)m−k(1− q)µ∗

∗

n−m∑

i=0

(

n−m
i

)

(1− (1− p)1+µ)
i
((1− p)1+µ)

n−m−i

︸ ︷︷ ︸

=1

=

= q
∞∑

µ=0

(

1− (1− p)1+µ
)k(

(1− p)1+µ
)m−k

(1− q)µ∗

8

∗

n−m+k∑

i=k

(

n−m
i − k

)
(

1− (1− p)1+µ
)i−k(

(1− p)1+µ
)n−m−i+k

=

= q
∞∑

µ=0

(1− q)µ
n−m+k∑

i=k

(

n−m
i − k

)
(

1− (1− p)1+µ
)i(

(1− p)1+µ
)n−i
=

=

n−m+k∑

i=k

(

n−m
i − k

) ∞∑

µ=0

q
(

1− (1− p)1+µ
)i(

(1− p)1+µ
)n−i

(1− q)µ

︸ ︷︷ ︸

=P∗(Xn=i)

=

n−m+k∑

i=k

(

n−m
i − k

)

P
∗ (Xn = i)

which implies

P
∗ (Xm = k) =

n−m+k∑

i=k

(

n−m
i − k

)

P
∗ (Xn = i) (7)

and obviously(7)⇒ (8)

P (Xm = k) =
n−m+k∑

i=k

(

n−m
i − k

)(

m
k

)

P
∗ (Xn = i) (8)

By takingm= 1 in both instances in equations(3) and(8) we obtain the same probability of
nodesi being directly infected by nodev for all i, 1 6 i 6 m.

4.2. Time and space complexity analysis of the FastSIR algorithm

Here, we examine the average case running time and space complexity of the FastSIR al-
gorithm. For order of growth of average case running time algorithm analysis we use standard
big-O notation (asymptotic upper bound within a constant factor)[30].

Proposition 4.1. The average case running time of the FastSIR algorithmT f is equal to:

T f = O(E [X] k),

whereE [X] denotes total expected number of infected nodes andk average degree in network.

Proof. Let us start with one infected node and itsk (degree) susceptible neighbors. Since dis-
tribution of number of infected neighbors is precalculatedand it is possible to access to data
with O(1) we can neglect that to overall cost. The first step is uniformly choosing a value for a
cumulative distribution. Since the parameters ofp, q andk are known we should find appropriate
number of infected nodesk1 for that realisation. From the fact that there arek+1 possible values
we can findk1 in log(k) steps using binary search algorithm. In the next step, a random sample
of k1 nodes should be chosen, that would be infected, fromk of them. For that operation, calcu-
lation cost is proportional tomin(k1, k− k1) [22]. In the last step, infection should be transmitted
to k1 neighboring nodes. So the calculation cost is proportionalto k1. The overall running time
for one infected nodeT1

f andk susceptible neighbors can be calculated from the sum of costs for
all three steps and it is equal to

9

T1
f = c1log(k) + c2min(k1, k− k1) + c3k1 = O(k) (9)

wherec1, c2 andc3 are constants. Sincek1 < k, using big O notation it can be seen that
average case running time for one node isO(k). Hence, it does not depend on 1/q. Total average

case running timeT f is the sum of average timesT i
f for all infected nodesvi because main while

loop of the FastSIR algorithm (see Algorithm 2) executes sequentially. This sumT1
f +T2

f + ...+Tn
f

hasE [X] terms which haveO(k) average case running time. Therefore average case runningtime
T f is equal to the O (E [X] k) .

If asymptotic running times of FastSIR and Naive algorithm are compared, it can be seen
that asymptotic upper bound average case running time of FastSIR is 1/q times lower. However,
if we look in more detail in the running time for the case whenq equals one and we have an
infected node andk of its neighbors, their asymptotic upper bounds of average running times are
the same. But, it can be seen that there is a run-time difference. Let that running times ratio
between FastSIR and Naive SIR algorithms berq wherer is a value that depends on epidemic
parameters and the network structure. Let thatk be big enough. In the case whenq equals
one we haver1. For FastSIR running time is equal to the sum in equation (9).For the Naive
SIR algorithm that running time isT1

c = c4k and r1
= T1

f /T
1
c . For FastSIR the first part of

running time is from finding appropriatek1 value for obtained random value of the cumulative
distribution, the second part is from random selection ofk1 neighbors, while the last part is from
the process of transmission of infection tok1 neighbors. Since, the code for the last part of the
FastSIR algorithm is almost equal to code of the Naive SIR algorithm, we can take thatc4 and
c3 are approximately equal. Whereask1 ≪ k for very small values of parameterp, it is expected
thatr1 < 1. For some middle range ofp valuesk1 is aroundk/2. For that case, it can be seen that
r1 can be greater than 1 ifc2 > c3. Whenp is near 1,k1 ≈ k, so the middle element of the sum is
neglected andr1 value is around 1 or slightly greater.

The value ofk1 is also dependent onq parameter. In the case of samep, for smaller value ofq,
k1 would be larger and vice versa. We can conclude that worst influence of epidemic parameters
for duration of execution of the FastSIR algorithm would have p andq values for whichk1 ≈ k/2.

The network structure has an influence on the ratio too. Looking at the for loop part of
both algorithms we can see branching that depends of the state (susceptible or not susceptible)
of the neighbouring node. Although upper bound values ofc3 andc4 constants can be easily
determined, their true values depend on the network structure. If structure has form of a tree or a
chain, the infection can be transmitted only from one direction. The values ofc3 andc4 are half
the value and over half the value of upper bound in the cases ofchain and tree, respectively. When
the network structure has a lot of cycles, the infection can be transmitted from many directions
and values ofc3 andc4 are lower. Also, it is important to emphasise thatc2 is independent on
the network structure. In accordance with above analysis the FastSIR algorithm would be slower
than Naive Algorithm, for some specific values of epidemic parameters, if and only ifc2 > c3.
Hence, for the networks with more cycles there is a greater chance that, for some values of
infected parameters, the Naive SIR algorithm would be faster.

The space complexityS of the FastSIR algorithm with the respect to the number of links L,
the number of nodesN and the sum of all distinct degrees in networkK is equal to:

S[L,N,K] ≈ 2L
︸︷︷︸

G

+ K
︸︷︷︸

C

+ N
︸︷︷︸

I

+ N
︸︷︷︸

S(v)

+ N
︸︷︷︸

R(v)

= 2L + K + 3N,

10

where the first term denotes space complexity of contact network G (adjacency list), the second
term denotes space complexity of cumulative distributionsC for all distinct degreeski in G, the
third term denotes the space complexity of a queue of infected nodesI , the next term denotes the
space complexity of a vector indicator of susceptible nodesS(v) and the last term denotes the
space complexity of a vector indicator of recovered nodesR(v). Note, that theS(v) andR(v) can
be implemented as a bitset structure to further reduce memory consumption.

In connected networksL > N and 2L > K and then the space complexityS of the FastSIR
algorithm is:

S[L,N,K] = O(L).

The values ofL, N andK for studied networks are presented in Table 5.

4.3. Implementation of distribution precalculation
Looking at the cumulative distribution formula it can be seen that calculation cost is propor-

tional tokmax
4. Speed up can be achieved using the fact that binomial coefficient values and the

fraction part of the formula are repeated so caching them we can obtain lower calculation costs.
However, we achieved further speed up using a recursive formula 10.

Proposition 4.1. For each k, 0

P(Xn = k) =
n
k
P(Xn−1 = k− 1)−

n− k+ 1
k

P(Xn = k− 1) (10)

Proof.

P (Xn = k) = q

(

n
k

) k∑

l=0

(

k
l

)

(−1)l(1− p)n−k+l

1− (1− q) (1− p)n−k+l

= q

(

n
k

) k∑

l=0

[(

k− 1
l − 1

)

+

(

k− 1
l

)]

(−1)l(1− p)n−k+l

1− (1− q) (1− p)n−k+l

= q

(

n
k

) k∑

l=0

(

k− 1
l − 1

)

(−1)l(1− p)n−k+l

1− (1− q) (1− p)n−k+l

︸ ︷︷ ︸

=:S1

+ q

(

n
k

) k∑

l=0

(

k− 1
l

)

(−1)l(1− p)n−k+l

1− (1− q) (1− p)n−k+l

︸ ︷︷ ︸

=:S2

S1 = −
n− k+ 1

k
q

(

n
k− 1

) k−1∑

l=0

(

k− 1
l

)

(−1)l(1− p)n−(k−1)+l

1− (1− q) (1− p)n−(k−1)+l
=

= −
n− k+ 1

k
P (Xn = k− 1)

S2 = q

(

n
k

) k−1∑

l=0

(

k− 1
l

)

(−1)l(1− p)n−k+l

1− (1− q) (1− p)n−k+l

=
n
k

q

(

n− 1
k− 1

) k−1∑

l=0

(

k− 1
l

)

(−1)l(1− p)(n−1)−(k−1)+l

1− (1− q) (1− p)(n−1)−(k−1)+l

=
n
k
P (Xn−1 = k− 1)⇒ P (Xn = k) =

n
k
P (Xn−1 = k− 1) −

n− k+ 1
k

P (Xn = k− 1)

11

Using this recursive formula the computation cost is proportional tokmax
2. It is very impor-

tant to mention that in programming of cumulative distribution one should be very careful with
precision. Because of that we use multiple precision library for this calculation. Empirically we
obtained that it is safe to set the precision to be at least 0.8times degree bits. The minimum
precision is 64 bits. During the testing of calculation timewe noticed that cost for large degree
values predominantly depended on the precision used. The cumulative distribution values should
be precalculated for a specific maximum degree only once and they can be used for all networks
that have degrees less then maximum one. We consider that 50000 is high enough value of de-
gree for majority of networks. Similar recursive formula can be used when random variable of
time of recovery for each node is distributed as negative binomial probability distribution.

4.4. Parallelization of the algorithm

Like in similar algorithms [16], parallelization can be performed by partition of networks
using MPI. Since we used a large number of repetitions it can be also naively parallelized per-
forming each repetition on a separate core. The precalculation of distribution is also naturally
parallelizable. Parallelization using GPUs is a very challenging task and it will be the scope of
one of our next investigations.

5. Experimental results

In this section, we describe some detailed performance profiling and analysis of FastSIR
implementation on our test server. The server has 4 Quad Core2.4 GHz Intel E5330 processors
and 50 GB of RAM memory. For test purposes we use only one core for each test. Algorithms
are implemented in C using igraph [23] and gmp libraries [24].

The analysis was performed on several empirical networks: anetwork of 2003 condensed
matter collaborations (cond-mat 2003) introduced in [4], an undirected, unweighted network
representing the topology of the US Western States Power Grid (power grid) [8], a network of
coauthorships between scientists posting preprints on theAstrophysics E-Print Archive between
Jan 1, 1995 and December 31, 1999 (astro physics) [4], a symmetrized snapshot of the structure
of the Internet at the level of autonomous systems, reconstructed from BGP tables posted by the
University of Oregon Route Views Project (Internet) [27] and a network of Live Journal users
(Live Journal) [29]. Table 1 shows the basic information forabove mentioned networks.

Table 1: Basic network parameters

Network no of nodes no of links kmax k sum of distinct degrees
Power grid 4 941 6 594 19 2.7 142

Cond-mat 2003 27 519 116 181 202 8.4 8 619
Astro physics 14 845 119 652 360 16.1 16 737

Internet 22 963 48 436 2390 4.2 32 118
Live Journal 5 189 809 77 365 447 15 023 29.6 2 503 563

For each analysis we measured running time of the Naive SIR algorithm and the FastSIR
algorithm. Loading network structure data (adjacency list) from disc was not measured in run-
ning time analysis for both algorithms. However, loading precalculated probability distributions

12

Table 2: Running time in seconds for 2000 simulations, p= 0.2,0.5, 0.8 and q= 0.1

Network
p=0.2 p=0.5 p=0.8

Naive SIR FastSIR Naive SIR FastSIR Naive SIR FastSIR
Power grid 3.2 0.4 7.0 0.9 7.1 0.9

Cond-mat 2003 67.7 9.6 63.3 8.6 61.2 7.9
Astro Physics 44.1 7.0 41.2 5.9 39.9 5.1

Internet 42.5 5.0 41.6 4.9 40.5 4.7
Live Journal 50 683 6 699 48 373 5 635 47 531 5 078

from disc was measured in running time analysis for the FastSIR algorithm. Also, we measured
execution time for distribution precalculation. We studied the entire (p, q) parametric space of
the SIR model: a [0, 1] × [0, 1] square. The step value for both p and q was 0.1. Each simula-
tion was started from the same node, and it was performed 2000times. Upper bound memory
consumption for all experiments was 9 GB. Although some authors use only a several dozen
of repetitions, we consider that is not enough for stable results in the bimodal part of the phase
space. The results of running time forp values of 0.2, 0.5 and 0.8 andq value of 0.1 for all tested
networks are presented in Table 2. In addition in Table 3 are presented results forp values of 0.2,
0.5 and 0.8 andq values between 0.1 and 1. Graphs of results obtained forp values of 0.2, 0.5
and 0.8 and different values ofq for all networks are presented in Figure 1, Figure 2 and Figure
3, respectively. Those figures show ratio of running time between Naive SIR and FastSIR.

Table 3: Running time in seconds for Live Journal network. Parameters: 2000 simulations, p= 0.2, 0.5 and 0.8, q= 0.1
to 1

q
p=0.2 p=0.5 p=0.8

Naive SIR fastSIR Naive SIR fastSIR Naive SIR fastSIR
0.1 50 683 6 699 48 373 5 635 47 531 5 078
0.2 25 841 7 200 24 398 6 314 24 067 5 357
0.3 18 550 7 200 16 580 6 841 16 276 5 609
0.4 13 686 6 987 12 870 7 259 12 329 5 843
0.5 13 197 6 704 10 394 7 591 9 951 6 060
0.6 9 394 6 400 8 720 7 859 8 345 6 253
0.7 8 301 6 073 7 513 8 072 7 185 6 429
0.8 8 744 5 805 6 622 8 250 6 293 6 592
0.9 7 521 5 508 5 869 8 555 5 597 6 749
1 5 291 5 259 5 064 8 666 5 082 7 777

Results differ between networks, but the trend is that the ratio is approximately proportional
to 1/q. Whenq value is near one, the running time ratio differs dependingly on the network and
the value ofp. In can been seen that results are in accordance with the above analysis. Whenp is
small (p = 0.2), the FastSIR algorithm is faster or equal to Naive SIR for all q values. But, when
p has value of 0.5, the Naive SIR algorithm is faster for largerq values for almost all networks.
In addition whenp has value 0.8 the Naive SIR algorithm can be faster only for some networks

13

Figure 1: Running time ratio for Naive SIR and the FastSIR algorithm. Parameters: 2000 simulations, p= 0.2, q= 0.1
to 1 (Online version in colour).

Figure 2: Running time ratio for Naive SIR and the FastSIR algorithm. Parameters: 2000 simulations, p= 0.5, q= 0.1
to 1 (Online version in colour).

14

Figure 3: Running time ratio for Naive SIR and the FastSIR algorithm. Parameters: 2000 simulations, p= 0.8, q= 0.1
to 1 (Online version in colour).

Figure 4: Running time ratio for Naive SIR and the FastSIR algorithm on parametric space on Internet network (Online
version in colour).

15

Figure 5: Running time ratio for Naive SIR and the FastSIR algorithm on parametric space on Astro Physics network,
white line represents border of the area of the parametric space where running time ratio is strictly less than one (Online
version in colour).

andq values very close to one. However, for smallq values the FastSIR algorithm is much faster
and i.e. forq value of 0.1, the ratio is between 7 and 9.5 depending on the network and the value
of p.

Above analysis of the running time ratio between Naive SIR and the FastSIR algorithm can
be summarised in Figures 4, 5, 6, 7 and 8. In these Figures we show running time ratio on entire
parametric space (p, q) (averaged over 2000 simulations) and denote area of the parametric space
(white line) where running time ratio is strictly less than one. It can also be seen that speed-up is
dependent on the network structure. In accordance with analysis in Section 4, Naive algorithm is
rarely faster than the FastSIR algorithm for networks of which structure is tree-like (Internet) or
chain (Power grid). For networks with more cycles (i.e. LiveJournal) Naive Algorithm is faster
for more epidemic parameters.

It is very important to emphasise that results for Live Journal network of 5 mil. nodes and 77
mil. links are very fast. Average case running time for one simulation for p of 0.2 was between
2 and 4 seconds for the FastSIR algorithm. The worst obtainedresult for entire (p, q) space
was 5 seconds. Even results for the Naive SIR algorithm for that network did not exceed 30
seconds for one simulation. Furthermore, it should be stressed that results are achieved without
parallelization. Hence, implementations of both algorithms can be used for large networks.

6. Application

Our version of the Naive SIR algorithm models full epidemic spreading dynamics and has
low average case running time. Therefore, the Naive SIR algorithm is a core algorithm that
models epidemic spreading and can easily be upgraded to parallel version with interventions.
Interventions represent all sort of measures that are done by purpose in order to influence impact

16

Figure 6: Running time ratio for Naive SIR and the FastSIR algorithm on parametric space Cond-mat 2003 network,
white line represents border of the area of the parametric space where running time ratio is strictly less than one (Online
version in colour).

Figure 7: Running time ratio for Naive SIR and the FastSIR algorithm on parametric space on Live Journal network,
white line represents border of the area of the parametric space where running time ratio is strictly less than one (Online
version in colour).

17

Figure 8: Running time ratio for Naive SIR and the FastSIR algorithm on parametric space on Power grid network, white
line represents border of the area of the parametric space where running time ratio is strictly less than one (Online version
in colour).

of epidemic spreading like using antiviral drugs or containment measures. This algorithm has
wide areas of application in virus propagation, epidemic orknowledge spreading with SIR model.
The FastSIR algorithm uses precalculated probability distributions of the number of infected
nodes to reduce average case running time by a constant factor. The FastSIR algorithm has been
used in study of the influence of the initially infected node to epidemic impacts due to its speed
up when all nodes in network should be examined as initially infected node to calculate epidemic
risks over entire parametric (p, q) space [28]. This also has practical importance since the choice
of the initially infected node may describe difference between a random outbreak and a terrorist
attack.

7. Discussion and conclusions

In this paper we have described how to construct our version of the Naive SIR algorithm and
we have proposed completely new FastSIR algorithm for epidemic spreading simulations (SIR
model) on an arbitrary network structure with reduced running time. Running time of the Naive
SIR algorithm was reduced by using two data structures (queue and array) simultaneously for
storing node states. This algorithm models full epidemic dynamics and thus can be easily up-
graded to a parallel version with interventions (antiviraldrugs and containments). Upper bound
of the average case running time of the Naive SIR algorithm onm-arry tree has been analytically
derived.

We propose a novel FastSIR algorithm to reduce the average case running time of the Naive
SIR algorithm by approximately constant factor 1/q in one huge area of parametric space (p, q).
We also showed that average case running time of the FastSIR algorithm is equal to total expected
number of infected nodes times average node degree. This lowaverage case running time was

18

accomplished by using precalculated probability distributions of the number of infected nodes
along with binary search and a simple sampling algorithm. Correctness of this new algorithm
has also been proven in four steps of equality of two algorithms. Precalculation of probability
distributions of the number of infected nodes should be donewith caution to avoid numerical
errors. It is very important to mention that the FastSIR algorithm can be used in the same manner
when time od recovery for each infected node is distributed as the negative binomial probability
distribution.

It should also be clear that Naive SIR and FastSIR algorithmscan be merged to a Hybrid SIR
algorithm due to four steps of equivalence between Naive SIRand FastSIR algorithms. In one
segment of the phase diagram Naive SIR can be faster than FastSIR algorithm. Therefore Hybrid
SIR algorithm could use one of two algorithms depending on position of an infective agent in the
phase diagram in order to decrease running time. For the segment of the phase diagram where
it is expected that Naive can be faster, we can estimate duration of both algorithm for a few
simulations and then use the faster one for all other simulations (adaptive control).

Experimental analysis was made on five different empirical complex network on a single core
processor. To the best of our knowledge our algorithms have afar shorter total running time per
epidemic simulation than other algorithms. Parallelization of this algorithms was not in scope
of this research and was left for future work. Empirical results show that the FastSIR algorithm
is approximately faster than the Naive SIR algorithm by 1/q constant factor for a great part of
parametric space (p, q) which is in the excellent agreement with our expectations.

Acknowledgements

The work of M.̌S. is financed by Ministry of Education Science and Sports of the Republic of
Croatia under Contract No. 036-0362214-1987, 098-1191344-2860 and by BMRC of A*STAR,
Republic of Singapore. The work of H.Š. is supported by the Ministry of Education Science and
Sports of the Republic of Croatia under Contract No. 098-0352828-2863.

References

[1] R. Albert, H. Jeong and A.-L. Barabási , Nature 401, 130 (1999).
[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wiener, Computer

Networks 33, 309 (2000).
[3] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Aberg, Nature 411, 907 (2001).
[4] M. E. J. Newman , Proc. Natl. Acad. Sci USA 98, 404 (2001).
[5] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[6] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[7] J. F. F. Mendes, S. N. Dorogovtsev, A. V. Goltsev, Rev. Mod. Phys 80, 1275 (2008).
[8] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[9] A.-L. Barabási and R. Albert, Science 286, 508 (1999).

[10] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000).
[11] R. Pastor-Satorras and A. Vespignani Phys. Rev. Lett. 86, 3200 (2001).
[12] W. O. Kermack and A. G. McKendrick Proc. Roy. Soc. Lond. A 115, 700 (1927).
[13] L. A. Meyers Bulletion of The American Mathematical Society, 44, 63 (2007).
[14] L. A. Meyers, M. E. J. Newman and B. Pourbohloul Journal of Theoretical Biology, 240, 400 (2006).
[15] M. Newman SIAM Rev. 45, 167 (2003).
[16] K. R. Bisset, J. Chen, X. Feng, V. S. A. Kumar andM. V. Marathe Proceedings of the 23rd international conference

on Supercomputing, 430 (2009).
[17] C. L. Barrett, K. R. Bisset, S. Eubank, X. Feng, andM. V. Marathe Proceedings of the ACM/IEEE Conference on

High Performace Computing (SC), 37 (2008).
[18] S. Eubank, H. guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, T. Z.,and N. Wang Nature, 429, 180 (2004)

19

[19] V. Colizza, A. barrat, M. Barthelemy, A. J. Valleron and A. Vespignani Plos Medicine 4, 95 (2007).
[20] V. Colizza, A. barrat, M. Barthelemy, A. J. Valleron and A. Vespignani Proc. Natl. Acad. Sci. USA 103, 2015

(2006).
[21] A. Lančić, N. Antulov-Fantulin, M. Šikić and H. Štefančić Physica A (2010), 390, 65,

doi:10.1016/j.physa.2010.06.024
[22] J. S. VitterCommun. ACM, 27, 7 (1984)
[23] G. Csrdi and T. Nepusz InterJournal Complex Systems, 1695, (2006).
[24] http://gmplib.org/ (2010).
[25] M. E. J. Newman Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[26] D.J. Watts and S.H. Strogatz Nature 393, 440 (1998).
[27] M. E. J. Newman http://www-personal.umich.edu/∼mejn/netdata/ (2006).
[28] A.Lančić, N.Antulov-Fantulin, M. Šikić, H. Štefančić Epidemic centrality - identifying ”superspreaders” in

complex networks (in preparation).
[29] A. M islove, M. Marcon, K. P. Gummadi, P. Druschel and B. Bhattacharjee Proceedings of the 5th ACM/Usenix

Internet Measurement Conference (IMC’07), (2007).
[30] T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein Introduction to algorithms, 2nd, McGraw-Hill Higher Education,

2001, ISBN: 0070131511

20

http://gmplib.org/
http://www-personal.umich.edu/~mejn/netdata/

	1 Introduction
	2 Epidemic simulation problem
	3 The Naive SIR algorithm
	3.1 Time and space complexity analysis of the Naive SIR algorithm

	4 The FastSIR algorithm
	4.1 Correctness of the FastSIR algorithm
	4.2 Time and space complexity analysis of the FastSIR algorithm
	4.3 Implementation of distribution precalculation
	4.4 Parallelization of the algorithm

	5 Experimental results
	6 Application
	7 Discussion and conclusions

