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Abstract

A paired many-to-many k-disjoint path cover (paired k-DPC for short) of a
graph is a set of k vertex-disjoint paths joining k distinct source-sink pairs
that altogether cover every vertex of the graph. We consider the problem of
constructing paired 2-DPC’s in an m-dimensional bipartite HL-graph, Xm,
and its application in finding the longest possible paths. It is proved that
every Xm, m ≥ 4, has a fault-free paired 2-DPC if there are at most m− 3
faulty edges and the set of sources and sinks is balanced in the sense that
it contains the same number of vertices from each part of the bipartition.
Furthermore, every Xm, m ≥ 4, has a paired 2-DPC in which the two paths
have the same length if each source-sink pair is balanced. Using 2-DPC
properties, we show that every Xm, m ≥ 3, with either at most m − 2
faulty edges or one faulty vertex and at most m− 3 faulty edges is strongly
Hamiltonian-laceable.

Keywords: Disjoint path, strongly Hamiltonian-laceable, Hamiltonian
path, bipartite HL-graphs, graph theory, fault tolerance.

1. Introduction

Since node and/or link failure is inevitable in a large network, fault tol-
erance is essential to the network performance. An interconnection network
is frequently modeled as a graph, where vertices and edges respectively rep-
resent nodes and communication links in the network. The connectivity of
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the underlying graph has been a primary measure of fault tolerance [13, 24],
and the connectivity of a graph is closely related to the existence of disjoint
paths in the graph. Menger’s theorem states the connectivity of a graph in
terms of the number of disjoint paths of one-to-one type joining a pair of
source and sink, whereas the Fan Lemma states the connectivity of a graph
in terms of the number of disjoint paths of one-to-many type joining a source
to a set of sinks [2]. Moreover, a graph is k-connected if and only if it has
k disjoint paths of many-to-many type, respectively connecting arbitrary k
distinct sources and arbitrary k distinct sinks, where, if a source coincides
with a sink, then such source itself is regarded as a path.

One of the central issues in the study of interconnection networks is
finding parallel paths, which is naturally related to routing among nodes
and fault tolerance of the network [13, 24]. Parallel paths correspond to
disjoint paths of the graph. If each copy of a message is routed along a
different path of the disjont paths, whichever type they are, then at least
one copy eventually arrives at its sink provided the total number of node and
link faults is less than the number of disjoint paths. Here, the unique source
of one-to-one type and of one-to-many type is assumed to be fault-free, as
well as the unique sink of one-to-one type.

A k-disjoint path cover (k-DPC for short) of a graph is a set of k (inter-
nally) disjoint paths that altogether cover every vertex of the graph. The
disjoint path cover problem finds applications in many areas such as soft-
ware testing, database design, and code optimization [1, 25]. In addition,
the problem is concerned with applications where full utilization of network
nodes is important [29]. For example, basic communication problems for
the dissemination of information, such as broadcasting (to send a message
to all the nodes) and information gathering (to receive a message from each
of the nodes), require visiting every node of the network at least once. Since
visiting a node more than once results in unnecessary overhead, a disjoint
path cover can be employed to avoid this unsatisfactory situation.

Disjoint path is one of the fundamental notions in graph theory from
which many properties of a graph can be deduced [2, 24]. Our disjoint
path cover problem, in the corresponding optimization version, is to find
disjoint paths whose total length is the maximum possible (maxsum). De-
termining whether there exists a k-DPC in general graph was proven to be
NP-complete for any fixed k ≥ 1 [29, 30]. On the contrary, the shortest dis-
joint paths problem is to minimize the total length (minsum) or the length
of the longest path (minmax). Much attention has been devoted to the
shortest disjoint paths problem. For example, refer to [16, 18, 23] etc.

Suppose that there are a set of k sources S = {s1, s2, . . . , sk} and a set
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of k sinks T = {t1, t2, . . . , tk} in a graph G such that S∩T = ∅. Sources and
sinks are called terminals in general. A many-to-many k-disjoint path cover
of G joining S and T is a set of k disjoint paths joining sources and sinks.
It is called paired if each source si is joined to a specified sink ti. If not, it is
called unpaired. The other two possible k-disjoint path covers are of one-to-
many type joining S = {s} and T = {t1, t2, . . . , tk}, and of one-to-one type
joining S = {s} and T = {t}, which are clearly understandable. When a
graph contains faulty elements, whether vertices or edges, its k-disjoint path
cover naturally means a k-disjoint path cover of the graph with the faulty
elements deleted. Some works on the construction of k-DPC’s in hypercubes
[3, 4, 7, 11] and hypercube-like graphs [15, 29, 30] can be found.

The embedding of a linear array or a ring into an interconnection network
can be modeled as finding a long path or cycle, possibly a Hamiltonian path
or cycle. A path or cycle in a graph is called Hamiltonian if it contains
all the vertices of the graph. This problem has attracted much attention in
the literature, such as works on faulty hypercubes [9, 10, 17]. The disjoint
path cover problem is closely related to the Hamiltonian problem in that
a Hamiltonian path joining a pair of vertices can be viewed as any type of
1-DPC joining them, and a Hamiltonian path joining a pair of vertices that
passes through k − 1 prescribed edges can be obtained directly from some
paired k-DPC of the graph [29]. For the problem of Hamiltonian paths
passing through prescribed edges, see [6, 32] for example. Furthermore,
disjoint path coverability has been employed to establish some Hamiltonian
properties, such as in hypercube-like graphs [21, 27, 29].

A class of hypercube-like interconnection networks, called HL-graphs,
was introduced by Vaidya et al. [31]. It gives a unified perspective on many
hypercube variants. It is well-known that twisting some edge pairs of a hy-
percube can reduce diameter while preserving attractive properties. Using
this technique, many hypercube variants with smaller diameter have been
proposed, such as twisted cube [12], crossed cube [8], and Möbius cube [5].
Most of the networks built in this way are nonbipartite HL-graphs. Further-
more, an interesting subclass of nonbipartite HL-graphs, called restricted
HL-graphs, has been proposed and studied in [28, 29, 30].

Bipartite HL-graphs are equitable, that is, the two parts of the biparti-
tion have the same number of vertices. There is a relative paucity of works
on bipartite HL-graphs. Some notable studies are mentioned in the follow-
ing. Every m-dimensional bipartite HL-graph Xm, m ≥ 2, has a paired
2-DPC joining S and T if S and T are subsets of different parts [27]. Every
Xm, m ≥ 2, possessing at most m − 2 faulty edges is Hamiltonian-laceable
[21, 26]. An equitable bipartite graph is called Hamiltonian-laceable if each
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pair of vertices contained in different parts is joined by a Hamiltonian path.
Recently, Lim et al. [20] presented a vertex-symmetric graph with a small
diameter, called bicube, contained in the class of m-dimensional bipartite
HL-graphs. Its diameter is dm/2e, which is one of the smallest among the
hypercube variants, thus providing further motivation for the study of bi-
partite HL-graphs.

In this paper, we investigate the problem of constructing paired 2-disjoint
path covers in bipartite HL-graphs. It will be shown that everym-dimensional
bipartite HL-graph Xm, m ≥ 4, with m− 3 or less faulty edges has a paired
2-DPC joining S and T provided S ∪ T is balanced. A vertex subset of
an equitable bipartite graph is balanced if it contains the same number of
vertices from each part. For an equitable bipartite graph to have a paired
2-DPC, it is necessary that S ∪ T is balanced. Furthermore, every Xm,
m ≥ 4, has a paired 2-DPC joining S and T in which the two paths are of
the same length if S and T are subsets of different parts.

Using the result on paired 2-DPC, we will derive strongly Hamiltonian-
laceability of bipartite HL-graphs. An equitable bipartite graph is strongly
Hamiltonian-laceable if it is Hamiltonian-laceable and each pair of vertices
in the same part is joined by a path of length n− 2, where n is the number
of vertices in the graph. We will show that every Xm with fault set F is
strongly Hamiltonian-laceable if either F contains at most m − 2 edges or
F contains at most m− 3 edges and one vertex. The definition of strongly
Hamiltonian-laceability of an inequitable bipartite graph is provided in the
next section.

In the rest of this paper, we use standard terminology in graph theory
(see ref. [2]). This paper is organized as follows. In the next section, we
present some definitions and related work. The paired 2-disjoint path cover
problems are investigated in Section 3, and strongly Hamiltonian-laceability
is derived in Section 4. Finally, we give concluding remarks in Section 5.

2. Definitions and Related Work

For graphs G0 and G1 having the same number of vertices, we denote by
G0⊕G1 an arbitrary graph whose vertex set is V (G0)∪V (G1) and whose edge
set is E(G0)∪E(G1)∪E2, where E2 = {(u, φ(u)) : u ∈ V (G0), φ : V (G0)→
V (G1) is a bijection}. Here, V (G) and E(G) denote the vertex set and edge
set of a graph G, respectively. The class of HL-graphs can be defined by
repeatedly applying the ⊕ operation as follows: HL0 = {K1}, where K1 is
the trivial graph; for m ≥ 1, HLm = {G0 ⊕ G1 : G0, G1 ∈ HLm−1}. A
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graph contained in HLm is called an m-dimensional HL-graph. Every m-
dimensional HL-graph has 2m vertices and is of degree m. This paper deals
with bipartite HL-graphs, which are equitable by definition.

Let G be a bipartite graph. For convenience, we refer to vertices of one
part of the bipartition as black and the vertices of the other part as white.
We denote by c(v) the color of the vertex v. Let G have nb black vertices and
nw white vertices, and let n = nb + nw. Strongly Hamiltonian-laceability of
a bipartite graph is defined in terms of Lopt-path. If nb = nw, a path of
length n − 1 joining a balanced pair of vertices is called an Lopt-path; for
a pair of vertices with the same color, a path of length n − 2 is called an
Lopt-path. If nb < nw, the length of an Lopt-path is 2nb for a pair of white
vertices, 2nb − 1 for a balanced pair of vertices, and 2nb − 2 for a pair of
black vertices. If nw < nb, an Lopt-path is defined symmetrically.

A bipartite graph G is called strongly Hamiltonian-laceable if every pair
of vertices is joined by an Lopt-path. The graph G is called f -edge-fault
strongly Hamiltonian-laceable if G \ F is strongly Hamiltonian-laceable for
any edge-fault set F with |F | ≤ f . The graph G is called fv-vertex-fault
and fe-edge-fault strongly Hamiltonian-laceable if G \ (Fv ∪ Fe) is strongly
Hamiltonian-laceable for any vertex-fault set Fv with |Fv| ≤ fv and any
edge-fault set Fe with |Fe| ≤ fe.

Throughout this paper, let F denote a set of faulty elements (vertices
and/or edges), which corresponds to the set of node and/or link failures. A
path in a graph is represented as a sequence of vertices. An s-t path refers
to a path from vertex s to t. Let P be an s-t path and u be a vertex on
P . We denote by prevP (u) and nextP (u) the vertices adjacent to u on P
encountered just before and just after u, respectively, when we traverse P
starting at s. Of course, prevP (s) and nextP (t) are undefined.

A paired 2-DPC problem in bipartite HL-graphs without faults for bal-
anced source-sink pairs was studied by Park et al. [27], as stated in Lemma 1.
This lemma will be extended to Theorem 1 of the next section in that source-
sink pairs may have the same color and a bounded number of faulty edges
are allowed. Xm denotes an m-dimensional bipartite HL-graph.

Lemma 1. [27] Every Xm, m ≥ 2, has a paired 2-DPC joining S = {s1, s2}
and T = {t1, t2} if S and T are subsets of different parts of the bipartition.

It is known that every Xm is Hamiltonian-laceable [27] and every Xm,
m ≥ 3, is (m−3)-edge-fault Hamiltonian-laceable [14]. Hamiltonian-laceability
of Xm with at most m− 2 faulty edges was studied independently by Park
[26] and by Lin et al. [21], as shown in Lemma 2. In addition, a Hamilto-
nian property of Xm in the presence of a single vertex fault was reported
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in [22, 26], as shown in Lemma 3. We extend these two lemmas to the case
that there exist at most one single vertex fault and at most m− 3 faults in
total, as will be shown in Theorem 3 of Section 4.

Lemma 2. [21, 26] Every Xm, m ≥ 2, is (m− 2)-edge-fault Hamiltonian-
laceable.

Lemma 3. [22, 26] There exists an s-t Hamiltonian path in Xm \u for any
distinct vertices s, t, and u such that c(s) = c(t) 6= c(u).

3. Paired 2-Disjoint Path Covers in Bipartite HL-graphs

In this section, we consider a paired 2-DPC problem in bipartite HL-
graphs. We show that every Xm, m ≥ 4, with at most m − 3 faulty edges
has a paired 2-DPC joining S and T for given balanced S ∪ T , and that
every Xm, m ≥ 4, has a paired 2-DPC in which the two paths, s1-t1 path
and s2-t2 path, have the same length provided S and T are contained in
different parts. The latter type of paired 2-DPC is known as a 2-equal-
disjoint path cover (2-eq-DPC for short) and studied by Lai et al. [19] in
some nonbipartite hypercube-like graphs.

In a graph G0 ⊕ G1, a vertex u of Gi has a unique neighbor in G1−i.
We denote it by ū and call it a mate of u. We call an edge between a
vertex and its mate a bridge. F0 and F1 denote the sets of faulty elements
in G0 and G1, respectively, and F2 denotes the set of faulty bridges, so that
F = F0 ∪ F1 ∪ F2. Recall F denotes the set of faulty elements. Hereafter in
this paper, we denote by 2-DPC[(s1, t1), (s2, t2)|G,F ] a paired 2-DPC in a
graph G with a fault set F joining a set of sources S = {s1, s2} and a set of
sinks T = {t1, t2} such that S ∩ T = ∅.

3.1. Paired 2-DPC in Xm with at most m− 3 faulty edges

It is assumed that S∪T is balanced, where S = {s1, s2} and T = {t1, t2}.
We begin by considering a paired 2-DPC problem in the 3-dimensional bi-
partite HL-graph, which is isomorphic to the 3-dimensional hypercube Q3.
By Lemma 1, Q3 has a paired 2-DPC joining S and T if each source-sink
pair is balanced. If not, then {s1, t1} is contained in one part of the biparti-
tion and is unique up to symmetry. There are two positions of {s2, t2} such
that no paired 2-DPC joining S and T exists, as shown in Fig. 1. There
are only two forbidden configurations that do not allow any paired 2-DPC
as proved below. We denote by NG(u), or just by N(u) if no confusion can
arise, the set of vertices adjacent to u in a graph G.
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Figure 1: Forbidden configurations that do not allow any paired 2-DPC.

Lemma 4. Let {s1, t1} be a subset of one part of the bipartition of Q3.
Then, there exists a paired 2-DPC joining S and T if and only if {s2, t2}
is contained in the other part (so, S ∪ T is balanced) and it is equal to
neither N(s1) ∩ N(t1) nor N(s1) xor N(t1), where N(s1) xor N(t1) =
(N(s1) ∪N(t1)) \ (N(s1) ∩N(t1)).

Proof. For a fixed {s1, t1}, there are
(
4
2

)
= 6 possible positions of {s2, t2}.

It can be easily verified that there exist four positions of {s2, t2} (excluding
the two forbidden configurations) that allow a paired 2-DPC joining S and
T. �

A vertex u is called free if u is fault-free and not a terminal. An edge
(u, v) is called free if it is not faulty and both u and v are free. For a
terminal x ∈ V (Gi), we denote by x∗ an arbitrary vertex in R(x), where
R(x) = {y : y ∈ V (G1−i), c(y) = c(x), and (y, ȳ) is free}. We call x∗ a
pseudo-terminal of x.

Theorem 1. Every m-dimensional bipartite HL-graph Xm, m ≥ 4, with
m − 3 or less faulty edges has a paired 2-DPC joining S and T provided
S ∪ T is balanced.

Proof. The proof will proceed by induction on m. Let Xm = G0 ⊕ G1,
where each Gi, i = 0, 1, is isomorphic to an (m − 1)-dimensional bipartite
HL-graph. Keep in mind that each Gi has 2m−1 vertices of degree m − 1
and is an equitable bipartite graph. The proof for the basis, i.e., when
m = 4, is similar to that for the induction step, i.e., when m ≥ 5, but there
are additional subtleties. We combine these proofs to avoid repetition. For
m ≥ 5, we will assume that each Gi has a paired 2-DPC joining balanced
terminals provided the number of faulty edges is at most m− 4. For m = 4,
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we can assume the same, except forbidden configurations, by Lemmas 1 and
4. Since a 2-DPC in Xm with a virtual fault set F ∪ F ′, where F ′ is a set
of arbitrary m − 3 − |F | fault-free edges, is also a 2-DPC in Xm with the
fault set F , we can assume that |F | = m−3. It is assumed w.l.o.g. that the
number of terminals in G0 is greater than or equal to that in G1. There are
four cases depending on the positions of terminals.

Case 1: s1, t1 ∈ V (G0) and s2, t2 ∈ V (G1). (See Fig. 2a.)
If c(s1) 6= c(t1), an s1-t1 Hamiltonian path in G0 and an s2-t2 Hamiltonian
path in G1 constitute a paired 2-DPC, which is what we want. The existence
of the two Hamiltonian paths relies on Lemma 2. Now, assume that c(s1) =
c(t1). W.l.o.g., we assume |F0| ≥ |F1|. Then, |F1| ≤ b(m−3)/2c ≤ m−4 for
every m ≥ 4. We claim that it is possible to select two pseudo-terminals s∗2
and t∗2 in G0 so that there exists a 2-DPC[(s1, t1), (s

∗
2, t
∗
2)|G0, F0]. The proof

of this claim is deferred for a moment. Suppose that the claim holds true.
Then there exists a 2-DPC[(s2, s̄∗2), (t2, t̄

∗
2)|G1, F1] by induction hypothesis

when m ≥ 5 and by Lemma 1 when m = 4. To obtain a paired 2-DPC in
Xm, it suffices to merge the two 2-DPC’s with bridges (s∗2, s̄

∗
2) and (t∗2, t̄

∗
2).

It remains to prove the claim. For the first case, let |F0| ≤ m − 4. The
number of candidates for s∗2 and t∗2 is at least 2m−2−|F2| ≥ 2m−2−(m−3) ≥ 3
for any m ≥ 4, and thus picking up arbitrary two candidates is sufficient
when m ≥ 5. When m = 4, a care should be taken since arbitrary candidates
may not allow a paired 2-DPC in G0 since c(s1) = c(t1) 6= c(s2) = c(t2).
We have |F | = |F2| = 1. To avoid forming a forbidden configuration, it
suffices to pick up one in N(s1) ∩N(t1) and the other in N(s1) xor N(t1)
by Lemma 4. Furthermore, we can assume both (s∗2, s̄

∗
2) and (t∗2, t̄

∗
2) are

fault-free since both N(s1)∩N(t1) and N(s1) xor N(t1) have two vertices.
For the second case, assume that |F0| = m− 3 and |F1| = |F2| = 0. We can
pick up pseudo-terminal t∗2 such that (t∗2, t1) 6∈ E(G0) since 2m−2 > m − 1
for every m ≥ 4. There exists an s1-t

∗
2 Hamiltonian path in G0 by Lemma 2.

We set s∗2 = nextP (t1). Clearly, s∗2 6= t∗2. If we remove (t1, s
∗
2) from P , there

remain an s1-t1 path and an s∗2-t
∗
2 path. These two paths are vertex-disjoint

and cover all the vertices of G0. Thus, the claim is proved.
Case 2: s1, s2 ∈ V (G0) and t1, t2 ∈ V (G1). (See Fig. 2b.)

Without loss of generality, we assume |F0| ≥ |F1|. Similar to the proof of
Case 1, we claim that there exist two pseudo-terminals t∗1 and t∗2 such that
there exists a 2-DPC[(s1, t

∗
1), (s2, t

∗
2)|G0, F0]. Provided the claim holds true,

we find a 2-DPC[(t̄∗1, t1), (t̄
∗
2, t2)|G1, F1] and then merge the two DPC’s to

obtain a desired 2-DPC. Since c(t̄∗1) 6= c(t1) and c(t̄∗2) 6= c(t2), the 2-DPC in
G1 always exists by induction hypothesis and Lemma 1.

Let us prove the claim. Suppose |F0| ≤ m− 4 for the first case. If either
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m ≥ 5 or both m = 4 and c(s1) 6= c(t1), then picking up arbitrary pseudo-
terminals is sufficient. In this case, the number of candidates for each of t∗1
and t∗2 is at least 2m−2 − (m − 3) − 2 ≥ 1 for any m ≥ 4. Now, assume
that m = 4 and c(s1) = c(t1), where |F | = |F2| = 1. To avoid forbidden
configurations, we will select pseudo-terminals so that the subgraph of G0

induced by terminals and pseudo-terminals is isomorphic to a path of length
three. Note that the subgraph induced by four terminals in a forbidden
configuration is isomorphic to a cycle of length four (Fig. 1a) or a graph
consisting of two paths of length one each (Fig. 1b).

If (s1, s2) 6∈ E(G0), there exists a vertex x ∈ N(s2) such that x ∈ R(t1)
and y ∈ R(t2) for some y ∈ N(x) ∩N(s1). Assigning x and y to t∗1 and t∗2,
respectively, results in an induced path (s1, t

∗
2, t
∗
1, s2) since s1 and s2 are not

adjacent. The case when (s1, s2) ∈ E(G0) remains to be considered. Let
X = N(s2) \ s1 and Y = N(s1) \ s2. Let {z1, z2} = V (G0) \ (N(s1)∪N(s2))
with c(z1) = c(s1). Then, z1 and z2 are adjacent to every element of Y and
X, respectively. Observe that (i) R(t1) ⊆ X ∪ {z1}, R(t2) ⊆ Y ∪ {z2}, and
(ii) |R(t1)|, |R(t2)| ≥ 1, |R(t1)|+ |R(t2)| ≥ 3. If X∩R(t1) = ∅, then for some
t∗2 ∈ Y , (t∗1, t

∗
2, s1, s2) forms an induced path, where t∗1 = z1. A symmetric

argument works when Y ∩R(t2) = ∅. Now, assume X ∩R(t1), Y ∩R(t2) 6=
∅. If X ⊆ R(t1), then for some t∗2 ∈ Y , there exists t∗1 ∈ X such that
(t∗2, t

∗
1) 6∈ E(G0) and thus we have an induced path (t∗2, s1, s2, t

∗
1). In a

symmetric manner, we can also construct an induced path (t∗2, s1, s2, t
∗
1)

when Y ⊆ R(t2). Finally, suppose |X ∩ R(t1)| = |Y ∩ R(t2)| = 1. At least
one of z1 and z2, say z1 is contained in R(t1) ∪ R(t2). Then, we have an
induced path (t∗1, t

∗
2, s1, s2), where t∗1 = z1 and t∗2 ∈ Y ∩R(t2).

For the remaining case, let |F0| = m− 3 and |F1| = |F2| = 0. If c(s1) 6=
c(s2), then there exists an s1-s2 Hamiltonian path P in G0. We show that
there exists an edge (u, v) with u = prevP (v) on P such that (i) c(u) = c(t1)
and (ii) both ū and v̄ are free. There are at least 2m−2 − 1 candidate edges
satisfying (i), and there are two blocking elements, i.e. terminals in G1.
Since 2m−2− 1 ≥ 3 for any m ≥ 4, there exists at least one such edge (u, v).
For our purpose, it suffices to remove (u, v) from P and set t∗1 = u and
t∗2 = v. If c(s1) = c(s2), we pick up a pseudo-terminal t∗2 in G0 and find
an s1-t

∗
2 Hamiltonian path P in G0. It suffices to set t∗1 = prevP (s2) and

remove (t∗1, s2) from P . Obviously, c(t∗1) = c(t1) and t̄∗1 6= t1, t2. The claim
is proved.

Case 3: s1, t1, s2 ∈ V (G0) and t2 ∈ V (G1). (See Fig. 2c.)
We claim that (i) for some pseudo-terminal t∗2, there exists a 2-DPC[(s1, t1),
(s2, t

∗
2)|G0, F0], or (ii) G0\(F0∪{s2}) has an s1-t1 Hamiltonian path, (s2, s̄2)

is fault-free, and c(s̄2) 6= c(t2). Provided the claim holds true, a paired 2-
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DPC in Xm is obtained by merging the 2-DPC of G0 and a t̄∗2-t2 Hamiltonian
path in G1 if (i) is satisfied, or by merging the s1-t1 Hamiltonian path of G0

and an s̄2-t2 Hamiltonian path in G1 if (ii) is satisfied.
To prove the claim, assume |F0| ≤ m− 4 first. It is possible to select t∗2

satisfying (i) as follows. When either m ≥ 5 or both m = 4 and c(s1) 6= c(t1),
it is sufficient to pick up an arbitrary vertex in R(t2). When m = 4 and
c(s1) = c(t1), as shown in Fig. 1, there are two choices to avoid forming
a forbidden configuration and anyone of them can be selected as t∗2. Now,
we assume |F0| = m − 3. Without loss of generality, we can assume that
c(s1) 6= c(s2). Then, there exists an s1-s2 Hamiltonian path P in G0. If
nextP (t1) 6= s2, it suffices to set t∗2 = nextP (t1) and remove (t1, t

∗
2) from P .

Certainly, c(t∗2) = c(t2) and t̄∗2 6= t2. Thus, (i) is satisfied. If nextP (t1) = s2,
removing (t1, s2) from P results in an s1-t1 Hamiltonian path in G0 \ (F0 ∪
{s2}). Furthermore, (s2, s̄2) is fault-free and c(s̄2) 6= c(t2). Thus, (ii) is
satisfied and the claim is proved.

Case 4: s1, t1, s2, t2 ∈ V (G0). (See Fig. 2d.)
Suppose that either m ≥ 5 or m = 4 and terminals do not form a forbidden
configuration in G0. We let F ′0 = F0 if |F0| ≤ m−4; otherwise, let F ′0 = F0\e
for an arbitrary faulty edge e in G0. Then, |F ′0| ≤ m − 4. So, there exists
a paired 2-DPC in G0 \ F ′0 joining S and T . If no path in the DPC passes
through e, let (u, v) be an edge on a path in the DPC such that (u, ū) and
(v, v̄) are fault-free; otherwise, let (u, v) = e. To obtain a paired 2-DPC in
Xm, it suffices to replace (u, v) with a path (u, P1, v), where P1 is an ū-v̄
Hamiltonian path in G1.

Finally, let m = 4 and terminals form a forbidden configuration. Re-
call |F | = 1. There are two forbidden configurations up to symmetry by
Lemma 4. For the forbidden configuration of {s2, t2} = N(s1) ∩ N(t1), as
shown in Fig. 2e, let w1 and w2 be vertices in N(s1) xor N(t1) and let b1
and b2 be vertices in N(s2) xor N(t2). We denote by P [u, v] (resp. Ph[u, v])
an u-v path (resp. an u-v Hamiltonian path) in G1. If F0∪F2 = ∅, there are
two paths (s1, w2, Ph[w̄2, t̄1], t1) and (s2, b2, w1, b1, t2), which form a paired
2-DPC in Xm. If F1 = ∅, we let

P1 = (s1, P [s̄1, w̄2], w2, b2, w1, t1), P2 = (s2, P [s̄2, b̄1], b1, t2),
P ′1 = (s1, w2, b1, w1, P [w̄1, t̄1], t1), P

′
2 = (s2, b2, P [b̄2, t̄2], t2),

where {P [s̄1, w̄2], P [s̄2, b̄1]} and {P [w̄1, t̄1], P [b̄2, t̄2]} are 2-DPC’s inG1. Such
2-DPC’s exist by Lemma 1. Since {P1, P2} and {P ′1, P ′2} share neither
bridges nor edges of G0, at least one of the two sets is a desired 2-DPC
in Xm.

For the forbidden configuration of {s2, t2} = N(s1) xor N(t1), as shown
in Fig. 2f, we let w1 and w2 be vertices in N(s1) ∩N(t1) and let b1 and b2
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(f) {s2, t2} = N(s1) xor N(t1).

Figure 2: Illustration of the proof of Theorem 1.

be vertices in N(s2) ∩N(t2). We let
P1 = (s1, w2, t1), P2 = (s2, b2, w1, Ph[w̄1, b̄1], b1, t2),
P ′1 = (s1, w1, t1), P

′
2 = (s2, b1, w2, Ph[w̄2, b̄2], b2, t2).

Similar to the proof of the previous case, we can conclude at least one of
{P1, P2} and {P ′1, P ′2} is a paired 2-DPC in Xm. This completes the proof
of Theorem 1. �

Theorem 1 is an extension of the work stated in Lemma 1 by Park et
al. in [27]. The number m − 3 of faulty edges is the maximum possible
in the sense that no m-dimensional bipartite HL-graph with m − 2 faulty
edges is guaranteed to have a paired 2-DPC joining S and T even if S ∪ T
is balanced. Imagine the situation that s2, t2 ∈ N(s1) and all the edges that
are incident to s1 but not to s2 or t2 are faulty. The number of faulty edges
is m − 2. For any t1 with c(t1) = c(s1), S ∪ T is balanced. However, no
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paired 2-DPC joining S and T exists. The characterization of the existence
of paired 2-DPC in Xm with m−2 or more faulty edges is an open problem.

3.2. Paired 2-eq-DPC in fault-free Xm

In an m-dimensional bipartite HL-graph Xm without faults, we consider
the problem of constructing 2-eq-DPC’s. It is necessary for Xm to have
a paired 2-eq-DPC that c(s1) 6= c(t1) and c(s2) 6= c(t2). The reason for
this is that each path of a paired 2-eq-DPC in Xm should contain 2m−1

vertices. It will be shown that Xm, m ≥ 4, has a 2-eq-DPC if each source-
sink pair is balanced. We begin by considering the 2-eq-DPC problem in the
3-dimensional bipartite HL-graph Q3. Q3 may not have a 2-eq-DPC even if
each source-sink pair is balanced. A necessary and sufficient condition for
Q3 to have a 2-eq-DPC is derived as follows.

Lemma 5. Suppose that S and T are subsets of different parts of the bipar-
tition of Q3. Then, Q3 has a paired 2-eq-DPC joining S and T if and only
if (s1, t1), (s2, t2) ∈ E(Q3) or (s1, t1), (s2, t2) 6∈ E(Q3).

Proof. If (s1, t1), (s2, t2) ∈ E(Q3), then Q3 can be divided into two Q2’s
such that each subcube contains one source-sink pair. Each subcube is
Hamiltonian-laceable, and thus there exists a 2-eq-DPC. If (s1, t1), (s2, t2) /∈
E(Q3), an arbitrary paired 2-DPC is indeed a 2-eq-DPC since the two paths
in the 2-DPC are of length at least three and their length sum should be
six. The existence of a paired 2-DPC is guaranteed by Lemma 1. Suppose
(s1, t1) ∈ E(Q3) and (s2, t2) 6∈ E(Q3). It is straightforward to check that for
any s2-t2 path P of length 3, Q3 \ V (P ) is isomorphic to a path of length
3. Since (s1, t1) ∈ E(Q3), no 2-eq-DPC can be constructed. The proof is
completed. �

Lemma 6. Suppose that S and T are subsets of different parts of the bi-
partition of Q3.
(a) If (s1, t1) ∈ E(Q3), there exists a paired 2-DPC joining S and T in
which the s1-t1 path is of length 1 (and the s2-t2 path is of length 5) unless
{s2, t2} = V (Q3) \ (N(s1) ∪N(t1)).
(b) Let (s1, t1), (s2, t2) ∈ E(Q3). If (t1, s2) ∈ E(Q3) or (t2, s1) ∈ E(Q3),
there exist three kinds of paired 2-DPC’s joining S and T such that the s1-t1
path is of length 1, 3, and 5, respectively.

Proof. Let G′ be the subgraph of Q3 induced by V (Q3) \ {s1, t1}. If
(s1, t1) ∈ E(Q3), G

′ is isomorphic to the product of a path of length 1
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and a path of length 2. It is straightforward to check that for any balanced
pair of vertices s2 and t2, G

′ has an s2-t2 Hamiltonian path if and only if
{s2, t2} 6= V (Q3) \ (N(s1)∪N(t1)). Thus, (a) is proved. The proof of (b) is
a direct consequence of Lemmas 5 and 6(a). �

Theorem 2. Every m-dimensional bipartite HL-graph Xm, m ≥ 4, has a
paired 2-eq-DPC joining S and T if S and T are subsets of different parts
of the bipartition.

Proof. The proof is by an induction on m. Let Xm = G0 ⊕ G1, where
each Gi, i = 0, 1, is isomorphic to an Xm−1. The proofs for the basis, i.e.,
when m = 4, and the inductive step, i.e., when m ≥ 5, are combined into
one to avoid repetition. For the base case of m = 4, we will use Lemmas 5
and 6 to find 2-DPC’s in G0 and G1 that can be merged to obtain a desired
2-eq-DPC. For m ≥ 5, we will assume that each Gi, i = 0, 1, has a 2-eq-DPC
joining balanced source-sink pairs. It is assumed w.l.o.g. that the number
of terminals in G0 is at least that in G1. There are five cases depending on
the positions of terminals.

Case 1: s1, t1 ∈ V (G0) and s2, t2 ∈ V (G1).
It suffices to construct an s1-t1 Hamiltonian path in G0 and an s2-t2 Hamil-
tonian path in G1.

Case 2: s1, s2 ∈ V (G0) and t1, t2 ∈ V (G1).
If m ≥ 5, we pick up arbitrary pseudo-terminals t∗1 and t∗2 and then find
a 2-eq-DPC[(s1, t

∗
1), (s2, t

∗
2)|G0, ∅] and a 2-eq-DPC[(t̄∗1, t1), (t̄

∗
2, t2)|G1, ∅]. By

merging them, we obtain a 2-eq-DPC in Xm. Let m = 4. Note that picking
up arbitrary pseudo-terminals t∗1 and t∗2 is not sufficient since each Gi may
not have a 2-eq-DPC even if all source-sink pairs are balanced. We pick
up pseudo-terminals t∗1 and t∗2 from N(s1) ∩ N(s2). By Lemma 1, there
exists a 2-DPC[(t̄∗1, t1), (t̄

∗
2, t2)|G1, ∅]. Let l be the length of the t̄∗1-t1 path

in the DPC. Then, l ∈ {1, 3, 5}. For any l, by Lemma 6, there exists a
2-DPC[(s1, t

∗
1), (s2, t

∗
2)|G0, ∅] in which the s1-t

∗
1 path is of length 6 − l. To

obtain a 2-eq-DPC in Xm, it suffices to merge the two DPC’s.
Case 3: s1, t2 ∈ V (G0) and t1, s2 ∈ V (G1).

In a similar manner to Case 2, a 2-eq-DPC joining S and T will be con-
structed. Ifm ≥ 5, it suffices to pick up arbitrary pseudo-terminals t∗1 and s∗2,
and then merge a 2-eq-DPC[(s1, t

∗
1), (s

∗
2, t2)|G0, ∅] and a 2-eq-DPC[(t̄∗1, t1),

(s2, s̄∗2)|G1, ∅]. Let m = 4. We select pseudo-terminals t∗1 and s∗2 so that
there exist three kinds of 2-DPC[(s1, t

∗
1), (s

∗
2, t2)|G0, ∅] of Lemma 6(b). We

first pick up t∗1 in N(s1). If (s1, t2) ∈ E(G0), then pick up s∗2 in N(t2); oth-
erwise, pick up s∗2 in N(t2) ∩N(t∗1). Finally, a 2-DPC[(t̄∗1, t1), (s2, s̄

∗
2)|G1, ∅]

and one of the three 2-DPC’s in G0 are merged to obtain a 2-eq-DPC.
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Case 4: s1, t1, s2 ∈ V (G0) and t2 ∈ V (G1).
If m ≥ 5, we find a 2-eq-DPC[(s1, t1), (s2, t

∗
2)|G0, ∅] for an arbitrary pseudo-

terminal t∗2. For some edge (x, y) on the s1-t1 path such that x̄, ȳ 6= t2, we
find a 2-eq-DPC[(x̄, ȳ), (t̄∗2, t2)|G1, ∅]. It suffices to merge the two DPC’s.
Let m = 4. We pick up a pseudo-terminal t∗2 in N(s1)∩N(s2). Thus, there
exists a 2-DPC[(s1, t1), (s2, t

∗
2)|G0, ∅] in which the s2-t

∗
2 path is of length 1

by Lemma 6(a). If there exists an edge (x, y) on the s1-t1 path such that x̄
and ȳ are free, (x̄, ȳ) ∈ E(G1), and {t̄∗2, t2} 6= V (G1) \ (N(x̄) ∪N(ȳ)), then
there exists a 2-DPC[(x̄, ȳ), (t̄∗2, t2)|G1, ∅] in which the t̄∗2-t2 path is of length
5 by Lemma 6(a). A 2-eq-DPC can be obtained by merging the two DPC’s.

We must still show that such an edge (x, y) exists. The s1-t1 path has
a path segment (u, v, w) such that ū, v̄, w̄ 6= t2. It suffices to prove a claim
that for any path P = (u, v, w) in G0 and any α, β ∈ V (G1) such that
c(α) 6= c(β) and {α, β}∩{ū, v̄, w̄} = ∅, there exists an edge (x, y) on P such
that (i) (x̄, ȳ) ∈ E(G1) and (ii) {α, β} 6= V (G1) \ (N(x̄) ∪ N(ȳ)). Recall
m = 4. Note that for each vertex p in Q3, there is a unique vertex q such
that c(q) 6= c(p) and (q, p) 6∈ E(Q3). Since c(v̄) 6= c(ū) = c(w̄), (ū, v̄) or
(v̄, w̄) is an edge of G1. If both (ū, v̄) and (v̄, w̄) are edges of G1, then at
least one of (u, v) and (v, w) certainly satisfies (ii). Suppose that (v̄, w̄) is
not an edge of G1 and (u, v) does not satisfy (ii). Since any vertex z of G1

such that z 6= w̄ and c(z) = c(w̄) is adjacent to v̄, α or β is adjacent to v̄,
which is a contradiction. Therefore, (u, v) satisfies (ii). Hence, the claim is
true.

Case 5: s1, t1, s2, t2 ∈ V (G0).
Ifm ≥ 5 or bothm = 4 and either (s1, t1), (s2, t2) ∈ E(G0) or (s1, t1), (s2, t2) 6∈
E(G0), there exists a 2-eq-DPC[(s1, t1), (s2, t2)|G0, ∅] by induction hypoth-
esis and Lemma 5. We claim that there exist two edges, (u, v) on the s1-t1
path and (x, y) on the s2-t2 path such that a 2-eq-DPC[(ū, v̄), (x̄, ȳ)|G1, ∅]
exists. For m ≥ 5, it is sufficient to pick up an arbitrary edge on each path.
For m = 4, due to the claim of Case 4, there exist (u, v) on the s1-t1 path and
(x, y) on the s2-t2 path such that (ū, v̄), (x̄, ȳ) ∈ E(G1). Then, by Lemma 5,
the 2-eq-DPC in G1 exists. It remains to merge the two 2-eq-DPC’s.

Finally, let m = 4 and (s1, t1) ∈ E(G0) and (s2, t2) 6∈ E(G0). By
Lemma 6(a), there exists a 2-DPC[(s1, t1), (s2, t2)|G0, ∅] in which the s1-t1
path is of length 1 and the s2-t2 path is of length 5. By the claim of Case 4,
there exists an edge (x, y) on the s2-t2 path such that (x̄, ȳ) ∈ E(G1) and
{s̄1, t̄1} 6= V (G1) \ (N(x̄) ∪N(ȳ)). Again by Lemma 6(a), there exists a 2-
DPC[(s̄1, t̄1), (x̄, ȳ)|G1, ∅] in which the x̄-ȳ path is of length 1 and the s̄1-t̄1
path is of length 5. It suffices to merge the two DPC’s. This completes the
proof of Theorem 2. �
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4. Strongly Hamiltonian-Laceability of Bipartite HL-Graphs

In this section, it will be shown that if an m-dimensional bipartite-HL
graph Xm, m ≥ 3, has either at most m−2 faulty edges or one faulty vertex
and at most m−3 faulty edges, the graph with the faulty elements removed
is strongly Hamiltonian-laceable. Paired 2-disjoint path coverability of Xm

studied in the previous section will play an important role in the construction
of an Lopt-path. We begin by considering strongly Hamiltonian-laceability
of Q3 having a unique vertex fault.

Lemma 7. For a faulty vertex vf in Q3, Q3 \ vf is strongly Hamiltonian-
laceable.

Proof. For a pair of fault-free vertices s and t with c(s) = c(t) 6= c(vf ), an
Lopt-path joining them exists by Lemma 3. Now, at least one of s and t has
the same color as vf . There exist three induced subgraphs of Q3 \ vf that
are isomorphic to the product of a path of length 1 and a path of length 2.
Among the three, at least two contain both s and t. It is immediately seen
that at least one has an Lopt-path joining s and t. The Lopt-path is indeed
an Lopt-path of Q3 \ vf . Therefore, the lemma is proved. �

Theorem 3. Let Xm be an m-dimensional bipartite HL-graph. For m ≥ 3,
(a) Xm is (m − 2)-edge-fault strongly Hamiltonian-laceable, and (b) Xm is
1-vertex-fault and (m− 3)-edge-fault strongly Hamiltonian-laceable.

Proof. The proof is by induction on m. Let Xm = G0 ⊕ G1, where each
Gi, i = 0, 1, is isomorphic to an (m − 1)-dimensional bipartite HL-graph.
For any fault-free vertices s and t, an Lopt-path in Xm joining them will be
constructed. Since an Lopt-path in Xm with a virtual fault set F ∪F ′, where
F ′ is a set of arbitrary m− 2− |F | fault-free edges, is also an Lopt-path in
Xm with the fault set F , we can assume |F | = m− 2.

To prove (a), it is sufficient to consider the case when c(s) = c(t) due to
Lemma 2. Let (x, y) be an arbitrary faulty edge such that c(x) 6= c(s) = c(t).
Observe that an Lopt-path joining s and t in Xm \F ′, where F ′ = F ∪{x} \
(x, y), is also an Lopt-path joining s and t in Xm \ F . This implies that it
suffices to prove that Xm with one faulty vertex and m − 3 faulty edges is
strongly Hamiltonian-laceable, which corresponds to the (b) of Theorem 3.

Let us begin by proving (b). The base case when m = 3 is shown in
Lemma 7. Let m ≥ 4. It is assumed w.l.o.g. that the unique faulty vertex
vf is contained in G0, so |F1| ≤ m − 3. There are three cases depending
on the positions of s and t. To construct an Lopt-path joining s and t, in
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Figure 3: Illustration of the proof of the Theorem 3.

almost all the cases, we merge an Lopt-path of G0 and either a Hamiltonian
path or a paired 2-DPC of G1. It is straightforward to see that the resultant
path is always an Lopt-path since a Hamiltonian path or a paired 2-DPC of
G1 covers all the vertices of G1. Note that merging two Lopt-paths, one in
each Gi, may not result in an Lopt-path of Xm.

Case 1: s, t ∈ V (G0).
We let F ′0 = F0 if |F0| ≤ m − 3; otherwise, let F ′0 = F0 \ e for an arbitrary
faulty edge e in G0. Then, |F ′0| ≤ m − 3. There exists an Lopt-path P0 in
G0 \ F ′0 joining s and t by induction hypothesis. If P0 passes through the
faulty edge e, let (u, v) be the faulty edge; otherwise, let (u, v) be an edge on
P0 such that (u, ū) and (v, v̄) are fault-free. Such an edge (u, v) exists since
b(2m−1 − 1)/2c > m− 3 for every m ≥ 4. To construct a desired Lopt-path
of Xm, it suffices to replace (u, v) with a path (u, P1, v), where P1 is an ū-v̄
Hamiltonian path in G1.

Case 2: s ∈ V (G0) and t ∈ V (G1).
If |F0| ≤ m− 3, we first pick up a pseudo-terminal t∗. There exist an Lopt-
path joining s and t∗ in G0 and a t̄∗-t Hamiltonian path in G1. Merging
these paths results in a desired Lopt-path. Let |F0| = m− 2. (See Fig. 3a.)
Regarding vf as a virtual fault-free vertex, we find an Lopt-path P0 joining
s and vf in G0 \ (F0 \ vf ). Let P0 = (s, Px, x, y, vf ) for some path segment
Px. Notice that (s, Px, x, y) and (s, Px, x) are Lopt-paths in G0 \ F0. If
c(t) = c(y), a desired Lopt-path is obtained by merging (s, Px, x, y) and a
ȳ-t Hamiltonian path in G1; otherwise it is obtained by merging (s, Px, x)
and an x̄-t Hamiltonian path in G1.

Case 3: s, t ∈ V (G1).
If |F0| ≤ m − 3 and |F1| ≤ m − 4, we pick up two pseudo-terminals
s∗ and t∗. To obtain a desired Lopt-path, it suffices to merge an Lopt-
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path joining s∗ and t∗ in G0 \ F0 and a 2-DPC[(s, s̄∗), (t̄∗, t)|G1, F1]. The
existence of the 2-DPC is due to Theorem 1 and Lemma 1. Now, let
|F0| = m − 2 and |F1| = |F2| = 0 for the second case. (See Fig. 3b.)
Regarding vf as a virtual free vertex, we can find a Hamiltonian cycle
C = (x, y, Py, u, v, vf ). The Hamiltonian cycle exists since G0 is (m − 3)-
edge-fault strongly Hamiltonian-laceable. If we remove vf from C, we have
a Hamiltonian path P0 = (x, y, Py, u, v) of G0 \ F0. Note that c(x) =
c(v) 6= c(vf ) and c(y) = c(u) = c(vf ). It follows that Px,v = (x, y, Py, u, v),
Px,u = (x, y, Py, u), Py,v = (y, Py, u, v), and Py,u = (y, Py, u) are all Lopt-
paths in G0 \F0. When c(s) = c(t) 6= c(vf ), a desired Lopt-path is obtained
by merging Px,v and a 2-DPC[(s, x̄), (v̄, t)|G1, ∅]. When c(s) = c(t) = c(vf ),
a desired Lopt-path is obtained from Py,u and a 2-DPC[(s, ȳ), (ū, t)|G1, ∅].
Let c(s) 6= c(t). We assume w.l.o.g. c(s) = c(vf ). At least one of {x̄, ū} and
{ȳ, v̄} is different from {s, t}, say {x̄, ū} 6= {s, t}. If {x̄, ū} ∩ {s, t} = ∅, a
desired Lopt-path is obtained from Px,u and a 2-DPC[(s, ū), (x̄, t)|G1, ∅]. If
{x̄, ū} ∩ {s, t} 6= ∅, then we have either x̄ = s or ū = t, say x̄ = s. Then, a
desired Lopt-path is obtained from Px,u and a Hamiltonian path joining ū
and t in G1 \ s.

Finally, let |F1| = m − 3, F0 = {vf}, and F2 = ∅ for the last case. If
c(s) 6= c(t), we find a Hamiltonian path joining s and t in G1 \F1, and then
for some edge (u, v) on the Hamiltonian path such that ū, v̄ 6= vf , the edge
(u, v) is replaced with (u, P0, v), where P0 is an Lopt-path joining ū and v̄
in G0 \ F0. The path obtained is a desired Lopt-path. Now, assume that
c(s) = c(t). (See Fig. 3c.) There exists a Hamiltonian cycle C in G1 \ F1.
Let C = (s, Px, x, t, Py, y) for some path segments Px and Py, which are
possibly paths of length 0. Then, we have two paths Ps = (s, Px, x) and
Pt = (t, Py, y) that cover all the vertices in G1. If vf 6∈ {x̄, ȳ}, a desired
Lopt-path is obtained from Ps, Pt, and an Lopt-path in G0 \ F0 joining x̄
and ȳ. Suppose vf ∈ {x̄, ȳ}. Then, we have c(s) = c(t) = c(vf ). Note that
in this subcase, any Lopt-path leaves out two vertices having colors different
from vf . We assume vf = x̄, and let Px = (Pz, z) so Ps = (s, Pz, z, x); or
Ps = (s = z, x) if Px is of length 0. An Lopt-path joining s and t that does
not contain x is obtained from Ps\x, Pt, and an Lopt-path in G0\F0 joining
z̄ and ȳ. This completes the proof of Theorem 3. �

Theorem 3 is an extension of the work in [21, 26], which is stated in
Lemma 2. The total number m − 2 of faulty elements in Theorem 3 is the
maximum possible regardless of whether there exists a faulty vertex or not.
This can be verified as follows. Suppose that s and t are two vertices of
Xm that are adjacent via a fault-free edge. If there are m − 1 faulty edges
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incident to s or m − 2 faulty edges incident to s and one faulty vertex vf
adjacent to s, then there exists no Lopt-path joining s and t.

5. Conclusions

In this paper, we investigated 2-disjoint path cover problems as an early
stage in bipartite HL-graph research. It was proved that every Xm, m ≥ 4,
with m−3 or less faulty edges has a paired 2-DPC joining S and T provided
S ∪ T is balanced. We also showed that every Xm, m ≥ 4, has a paired 2-
eq-DPC joining S and T if S and T are subsets of different parts of the
bipartition. Using 2-DPC properties, it was proved that every Xm, m ≥ 3,
is (m−2)-edge-fault strongly Hamiltonian-laceable and is 1-vertex-fault and
(m − 3)-edge-fault strongly Hamiltonian-laceable. Both the number m − 3
of allowed faulty edges for the paired 2-DPC and the number m−2 of faulty
elements for the strongly Hamiltonian-laceability are the maximum possible.

As a result, a balanced pair of vertices s and t of Xm, m ≥ 4, with
m− 3 or less faulty edges are joined by a Hamiltonian path passing through
an arbitrary prescribed edge (x, y) such that {x, y} 6= {s, t} (by Theorem 1
when |{x, y} ∩ {s, t}| = 0 and by Theorem 3(b) when |{x, y} ∩ {s, t}| = 1).
We conjecture that for some constant c ≥ 4, every Xm, m ≥ c, possessing
f or less faulty elements (vertices and/or edges) has a paired k-DPC for
any f and k ≥ 2 with f + 2k ≤ m + 1 under the ‘balancedness’ condition
of kb + 2f bv = kw + 2fwv , where kb and kw respectively are the numbers of
black and white terminals and f bv and fwv respectively are the numbers of
black and white vertex faults. It will be a challenging problem to verify this
conjecture.
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