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Abstract: The growing size of the multiprocessor system increases its vulnerability to
component failures. It is crucial to locate and to replace the faulty processors to maintain a
system’s high reliability. The fault diagnosis is the process of identifying faulty processors
in a system through testing. This paper shows that the largest connected component
of the survival graph contains almost all remaining vertices in the (n, k)-arrangement
graph An,k when the number of moved faulty vertices is up to twice or three times the
traditional connectivity. Based on this fault resiliency, we establishes that the conditional
diagnosability of An,k under the comparison model. We prove that for k ≥ 4, n ≥ k + 2,
the conditional diagnosability of An,k is (3k−2)(n−k)−3; the conditional diagnosability
of An,n−1 is 3n− 7 for n ≥ 5.

Keywords: Fault tolerance; comparison diagnosis; diagnosability; (n, k)-arrangement
graph.

1 Introduction

Distributed processor architectures offer the potential advantage of high speed, provided
that they are highly fault-tolerant and reliable, and have good communication between
remote processors. An important component of such a distributed system is its network
topology, which defines the inter-processor communication architecture. Fault-tolerance
is especially important for interconnection networks, since computers may fail, creating
faults in the network. To be reliable, the rest of the network should stay connected.
Obviously, this can only be guaranteed if the number of faults is smaller than the minimum
degree in the network. When the number of faults is larger than the minimum degree,
some extensions of connectivity are necessary, since the graph may become disconnected.
Some generalizations of connectivity were introduced and examined for various classes of
graphs in [6], including super connectedness and tightly super connectedness, where only
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one singleton can appear in the remaining network, and restricted connectivity and super
connectivity, where a remaining component must have a certain minimum size. As we
increase the number of faults in the graph, it is desirable that the largest component of the
surviving network stays connected, with a few processors separated from the rest, since
then the network will continue to be able to function. Many interconnection networks have
been examined in this aspect, when the number of faults is roughly twice the minimum
degree, see [8, 21]. One can even go further and ask what happens when more vertices
are deleted. This has been examined for the hypercube in [30–32] and for certain Cayley
graphs generated by transpositions in [9], and it has been shown that the surviving network
has a large component containing almost all vertices.

The process of identifying faulty processors in a system by analyzing the outcomes of
available inter-processor tests is called system-level diagnosis. In 1967, Preparata, Metze,
and Chien [27] established a foundation of system diagnosis and an original diagnostic
model, called the PMC model. Its target is to identify the exact set of all faulty vertices
before their repair or replacement. All tests are performed between two adjacent pro-
cessors, and it was assumed that a test result is reliable (respectively, unreliable) if the
processor that initiates the test is fault-free (respectively, faulty). The comparison-based
diagnosis models, first proposed by Malek [26] and Chwa and Hakimi [13], have been con-
sidered to be a practical approach for fault diagnosis in the multiprocessor systems. In
these models, the same job is assigned to a pair of processors in the system and their out-
puts are compared by a central observer. This central observer performs diagnosis using
the outcomes of these comparisons. Maeng and Malek [25] extended Malek’s comparison
approach to allow the comparisons carried out by the processors themselves. Sengupta
and Dahbura [28] developed this comparison approach such that the comparisons have no
central unit involved.

Lin et al. [23] introduced the conditional diagnosis under the comparison model. By
evaluating the size of connected components, they obtained that the conditional diagnos-
ability of the star graph Sn under the comparison model is 3n− 7, which is about three
times larger that the classical diagnosability of star graphs. In the same method, Hsu et
al. [19] have recently proved that the conditional diagnosability of the hypercube Qn is
3n − 5. This idea was attributed to Lai et al. [22] who are the first to use a conditional
diagnosis strategy. They obtained that the conditional diagnosability of the hypercube
Qn is 4n− 7 under the PMC model. Furthermore, Hsu et al. [19] exposed the difference
between these two conditional diagnosis models.

The arrangement graph, proposed as a generalization of the star graph in an attempt
to solve the scalability problem of the star graph topology, while preserving its attractive
features, has been extensively studied [2, 4, 5, 12, 14–16, 18, 20, 24, 29]. Based on the fault
tolerance of the arrangement graph, in this paper, we establish its conditional diagnosabil-
ity under the comparison diagnosis model. The rest of this paper is organized as follows.
Section 2 introduces some definitions, notations and the structure of the arrangement
graph. Section 3 is devoted to the fault resiliency of An,k, and Section 4 concentrates on
the conditional diagnosability of the arrangement graph. Section 5 concludes the paper.
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2 Arrangement graphs

For notation and terminology not defined here we follow [36]. Specifically, we use a graph
G = G(V,E) to represent an interconnection network, where a vertex u ∈ V represents a
processor and an edge (u, v) ∈ E represents a link between vertices u and v. If at least
one end of an edge is faulty, the edge is said to be faulty; otherwise, the edge is said to be
fault-free. Let S be a subset of V (G). The subgraph of G induced by S, denoted by G[S],
is the graph with the vertex-set S and the edge-set {(u, v)| (u, v) ∈ E(G), u, v ∈ S}. For
a vertex u in G, N(u) denotes the set of all neighbors of u, i.e., N(u) = {v| (u, v) ∈ E}.
Let S be a subgraph of G or a subset of V (G), and let N(S) =

⋃

u∈S(u) \ S. We use Kn

to denote the complete graph of order n, and d(u, v) to denote the distance between u
and v, the length of a shortest path between u and v in G. The diameter of G is defined
as the maximum distance between any two vertices in G.

For any subset F ⊂ V , the notation G − F denotes a graph obtained by removing
all vertices in F from G and deleting those edges with at least one end-vertex in F ,
simultaneously. If G − F is disconnected, F is called a separating set. A separating set
F is called a k-separating set if |F | = k. The maximal connected subgraphs of G−F are
called components. The connectivity κ(G) of G is defined as the minimum k for which G
has a k-separating set; otherwise κ(G) is defined n− 1 if G = Kn. A graph G is called to
be k-connected if κ(G) ≥ k. A k-separating set is called to be minimum if k = κ(G).

The interconnection network has been an important research area for parallel and
distributed computer systems. Network reliability is one of the major factors in designing
the topology of an interconnection network. The well-known hypercube is the first major
class of interconnection networks.

As another topology of an interconnection network, Akers and Krishnamurthy [1]
proposed the star graph Sn, which has smaller degree, diameter, and average distance
than the comparable hypercube, while reserving symmetry properties and desirable fault-
tolerant characteristics. As a result, the star graph has been recognized as an alternative
to the hypercube. However, the star graph is less flexible in adjusting its sizes. With
the restriction on the number of vertices, there is a large gap between n! and (n+ 1)! for
expanding an Sn to Sn+1. To relax the restriction of the numbers of vertices n! in Sn, The
arrangement graph was proposed by Day and Tripathi [15] as a generalization of the star
graph Sn. It is more flexible in its size than Sn.

Definition 2.1 Given two positive integers n and k with n > k, let 〈n〉 denote the set
{1, 2, . . . , n}, and let Pn,k be a set of arrangements of k elements in 〈n〉. The (n, k)-
arrangement graph, denoted by An,k, has vertex-set V (An,k) = Pn,k and edge-set E(An,k) =
{(p, q) | p and q differ in exactly one position }.

The graph shown in Figure 1 is a (4, 2)-arrangement graph A4,2.

Clearly, An,k is a k(n − k)-regular graph with n!
(n−k)!

vertices. It was showed by Day

and Tripathi [15] that An,k is vertex-symmetric and edge-symmetric and has the diameter
of ⌊3k

2
⌋. Day and Tripathi [14] showed the connectivity κ(An,k) = k(n− k).

Moreover, An,1 is isomorphic to the complete graph Kn, and An,n−1 is isomorphic to
the n-dimensional star graph Sn. Chiang and Chen [12] showed that An,n−2 is isomorphic
to the n-alternating group graph AGn.
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Figure 1: The structure of A4,2

For two distinct i and j in 〈n〉, let V j:i
n,k be the set of all vertices in An,k with the jth

position being i, that is,

V j:i
n,k = {p | p = p1 · · ·pj · · ·pk ∈ Pn,k and pj = i}.

For a fixed position j ∈ 〈n〉, {V j:i
n,k| 1 ≤ i ≤ n} forms a partition of V (An,k). Let Aj:i

n,k

denote the subgraph of An,k induced by V j:i
n,k. Then for each j ∈ 〈n〉, Aj:i

n,k is isomorphic
to An−1,k−1. For example, a partition of A4,2 is shown in Figure 1, where red triangles are
A2:i

4,2’s with i ∈ 〈4〉, isomorphic to A3,1 = K3.
Thus, An,k can be recursively constructed from n copies of An−1,k−1. It is easy to

check that each Aj:i
n,k is a subgraph of An,k, and we say that An,k is decomposed into n

subgraphs Aj:i
n,k’s according to the jth position. For simplicity, by the symmetry of An,k

we shall take j as the last position k, and use Ai
n,k to denote Ak:i

n,k.

Let E(i, j) be the set of edges between Ai
n,k and Aj

n,k, that is,

E(i, j) = {(p, q) ∈ E(An,k)| p ∈ V (Ai
n,k) and q ∈ (Aj

n,k)}.

Clearly, E(i, j) is a perfect matching ( a set of edges in which any two edges have no
common end-vertex) between Ai

n,k and Aj
n,k, and

|E(i, j)| =
(n− 2)!

(n− k − 1)!
. (2.1)

Let I be a subset of 〈n〉, and let H be a subset of V (AI
n,k) or a subgraph of AI

n,k, where
AI

n,k = {Ai
n,k : i ∈ I}. UseN I(H) to denote the set of neighbors ofH inAI

n,k. Particularly,

use N I(H) and N I(H) as an abbreviation of N 〈n〉\I (H) and N I(H), respectively, and call

vertices in N I(H) and N I(H) the outer neighbors and inner neighbors of H , respectively.
Obviously, every vertex u of Ai

n,k has n − k outer neighbors, and two arbitrary outer
neighbors of u are distributed in distinct subgraphs. We write u for {u}. It follows from
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the definitions that, for every i ∈ 〈n〉,

|N i(u)| = (k − 1)(n− k) and |N i(u)| = n− k,

N i(u) ∩N i(v) = ∅ if u, v ∈ Ai
n,k and u 6= v,

(2.2)

and for any two distinct vertices x ∈ Ai
n,k and y ∈ Aj

n,k with i 6= j, and I = {i, j},

|N I(x) ∩N I(y)| = 0 if x and y are not adjacent. (2.3)

We say that one vertex u is adjacent to some subgraph Aj
n,k if u has an outer neighbor

in Aj
n,k. Let

Vi = {u1u2 · · ·ui−1xui+1 · · ·uk| x ∈ 〈n〉 \ {u1, u2, · · · , ui−1, ui+1, · · · , uk}}

Then, when n ≥ k+2, the graph induced by Vi is a complete graph of order n−k+1 and
a subgraph of Auk

n,k, which implies that any two adjacent vertices have exactly (n− k− 1)
common neighbors. Thus, by the edge-transitiveness of An,k, for any edge e,

|N(e)| = 2k(n− k)− (n− k − 1)− 2 = (2k − 1)(n− k)− 1. (2.4)

In addition, the following property of An,k is useful, which can be checked by the
definition of An,k. For any two distinct vertices u and v in An,k,

|N(u) ∩N(v)| =















0, if d(u, v) ≥ 3;
2, if d(u, v) = 2 and n ≥ k + 2;
1, if d(u, v) = 2 and n = k + 1;
n− k − 1, if d(u, v) = 1.

(2.5)

Other properties of the arrangement graph has received considerable attention in the
literature. First, Day and Tripathi [16] showed the existence of pancyclicity, that is An,k

contains cycles of all lengths. Hsieh et al. [18] investigated the existence of hamiltonian
cycle in An,k with faulty vertices, Lo and Chen [24] studied hamiltonian connectedness
of An,k with faulty edges. Hsu et al. [20] further obtained an optimal result that the
graph An,k (n ≥ k + 2) is (k(n − k) − 2)-hamiltonian and (k(n − k) − 3)-hamiltonian
connected in G − F for any F ⊂ V (G) ∪ E(G) with |F | ≤ f). Teng et al. [29] have
recently shown that An,k is panpositionable hamiltonian and panconnected if k > 1 and
n ≥ k + 2 . In addition, Bai et al. [2] proposed a distributed algorithm with optimal
time complexity and without message redundancy for one-to-all broadcasting in one-port
communication model on the fault-free arrangement graphs, and also developed a fault
tolerant broadcasting algorithm with less than k(n − k) faulty edges. Chen et al. [4, 5]
presented efficient one/all-to-all broadcasting algorithms on the arrangement graphs by
constructing n− k spanning trees, where the height of each tree is 2n− 1.

3 Fault tolerance of the arrangement graph

The connectivity κ(G) of a graph G is an important parameter to measure the fault
tolerance of the network, while it has an obvious deficiency in that it tacitly assume that
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all elements in any subset of G can potentially fail at the same time. To compensate
for this shortcoming, it would seem natural to generalize the classical connectivity by
introducing some conditions or restrictions on the separating set S and/or the components
of G− S.

Recall the connectivity κ(G) of G, it is the minimum number of vertices whose removal
results in a disconnected or a trivial (one vertex) graph. A k-regular k-connected graph
is super k-connected if any one of its minimum separating sets is a set of the neighbors
of some vertex. If, in addition, the deletion of a minimum separating set results in a
graph with two components (one of which has only one vertex), then the graph is tightly
super k-connected. For example, the complete bipartite graph Kn,n is n-super connected
but not tightly n-super connected. The notions of super connectedness and tightly super
connectedness were first introduced in [3] and [6], respectively.

Esfahanian [17] first introduced the concepts of the restricted separating set and the
restricted connectivity of a graph G. A set S of vertices is a restricted separating set if
G − S is disconnected and N(x) is not completely contained in S for any vertex x in
G. The restricted connectivity of G, denoted by κr(G), is the minimum cardinality of a
restricted vertex-cut.

Considering it is not easy to examine whether a separating set is restricted, Xu et
al. [37] formally proposed the super connectivity, a weaker concept than the restricted
connectivity. A separating set S of G is super if G − S contains no isolated vertices.
The super connectivity of G, denoted by κs(G), is the minimum cardinality of a super
separating set. Clearly, κ(G) ≤ κs(G) ≤ κr(G) if κr(G) exists.

It follows from definitions that the restricted connectivity or super connectivity can
provide a more accurate measurement than the connectivity for fault tolerance of a large-
scale interconnection network.

Usually, if the surviving graph G− S contains a large connected component C when
G − S is not connected, the component C may be used as the functional subsystem,
without incurring severe performance degradation. Thus, in evaluating a distributed
system, it is indispensable to estimate the size of the maximal connected components of
the underlying graph when the structure begins to lose processors.

Yang et al. [30–32] proved that the hypercube Qn with f faulty processors has a
component of size 2n − f − 1 if f ≤ 2n − 3, and size 2n − f − 2 if f ≤ 3n − 6. Yang et
al. [33, 34] also obtained that a similar result for the star graph Sn. Cheng et al. [7, 10]
gave a more detail result for Sn. The removal of any separating set of at most 2n − 4
from Sn results in exact two components, one of them is a single vertex or edge. Cheng
and Lipták [9] generalized this result for Sn with linearly many faults. Cheng et al. [11]
presented a similar result for in 2-tree-generated networks with linearly many faults. In
this section, we detail on the fault resilience of the arrangement graph An,k.

Throughout this paper, the notation F denotes a set of vertices inAn,k. If F is regarded
as a set of faulty vertices, then a subgraph H of An,k is called fault-free if V (H) ∩ F = ∅.
Let

Fi = Ai
n,k ∩ F and fi = |Fi| for 1 ≤ i ≤ n. (3.1)

We first discuss the tightly super connectedness. Since An,1 is isomorphic to a complete
graph Kn, it is super connected but not tightly super connected. When n = 4, it is easy
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to check that A4,2 is not tightly super connected since it has a separating set F with
|F | = 4 such that two components of A4,2 − F are both 4-cycles (see Figure 1). Thus, in
the following discussion, we assume k ≥ 3.

Theorem 3.1 For k ≥ 3, An,k is tightly super k(n− k)-connected.

Proof. Let F be a minimum separating set in An,k. Then, using the notations defined in
(3.1), we have that

|F | =
n

∑

i=1

fi = κ(An,k) = k(n− k).

By the definition of tightly super connectivity, we need to show that An,k −F has exactly
two components, one of them is a single vertex. We gain our ends by proving the following
claims.

Claim 3.1.1 fi ≥ (k − 1)(n− k) for some i ∈ 〈n〉.
Proof: Suppose to the contrary that fi < (k−1)(n−k) for any i ∈ 〈n〉. Then Ai

n,k−Fi

is connected since Ai
n,k is (k − 1)(n − k)-connected. We will deduce a contradiction by

showing that An,k−F is connected. To this end, we only need to show that Ai
n,k and Aj

n,k

can be connected in An,k − F for any two distinct i, j ∈ 〈n〉.
In fact, by (2.1), when either k ≥ 4 or k = 3 and n ≥ 6, we have

|E(i, j)| =
(n− 2)!

(n− k − 1)!
> k(n− k) = |F |,

which implies that there exists a fault-free edge e ∈ E(i, j). It follows that Ai
n,k and Aj

n,k

can be connected in An,k − F by the fault-free edge e.
When k = 3 and n ∈ {4, 5}, we have

|E(i, j)| =
(n− 2)!

(n− k − 1)!
=

{

2 < 3 = |F | if n = 4;
6 = |F | if n = 5.

(3.2)

Without loss of generality, assume that there are no fault-free edges in E(i, j) (otherwise
Ai

n,3 and Aj
n,3 can be connected in An,3 − F by some fault-free edge in E(i, j)). By

(3.2), there exist a fault-free edge e1 in E(i, x) and a fault-free edge e2 in E(x, j) for any
x /∈ {i, j}. Thus, Ai

n,3 and Aj
n,3 can be connected in An,3 − F by Ax

n,3 and the fault-free
edges e1 and e2.

Claim 3.1.2 If there is some i ∈ 〈n〉 such that |F − Fi| < (k − 1)(n − k), then
An,k − (V (Ai

n,k) ∪ (F − Fi)) is connected.
Proof: By the hypothesis, for any j ∈ 〈n〉 with j 6= i, we have fj < (k − 1)(n − k),

which implies that Aj
n,k is connected since Aj

n,k is (k− 1)(n− k)-connected. Since for any
two distinct j, t ∈ 〈n〉 \ {i},

|E(j, t)| =
(n− 2)!

(n− k − 1)!
> (k − 1)(n− k) > |F − Fi|,

there exists a fault-free edge e in E(j, t). Thus Aj
n,k and At

n,k can be connected in An,k−F

by the fault-free edge e. By the arbitrariness of j and t, An,k − (V (Ai
n,k) ∪ (F − Fi)) is

connected.
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Claim 3.1.3 fi ≤ (k − 1)(n− k) for any i ∈ 〈n〉.
Proof: If there is some i ∈ 〈n〉 such that fi > (k − 1)(n− k), then

|F − Fi| < k(n− k)− (k − 1)(n− k) = n− k < (k − 1)(n− k).

By Claim 3.1.2, An,k − (V (Ai
n,k)∪ (F −Fi)) is connected. Since every vertex in Ai

n,k −Fi

has exactly n − k outer neighbors in An,k − Ai
n,k and |F − Fi| < n− k, and at least one

of the n− k outer neighbors is fault-free, An,k − F is still connected, a contradiction.

We now show our theorem. By Claim 3.1.1 and Claim 3.1.3, there exists some i ∈ 〈n〉
such that fi = (k − 1)(n− k). Thus, for k ≥ 3,

|F − Fi| = k(n− k)− (k − 1)(n− k) = n− k < (k − 1)(n− k).

By Claim 3.1.2, An,k−(Ai
n,k∪(F−Fi)) is connected, which implies An,k−Ai

n,k is (n−k+1)-
connected.

Suppose that Ai
n,k − Fi is connected. Since k ≥ 3, Ai

n,k is not a complete graph, and
so Ai

n,k − Fi has at least two vertices. Since every vertex in Ai
n,k − Fi has exactly n − k

outer neighbors in An,k − Ai
n,k and |F − Fi| = n − k < 2(n − k), at least one of these

outer neighbors is fault-free, and so An,k−F is still connected, a contradiction. Therefore,
Ai

n,k − Fi is disconnected.
Let H i be a minimum component of Ai

n,k − Fi. Since F is a minimum separating set
in An,k and Fi ⊂ F , H i must be contained in some component H in An,k − F . Note
that every vertex in H i has exactly n − k outer neighbors in An,k − Ai

n,k, each of them

is in different Aj
n,k with j 6= i, and An,k − Ai

n,k is (n − k + 1)-connected. To separate H
from An,k − F by using n − k vertices in F − Fi, H must be a single vertex, say x, and
F −Fi must be the (n− k) outer neighbors of x in An,k −Ai

n,k. Thus, H = H i = {x} and
F = N(x). Since An,k−(Ai

n,k∪(F −Fi)) is connected and every vertex in Ai
n,k−(Fi∪{x})

has n− k fault-free outer neighbors in An,k − Ai
n,k, An,k − (F ∪ {x}) is connected.

Thus, when n ≥ 4 and k ≥ 3, An,k is tightly super k(n− k)-connected. The theorem
follows.

Since An,n−1 is isomorphic to a star graph Sn and An,n−2 is isomorphic to the alter-
nating group graph AGn, by Theorem 3.1, we have the following corollaries immediately.

Corollary 3.2 (Cheng and Lipman [7]) The star graph Sn is tightly super (n − 1)-
connected for n ≥ 4.

Corollary 3.3 The alternating group network AGn is tightly super (2n − 4)-connected
for n ≥ 5.

In the rest of this section, we will investigate the fault tolerance of An,k when we
remove a set F of vertices, where |F | is roughly twice or three times of the traditional
connectivity.

Let
I = {i ∈ 〈n〉 : fi ≥ (k − 1)(n− k)},

AI
n,k =

⋃

i∈I

Ai
n,k, FI =

⋃

i∈I

Fi,

8



and let
J = 〈n〉 \ I, AJ

n,k =
⋃

j∈J

Aj
n,k, FJ =

⋃

j∈J

Fj .

Lemma 3.4 Let F be a set of faulty vertices in An,k with |F | ≤ (3k− 2)(n− k)− 3 and
k ≥ 3. Then AJ

n,k − FJ is connected.

Proof. If |J | = 0 then there is nothing to do, and so assume |J | ≥ 1. By the hypothesis,
for any j ∈ J , fj ≤ (k − 1)(n − k) − 1, that is, Aj

n,k − Fj is connected since Aj
n,k is

(k − 1)(n− k)-connected. Thus, if |J | = 1 then the lemma holds. Assume |J | ≥ 2 below.
To prove the lemma, we only need to show that Ai

n,k and Aj
n,k are connected in AJ

n,k −FJ

for any two distinct i, j ∈ J . By (2.1), we have that

|E(i, j)| = (n− 2)(n− 3) · · · (n− k)
{

> 2((k − 1)(n− k)− 1) if k ≥ 4 or k = 3 and n ≥ 6;
= 2(2n− 7) if k = 3 and n ∈ {4, 5}.

(3.3)

Thus, if there is a fault-free edge e in E(i, j), then Ai
n,k − Fi and Aj

n,k − Fj can be
connected by the fault-free edge e in E(i, j). If there are no fault-free edges in E(i, j)
then, by (3.3), k = 3, n ∈ {4, 5} and fi = fj = 2n−7. In this case, |F | = 7n−24, |J | ≥ 3
and, for any three distinct i, j, x ∈ J ,

|F | − (fi + fj) ≤ (7n− 24)− 2(2n− 7)
= 3n− 10

=

{

5 < |E(i, x)| = |E(x, j)| if n = 5;
2 = |E(i, x)| = |E(x, j)| if n = 4.

(3.4)

If n = 5 then, by (3.4), there are a fault-free edge e1 in E(i, x) and a fault-free edge
e2 in E(x, j). Then Ai

5,3 and Aj
5,3 can be connected in A5,3 − F by Ax

5,3 and the fault-free
edges e1 and e2.

If n = 4, then fi = fj = 1, and every vertex in Ax
4,3 has only one outer neighbor

for each x ∈ {1, 2, 3, 4}. Thus, by (3.4), there are a fault-free edge e1 in E(i, x) and a
fault-free edge e2 in E(x, j). Then Ai

4,3 and Aj
4,3 can be connected in A4,3−F by Ax

4,3 and
the fault-free edges e1 and e2.

The lemma follows.

Corollary 3.5 Let F be a separating set of An,k and k ≥ 3. Then

1 ≤ |I| ≤

{

2 if |F | ≤ (2k − 1)(n− k)− 1;
3 if |F | ≤ (3k − 2)(n− k)− 3.

(3.5)

Corollary 3.6 Let F be a separating set of An,k with |F | ≤ (3k − 2)(n − k) − 3 and
k ≥ 3. If H is a union of components of An,k − F that contain no vertices in AJ

n,k − F ,
then

N I(H) ⊆ FI and N I(H) ⊆ F \ FI . (3.6)
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Lemma 3.7 Let F be a separating set of An,k with |F | ≤ (3k− 2)(n− k)− 3 and k ≥ 3.
If there is some i ∈ 〈n〉 such that |F | − fi ≤ 2(n− k)− 1, then An,k − F has exactly two
components, one of which is a single vertex.

Proof. By the hypothesis, for any j ∈ 〈n〉 \ {i},

fj ≤ |F | − fi ≤ 2(n− k)− 1.

Since |I| ≥ 1 by Corol1ary 3.5, we have I = {i}. Since An,k − F is disconnected, and
An,k − (Ai

n,k ∪ F ) is connected by Lemma 3.4, there is a component of An,k − F that
contains no vertices in AJ

n,k − FJ . Let H be a union of such components of An,k − F . By

Corollary 3.6, N i(H) ⊆ F \ Fi. By (2.2) we have that

|V (H)|(n− k) ≤ |F | − fi ≤ 2(n− k)− 1,

which yields |V (H)| ≤ 1, that is, H is a single vertex, say u. By the choice of H , other
components of An,k −F must contain vertices in AJ

n,k −FJ . Since A
J
n,k −FJ is connected,

An,k − (F ∪ {u}) is connected. It follows that An,k − F has exactly two components, one
of which is a single vertex.

The lemma follows.

Lemma 3.8 Let F be a separating set of An,k with |F | ≤ (3k− 2)(n− k)− 3 and k ≥ 3,
and let H be a subgraph of Ai

n,k−Fi for some i ∈ 〈n〉. If NAi
n,k
(H) ⊆ Fi, then |V (H)| ≤ 2.

Proof. Let h = |V (H)|. We want to prove h ≤ 2. Suppose to the contrary that
h ≥ 3. Take a subset T ⊆ V (H) with |T | = 3. Let T ′ = V (H − T ). By the hypothesis,
NAi

n,k
(T ) \ T ′ ⊆ Fi. Note that Ai

n,k is (k − 1)(n− k)-regular.

When n = k + 1, by (2.5), any two vertices of T have at most one common neighbor
in An,k. It follows that

|NAi
n,k
(T )| ≥ 3(k − 1)(n− k)− 4.

When n ≥ k + 2, we denote T = {x, y, z}, and discuss as follows.
If H [T ] has no edges, then every pair of vertices in T has at most two common

neighbors by (2.5), and so

|NAi
n,k
(T )| ≥ 3(k − 1)(n− k)− 6.

If H [T ] has only one edge, say e = (x, y), then x and y have n − k − 1 common
neighbors, z and x (resp. y) have at most two common neighbors by (2.5). It follows that

|NAi
n,k
(T )| ≥ 3(k − 1)(n− k)− (n− k − 1)− 6.

Similarly, by (2.5), we can obtain that if H [T ] has two edges then

|NAi
n,k
(T )| ≥ 3(k − 1)(n− k)− 2(n− k − 2)− 5;

if H [T ] has three edges,

|NAi
n,k
(T )| ≥ 3(k − 1)(n− k)− 2(n− k − 2)− 6.
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Summing all cases, we have that

fi ≥ |NAi
n,k
(T ) \ T ′|

≥ |NAi
n,k
(T )| − (h− 3)

≥ 3(k − 1)(n− k)− 6− 2(n− k − 2)− (h− 3)

= (3k − 5)(n− k)− h+ 1,

that is,
fi ≥ (3k − 5)(n− k)− h+ 1. (3.7)

Since N i(H) ⊆ F −Fi by Corollary 3.6, |F | − fi ≥ h(n− k), from which we have that

fi ≤ |F | − h(n− k)
≤ (3k − 2)(n− k)− 3− h(n− k)
= (3k − 2− h)(n− k)− 3,

that is,
fi ≤ (3k − 2− h)(n− k)− 3. (3.8)

Combining (3.7) with (3.8), we have can deduce that (h−3)(n−k) ≤ h−4, a contradiction.
Thus, we have h ≤ 2. The lemma follows.

Theorem 3.9 Let F be a set of faulty vertices in An,k with |F | ≤ (2k − 1)(n − k) − 1
and k ≥ 3. If An,k − F is disconnected, then it has exactly two components, one of which
is a single vertex or a single edge.

Proof. Since An,k − F is disconnected, F is a separating set of An,k.
Suppose that there exists some i ∈ 〈n〉 such that fi ≥ (2k − 3)(n − k). Since |F | ≤

(2k − 1)(n− k)− 1 ≤ (3k − 2)(n− k)− 3 and

|F | − fi ≤ ((2k − 1)(n− k)− 1)− (2k − 3)(n− k) = 2(n− k)− 1,

An,k − F has exactly two components, one of which is a single vertex by Lemma 3.7.
We now assume that fi ≤ (2k − 3)(n− k)− 1 for any i ∈ 〈n〉. Then

|V (Ai
n,k − Fi)| = (n− 1)(n− 2) · · · (n− k)− fi

≥ (n− 1)(n− 2) · · · (n− k)− ((2k − 3)(n− k)− 1)
≥ 2.

Since
|F | ≤ (2k − 1)(n− k)− 1 ≤ (3k − 2)(n− k)− 3,

by Lemma 3.4 AJ
n,k − FJ is connected. Let H be a union of components of An,k − F

that contain no vertices in AJ
n,k − FJ . Thus, H is in AI

n,k. By the choice of H , other
components of An,k −F must contain vertices in AJ

n,k −FJ . Since A
J
n,k −FJ is connected,

An,k− (F ∪V (H) is connected. Thus, to complete the proof of the theorem, we only need
to show that H is either a single vertex or a single edge. Consider two cases according to
|I| = 1 or |I| = 2 by Corollary 3.5.
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Case 1. |I| = 1, and let I = {i}.
Let h = |V (H)|. Then h ≤ 2 by Lemma 3.8. If h = 1, then H is a single vertex.
If h = 2, we want to prove that H is a single edge. Suppose to the contrary that H

consists of two isolated vertices, say u and v. Then u and v are not adjacent, N(u)∪N(v) ⊆
F . By (2.5), we deduce a contradiction as follows.

|F | ≥ |N(u) ∪N(v)| = |N(u)|+ |N(v)| − |N(u) ∩N(v)|
= 2k(n− k)− |N(u) ∩N(v)|
> (2k − 1)(n− k)− 1 ≥ |F |.

Thus, H is a single edge.

Case 2. |I| = 2, and let I = {i, j}.
Under our hypothesis, by (2.2) and (3.6), we have that

n− k − 1 ≤ |N I(H)| ≤ |F \ (Fi ∪ Fj)|
≤ (2k − 1)(n− k)− 1− 2((k − 1)(n− k))
= n− k − 1.

Thus, |N I(H)| = n− k − 1.
Thus, by (2.2) and (2.2), there is exactly one vertex in (Ai

n,k − Fi) ∩ V (H) such that

exact one of its outer neighbors is in Aj
n,k and others are in F \ (Fi ∪Fj). Similarly, there

is exactly one vertex in (Aj
n,k − Fj) ∩ V (H) such that exact one of its outer neighbors is

in Ai
n,k and others are in F \ (Fi ∪ Fj). Thus, H is a single edge.

The proof of the theorem is complete.
Since An,n−1 is isomorphic to a star graph Sn and An,n−2 is isomorphic to a alternating

group graph AGn, by Theorem 3.9, we have the following corollaries immediately.

Corollary 3.10 (Cheng and Lipman [7]) Let F be a set of faulty vertices in the star
graph Sn with |F | ≤ 2n− 4 and n ≥ 4. If Sn − F is disconnected, then it has exactly two
components, one of which is either a single vertex, or a single edge.

Corollary 3.11 Let F be a set of faulty vertices in the alternating group graph AGn with
|F | ≤ 4n−11 and n ≥ 5. If AGn−F is disconnected, then it has exactly two components,
one of which is either a single vertex, or a single edge.

We now discuss the fault tolerance of An,k with more faulty vertices up to (3k−2)(n−
k)− 4 when n ≥ k+2 and (3k− 2)(n− k)− 3 when n = k+1, where the latter we write
3n− 8 for (3k − 2)(n− k)− 3.

Theorem 3.12 Let F be a set of faulty vertices in An,k (k ≥ 4) with |F | ≤ (3k− 2)(n−
k) − 4 when n ≥ k + 2 and |F | ≤ 3n − 8 when n = k + 1. If An,k − F is disconnected,
then it either has two components, one of which is an isolated vertex or an isolated edge,
or has three components, two of which are isolated vertices.
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Proof. Since An,k − F is disconnected, F is a separating set of An,k.
If there exists some i ∈ 〈n〉 such that

|F | − fi ≤ 2(n− k)− 1,

by Lemma 3.7, An,k −F has exactly two components, one of which is a single vertex, and
so the theorem holds. We now assume that, for any i ∈ 〈n〉

fi ≤

{

(3k − 4)(n− k)− 4 for n ≥ k + 2;
(3k − 4)(n− k)− 3 for n = k + 1.

Then |V (Ai
n,k − Fi)| ≥ 2.

Let H be a union of components of An,k − F that contain no vertices in AJ
n,k − FJ ,

and let h = |V (H)|. By Lemma 3.4, AJ
n,k − FJ is connected. Thus, H is in AI

n,k. By
the choice of H , other components of An,k − F must contain vertices in AJ

n,k − FJ . Since
AJ

n,k − FJ is connected, An,k − (F ∪ V (H)) is connected. Thus, to complete the proof of
the theorem, we only need to show that h ≤ 2.

By Corollary 3.5, 1 ≤ |I| ≤ 3. If |I| = 3, under our hypothesis, we have that

|F \ FI | ≤ (3k − 2)(n− k)− 4− 3((k − 1)(n− k)) = n− k − 4. (3.9)

Thus, by (2.2), (3.3) and (3.9), we can deduce a contradiction as follows.

n− k − 2 ≤ |F \ FI | ≤ n− k − 4.

Thus, 1 ≤ |I| ≤ 2. If |I| = 1, then h ≤ 2 by Lemma 3.8. We only need to consider the
case of |I| = 2. Let I = {i, j}, and let hi and hj be the numbers of vertices of H that lie
in Ai

n,k and Aj
n,k, respectively. Then hi ≤ 2 and hj ≤ 2 by Lemma 3.8. Without loss of

generality, assume hi ≥ hj and fi ≥ fj .
Note that Ai

n,k is isomorphic to An−1,k−1. If fi ≤ (2k−3)(n−k)−2 then, when k ≥ 4,
applying Theorem 3.9 to Ai

n,k, we have hi ≤ 1 since Fi can not isolate an edge from Ai
n,k.

Thus, h = hi + hj ≤ 2. So, in the following discussion, we assume that

fi ≥ (2k − 3)(n− k)− 1. (3.10)

If fj ≥ k(n− k), when |F | ≤ (3k − 2)(n− k)− 3, we have that

|F \ FI | ≤ (3k − 2)(n− k)− 3− k(n− k)− (2k − 3)(n− k) + 1
= n− k − 2.

Note that, for every vertex of V (H) ∩ V (Ai
n,k), it has at most one outer neighbor in Aj

n,k

and others in F \ FI . By (2.2) and (3.3), we have that

hi(n− k − 1) ≤ |F \ FI | ≤ n− k − 2,

which implies hi = 0, and so h = hi + hj ≤ 2.
Thus, under the condition (3.10), the remainder of the proof is to consider the case

that
(k − 1)(n− k) ≤ fj ≤ k(n− k)− 1. (3.11)
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We first note that, when fj ≤ k(n− k)− 1,

fj ≤ k(n− k)− 1 ≤ (2k − 3)(n− k)− 2.

Thus, Fj isolates at most one vertex in Aj
n,k by Theorem 3.9, that is, hj ≤ 1. If hj = 0,

then h ≤ 2, and so the theorem holds. Assume hj = 1 below.
By the condition (3.10) and the condition (3.11), we have that

fi + fj ≥ (2k − 3)(n− k)− 1 + (k − 1)(n− k)
= (3k − 4)(n− k)− 1.

(3.12)

Thus, by (3.12), when |F | ≤ (3k − 2)(n− k)− 4 and n ≥ k + 2,

|F \ FI | = |F | − fi − fj ≤ 2(n− k)− 3, (3.13)

and when |F | ≤ 3n− 8 and n = k + 1,

|F \ FI | = |F | − fi − fj = 0. (3.14)

Suppose to the contrary that hi = 2. Let

V (H) ∩ V (Ai
n,k) = {x, y} and V (H) ∩ V (Aj

n,k) = {z}.

Then at least one of x and y is not adjacent to z by (2.2). Without loss of generality, let
x be not adjacent to z. Then, by (2.3),

|N I(x) ∩N I(z)| = 0. (3.15)

By (2.2), we have

|N I(x) ∩N I(y)| = 0, (3.16)

and

|N I(x) ∩N I(y) ∩N I(z)| = 0, (3.17)

When n ≥ k + 2, considering outer neighbors of y and z, by (2.3) and (2.5), we have
that

|N I(y) ∩N I(z)| =

{

0 if (y, z) /∈ E(An,k);
n− k − 1 if (y, z) ∈ E(An,k).

(3.18)

By (3.6), (3.15)-(3.18), we have that

|F \ FI | ≥ |N I(H)|

=
∑

u∈{x,y,z}

|N I(u)| −
∑

u 6=v∈{x,y,z}

|N I(u) ∩N I(v)|

−|N I(x) ∩N I(y) ∩N I(z)|

≥

{

2(n− k − 1) if (y, z) ∈ E(An,k);
3(n− k − 1) if (y, z) /∈ E(An,k),

which contradicts (3.13). Thus, hi ≤ 1 and so h = hi + hj ≤ 2.
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When n = k+1, (3.14) implies that |F | = 3n−8, fj = n−2 and fi = 2n−6. In other
words, Fj = N

A
j

n,k
(z) and Fi = NAi

n,k
(x, y), the latter implies that x and y are adjacent.

Since n = k + 1, the only outer neighbor of x, say u, and the only outer neighbor of
y, say v, must be in Fj ∪ {z}. Similarly, the only outer neighbor of z, say w, must be
in Fi ∪ {x, y}. Since x is not adjacent to z, u ∈ Fj. If v = z then |N(x) ∩ N(z)| = 2,
which contradict (2.5). Assume v ∈ Fj below. If w ∈ N(x), then |N(x) ∩ N(z)| = 2; if
w ∈ N(y), then |N(y) ∩N(z)| = 2. No matter which case, it contradicts (2.5).

The proof of the theorem is complete.
The theorem 3.12 is optimal in the following sense. When n ≥ k + 2 and k ≥ 4,

we select such three vertices x, y ∈ V (Ai
n,k) and z ∈ V (Aj

n,k) that (y, z) ∈ E(i, j) and

(x, y) ∈ E(Ai
n,k), see Figure 2. Set F = N(x, y, z). By (2.5), we have that

|N(x) ∩N(y)| = |N(y) ∩N(z)| = n− k − 1, |N(x) ∩N(z)| = 2.

Then
|F | = 3k(n− k)− 2(n− k − 1)− 5 = (3k − 2)(n− k)− 3.

An,k − F is connected and contains a path of length three.

· · ·

Kn−k−1

· · ·

Kn−k−1

FJ

x

y

u

z

...Kn−k−1

Fi · ·
·
Nj(z)

Fj

Ai
n,k A

j

n,k

AJ
n,k

Figure 2: The distribution of fault set F in An,k with k ≥ 4 and n ≥ k + 2

Since An,n−1 is isomorphic to a star graph Sn and An,n−2 is isomorphic to a alternating
group graph AGn, by Theorem 3.12, we have the following corollaries immediately.

Corollary 3.13 (Cheng and Lipták [10]) Let F be a set of faulty vertices in the star
graph Sn with |F | ≤ 3n − 8 and n ≥ 5. If Sn − F is disconnected, then it it either has
two components, one of which is an isolated vertex or an edge, or has three components,
two of which are isolated vertices.
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Corollary 3.14 Let F be a set of faulty vertices in the alternating group network AGn

with |F | ≤ 6n − 20 and n ≥ 6. If AGn − F is disconnected, then it either has two
components, one of which is an isolated vertex or an edge, or has three components, two
of which are isolated vertices.

4 Diagnosability of arrangement graph

The comparison diagnosis strategy of a graph G = (V,E) can be modeled as a multi-
graph M = (V, C), where C is a set of labelled edges. If the processors u and v can be
compared by the processor w, there exists an labelled edge (u, v) in C, denoted by (u, v)w.
We call w the comparator of u and v. Since different comparators can compare the same
pair of processors, M is a multi-graph. Denote the comparison result as σ((u, v)w) such
that σ((u, v)w) = 0 if the outputs of u and v agree, and σ((u, v)w) = 1 if the outputs
disagree. If the comparator w is fault-free and σ((u, v)w) = 0, the processors u and v
are fault-free; while σ((u, v)w) = 1, at least one of the three processors u, v and w is
faulty. The collection of the comparison results defined as a function σ : C → {0, 1},
is called the syndrome of the diagnosis. If the comparator w is faulty, the comparison
result is unreliable. A faulty comparator can lead to unreliable results, so a set of faulty
vertices may produce different syndromes. A subset F ( V is said to be compatible with
a syndrome σ if σ can arise from the circumstance that all vertices in F are faulty and
all vertices in V − F are fault-free. A system G is said to be diagnosable if, for every
syndrome σ, there is a unique F ⊂ V that is compatible with σ. A system is said to be
a t-diagnosable if the system is diagnosable as long as the number of faulty vertices does
not exceed t. The maximum number of faulty vertices that the system G can guarantee
to identify is called the diagnosability of G, write as t(G). Let σF = {σ | σ is compatible
with F}. Two distinct subsets F1 and F2 of V (G) are said to be indistinguishable if and
only if σF1

∩σF1
6= φ, and distinguishable otherwise [19,23,28]. There are several different

ways to verify whether a system is t-diagnosable under the comparison approach. The
following lemma obtained by Sengupta and Dahbura [28] gives necessary and sufficient
conditions to ensure distinguishability.

Lemma 4.1 (Sengupta and Dahbura [28]) Let G be a graph, F1 and F2 be two distinct
subsets of vertices in G. The pair (F1, F2) is distinguishable if and only if at least one of
the following conditions is satisfied.

(1) There are two distinct vertices u and w ∈ V (G−F1∪F2) and a vertex v ∈ F1∆F2

such that (u, v)w ∈ C, where F1 △ F2 = (F1 \ F2) ∪ (F2 \ F1);
(2) There are two distinct vertices u and v ∈ F1 \ F2 (or F2 \ F1) and a vertex

w ∈ V (G− F1 ∪ F2) such that (u, v)w ∈ C.

Lin et al. [23] introduced the so-called conditional diagnosability of a system under
the situation that no set of faulty vertices can contain all neighbors of any vertex in
the system. A fault-set F ⊂ V (G) is called a conditional fault-set if G − F has no
isolated vertex. A system G(V,E) is said to be conditionally t-diagnosable if F1 and
F2 are distinguishable for each pair (F1, F2) of distinct conditional fault-sets in G with
|F1| ≤ t and |F2| ≤ t. The conditional diagnosability of G, denoted by tc(G) is defined
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as the maximum value of t for which G is conditionally t-diagnosable. Clearly, tc(G) ≥
t(G). Zhou and Xiao [35] obtained the conditional diagnosability of the alternating group
networks based on the fault tolerance of this network structure. This section will focus
on the conditional diagnosability of arrangement graphs.

Theorem 4.2 tc(An,k) ≤ (3k − 2)(n − k) − 3 for k ≥ 4, n ≥ k + 2; tc(An,k) ≤ 3n − 7
for k ≥ 4, n = k + 1.

Proof. When n ≥ k+2, we select four vertices x, y, z, u ∈ V (An,k), such that (x, u), (y, z) ∈
E(i, j), and (x, y) ∈ E(Ai

n,k), then (u, z) ∈ E(Aj
n,k). Set A = N [x, y, z], F1 = A− {y, z},

and F2 = A− {x, y}. We get

|F1| = |F2| = (3k − 2)(n− k)− 2, and |F1 − F2| = |F2 − F1| = 1.

It is easy to check that F1 and F2 are two conditional fault sets, and F1 and F2 are
indistinguishable. Thus, we have

tc(An,k) ≤ (3k − 2)(n− k)− 3.

When n = k + 1, we select three vertices x, y, z ∈ V (An,k), such that (x, y), (y, z) ∈
E(An,k). By ( 2.5), any two of x, y, z have no common neighbor. Set

A = N [x, y, z], F1 = A− {y, z}, and F2 = A− {y, z}.

We get |F1| = |F2| = 3n − 6, and |F1 − F2| = |F2 − F1| = 1. It is easy to check that
F1 and F2 are two conditional fault sets, and F1 and F2 are indistinguishable. Thus, we
have tc(An,k) ≤ 3n− 7.

Lemma 4.3 Let F1 and F2 be any two distinct conditional fault-sets of An,k with |F1| ≤
(3k − 2)(n− k) − 3, |F2| ≤ (3k − 2)(n− k) − 3 for k ≥ 4, n ≥ k + 2; or |F1| ≤ 3n − 7,
|F2| ≤ 3n−7 for k ≥ 4, n = k+1. Denote by H the maximum component of An,k−F1∩F2.
Then, for every vertex u ∈ F1∆F2, u ∈ H.

Proof. Without loss of generality, we assume that u ∈ F1−F2. Since F2 is a conditional
faulty set, there is a vertex v ∈ (An,k − F2) − {u} such that (u, v) ∈ E(An,k). Suppose
that u is not a vertex of H . Then v is not in H , so u and v are in one small component
of An,k − F1 ∩ F2. Since F1 and F2 are distinct, we have

|F1 ∩ F2| ≤ (3k − 2)(n− k)− 4 for n ≥ k + 2;

or
|F1 ∩ F2| ≤ 3n− 8 for n = k + 1.

Hence {u, v} forms a component K2 in An,k−F1∩F2 by Theorem 3.12, i.e., the vertex
u is the unique neighbor of v in An,k − F1 ∩ F2. This is a contradiction since F1 is a
conditional fault set, but all the neighbors of v are faulty in An,k − F1.
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Lemma 4.4 (C. K. Lin [23]) Let G be a graph with δ(G) ≥ 2, and let F1 and F2 be any
two distinct conditional fault-sets of G with F1 ⊂ F2. Then, (F1, F2) is a distinguishable
conditional pair under the comparison diagnosis model.

Lemma 4.5 Let F1 and F2 be any two distinct conditional fault-sets of An,k. If |F1| =
(3k − 2)(n− k) − 3 and |F2| = (3k − 2)(n − k) − 3 k ≥ 4, n ≥ k + 2; or |F1| ≤ 3n − 7,
|F2| ≤ 3n − 7 for k ≥ 4, n = k + 1. Then, (F1, F2) is a distinguishable conditional pair
under the comparison diagnosis model.

Proof. By Lemma 4.4, (F1, F2) is a distinguishable conditional pair if F1 ⊂ F2 or
F2 ⊂ F1. Now, we assume that |F1 − F2| ≥ 1, and |F2 − F1| ≥ 1. Let S = F1 ∩ F2.
Then we have |S| ≤ (3k − 2)(n− k)− 4 for k ≥ 4, n ≥ k + 2; or |S| ≤ 3n− 8 for k ≥ 4,
n = k + 1. Let H be the largest connected component of An,k − F1 ∪ F2. By Lemma 4.3,
every vertex in F1∆F2 is in H .

We claim that H has a vertex u outside F1 ∪ F2 that has no neighbor in H . Since
every vertex has degree k(n−k), the vertices in S can have at most k(n−k)|S| neighbors
in H . There are at most |F1|+ |F2| − |S| vertices in F1 ∪ F2 and at most two vertices of
An,k − S may not belong to H by Theorem 3.12. Thus, we have:

n!
(n−k)!

−k(n− k)|S| − (|F1|+ |F2| − |S|)− 2

≥ n!
(n−k)!

− (k(n− k) + 1)× ((3k − 2)(n− k)− 4)− 4

≥ 4 for k ≥ 4, n ≥ k + 2;

and
n!

(n−k)!
− k(n− k)|S| − (|F1|+ |F2| − |S|)− 2

≥ n!− n× (3n− 8)− 2
≥ n!− 3n2 + 8n− 2
≥ 4 for k ≥ 4, n = k + 1.

Thus, there must be some vertex of H outside F1 ∪ F2, which has no neighbors in S.
Let u be such a vertex.

If u has no neighbor in F1 ∪ F2, then we can find a path of length at least two within
H to a vertex v in F1 ∪ F2. We may assume that v is the first vertex of F1∆F2 on this
path, and let q and w be the two vertices on this path immediately before v (we may
have u = q), so q and w are not in F1 ∪ F2. The existence of the edges (q, w) and (w, v)
ensures that (F1, F2) is a distinguishable conditional pair of An,k by Lemma 4.1. Now we
assume that u has a neighbor in F1∆F2. Since the degree of u is at least 3, and u has no
neighbor in S, there are three possibilities:

(1) u has two neighbors in F1 \ F2; or
(2) u has two neighbors in F2 \ F1; or
(3) u has at least one neighbor outside F2 ∪ F1.
In each sub-case above, Lemma 4.1 implies that (F1, F2) is a distinguishable conditional

pair of An,k under the comparison diagnosis model, and so the proof is complete.
Theorem 4.2 tells us that tc(An,k) ≤ (3k − 2)(n − k) − 3 for k ≥ 4, n ≥ k + 2;

tc(An,k) ≤ 3n−7 for k ≥ 4, n = k+1. Lemma 4.5 shows that tc(An,k) ≥ (3k−2)(n−k)−3
for k ≥ 4, n ≥ k + 2; tc(An,k) ≥ 3n− 7 for k ≥ 4, n = k + 1. Thus, we have the following
results.
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Theorem 4.6 tc(An,k) = (3k− 2)(n− k)− 3 for k ≥ 4, n ≥ k+2; tc(An,k) = 3n− 7 for
k ≥ 4, n = k + 1.

Since An,n−1 is isomorphic to a star graph Sn and An,n−2 is isomorphic to a alternating
group graph AGn, by Theorem 3.12, we have the following corollaries immediately.

Corollary 4.7 (C. K. Lin, et al. [23]) The conditional diagnosability of the star graph Sn

under the comparison model is tc(Sn) = 3n− 7 for n ≥ 5.

Corollary 4.8 The conditional diagnosability of the alternating group graph AGn under
the comparison model is tc(AGn) = 6n− 19 for n ≥ 6.

5 Conclusion

The paper derives the fault resiliency of arrangement graphs, and then uses the fault
resiliency to evaluate fault diagnosability of the arrangement graphs under the comparison
model. The fault resiliency of the arrangement graphs may also reveal its conditional
connectivity of high order. This method can be also applied to other complex network
structure, such as (n, k)-star graphs.

References

[1] S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric intercon-
nection networks. Transactions on Computers, 38(4)(1989), 555-566.

[2] L. Q. Bai, H. Ebara, H. Nakano and H. Maeda, Fault-tolerant broadcasting on ar-
rangement graph. The Computer Journal, 41(3)(1998), 171-184.

[3] D. Bauer, F. Boesch, C. Suffel, and R. Tindell, Connectivity extremal problems and
the design of reliable probabilistic networks, The theory and application of graphs.
Y. Alavi and G. Chartrand (Editors), Wiley, New York (1981), 89-98.

[4] Y.S. Chen, T.Y. Juang, and Y.Y. Shen, Congestion-free embedding of 2(n−k) span-
ning trees in an arrangement graph. Journal of Systems Architecture, 47 (1)(2001),
73-86.

[5] Y.S. Chen, T.J. Juang and E.-H. Tseng, Efficient broadcasting in an arrangement
graph using multiple spanning trees. IEICE Trans. Fundamentals, E-83-A(1)(2000),
139-149.

[6] E. Cheng, M. J. Lipman, and H. A. Park, Super connectivity of star graphs, alter-
nating group graphs and split-stars. Ars Combinatoria, 59 (2001), 107-116.

[7] E. Cheng, M.J. Lipman, Increasing the connectivity of the star graphs. Networks,
40(3) (2002), 165-169.

[8] E. Cheng and L. Lipták, Fault resiliency of cayley graphs generated by transpositions.
International Journal of Foundations of Computer Science, 18(2007), 1005-1022.

19



[9] E. Cheng and L. Lipták, Linearly many faults in cayley graphs generated by trans-
position trees. Information Science, 177 (2007), 4877-4882.

[10] E. Cheng and L. Lipták, Structural properties of cayley graphs generated by trans-
position trees. Congressus Numerantium, 180 (2006), 81-96.

[11] E. Cheng, L. Lipták, F. Sala, Linearly many faults in 2-tree-generated networks.
Networks, 55(2) (2010), 90-98.

[12] W. K. Chiang, R.J. Chen, On the arrangement graph. Information Processing Let-
ters, 66 (4) (1998), 215-219.

[13] K. Y. Chwa and S. L. Hakimi, On fault identification in diagnosable system. IEEE
Transactions on Computers, C-30(6)(1981), 414-422.

[14] K. Day, A. Tripathi, Characterization of node disjoint paths in arrangement graphs.
Technical Report TR 91-43, Computer Science Department, University of Minnesota,
1991.

[15] K. Day, A. Tripathi, Arrangement graphs: a class of generalized star graphs. Infor-
mation Processing Letters, 42 (5)(1992), 235-241.

[16] K. Day, A. Tripathi, Embedding of cycles in arrangement graphs. IEEE Transactions
on Computers, 42 (8) (1993), 1002-1006.

[17] A. H. Esfahanian, Generalized measures of fault tolerance with application to n-cube
networks. IEEE Transactions on Computers, 38(1989), 1586-1591.

[18] S. Y. Hsieh, G. H. Chen, C. W. Ho, Fault-free hamiltonian cycles in faulty arrange-
ment graphs. IEEE Transactions on Parallel and Distributed Systems, 10 (3) (1999),
223-237.

[19] G. H. Hsu, C. F. Chiang, L. M. Shih, L. H. Hsu, and J.J.M. Tan, Conditional diag-
nosability of hypercubes under the comparison diagnosis model. Journal of Systems
Architecture, 55(2)(2009), 140-146.

[20] H. C. Hsu, T. K. Li, J.M. Tan, L.H. Hsu, Fault hamiltonicity and fault hamiltonian
connectivity of the arrangement graphs. IEEE Transactions on Computers, 53 (1)
(2004), 39-53.

[21] T. L. Kung, C. K. Lin, T. Liang, L.Y. Hsu, J. J.M. Tan, Fault diameter of hypercubes
with hybrid node and link faults. Journal of Interconnection Networks, 10(3) (2009),
233-242.

[22] P. L. Lai, J. J.M. Tan, C. P. Chang, and L. H. Hsu, Conditional diagnosability mea-
sure for large multiprocessors systems. IEEE Transactions on Computers, 54(2005),
165-175.

[23] C. K. Lin, J. J. M. Tan, L. H. Hsu, E. Cheng, and L. Lipták, Conditional diag-
nosability of cayley graphs generalized by transposition tree under the comparison
diagnosis model. Journal of Interconnection networks, 9(2008), 83-97.

20



[24] R. S. Lo and G. H. Chen, Embedding hamiltonian path in faulty arrangement graphs
with the backtracking mathod. IEEE Trans. Parallel and Distributed Systems, 12 (2)
(2001), 209-222.

[25] J. Maeng, M. Malek, A comparison connection assignment for self-diagnosis of mul-
tiprocessor systems. Proc. 11th Internat. Fault-Tolerant Computing, 1981, 173-175.

[26] M. Malek, A comparison connection assignment for diagnosis of multiprocessor sys-
tems. Proc. 7th int. Symp. Comput. Archirecture, 1980, 31-35.

[27] F. P. Preparata, G. Metze, R.T. Chien, On the connection assignment problem of
diagnosable systems. IEEE Transactions on Computers, 16(1967), 848-854.

[28] A. Sengupta, A. Dahbura, On self-diagnosable multiprocessor systems: diagnosis by
the comparison approach. IEEE Transaction on Computers, 41(1992), 1386-1396.

[29] Y.H. Teng, J. J. M. Tan, L. H. Hsu, Panpositionable hamiltonicity and panconnectiv-
ity of the arrangement graphs. Applied Mathematics and Computation, 198 (2008),
414-432.

[30] X.F. Yang, D. J. Evans, B. Chen, G. M. Megson, and H. Lai, On the maximal
connected component of hypercube with faulty vertices. International Journal of
Computer Mathematics, 81 (2004), 515-525.

[31] X.F. Yang, D. J. Evans, and G. M. Megson, On the maximal connected component of
hypercube with faulty vertices II. International Journal of Computer Mathematics,
81 (2004), 1175-1185.

[32] X.F. Yang, D. J. Evans, and G. M. Megson, On the maximal connected component of
a hypercube with faulty vertices III. International Journal of Computer Mathematics,
83 (2006), 27-37.

[33] X.F. Yang, G. M. Megson, Y.Y. Tang, Y.K. Xing, Largest connected component of
a star graph with faulty vertices. International Journal of Computer Mathematics,
85(12) (2008), 1771-1778.

[34] X.F. Yang, G. M. Megson, X.F. Liao, J.Q. Cao, Generalized matching networks
and their properties. International Journal of Parallel, Emergent and Distributed
Systems, 22(3) (2007), 185-192.

[35] S.M. Zhou, and W.J. Xiao, Conditional diagnosability of alternating group networks.
Information Processing Letters, 110(10)(2010), 403-409.

[36] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks. Kluwer
Academic Publishers, Dordrecht/Boston/London, 2001.

[37] J.-M. Xu, J,-W, Wang, W.-W. Wang, Super and restricted connectivity of some
interconnection networks. Ars Combinatoria, 94 (2010), 25-32.

21


	1 Introduction 
	2 Arrangement graphs
	3 Fault tolerance of the arrangement graph
	4 Diagnosability of arrangement graph
	5 Conclusion 

