
Self-configuring mining for ubiquitous computing

Aysegul Caycia'*, Ernestina Menasalvasb, Yucel Saygina, Santiago Eibeb

aFaculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla,
34956 Istanbul, Turkey

bFacultad de Informatica, Universidad Politecnica de Madrid, Madrid, Spain

Abstract

Ubiquitous computing software needs to be autonomous so that essential de­
cisions such as how to configure its particular execution are self-determined.
Moreover, data mining serves an important role for ubiquitous computing
by providing intelligence to several types of ubiquitous computing applica­
tions. Thus, automating ubiquitous data mining is also crucial. We focus
on the problem of automatically configuring the execution of a ubiquitous
data mining algorithm. In our solution, we generate configuration decisions
in a resource-aware and context-aware manner since algorithm executes in
an environment in which the context often changes and computing resources
are often severely limited. We propose to analyze the execution behavior
of the data mining algorithm by mining its past executions. By doing so,
we discover the effects of resource and context states as well as parameter
settings on the data mining quality. We argue that a classification model
is appropriate for predicting the behavior of an algorithm's execution and
we concentrate on decision tree classifier. We also define taxonomy on data
mining quality so that tradeoff between prediction accuracy and classification
specificity of each behavior model that classifies by a different abstraction of
quality, is scored for model selection. Behavior model constituents and class
label transformations are formally defined and experimental validation of the
proposed approach is also performed.

Keywords: Data mining, ubiquitous computing, decision trees.

* Corresponding author.
Email addresses: aysegu lcayc iQsu . sabanc iun iv . edu (Aysegul Cayci),

emanasalvasQfi .upm.es (Ernestina Menasalvas), ysayginQsabanciuniv .edu (Yucel
Saygin), s e ibeQf i .upm.es (Santiago Eibe)

http://aysegulcayciQsu.sabanciuniv.edu
http://emanasalvasQfi.upm.es
http://ysayginQsabanciuniv.edu
http://seibeQfi.upm.es

1. Introduction

Ubiquitous computing turned out to be today's prominent computing
paradigm as a result of the advances in related technologies, especially, wire­
less, mobile and sensor technologies coupled with the dissemination of these
technologies in prices affordable by large masses. Another important reason
for the rise of this computing paradigm, is the availability of diverse appli­
cation areas which benefit ubiquitous computing. In a variety of ubiquitous
computing applications such as ubiquitous health care systems, intelligent
transportation systems and personal recommender systems, data mining is a
preferred method for incorporating intelligence. Consequently, special con­
sideration should be given to ubiquitous data mining which is complementary
for a number of ubiquitous computing applications.

Ubiquitous computing defines an environment where resources for com­
puting are spread rather than centralized and moreover, ubiquitous com­
puting devices are operated most of the time by individuals who are not
computer savvy and even devices lie unattended in the environment. Data
mining, on the other hand, is notorious for high demand of computing re­
sources and often requires domain experts for tuning the process. Therefore,
new principles and mechanisms for mining data on a platform consisting of
restricted resource devices with versatile context where the expert interac­
tion is not available, are needed. In that respect, the essential features of a
service providing ubiquitous data mining are resource and context-awareness
as well as autonomous behavior and adaptability.

We address the problem of automatic configuration of the execution of
a data mining algorithm in a context and resource aware manner as a first
step towards deploying an autonomous ubiquitous data mining service that
adapts to changing conditions. It is important to note that , autonomous
behavior of a service is a broader concept which also involves decisions about
scheduling the service, prioritizing its execution and others along with auto­
matic parameter tuning. In this paper:

• We propose to extract what we call the behavior model of a data min­
ing algorithm's execution for configuring its parameters and we define
formally what constitutes a behavior model in a ubiquitous environ­
ment.

2

• We present a solution that is based on learning from past experiences
for future configuration decisions which implies that the configuration
decisions can be adapted to changing conditions.

• We aim to propose a general-purpose solution for configuring ubiqui­
tous data mining and we impose no restrictions on the types of the
algorithm parameters that we configure. On the contrary, it is possible
to configure continuous parameters as well as categorical.

• We analyze algorithm's execution conditions against the quality of the
acquired results. For the analysis, a combination of multiple qual­
ity indicators is considered rather than individual ones and moreover
the number of quality indicators may be extensive. Besides, behavior
model classifies execution data on various measurements of quality in­
dicators. Thus, a single behavior model can be used for analysis of
several performance criteria on a quality indicator.

• We propose to use taxonomy of quality in order to find the most ap­
propriate behavior model which is balanced in terms of accuracy and
specificity of classification.

The rest of the paper is organized as follows: Section 2, is related work.
In Section 3 we formulate the problem and present the proposed approach
whereas Section 4 elaborates on solution by decision tree. In Section 5, we
explain the experiment that we performed in order to validate of the proposed
approach and finally, Section 6 presents the conclusion.

2. Related Work

Ubiquitous data mining has several application areas today. Examples
include health-care, transportation, assisted living and commerce to name a
few. We do not focus on a specific application area but on the contrary we
contemplate on how to mine data on a ubiquitous computing environment
in general. Our perspective on ubiquitous data mining is as follows:

1. Resource-awareness: awareness of the resources that will be demanded
by data mining, knowledge on how to measure the availability of the
resources and how to optimize the use of the resources.

2. Context-awareness: exploiting the variability of the context to achieve
better mining results.

3

3. Autonomous behavior: taking the decisions related to self execution
independently.

4. Adaptability: adapting the decisions to the changing conditions.

A number of studies has been proposed for ubiquitous data mining in
resource constrained environments. Majority of these studies apply to data
stream mining techniques. The resource-aware data mining presented in [8]
is for data streams where output granularity is adapted to the data rate of
the stream, available memory and time constraints. In a later study ([9]),
the idea of adapting output granularity is defined within a generic framework
for resource aware stream mining where input granularity and processing set­
tings of the algorithm are also adapted in a resource aware manner. A quality
aware data stream mining specific to frequent itemset mining algorithm in
[7] is able to adapt according to output quality as well as the resource con­
sumption patterns. At a recent work, a general model of resource and quality
aware data stream mining is proposed in [13] where its applicability is shown
by the use of an example clustering algorithm. There are also resource aware
stream mining solutions that apply only to specific algorithms. In [14], a
frequent itemset stream mining algorithm is presented that utilizes an adap­
tive memory scheme to maximize the mining accuracy for confined memory
space. In [21], k-means algorithm is proposed for data stream clustering that
is able to adapt to variations in memory availability.

Another line of research focuses on adjusting parameters of stream mining
by considering context. In [11], context aware mining of streams is proposed
where parameters that control input and output as well as the process of
the algorithms are adjusted dynamically and autonomously according to the
changes in context and situations. The demonstration and evaluation of
the framework for a health monitoring application also exists in the same
study. A domain specific context-aware ubiquitous stream mining model for
intersection safety can be found in [20].

Resource-aware and/or context-aware adjustments of parameters that are
mentioned above are proposed for mining data streams where data arrive con­
tinuously in a rapid speed. Hence, proposed solutions are specific to data
stream mining and some of them are applicable only to specific data stream
mining algorithms. On the other hand, we anticipated that all types of data
mining will be required by ubiquitous computing applications. For example,
mining multi-media data on the mobile device for the organization of music,

4

picture and video files is one potential application area of ubiquitous data
mining while data is not in streams ([16] [6] [17]). Similarly, there are other
prospective ubiquitous computing application areas such as user profiling
([10]), activity planning ([15]), personal health monitoring ([4]) where there
is a need to apply machine learning or mining techniques on data which is
not streaming but batch. Thus, we worked on a general purpose solution to
automatize the configuration of data mining algorithm running on a ubiqui­
tous computing environment without imposing any restrictions on the type
of data mining algorithm or parameters.

There are a few number of resource aware algorithms for mining non-
stream data where the proposed algorithms adapt depending on the avail­
ability of a specific resource during its execution([3] [18] [19]). This approach
which changes the algorithm's execution to optimize resource usage rather
than configuring it has two drawbacks: solution is through a specific algo­
rithm and general use with other data mining algorithms is not possible, and
does not handle the situations where more than one resource is constrained.

The approach which we use for determining the configuration of data
mining is quite different from the work given above such that we employ
data mining to discover the appropriate parameter settings from the history
of execution results whereas the proposed resource/context aware mining
techniques do not use data mining methods. The reason we use a data mining
technique for generating configuration decisions is twofold: to discover the
effects of algorithm's parameters to the quality of its results and to be able to
adapt the configuration decisions to the changing conditions. In our solution,
configuration decisions are adaptable in the sense that if there is a change
on the discovered effects due to a factor such as the growth of the data set
which algorithm to be configured mines, new parameter to quality effects can
be tracked by regenerating or updating the behavior model.

In a previous work([2]) we used Bayesian Networks to represent the prob­
abilistic relationships among context, algorithm parameter settings and the
performance of data mining. In this work, we use a more flexible data mining
model, and extend our previous work by formalizing the behavioral model­
ing and provide a comprehensive analysis of the data mining quality through
taxonomies.

5

3. Modeling the Behavior of a Data Mining Algorithm

3.1. Problem Formulation and the Proposed Approach
When deciding how to set the parameters of an algorithm for a specific

run, in a ubiquitous computing environment, circumstantial factors (condi­
tions of the device's resources and the context in which the device is in)
should be taken into account as well as the required quality. For this rea­
son, we grouped the relevant factors for the configuration as circumstance
and quality. Formal definition of automatic configuration of ubiquitous data
mining problem is as follows:

C: Circumstance is defined by a set of ordered pairs (f,s) where / is either
a resource or context feature and s is the state of this feature.

Q: Quality is defined by a set of ordered pairs (q,l) where q is a quality
feature and I is the required level for this quality. Quality features are
metrics of efficiency or efficacy of the algorithm.

P: Parameter settings constituting the configuration of the algorithm is de­
fined by a set of ordered pairs (p,v) where p stands for a parameter
and v is the value it takes.

/ : Let C and Q that are defined above, be the circumstance sensed and the
required quality respectively, then automatic configuration for ubiq­
uitous data mining which is defined as P above, is obtained by the
mapping:

/ : Cx Q^P

We propose to use data mining techniques to discover configuration of
a data mining algorithm (P), aiming to attain the requested quality (Q),
for the circumstance (C) observed when a data mining request is issued.
Our approach is to analyze the past behavior of algorithm under different
circumstances and learn the appropriate configuration(s) for data mining
which satisfies the efficiency and efficacy requested. Thus a behavior model
is created by mining data collected during past executions of the algorithm.
Fig. 1 illustrates an overall view of the approach which consists of the fol­
lowing basic steps: 1. Collect relevant information during the execution of
the algorithm, 2. Maintain a collection of past execution data, 3. Learn a
behavior model from the past execution data, and 4. Use behavior model for
automatic configuration of data mining.

6

Execution Data

- DataM * nine
Algori thm
Executes

\
\

K

J

Parameter
Setting

Decision
j

Mine
Execution

Data

Figure 1: Overall View of Automatic Parameter Setting.

3.2. Execution Data

Formal definition of execution data is given below:

Definition 1. Let P(pi : Di,...,pn : Dn) be a relation schema defining a
data mining algorithm's parameters pi; where 1 < i < n. Let dorrii be the
set of values associated with the domain named Di. An instance of P that
satisfies the domain constraints is a set of tuples with n fields:
Pi = {<Pi '• di,...,pn : dn > \di G dorrii,...,dn G domn}

Definition 2. Let C(ci : Di, ...,cn : Dn) be a relation schema defining con­
text and resource features (circumstance), Ci, where 1 < i < n. Let dorrii be
the set of values associated with the domain named Di. An instance of C
that satisfies the domain constraints is a set of tuples with n fields:
Ci = {< ci : di, ...,Cn : dn > \di G dorrii, -.,dn G domn}

Definition 3. Let Q(qi : Di, ...,qn : Dn) be a relation schema defining qual­
ity features, qi7 where 1 < i < n. Let dorrii be the set of values associated
with the domain named Di. An instance of Q that satisfies the domain con­
straints is a set of tuples with n fields: Qi = {< qi : di, ...,qn '• dn > \di G
dorrii, •••, dn G domn}

7

Table 1: Sample C, P and Q.

A R M

K-means

C

Ci

P

Pi

Q

Qi

P

Pi

Q

Qi

Relational Schema

(location : Idom,
time : tdom,
memory : mdom)

Domain

Idom = {indoor, outdoor}
tdom = {sunset, midday, night}
mdom = {x\0 < x < MAXMEM}

{ < location : indoor, time : midday, memory : 500M >,
< location : outdoor, time : sunset, memory : 10 K >,
< location : outdoor, time : night, memory : 1G > }

(minsupp : sdom,
minconf : cdom)

{ < minsupp : 0.5, minconf
< minsupp : 0.5, minconf
< minsupp : 0.5, minconf
< minsupp : 0.6, minconf

(memusg : udom,
duration : ddom,
model : odom)

sdom = {IK|0.3 < x < 1}
cdom = {IK|0.6 < x < 1}

0.8 >,
0.9 >,
0.95 >,
0.7 > }

udom = {x\0 <x< MAXMEM}
ddom = {x\0 < x < 1440}
odom = {strong, weak}

{ < memusg : 5K, duration : 10, model : strong > ,
< memusg : 730K, duration : 3, model : weak >,
< memusg : 200M, duration : 125, model : strong > }

(numClust : Cdom,
seed : edom)
max Iter : idom)

Cdom= {x\l < x < 30}
edom= {10,15,20,25,30}
idom = {x\l < x < 50}

{ < numClust : 5, seed : 10, max Iter : 5 >,
< numClust : 5, seed : 15, max Iter : 5 >,
< numClust : 5, seed : 20, max Iter : 5 >,
< numClust : 6, seed : 15, max Iter : 5 > }

(memusg : udom,
duration : ddom,
WCSS : wdom)

udom = {x\0 < x < MAXMEM}
ddom = {x\0 < x < 1440}
wdom = {high,low}

{ < memusg : 5K, duration : 10, WCSS : high > ,
< memusg : 730K, duration : 3, WCSS : low > ,
< memusg : 200M, duration : 125, WCSS : high > }

Definition 4. Let E(a\ : D\,..., an : Dn) define a relation schema for execu­
tion related data. An instance of execution data E, named Ei, is the subset
of the Cartesian product (cross product) of the instances Pi, Ci, Qi:
£ j C P/ x d x Q7

In Table 1, sample relational schemas for C, P, and Q together with small
set of tuples as instantiations of each are given. For the given example, we
assume that circumstance components (C) which may have an impact for
the configuration decision of data mining are location of the device and the
time of day when the data mining is requested as well as the free memory
in the device. A number of possible circumstances are sampled in the set

8

Ci such that each tuple in Cj has a location, a time and a memory value
chosen from Mom, Mom and mdom respectively. We based our examples on
association rule mining throughout the paper for the coherence of explana­
tions. On the other hand, we propose general guidelines for configuring any
data mining algorithm. For this purpose, we exemplify in Table 1, k-means
clustering as well as association rule mining as the data mining algorithms
to be configured. We assume that association rule mining algorithm (ARM)
that we configure has minimum support and minimum confidence param­
eters whereas number of clusters, maximum number of iterations and seed
which is the number to be used for initial assignment of instances to clusters
are the parameters of k-means. Memory usage (memusg) and the run time
(duration) of data mining are assumed to be the common quality metrics for
both data mining. Interestingness degree of the model (model) and within-
cluster sum of squares (WCSS) are the data mining quality metrics of ARM
and k-means respectively.

3.3. Classification Models to Represent Behavior

Predictive data mining is discovering from training data, patterns that
can be generalized to forecast explicit values. Since, our approach for pre­
dicting future parameter settings is learning a model from past executions
of the algorithm, we have chosen predictive data mining as the appropriate
technique for discovering configurations.

Classification is a predictive data mining type where a training set is
used for discovering patterns to predict categorical values. We propose to
use classification of execution data, E given in Definition 4 to create the
behavior model of the data mining algorithm with the aim to use the model
for predictive analysis of the algorithm's behavior. Thus past execution data
of the algorithm is used as the training data required for supervised learning
of classification methods.

Efficiency of the data mining process and/or efficacy of data mining
model, which will be referred as data mining quality thereafter, are the ob­
jectives of parameter settings for a particular execution of a data mining
algorithm. For that reason, we analyze under different circumstances the
effect of parameter settings on the data mining quality and thereupon we
determine data mining quality as the class label to be predicted.

We will first elaborate on the properties of the class label chosen while
discussing the necessary transformations and later explain in detail behav­
ior model construction by using a specific classifier, decision tree. We have

9

chosen decision trees classifiers due to the following reasons: i) Behavior
model is constructed on a ubiquitous computing device where lowest resource
consumption is essential. Existence of several computationally inexpensive
and fast decision tree construction algorithms makes decision tree classifier
a suitable choice, ii) Data mining to be configured may have any kind of
parameters. Decision trees can deal with continuous data as well as categor­
ical data so that every kind of data mining parameters can be configured,
iii) In general, accuracy of decision trees is comparable to other classification
techniques, iv) It is possible to extract classification rules from decision trees
which provide a convenient way to infer configurations.

3.4- Data Mining Quality as the Class Label
Since we have determined to use classifiers for solving automatic param­

eter setting problem, data mining quality attributes (each ^ in Definition 3)
are converted to categorical attributes. Formal definition of discretized data
mining quality Q is as follows:

Definition 5. Let QD(QI '• Di,...,qn : Dn) be a relation schema defining
quality features, qi, where 1 < i < n. Let dorrii be the set of pairs (l,u)
associated with the domain named Di such that each pair corresponds to the
lower and upper boundaries of a bin interval after discretization. An instance
of QD that satisfies the domain constraints is a set of tuples with n fields:
QDJ = {< <?i : (l,u)1, ...,qn : (l,u)n > \(l,u)1 G dom1,..., (l,u)n G domn}

In order to use data mining quality as the class label of the classifier,
QD given in Definition 5 is converted to a unary relation having a single
attribute (say g^). Next, we define the aggregation function to derive aggre­
gated data mining quality. The aggregation function, f& that will be used
for this purpose may consist of arbitrary operations given that a single value,
qA is obtained by making use of all other quality attributes qi, ,qn and /^
should be an invertible function so that qi, ,qn could be re-generated given q^-

Definition 6. Let QtuPle be a set containing any single tuple from QDJ . Let
Qf^p be a singleton set containing a unary tuple. Aggregation function for
data mining quality, f& is an invertible function that defines the mapping
from Qtuple to Q^ given as: fA : Qtuple —>• Q^

10

Finally, formal definition of aggregated data mining quality is as follows:

Definition 7. Let QA(QA '• DA) define a relation schema for aggregated data
mining quality and dorriA = RfA is the set of values associated with the do­
main named DA- An instance of aggregated data mining quality, QA that
satisfies the domain constraints is a set of tuples with 1 field:
QAJ = {< QA • dA > \dA e domA}

4. Predicting the Behavior of a Data Mining Algorithm with De­
cision Trees

We propose to use decision tree classifier to obtain a model that maps
the attribute sets consisting of circumstance (Definition 2) and parameters
(Definition 1) to the class label aggregated data mining quality (Definition
7):

f:CxP^QA

On the other hand, QA which is a composite attribute formed by aggrega­
tion of a number of attributes may result in high number of classes preventing
accurate classification. For this reason, we consider different abstraction lev­
els of data mining quality as possible class labels.

4-1. Abstractions over the Class Label

A hierarchical structure that shows the taxonomy of data mining quality
attributes in QD is used to abstract the data mining quality:

Definition 8. Data mining quality abstraction is composed of:

• A tree structure T representing data mining quality taxonomy where
QT is the node set of T and data mining quality attributes QD C QT
are the leaf nodes. Let QG = {gi,92, •••} = QT — QD be the set of
abstract data mining quality attributes. QG is partially ordered such
that a quality attribute in QG comes before its parent in T.

• Domain sets gidom of each Qi G QG-

11

Table 2: Relation Schema: Discretized Data Mining Quality.

QD

Relational Schema

(avgjmem : adorn,
maxjmem : mdom,
prccycles : cdom,
%jprc : pdom,
batteryjusg : bdom,
support : sdom,
confidence : fdom)

Domain

adorn = {(0, 100000), (100001, 1000000), (1000001, 10000000)
mdom = {(0, 250000), (250001, 4000000),

(4000001,10000000)}
cdom = {(0, 200K), (200K, 4M), (4M, 10M), (10M, 20M)
pdom = {(0, 45), (46, 80), (81, 100)}
bdom= {(0,25), (26, 100)}
sdom= {(0,0.50), (0.51,0.80), (0.81, 1)}
fdom= {(0,0.89), (0.9, 1)}

Mappings to higher levels of abstractions:

QProcessor = {prccycles, %-prc}
cdom X pdom —» Processordom
QMemory = {avgjmem, maxjmem}
adorn X mdom —» Memorydom
QResource = {Processor, Memory, batteryjusg}
Processordom X Memorydom X bdom —» Resourcedom
Q Model = {support, confidence}
sdom X cdom —» Modeldom
Qoverall = {Model, Resource}
Modeldom X Resourcedom —» Overalldom

Domains of abstract data mining quality:

Memorydom = {VeryLow, Low, Average,
High, VeryHigh}

Processordom = {VeryLow, Low,
Average, High, VeryHigh}

Resourcedom = {Low, Average,
High, VeryHigh}

Modeldom = {Low, Average, High}
Overalldom = {Good, Bad}

• Stepwise mappings to higher abstract levels.
For each gi G QG where i = 1,..., | QG \:

— Let Q9i be the successor set of gi in T.

— Every combination of elements from the domain sets of Q9i is
mapped to the domain values of gi such that:
f9i : qidcmn x q2dom x x q\qg,\dom —>• gidom
where qidom is the domain set of i'th member of Q9i.

Data mining quality abstraction given in Definition 8 is explained by the
following example. Discretized data mining quality schema, QD in Table 2
is used in the example to define usage measurements of device's resources
such as memory (avgjmem, max-mem), processor (prc-cycles,%-prc) and
battery (batteryjusg) by the data mining process as well as the calculations
obtained from the data mining model such as confidence and support. Fig­
ure 2 is the data mining quality taxonomy where the leaf nodes are the
"actual" data mining quality features (QD) whereas interior nodes are the
quality abstractions (QG)-

The domains (gidom) of abstract data mining quality features which are
the generalizations of the Memory, Processor and Resource usage as well as

12

Memory

/ \
avg mem

Overall

Resource

Processor

max mem

battery usg

/ \
pre cycles %_prc

Model

/ N

support confidence

Figure 2: Data Mining Quality Taxonomy Specific to Association Rule Mining

the data mining Model and Overall quality are shown in Table 2. Successor
sets of abstract data mining quality features (Q'processor, QMemory and so on)
are derived from the taxonomy T according to Definition 8. The values of
the features in its successor set determine the value of abstract feature. For
this reason, each combination of values from the domains of the features in
the successor set of an abstract feature is mapped to a value in its domain.
For example, when average memory usage and maximum memory usage are
in the range (0,100000) and (250001,4000000) respectively, then Memory
usage of the process is Average, is a possible mapping that gives the value of
an abstract data mining quality feature based on the quality features in its
successor set. The appearance order of successor sets in Table 2 follow the
partial order that is determined from the taxonomy T.

Next, we will use the relational schemas, relations and functions that are
defined to establish a method for constructing adequate behavior model(s)
for algorithm configurations.

4.2. The AS/BM Strategy

We propose to abstract data mining quality using Definition 8 into sev­
eral class labels resulting in more than one candidate behavior model for
predicting algorithm configurations. In that respect, we propose a strategy
that we call AS/BM (Accuracy Specificity Balanced Behavior Model Selec­
tion) in which we aim to find a tradeoff between estimated accuracy and
classification specificity by ranking the possible behavior models that can
be generated using different abstractions of data mining quality as the class
label attribute. AS/BM has the following phases:

13

ENUM : Enumerate possible class label attributes based on data mining
quality taxonomy.

SCRN : Apply a pre-screening to possible class label attributes for elimi­
nation of inappropriate ones for classifications.

CONS : Construct a separate model in the form of decision tree by using
each enumerated class label attribute that passes pre-screening.

EVAL : Evaluate the performance of the models by observing the accuracy.

MSEL : Select the most appropriate model by taking into account accuracy
and specificity of classification provided by the models.

We first ENUMerate the class label attributes sets and obtain Lset.

Definition 9. Given a data mining quality taxonomy (T) and successor sets
for abstract quality attributes (Q9i), Lset = {h,l2, •••} which is the set of class
label attributes sets enumerated from data mining quality taxonomy (T) is
obtained as follows:

1. Initially Lset = {QD} and Oset = {QD}.

2. Repeat a — c below until \ Oset |= 0

(a) Repeat for each Ok in Oset (where k = 1,.., | Oset \),

i. form a new class label attributes set by replacing successors
of an abstract quality attribute with itself, e.g. {a,q3,...} is
formed from ok = {qi,q2,q3---} if Qa = {<?i,<?2}-

ii. repeat step (i) until all possible abstractions for ok is done.

(b) Union the class attribute sets formed in (a) to Lset.

(c) Replace Oset with the class attribute sets formed in (a).

Set of class label attributes sets (Lset) shown in Table 3 is enumerated
according to Definition 9 from the data mining taxonomy given in Figure
2. Group of sets that is placed between a pair of horizontal lines in the
table corresponds to the sets merged to Lset after each iteration of line (2) in
Definition 9 and also constitutes the contents of Oset for the next iteration.
Abstract data mining quality features that are replaced in the last iteration
are shown in bold in the table.

14

Table 3: Lset: Set of possible class label attribute sets.

{{avgmem, maxmem, prccycles, %prc, batteryusg, conf, support},
{Memory, prccycles, %prc, batteryusg, conf, support},
{avgmem, maxmem, Processor, batteryusg, conf, support},
{avgmem, maxmem, prccycles, %prc, batteryusg, Model},
{Memory, Processor, batteryusg, conf, support},
{Memory, prccycles, %prc, batteryusg, Model},
{avgmem, maxmem, Processor, batteryusg, Model},
{Resource, conf, support},
{Memory, Processor,batteryusg, Model},
{Resource, Model},
{Overall}}

Next, we augment Ei with abstract data mining quality attributes and
subsequently with class labels which are the abstract data mining quality
attributes aggregated according class label attributes sets in Lset.

Definition 10. Definitions of abstract data mining quality relation schema
(G), aggregation function for class labels (fALi) and class labels relation
schema (QAL) are in order:

• Abstract data mining quality
Let G(gi : D\, ...,gn : D\QG\) be a relation schema defining abstract data
mining quality such that Qi G QG-
GI for a particular QDJ is a set of tuples with \QG\ fields such that f9i

given in Definition 8 maps successors of g^ (QgJ to g^ in QDJ-

• Aggregation function
Let Lset = {h,l2, •••} be the set of class label attributes set enumerated
from T (Definition 9).
fALi (fori = 1,..., \Lset\) is an invertible function that aggregates tuples
in QDJ and Gi based on class label attributes in U.

• Class labels
Let n = \Lset\ and QAL^H • Dah,qah : Dah, ...,qain : Datn) define a
relation schema for class labels and dam^ = RfAL. is the set of values
associated with the domain named Dait.
QALI for a particular Q^I and Gi is a set of tuples with n fields such
that fALi 9i>ven above maps attributes in U to qait.

15

We consider model's accuracy as well as the classification specificity that
the class label attribute provides when choosing the most adequate class label
attribute for the behavior model. Since the accuracy of the model can be
assessed once it is built, we pre-screened the class label attributes by using
a test in order to reduce the number of decision trees needed. One of the
known reasons for the model with high error rates is to use a training set
with insufficient number of instances per class. SCRN (Algorithm 1) tests
whether the number of instances per class for each class label attribute set
in Lset is sufficiently large and eliminates the ones that contain high number
of classes with small number of instances in Ej.

Algorithm 1 SCRN
Require: Class label attributes are enumerated

{Input is L s e t , QALJ }
{Output is Sset, Q A S J }

1: Sset 4— {} {Screened set of class label attributes sets}
2: Sattr •<— {} {Screened attributes from QAL}
3: recs 4— gcount(QALi) {Total number of instances}
4: tjj •<— threshold {Number of instances in a class}
5: t% •<— thresholdjpercent {Number of instances in a class as % of recs}
6: n •<— number of ..classes Jbelow -threshold
7: t •<— smallerjjj'(threes *t%)
8: for k = 1 to |L s e t | do
9: J, thresh •<— 0 {Number of classes below threshold}

10: for i = 1 to \domaik | do
1 1 : alfii «— member(domaik,i)

{Returns the i class in the domain}
1 2 : C^gcourA<7qalk=alk.(QALI))

13: if c < t then
14: I thresh + +
15: end if
16: end for
17: if J, thresh > n then
18: Saet «- Saet U member(Laet,k)
19: Sattr 4- Sattr

 U 9aifc

20: end if
2 1 : end for
22: QASl ^- nsattr (QALT)

SCRN returns Sset and QASJ which are the set of pre-screened class label
attributes sets and projection of pre-screened class labels on QALI respec­
tively. Let relation schema of QASl be QAs(qaS1 • Dasi,qaS2 : DaS2,..., qaSn :
DaSn) where DaSi is the name of the domain set of qaSi.

As a result of classification of execution related data by decision tree
using each qaSi as the class label attribute, the number of models that are
CONStructed is \Sset\ :

16

Mi-.CxP —>q (

Each Mi is EVALuated separately by using accuracy as the performance
metric. Let Sset = {si,S2,---} be the screened set of class label attributes
sets. Mi is the model obtained by classifying on the class label attribute qaSi

which is the aggregation of attributes in the set Sj. Accuracy of Mi (acci) is
estimated by k-fold cross-validation method where training and testing are
repeated for k times.

Algorithm 2 MSEL
Require: Enumerated class labels are screened and QASJ ls produced.

{Input is T, Sset , Ej, QASJ , coef ficient}
{Output is M }
maxscore •<— 0
tops 4— returnJinestspecificitydegree(T)
choose •<— 0
for i = 1 t o |iSset| do

Si •<— member (Sset, i)
{Estimate accuracy when Si is the class label}

6: accuracy-(^ EVAL(EJ,QASJ, Si)
7: specificity •<— 0
8: for j = 1 t o I Si I do
9: qualjittr •<— member(si,j)

{Returns the j attribute in class label set}
10: I •<— taxonomyJevel(T,qual_attr)

{Returns the attribute's level in the taxonomy}
1 1 : specificity •<— specificity + I
12: e n d for

{Normalize specificity degree }
13: specificity •<— specificity/tops * 100

{Calculate score of classification by Si }
14: score •<— accuracy + specificity * coefficient
15: if score > maxscore then
16: maxscore •<— score
17: choose •<— i
18: e n d if
19: e n d for

{Build a decision tree with highest scored class label}
20: M 4- BUILD(EIt schoose, QASl)

Specificity of classification by qaSi which is the aggregation of quality
attributes in Si, is calculated by making use of Sj's every attribute's level
in data mining quality taxonomy (T). MSEL (Algorithm 2) evaluates the
model constructed for each s» by estimating the model's predictive accuracy,
quantifies the specificity that s» provides and computes a score for Sj. A
coefficient is added in the formula that computes the score so that the weights
of the two factors contributing to the score can be adjusted. Behavior model
that will be used for extraction of data mining algorithm's configuration, is

17

built using the class label which is scored highest in terms of accuracy and
specificity of classification.

5. Experimental Evaluation

This section explains the experiments that we have performed in order
to show the applicability of the proposed approach for obtaining a behavior
model that can be used for recommending data mining configuration. The
objectives of the experimental evaluation are: i) compare in terms of ac­
curacy and specificity, the behavior models that classify execution data by
different data mining quality abstractions extracted from a taxonomy, ii) as­
sess the appropriateness of the heuristic used for pre-screening, iii) assess the
configuration decisions derived from the behavior model.

5.1. Experiment Setup

We have developed a software that we call execution data generator to
generate experiment data. Execution data generator (EDG) collects exe­
cution related data (E) for the experiment by running the data mining al­
gorithm with various configurations under various circumstances created by
EDG.

5.1.1. Execution Data Generator Architecture
Main task of EDG is to run a data mining algorithm and to collect rel­

evant data from algorithm's each execution. EDG also creates the planned
bottlenecks on the device's resources before running the algorithm.

We have chosen well known association rule mining algorithm, Apriori
([1]) as the sample algorithm that is run by EDG for the experiment. Data
generator software consists of JAVA programs (Figure 3) except the bottle­
neck creator modules which are C++ programs. Apriori is run by calling
Weka ([12]) API's within EDG.

EDG input {preset file). Each record in preset file defines a particular
execution of Apriori and contains associated context data for this execution,
resource bottleneck requests, data set to be mined and configuration of Apri­
ori. Resource bottleneck requests state the amount of memory and/or pro­
cessor consumption in the device by the workload other than Apriori during
execution.

EDG output {execution file). A record which consists of circum­
stance (C), parameter (P) and quality (Q) attributes is written for each

18

GUI «interface»

Runnable

PresetParser

+Parse()
+CreateAprioriTest()

<<interface>>

Algorithm

TestQueue

+AddTest()
+RemoveTest()

\ r
ProcStats

+Startnew()
+toString()

_L
AprioriTest

+LoadData()
+RunAlgorithm()

Preset

Figure 3: Class descriptions of EDG.

execution of Apriori. EDG output is real data collected before, during and
after Apriori execution such that the gauges showing resources' availability
when Apriori was run, actual resource usages by Apriori, quality indicators
from the data model generated and Apriori configuration are stored in C, Q
and P attributes respectively.

Briefly, EDG reads a record from the preset file, generates the resource
scarcity conditions if the given circumstance requires and runs Apriori with
the given parameters. For example, if the stated resource state is the scarcity
of memory, EDG starts dummy processes to use up the memory in order to
run Apriori in memory constrained situation. Upon completion, an execution
record which is populated by real statistics collected during the execution of
Apriori, is created.

Class descriptions of EDG are shown in Figure 3. There is a graphical
interface (GUI) to set the name of the preset file and the execution file
as well as to start the data generation. PresetParser is used to parse the
contents of preset file and responsible for invoking bottleneck creators to call
some " dummy programs" that will consume the requested amount of related
resource. TestQueue is typically a queue that contains Algorithm instances.
AprioriTest represents tests of the Apriori algorithm and implements the
interface Algorithm, thus its instances can be added to TestQueue. ProcStats
performs the gathering of performance statistics before, after and during the
execution of the algorithm tests. Specific system metrics related to memory
or processor usage are gathered using specific methods. This class is designed
as an independent cohesive unit to measure performance metrics, gather

19

Table 4: Experiment Fact Table.
1
2

3

Data Mining Algorithm
Number of configurable parameters

Apriori
5

Mining Size Number of Number of
data set (in bytes) attributes instances

4,955,737 11 325,610

Circumstantial Settings
4
5

6
7
8

9
10

Number of context features
Number of resource features

2 (ci,c2)
2 (c3,c4)

C\ C2 C'i C4

Number of states 6 5 3 3
Number of situations
Number of repetitions of a situation

Number of configuration templates
Number of configurations generated

150
10

30
1500

Data Mining Quality Results
Resource Data mining
usage model

11 Number of attributes 5 3

system information and statistics.

5.1.2. Experiment Data
Experiment data was generated using the execution data generator that

we have designed and implemented. We have collected 1500 execution records
of Apriori by running the algorithm through EDG. Figures related to exper­
iment setup are shown in Table 4. We chose five of the parameters Weka
receives for Apriori API's as configurable parameters (line 2 in Table 4) and
eliminated the parameters that are not subject to tuning. Throughout the
experiments, we have used the same mining data set whose properties are
given in line 3 in Table 4.

We incorporated circumstantial factors into the experiment as we were
generating data for a ubiquitous computing environment. Two context fea­
tures (ci and c2) with six and five states respectively as well as two re­
sources features (c3 and c4) each having three states, were used in the ex­
periments (line 4 through 6 in Table 4). We selected arbitrary names for
the features aiming a neater presentation. On the other hand, it is pos­
sible to associate them to any ubiquitous computing application domain.
For example, the following context features and state sets may be used: loca­
tion {indoor — con fined space, indoor — highroof, outdoor — urban, outdoor —
landscape, outdoor—forest, outdoor—coast} and time {sunset, midday, night,
sunrise, other} instead of c\ and c2. Likewise, resource features can be as-

20

Figure 4: Cube of circumstances.

sociated to available memory and processor idle percentage with a state set
such as {plenty, sufficient, scarce}.

During the experiments, we formed one hundred and fifty different cir­
cumstances by combining different context and resource states and we setup
EDG to execute Apriori ten times for each circumstance (line 7 and 8 in
Table 4).

We associated to every possible c\ and C2 state combination a configu­
ration template which was used for setting the parameters of Apriori that
would run in the associated context states. In a configuration template, ei­
ther an interval of values or an exact value is used as a setting of a parameter.
When an interval of values is used as a parameter setting, a random num­
ber within the given interval was generated by the PresetParser to be used
as the setting of the associated parameter. Consequently, we coded thirty
different configuration templates containing intervals in the preset file but
the number of different configurations that EDG generated and used while
running Apriori was a lot more since EDG generated the settings randomly
within the given interval (line 9,10 in Table 4).

Generally, in order to determine how to set the parameters of an algo­
rithm, we need to know the objectives of running the algorithm. In our case,
we need to know the requirements of the context so that we can determine
the parameter settings in its configuration template. For this reason, we as­
sociated context states with data mining model and processing requirements.

21

Figure 4 shows the data mining model and processing requirement assump­
tions that we made on c\ (ci-coordinate of the cube) and c2 (c2-coordinate
of the cube). For example, first state of C\ implies to generate a data mining
model with many association rules, second state of C\, a data mining model
consisting of rules bearing high certainty and so on. After then, we heuristi-
cally determined intervals or exact values of parameters in the configuration
templates of the context state based on each of their requirements.

Resource constraints dimension in Figure 4 shows the resource states sim­
ulated by EDG during the experiment. c3's and c4's all state combinations
were not used instead a subset of c3's and c4's states were selected to cre­
ate five resource constraints for the experiment. In order to produce scarce
memory condition, we setup EDG to consume all the memory leaving only
an amount which is equal to 10% of the size of the data set to be mined
whereas for sufficient memory available memory left was equal to 50% of
the size of the data set to be mined. At CPU bottleneck and sufficient CPU
situations 10% percent and 70% of available CPU were left respectively.

We run Apriori under every resource state given in Figure 4 ten times
with each configuration generated from every configuration template of c\ 's
and c2's state combinations. Hence, we produced 1500 execution records.

Finally, c3 and c4's (resources') usage measures by Apriori and quality
indicators from the data mining model generated by Apriori were collected
by EDG to constitute the base for the class label formation (line 11 in Table
4). In the next subsection, we explain in detail the transformations made on
the data mining quality and the taxonomy used in the experiment.

5.1.3. Data Mining Quality Transformations and Taxonomy

In the execution data of Apriori, we had eight quality attributes that
we applied discretization, aggregation and abstraction operations in order to
produce the class labels for decision tree. Let Q(qm : A , 9 i i 2 : A,<?i2i •
A,<?i22 : A,<?i3 : D5,q2U '• D6,q2i2 • D7,q22 : A) be the relation schema
defining the quality attributes in the execution file of the experiment.

Firstly, we discretized each quality attribute since associated domains of
each Di,i = 1, ...,8 were continuous. Nominal values for class label attributes
were obtained by using unsupervised discretization filter of Weka. There
are two strategies for discretization: equal-interval and equal-frequency bin­
ning.We have chosen equal-intervals for the bins because data mining quality
ranges which have low number of tuples are better preserved compared to
equal-frequency binning. For example, with equal-interval binning, the min-

22

q.,11 average memory usage

q 1 1 2 max. memory usage

q ^ memory usage

q1 2 1 total processor t ime

q 1 2 2 number of proc. cydes

q 1 2 processor usage

q 1 3 durat ion

q., resource usage

q2-ii model m in imum support

q 2 1 2 model m in imum confidence

q 2 1 interestingness degree

q 2 2 number of rules in the model

q 2 model quali ty

q overall quali ty

Figure 5: Data Mining Quality Taxonomy Used in the Experiment

imum range of memory usage observed as the result of the executions is
preserved as a separate bin even though the number of executions that use
memory in the minimum range is not high. Additionally, rather than using a
constant value for the number of bins, we preferred the well-known method,
entropy-based discretization that utilizes entropy of intervals to determine
the number of bins. As a result, data defined by Q was transformed to
comply with QJJ given in Definition 5.

Secondly, we aggregated the attributes in Qn to generate aggregated
data mining quality which is defined by QA (Definition 7). The aggregation
function that we used consists of three simple steps: i) encode bins in the
associated domain of every QD'S attribute with ordinal values, ii) find the
ordinal value for every tuple's every attribute in QDU hi) concatenate in the
order they appear in QD, all the attributes' ordinal values of each tuple in

QD!-

Next operation on experiment data, is to generate the abstract data min­
ing quality attributes. Data mining quality taxonomy given in Figure 5(a)
was used for this purpose. We again prefer to use symbols instead of the
names describing the execution file attributes and the abstract attributes.
On the other hand, corresponding attribute names can be found in Figure
5(b). As can be seen in Figure 5(a) abstract data mining quality attributes
are QG = {q, Qi, Q2, Qn, Q12, Q2, Q21, 922}- First of all, domain of each abstract
data mining quality attribute in QG was determined. Afterwards, mappings
from the domains of the attributes in the abstract data mining quality at­
tribute's successor set to its domain were defined for each element of QG- For

23

Figure 6: Mappings from Successor Set Domains to Abstract Domains

these mappings, we used either a two or three dimensional coordinate system
depending on the number of attributes in the successor set of the abstract
data mining quality attribute (Figure 6). The axes of each coordinate sys­
tem were labeled by the ordinal values assigned to the bins in the domains
of the attributes in the successor set. The space represented by the coordi­
nate system was divided into areas in two dimensional coordinate system and
into cuboids in three dimensional coordinate system where each area/cuboid
was assigned a corresponding value from the domain of abstract data mining
quality. Figure 6(a) shows how we mapped the domains of g m and qn2 to
the domain of qn. Both g m and gm have nine bins in their domain sets.
The ordinal values that are associated with the bins label the axes. For this
example, we combined three consecutive bins from the domains of each at­
tribute (gm and (/ii2) to map to a member in the domain of qn. In this
way, we reduced the size of gn ' s domain from eighty one to nine. Similarly,
Figure 6(b) shows how three domains are mapped. Afterwards, we used the
mappings to generate the abstract data mining quality {G in Definition 10)
for execution file.

Finally, fifteen class label attribute sets were enumerated in Lset from the
taxonomy (Definition 9). In the execution file, the ordinal values of attributes
in each of the fifteen class label sets were aggregated and fifteen alternative
class label attributes were formed (QAL in Definition 10).

24

• Accuracy b> Uaininji

••• Accu racy by cross

83 83 67 67 67 53 53 50 43 37 27 13 3

Specificity Degree

(a) Accuracy vs Specificity

*s .

70-

6 0 -

o/o 5 0 "

40

30

20-

10

3 37

3

37

^

66

-,, A . ^
^\A W V-*̂ *

82 102 114 116 206 209 223 235 241 378 408

Number of Class Labels

• » Accuracy by training data
••* Accuracy by ao»»

validation

(b) Accuracy vs Number of Classes

Figure 7: Analysis of Decision Tree Models

5.2. Experiment Results

During the experiments, transformed content of the execution file was
classified by building a separate decision tree for each of the fifteen class
label attributes obtained from each member of Lset. J48 classifier of Weka
was used for classification.

5.2.1. Analysis of AS/BM Strategy

We first analyzed the decision tree models to justify that data mining
quality abstraction was necessary and also to understand the significance of
finding a model balanced in terms of accuracy and specificity. For this pur­
pose, we compared the accuracies of the decision tree models which classify
experiment data by various data mining qualities. The specificity degree
versus the accuracy for each decision tree model is plotted in Figures 7(a).
Decision tree's specificity degree which was computed by using Algorithm

25

2, indicates the specificity of the information that the class label attribute
has. The decision tree specificity degrees in Figures 7(a) were normalized by
dividing to the specificity degree of the decision tree that had the highest
specificity. In Figure 7(a), training accuracy as well as the accuracy com­
puted by using ten-fold cross validation were plotted. As usual, training data
accuracy is higher than generalization accuracy estimated by cross validation.

General trend observed in both of the plots is that the accuracy of the
decision tree increases as its specificity degree deteriorates. Accuracy derived
after ten-fold cross validation is very low for some of the decision tree models.
Clearly, if the model that provides most specificity was used for configuration
decisions, without leveraging its accuracy by abstracting a subset of the data
mining features, predictive accuracy would be very low. Hence, we conclude
that abstraction of data mining quality is necessary.

However, accuracy is not always better when specificity is less. If a model
having an average specificity without estimating its accuracy, is chosen by
assuming that it will provide an average accuracy, it is a possibility to have
the lowest accuracy. Therefore, considering only the specificity of the model
when choosing the most appropriate decision tree for parameter configuration
is not sufficient. These results are in accordance with our predictions and
explain the reason why we proposed our AS/BM strategy to choose a model
that possesses a balanced amount of accuracy and specificity.

5.2.2. Analysis of the Pre-Screening Presumption
Decreasing the number of decision tree constructions is the main reason

for pre-screening. However decision trees are eliminated without estimating
accuracy in the pre-screening phase. In this section, we question whether
among the pre-screened ones are there decision tree models which have high
accuracy-preciseness scores.

While pre-screening we presumed that the predictive accuracy of a deci­
sion tree is low if the associated class label attribute contains a high number
of (garbage) classes that do not have representative examples in the training
data. To validate the presumption, we contrasted decision tree models in
terms of the number of class labels they have and their accuracy. In Fig­
ure 7(b), we plotted the decision tree models' accuracy figures derived from
training data and computed by ten-fold cross validation respectively against
the number of classes each decision tree possess. According to the results, ac­
curacy generally deteriorates as the number of classified class labels increases
which complies with the presumption.

26

80

70 -

60 -

50

40 -

30

20 -
hi i m̂ HI

11 ji a
classes

• Accuracy

1 3 4 2 11 7 5 8 10 6 9 13 14 12 15

Decision Tree Model Identifier

Figure 8: Effect of Garbage Classes on the Model's Accuracy

Furthermore, we applied the pre-screening criteria given in Algorithm 1
to determine the class label attributes that we expected to classify poorly due
to high number of garbage classes. In Figure 8, we compare the predicted
accuracy figures of the decision tree models against the number of garbage
classes their class label attributes have. In general, it is possible to say that
there is an aggravating effect of garbage classes on the accuracy.

We also computed the score of each decision tree model by using Algo­
rithm 2. The following list ranks the decision tree models by their score:

(8,12,2,6,15,5,14,10,9,13,1,4,3,7,11)

Final observation supporting pre-screening presumption is that, five out
of six class label attributes that are most likely to be eliminated by pre-
screening (first six bars in Figure 8) are among the class label attributes of
six worst scored decision tree models. Hence, it is possible to say that pre-
screening eliminates the decision trees that are very unlikely to be selected
as the appropriate model for configuration decisions by Algorithm 2.

5.2.3. Assessment of Configuration Decisions
In this part of the experiment, we derived configuration decisions from the

selected decision tree model and subsequently we used the derived configura­
tions to configure Apriori. The purpose of this experiment is to compare the
quality attained by Apriori executions which were run by a derived configu­
ration against the quality that is predicted from the decision tree model for
the derived configuration. We accomplished this experiment in three main
steps:

27

Extract Configuration. For configuration extraction, the decision tree model
that classifies by the aggregation of the attributes in the set {q\, 5211, 9212, Q22}
was used since it was found to be the highest scored model. We obtained
decision rules from the decision tree model (that will be referred as dt8 there­
after) so that data mining quality class memberships of configurations are
logically represented. An example decision rule which consists of parame­
ter setting predicates and the corresponding aggregated data mining quality
class, is as follows:

PA < = 0.668 AND P2 > 0.879 AND P5 > 0.324 AND

P5 < = 0.429 AND PA > 0.526 AND P2 < = 0.976 : 19552

Note that, reverses of the data mining quality class abstraction and ag­
gregation functions (Section 5.1.3) applied respectively to the data mining
quality class give the individual quality predictions by the decision rule. For
instance, the predicted data mining quality (19552) for the configuration in
the example decision rule indicates high support, high confidence model hav­
ing number of rules below average obtained by average memory and high
CPU usage within a short execution time. In fact, data mining quality pre­
dictions are associated to the cube of circumstances given in Figure 4 because
we executed Apriori for the circumstances in Figure 4. For example, data
mining quality (19552) must be attained under the circumstance where high
certainty rules (c\ = 2) having highest degree of usefulness (c2 = 1) are
needed in spite of the CPU bottleneck (C4 = 1) and barely sufficient memory
(cs = 2) conditions in the device. The number of decision rules formed from
dt8 is 144 bearing 116 different classes.

In order to use for Apriori configuration in the next step, we formed a
configuration template from each decision rule related to a circumstance in
Figure 4. Parameter settings in a configuration template are ranges of val­
ues where boundaries are constituted by either the existing predicates in the
decision rule or the highest/lowest possible settings of the parameters when­
ever predicate for the boundary is nonexistent. Although resource usage was
abstracted in dt$, we obtained fine usage figures for memory and processor as
well as the duration of the data mining process after decoding q\ so that we
generated recommendations for specific resource usages rather than overall
resource usage. When multiple decision rules were obtained for the same
circumstance, we eliminated the ones other than the decision rule that has
the highest number of classified instances.

28

•v $>

Data M ining Quality Class

• $

Q1

• Q211

• Q212

• Q22

' lQ2

Q22

1
| Q 2 1 2

1
S Q2H

Q

Ql

60 65 70 75 80 85

%

a) Successful Recommendations by Class (b) Successful Recommendations in Overall

Figure 9: Recommendation Assessment Charts

In short, we extracted configuration templates that each one is predicted
to achieve a specific data mining quality in this step.

Execute Apriori with Derived Configurations. The configuration templates
extracted in the previous step were used to configure Apriori while running
it via EDG. During the verification runs of Apriori, if the corresponding de­
cision rule indicated a circumstance, that circumstance was simulated while
executing Apriori. In this step, Apriori was run 724 times until sufficient
number of executions resulting in designated data mining quality were col­
lected.

Verify the Configuration Decisions. In the final step, we assessed the appro­
priateness of configuration decision rules. For this purpose, we made use
of the quality measurement figures collected during the Apriori runs in the
previous step. As we did when forming the class labels for the decision tree
model, we abstracted and aggregated the data mining quality attributes in
these execution records using the functions given in Section 5.1.3 to form the
"realized" data mining quality. Afterwards, we compared the "realized" data
mining quality of each Apriori that ran with a configuration derived from a
decision rule against the data mining quality class of the same decision rule.

Percentages of successful recommendations for a sample set of data mining
quality classes are given in Figures 9(a). We selected a representative sam­
ple of classes to illustrate different levels of data mining quality objectives
achieved. Percentages are plotted for each individual data mining quality
attribute in the set {gi, g2n, ^212, to} as well as the combined model quality
q2 which is the aggregation of attributes in the set {^211,̂ 212, to} • We tested

29

the equality of "realized" data mining quality and its class while calculating
the percentages. On the other hand, "realized" resource usages (q\) of the
classes given in Figure 9(a) always indicated lesser consumption than their
respective classes from which the recommendations were formed. Therefore,
it is reasonable to accept that the resource usage objectives of the recom­
mendations are satisfied. For this reason when plotting the percentages of
successful recommendations in Figure 9(a), we considered all recommenda­
tions were successful in terms of resource usage (qi).

Percentages of successful recommendations in overall are given in Fig­
ure 9(b) in which the percentage of the Apriori executions which achieve
the objective of the parameter settings are grouped by the relevant quality
measurement. In Figure 9(b), when calculating the successful recommenda­
tion percentages, we looked for an exact match between the "realized" data
mining quality and the data mining quality class of its configuration deci­
sion rule. Although the percentage of executions that do not satisfy resource
usage objective is around 19%, only 2% of the recommendations results in
higher resource consumption (qi) than the designated objective which means
that better resource usage were achieved.

We proposed a mechanism to automatize data mining configuration based
on the argument that a specific circumstance requires a specific data mining
quality. As the final step of verification, we compared the experiment re­
sults to a baseline where there is no automatization but default values were
used for parameter settings. For this purpose, we ran Apriori with the de­
fault settings of Weka and collected resource usage and resulting data mining
model quality indicators to form a baseline. When compared to the baseline,
Apriori executions that had been configured in the experiment (using dt8)
to optimize the related resource had 20% less memory usage and 88% less
cpu usage. Also, when run with a dt$ derived configuration with the ob­
jective to minimize the runtime of data mining, the elapsed time of Apriori
had been 90% less compared to the baseline. Minimum support and mini­
mum confidence of the data mining model generated by Apriori with default
configurations were 0.4 and 0.91 respectively. On the other hand, if either
highest support or highest confidence rules are required, configurations de­
rived from dtg generated data mining models with minimum support value of
0.8 and minimum confidence value of 1 respectively. If the parameters of data
mining are not tuned, it is a possibility that data mining could not produce
any model. In our case, although the default settings of Apriori resulted in
a model, the data mining quality obtained was far below the figures that we

30

had obtained by running Apriori with the configurations derived to optimize
a specific resource usage or data mining quality indicator.

5.2.4- Impact of the Proposed Approach on Android Device's Resources
In this section, we assess the overhead of behavior model generation and

its deployment to the system. Every configuration of data mining does not
trigger the generation of a new behavior model, on the contrary, behavior
model is generated once and is deployed repeatedly until it decays. The decay
of the model can be assessed by comparing the data mining quality realized
against the data mining quality predicted.

The overhead of behavior model deployment is minimal since the worst
case complexity of classifying by data mining quality from a behavior model
at hand is 0(d), where d is the depth of decision tree. The depth of the
decision tree that we used in the experiment (dt$) was 16 which implies 16
accesses at most for each configuration recommendation.

On the other hand, since behavior model generation is much more com­
putationally intensive, we evaluate the feasibility our approach by measuring
the behavior model generation although it is expected to run much less fre­
quently. For this reason, we constructed the decision tree models on an
Android device which runs one of the prominent mobile operating systems.
The Android device that we used for this purpose is Sony Xperia Tablet Com­
puter, SGPT12 model. Operating system installed on the device is Android
4.0.3, kernel version 2.6.39.4. The tablet runs on a 1.4GHz Nvidia Tegra 3
CPU with 1 Gbyte of RAM. Device is equipped with 16 Gbytes of internal
storage and 16 Gbytes of storage on SD CARD.

In order to find out the impact of our approach on Android operating sys­
tem, Weka libraries ported to Android platform were used for decision tree
construction. We measured the overhead of the same decision tree learning
algorithm (J48) that we used in the experiments and we supplied the same
training sets. We applied the pre-screening (Algorithm 1) and eliminated
seven decision tree models by pre-screening. Eight out of fifteen possible
decision tree models need to be constructed to estimate their predictive ac­
curacies. On the Android device, the total elapsed time to construct eight
decision tree models left after pre-screening was 5.44 minutes whereas longest
and shortest run times of J48 were 57 and 17 seconds respectively. Since be­
havior model generation is independent of its deployment for configuring data
mining, it runs as a background process but it must still end in a reasonable
time range. The total elapsed time that we measured for behavior model

31

generation on an Android device can be considered as acceptable in that
respect.

We also analyzed the memory and CPU usage of J48 which learns be­
havior model from execution related data on an Android system. While
constructing eight decision tree models left after pre-screening, highest peak
memory usage observed for J48 was hhMbytes whereas average peak mem­
ory usage was 49Mbytes. We observed that J48 is a cpu-intensive task since
almost 90% of its runtime is accounted for CPU usage. Battery level of the
device decreased by 2 percentage during entire executions of J48.

We conclude that, the overhead of deployment of an existing behavior
model on the system is negligible. Behavior model generation takes some
time but it does not require real-time computing and is expected to be much
less frequently run. Furthermore, although behavior model generation is a
cpu-intensive task, it does not cause a cpu bottleneck in the system since it
runs in the background with low priority.

6. Conclusion

We tackled the problem of automatically configuring an algorithm, in par­
ticular a data mining algorithm and we searched a solution to this problem
for ubiquitous computing because not only autonomous behavior is essential
for this dominant computing model of today but also data mining is indis­
pensable for enriching ubiquitous computing applications with intelligence.

A number of challenges lie in the design of a general solution for ubiqui­
tous computing. Since ubiquitous computing defines a broad range of appli­
cations and device types, configuration decisions should be dynamically given
rather than applying a logic that is statically coded. Circumstantial factors
are effective on ubiquitous computing and configuring an algorithm's exe­
cution by considering the circumstantial factors is important. Furthermore,
assessing the success of the configuration decisions is essential.

In order to meet the challenges of the problem, we proposed an approach
based on machine learning so that the behavior of the data mining algorithm
in varying circumstances is modeled to be used for the configuration of the
algorithm. By our approach, data mining quality that is realized is part of the
behavior model so that whether the configuration quality goals are attained
or not is assessed. Most importantly, adapting to the changing conditions
by generating a new behavior model of data mining is possible whenever the
existing behavior model lacks in attaining the configuration quality goals.

32

We proposed a cost-effective solution aiming a reasonable accuracy with­
out either restricting the number of quality features or the measurement
variety of any quality feature since data mining quality has a significant
importance on generating appropriate configuration decisions.

We currently work on the realization of the proposed approach within
the framework of a ubiquitous computing application. We designed an ap­
plication that downloads movie ratings from a social network site so that
associations among the movie lists are mined on the mobile devices of inter­
ested users to recommend them movies. We apply the proposed approach to
configure mining of social network data on an Android device for personal
recommendations generation using collaborative filtering.

References

[1] R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules,
In : Proc. Int. Conf. on Very Large Data Bases, VLDB'94, Morgan
Kaufmann, San Francisco, 1994, pp. 487-499.

[2] A. Cayci, S. Eibe, E. Menasalvas, Y. Saygin, Bayesian Networks to Pre­
dict Data Mining Algorithm Behavior in Ubiquitous Computing Envi­
ronments, In: M. Atzmueller, A. Hotho, M. Strohmaier, A. Chin (Eds.),
Proc. 2010 Int. Conf. on Analysis of Social Media and Ubiquitous Data,
MSM'10/MUSE'IO, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 119-
141.

[3] K. Chuang, J. Huang, M. Chen, Mining Top-k Frequent Patterns in the
Presence of the Memory Constraint, The VLDB Journal 17, 5 (Aug.
2008), 1321-1344.

[4] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich, B.
Harrison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, I. Smith, J.
A. Landay, Activity Sensing in the Wild: a Field Trial of Ubifit Garden,
In: Proc. 2008 SIGCHI Conference on Human Factors in Computing
Systems, CHI '08. ACM, New York, NY, USA, 2008, pp. 1797-1806.

[5] C. Cumby, A. Fano, R. Ghani, M. Krema, Building Intelligent Shopping
Assistants Using Individual Consumer Models, In : Proc. 10th Int. Conf.
on Intelligent User Interfaces, IUI '05, ACM, New York, NY, USA, 2005,
pp. 323-325.

33

[6] O. Flasch, A. Kaspari, K. Morik, M. Wurst, Nemoz A Distributed
Framework for Collaborative Media Organization, In: Proc. 3rd Int.
Workshop on Distributed Frameworks for Multimedia Applications,
2007.

[7] C. Franke, M. Karnstedt, K. Sattler, Mining Data Streams under Dy-
namicly Changing Resource Constraints, In : Knowledge Discovery,
Data Mining, and Machine Learning, KDML, 2006, pp. 262-269.

[8] M.M. Gaber, S. Krishnaswamy and A. Zaslavsky, Resource-Aware Min­
ing of Data Streams, Journal of Universal Computer Science 11, 8
(2005), 1440-1453.

[9] M.M. Gaber, P.S. Yu, A Holistic Approach for Resource-aware Adaptive
Data Stream Mining, New Gen. Comput. 25, 1 (January 2007), 95-115.

[10] H. Haddadi, P. Hui, I. Brown, MobiAd: Private and Scalable Mobile
Advertising, In: Proc. Fifth ACM International Workshop on Mobility
in the Evolving Internet Architecture, MobiArch '10. ACM, New York,
NY, USA, 2010, pp. 33-38.

[11] P.D. Haghighi, M.M. Gaber, S. Krishnaswamy , A. Zaslavsky, S.W.
Loke, Context-aware Adaptive Data Stream Mining, Intell. Data Anal.
13, 3 (August 2009), 423-434.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Wit-
ten, The WEKA Data Mining Software: An Update. SIGKDD Explo­
rations, 11, 2009.

[13] C. Junghans, M. Karnstedt, M. Gertz, Quality-driven Resource-adaptive
Data Stream Mining, SIGKDD Explor. Newsl. 13, 1 (August 2011), 72-
82.

[14] D. Lee, W. Lee, Finding Maximal Frequent Itenisets over Online Data
Streams Adaptively. In: Proc. Fifth IEEE International Conference on
Data Mining, ICDM '05. IEEE Computer Society, Washington, DC,
USA, 2005, pp. 266-273.

[15] L. Lin, D.J. Patterson, D. Fox, H. Kautz, Learning and Inferring Trans­
portation Routines, Artif. Intell. 171, 5-6 (April 2007), pp. 311-331.

34

[16] I. Mierswa, K. Morik, M. Wurst, Collaborative Use of Features in a
Distributed System for the Organization of Music Collections, In: Shen
S., Cui L. (Eds.), Intelligent Music Information Systems: Tools and
Methodologies, Idea Group Publishing, USA, 2007, pp. 147-176.

[17] K. Morik, Nemoz: a Distributed Framework for Collaborative Media
Organization, In: M. May and L. Saitta (Eds.) Ubiquitous Knowledge
Discovery. Springer-Verlag, Berlin, Heidelberg, 2010, pp. 199-215.

[18] A. Nanopoulos, Y. Manolopoulos, Memory-adaptive Association Rules
Mining, Information Systems 29, 5 (Jul. 2004), 365-384.

[19] S. Orlando P. Palmerini, R. Perego, F. Silvestri, Adaptive and Resource-
aware Mining of Frequent Sets, In: Proc. 2002 IEEE international Con­
ference on Data Mining (December 09 - 12, 2002). ICDM. IEEE Com­
puter Society, Washington, DC, pp. 338.

[20] F. D. Salim, S. Krishnaswamy, S. W. Loke, A. Rakotonirainy, Context-
aware Ubiquitous Data Mining Based Agent Model for Intersection
Safety, In: T. Enokido, L. Yan, B. Xiao, D. Kim, D. Dai, L.T. Yang
(Eds.), In: Proc. EUC 2005 Workshops: UISW, NCUS, SecUbiq, USN,
and TAUES, Nagasaki, Japan, (December 6-9, 2005). Lecture Notes In
Computer Science, vol. 3823. Springer-Berlin, Heidelberg, 2005, pp.61-
70.

[21] R. Shah, S. Krishnaswamy, M.M. Gaber, Resource-Aware Very Fast
K-Means for Ubiquitous Data Stream Mining, In: Proceedings of Sec­
ond International Workshop on Knowledge Discovery in Data Streams,
ECML 2005 and PKDD, 2005.

35

