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Abstract 

Ubiquitous computing software needs to be autonomous so that essential de­
cisions such as how to configure its particular execution are self-determined. 
Moreover, data mining serves an important role for ubiquitous computing 
by providing intelligence to several types of ubiquitous computing applica­
tions. Thus, automating ubiquitous data mining is also crucial. We focus 
on the problem of automatically configuring the execution of a ubiquitous 
data mining algorithm. In our solution, we generate configuration decisions 
in a resource-aware and context-aware manner since algorithm executes in 
an environment in which the context often changes and computing resources 
are often severely limited. We propose to analyze the execution behavior 
of the data mining algorithm by mining its past executions. By doing so, 
we discover the effects of resource and context states as well as parameter 
settings on the data mining quality. We argue that a classification model 
is appropriate for predicting the behavior of an algorithm's execution and 
we concentrate on decision tree classifier. We also define taxonomy on data 
mining quality so that tradeoff between prediction accuracy and classification 
specificity of each behavior model that classifies by a different abstraction of 
quality, is scored for model selection. Behavior model constituents and class 
label transformations are formally defined and experimental validation of the 
proposed approach is also performed. 
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1. Introduction 

Ubiquitous computing turned out to be today's prominent computing 
paradigm as a result of the advances in related technologies, especially, wire­
less, mobile and sensor technologies coupled with the dissemination of these 
technologies in prices affordable by large masses. Another important reason 
for the rise of this computing paradigm, is the availability of diverse appli­
cation areas which benefit ubiquitous computing. In a variety of ubiquitous 
computing applications such as ubiquitous health care systems, intelligent 
transportation systems and personal recommender systems, data mining is a 
preferred method for incorporating intelligence. Consequently, special con­
sideration should be given to ubiquitous data mining which is complementary 
for a number of ubiquitous computing applications. 

Ubiquitous computing defines an environment where resources for com­
puting are spread rather than centralized and moreover, ubiquitous com­
puting devices are operated most of the time by individuals who are not 
computer savvy and even devices lie unattended in the environment. Data 
mining, on the other hand, is notorious for high demand of computing re­
sources and often requires domain experts for tuning the process. Therefore, 
new principles and mechanisms for mining data on a platform consisting of 
restricted resource devices with versatile context where the expert interac­
tion is not available, are needed. In that respect, the essential features of a 
service providing ubiquitous data mining are resource and context-awareness 
as well as autonomous behavior and adaptability. 

We address the problem of automatic configuration of the execution of 
a data mining algorithm in a context and resource aware manner as a first 
step towards deploying an autonomous ubiquitous data mining service that 
adapts to changing conditions. It is important to note that , autonomous 
behavior of a service is a broader concept which also involves decisions about 
scheduling the service, prioritizing its execution and others along with auto­
matic parameter tuning. In this paper: 

• We propose to extract what we call the behavior model of a data min­
ing algorithm's execution for configuring its parameters and we define 
formally what constitutes a behavior model in a ubiquitous environ­
ment. 
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• We present a solution that is based on learning from past experiences 
for future configuration decisions which implies that the configuration 
decisions can be adapted to changing conditions. 

• We aim to propose a general-purpose solution for configuring ubiqui­
tous data mining and we impose no restrictions on the types of the 
algorithm parameters that we configure. On the contrary, it is possible 
to configure continuous parameters as well as categorical. 

• We analyze algorithm's execution conditions against the quality of the 
acquired results. For the analysis, a combination of multiple qual­
ity indicators is considered rather than individual ones and moreover 
the number of quality indicators may be extensive. Besides, behavior 
model classifies execution data on various measurements of quality in­
dicators. Thus, a single behavior model can be used for analysis of 
several performance criteria on a quality indicator. 

• We propose to use taxonomy of quality in order to find the most ap­
propriate behavior model which is balanced in terms of accuracy and 
specificity of classification. 

The rest of the paper is organized as follows: Section 2, is related work. 
In Section 3 we formulate the problem and present the proposed approach 
whereas Section 4 elaborates on solution by decision tree. In Section 5, we 
explain the experiment that we performed in order to validate of the proposed 
approach and finally, Section 6 presents the conclusion. 

2. Related Work 

Ubiquitous data mining has several application areas today. Examples 
include health-care, transportation, assisted living and commerce to name a 
few. We do not focus on a specific application area but on the contrary we 
contemplate on how to mine data on a ubiquitous computing environment 
in general. Our perspective on ubiquitous data mining is as follows: 

1. Resource-awareness: awareness of the resources that will be demanded 
by data mining, knowledge on how to measure the availability of the 
resources and how to optimize the use of the resources. 

2. Context-awareness: exploiting the variability of the context to achieve 
better mining results. 
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3. Autonomous behavior: taking the decisions related to self execution 
independently. 

4. Adaptability: adapting the decisions to the changing conditions. 

A number of studies has been proposed for ubiquitous data mining in 
resource constrained environments. Majority of these studies apply to data 
stream mining techniques. The resource-aware data mining presented in [8] 
is for data streams where output granularity is adapted to the data rate of 
the stream, available memory and time constraints. In a later study ([9]), 
the idea of adapting output granularity is defined within a generic framework 
for resource aware stream mining where input granularity and processing set­
tings of the algorithm are also adapted in a resource aware manner. A quality 
aware data stream mining specific to frequent itemset mining algorithm in 
[7] is able to adapt according to output quality as well as the resource con­
sumption patterns. At a recent work, a general model of resource and quality 
aware data stream mining is proposed in [13] where its applicability is shown 
by the use of an example clustering algorithm. There are also resource aware 
stream mining solutions that apply only to specific algorithms. In [14], a 
frequent itemset stream mining algorithm is presented that utilizes an adap­
tive memory scheme to maximize the mining accuracy for confined memory 
space. In [21], k-means algorithm is proposed for data stream clustering that 
is able to adapt to variations in memory availability. 

Another line of research focuses on adjusting parameters of stream mining 
by considering context. In [11], context aware mining of streams is proposed 
where parameters that control input and output as well as the process of 
the algorithms are adjusted dynamically and autonomously according to the 
changes in context and situations. The demonstration and evaluation of 
the framework for a health monitoring application also exists in the same 
study. A domain specific context-aware ubiquitous stream mining model for 
intersection safety can be found in [20]. 

Resource-aware and/or context-aware adjustments of parameters that are 
mentioned above are proposed for mining data streams where data arrive con­
tinuously in a rapid speed. Hence, proposed solutions are specific to data 
stream mining and some of them are applicable only to specific data stream 
mining algorithms. On the other hand, we anticipated that all types of data 
mining will be required by ubiquitous computing applications. For example, 
mining multi-media data on the mobile device for the organization of music, 
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picture and video files is one potential application area of ubiquitous data 
mining while data is not in streams ([16] [6] [17]). Similarly, there are other 
prospective ubiquitous computing application areas such as user profiling 
([10]), activity planning ([15]), personal health monitoring ([4]) where there 
is a need to apply machine learning or mining techniques on data which is 
not streaming but batch. Thus, we worked on a general purpose solution to 
automatize the configuration of data mining algorithm running on a ubiqui­
tous computing environment without imposing any restrictions on the type 
of data mining algorithm or parameters. 

There are a few number of resource aware algorithms for mining non-
stream data where the proposed algorithms adapt depending on the avail­
ability of a specific resource during its execution([3] [18] [19]). This approach 
which changes the algorithm's execution to optimize resource usage rather 
than configuring it has two drawbacks: solution is through a specific algo­
rithm and general use with other data mining algorithms is not possible, and 
does not handle the situations where more than one resource is constrained. 

The approach which we use for determining the configuration of data 
mining is quite different from the work given above such that we employ 
data mining to discover the appropriate parameter settings from the history 
of execution results whereas the proposed resource/context aware mining 
techniques do not use data mining methods. The reason we use a data mining 
technique for generating configuration decisions is twofold: to discover the 
effects of algorithm's parameters to the quality of its results and to be able to 
adapt the configuration decisions to the changing conditions. In our solution, 
configuration decisions are adaptable in the sense that if there is a change 
on the discovered effects due to a factor such as the growth of the data set 
which algorithm to be configured mines, new parameter to quality effects can 
be tracked by regenerating or updating the behavior model. 

In a previous work([2]) we used Bayesian Networks to represent the prob­
abilistic relationships among context, algorithm parameter settings and the 
performance of data mining. In this work, we use a more flexible data mining 
model, and extend our previous work by formalizing the behavioral model­
ing and provide a comprehensive analysis of the data mining quality through 
taxonomies. 
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3. Modeling the Behavior of a Data Mining Algorithm 

3.1. Problem Formulation and the Proposed Approach 
When deciding how to set the parameters of an algorithm for a specific 

run, in a ubiquitous computing environment, circumstantial factors (condi­
tions of the device's resources and the context in which the device is in) 
should be taken into account as well as the required quality. For this rea­
son, we grouped the relevant factors for the configuration as circumstance 
and quality. Formal definition of automatic configuration of ubiquitous data 
mining problem is as follows: 

C: Circumstance is defined by a set of ordered pairs (f,s) where / is either 
a resource or context feature and s is the state of this feature. 

Q: Quality is defined by a set of ordered pairs (q,l) where q is a quality 
feature and I is the required level for this quality. Quality features are 
metrics of efficiency or efficacy of the algorithm. 

P: Parameter settings constituting the configuration of the algorithm is de­
fined by a set of ordered pairs (p,v) where p stands for a parameter 
and v is the value it takes. 

/ : Let C and Q that are defined above, be the circumstance sensed and the 
required quality respectively, then automatic configuration for ubiq­
uitous data mining which is defined as P above, is obtained by the 
mapping: 

/ : Cx Q^P 

We propose to use data mining techniques to discover configuration of 
a data mining algorithm (P), aiming to attain the requested quality (Q), 
for the circumstance (C) observed when a data mining request is issued. 
Our approach is to analyze the past behavior of algorithm under different 
circumstances and learn the appropriate configuration(s) for data mining 
which satisfies the efficiency and efficacy requested. Thus a behavior model 
is created by mining data collected during past executions of the algorithm. 
Fig. 1 illustrates an overall view of the approach which consists of the fol­
lowing basic steps: 1. Collect relevant information during the execution of 
the algorithm, 2. Maintain a collection of past execution data, 3. Learn a 
behavior model from the past execution data, and 4. Use behavior model for 
automatic configuration of data mining. 
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Figure 1: Overall View of Automatic Parameter Setting. 

3.2. Execution Data 

Formal definition of execution data is given below: 

Definition 1. Let P(pi : Di,...,pn : Dn) be a relation schema defining a 
data mining algorithm's parameters pi; where 1 < i < n. Let dorrii be the 
set of values associated with the domain named Di. An instance of P that 
satisfies the domain constraints is a set of tuples with n fields: 
Pi = {<Pi '• di,...,pn : dn > \di G dorrii,...,dn G domn} 

Definition 2. Let C(ci : Di, ...,cn : Dn) be a relation schema defining con­
text and resource features (circumstance), Ci, where 1 < i < n. Let dorrii be 
the set of values associated with the domain named Di. An instance of C 
that satisfies the domain constraints is a set of tuples with n fields: 
Ci = {< ci : di, ...,Cn : dn > \di G dorrii, -.,dn G domn} 

Definition 3. Let Q(qi : Di, ...,qn : Dn) be a relation schema defining qual­
ity features, qi7 where 1 < i < n. Let dorrii be the set of values associated 
with the domain named Di. An instance of Q that satisfies the domain con­
straints is a set of tuples with n fields: Qi = {< qi : di, ...,qn '• dn > \di G 
dorrii, •••, dn G domn} 
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Table 1: Sample C, P and Q. 

A R M 

K-means 

C 

Ci 

P 

Pi 

Q 

Qi 

P 

Pi 

Q 

Qi 

Relational Schema 

( location : Idom, 
time : tdom, 
memory : mdom) 

Domain 

Idom = {indoor, outdoor} 
tdom = {sunset, midday, night} 
mdom = {x\0 < x < MAXMEM} 

{ < location : indoor, time : midday, memory : 500M >, 
< location : outdoor, time : sunset, memory : 10 K >, 
< location : outdoor, time : night, memory : 1G > } 

( minsupp : sdom, 
minconf : cdom) 

{ < minsupp : 0.5, minconf 
< minsupp : 0.5, minconf 
< minsupp : 0.5, minconf 
< minsupp : 0.6, minconf 

( memusg : udom, 
duration : ddom, 
model : odom) 

sdom = {IK|0.3 < x < 1} 
cdom = {IK|0.6 < x < 1} 

0.8 >, 
0.9 >, 
0.95 >, 
0.7 > } 

udom = {x\0 <x< MAXMEM} 
ddom = {x\0 < x < 1440} 
odom = {strong, weak} 

{ < memusg : 5K, duration : 10, model : strong > , 
< memusg : 730K, duration : 3, model : weak >, 
< memusg : 200M, duration : 125, model : strong > } 

( numClust : Cdom, 
seed : edom) 
max Iter : idom) 

Cdom= {x\l < x < 30} 
edom= {10,15,20,25,30} 
idom = {x\l < x < 50} 

{ < numClust : 5, seed : 10, max Iter : 5 >, 
< numClust : 5, seed : 15, max Iter : 5 >, 
< numClust : 5, seed : 20, max Iter : 5 >, 
< numClust : 6, seed : 15, max Iter : 5 > } 

( memusg : udom, 
duration : ddom, 
WCSS : wdom) 

udom = {x\0 < x < MAXMEM} 
ddom = {x\0 < x < 1440} 
wdom = {high,low} 

{ < memusg : 5K, duration : 10, WCSS : high > , 
< memusg : 730K, duration : 3, WCSS : low > , 
< memusg : 200M, duration : 125, WCSS : high > } 

Definition 4. Let E(a\ : D\,..., an : Dn) define a relation schema for execu­
tion related data. An instance of execution data E, named Ei, is the subset 
of the Cartesian product (cross product) of the instances Pi, Ci, Qi: 
£ j C P/ x d x Q7 

In Table 1, sample relational schemas for C, P, and Q together with small 
set of tuples as instantiations of each are given. For the given example, we 
assume that circumstance components (C) which may have an impact for 
the configuration decision of data mining are location of the device and the 
time of day when the data mining is requested as well as the free memory 
in the device. A number of possible circumstances are sampled in the set 
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Ci such that each tuple in Cj has a location, a time and a memory value 
chosen from Mom, Mom and mdom respectively. We based our examples on 
association rule mining throughout the paper for the coherence of explana­
tions. On the other hand, we propose general guidelines for configuring any 
data mining algorithm. For this purpose, we exemplify in Table 1, k-means 
clustering as well as association rule mining as the data mining algorithms 
to be configured. We assume that association rule mining algorithm (ARM) 
that we configure has minimum support and minimum confidence param­
eters whereas number of clusters, maximum number of iterations and seed 
which is the number to be used for initial assignment of instances to clusters 
are the parameters of k-means. Memory usage (memusg) and the run time 
(duration) of data mining are assumed to be the common quality metrics for 
both data mining. Interestingness degree of the model (model) and within-
cluster sum of squares (WCSS) are the data mining quality metrics of ARM 
and k-means respectively. 

3.3. Classification Models to Represent Behavior 

Predictive data mining is discovering from training data, patterns that 
can be generalized to forecast explicit values. Since, our approach for pre­
dicting future parameter settings is learning a model from past executions 
of the algorithm, we have chosen predictive data mining as the appropriate 
technique for discovering configurations. 

Classification is a predictive data mining type where a training set is 
used for discovering patterns to predict categorical values. We propose to 
use classification of execution data, E given in Definition 4 to create the 
behavior model of the data mining algorithm with the aim to use the model 
for predictive analysis of the algorithm's behavior. Thus past execution data 
of the algorithm is used as the training data required for supervised learning 
of classification methods. 

Efficiency of the data mining process and/or efficacy of data mining 
model, which will be referred as data mining quality thereafter, are the ob­
jectives of parameter settings for a particular execution of a data mining 
algorithm. For that reason, we analyze under different circumstances the 
effect of parameter settings on the data mining quality and thereupon we 
determine data mining quality as the class label to be predicted. 

We will first elaborate on the properties of the class label chosen while 
discussing the necessary transformations and later explain in detail behav­
ior model construction by using a specific classifier, decision tree. We have 

9 



chosen decision trees classifiers due to the following reasons: i) Behavior 
model is constructed on a ubiquitous computing device where lowest resource 
consumption is essential. Existence of several computationally inexpensive 
and fast decision tree construction algorithms makes decision tree classifier 
a suitable choice, ii) Data mining to be configured may have any kind of 
parameters. Decision trees can deal with continuous data as well as categor­
ical data so that every kind of data mining parameters can be configured, 
iii) In general, accuracy of decision trees is comparable to other classification 
techniques, iv) It is possible to extract classification rules from decision trees 
which provide a convenient way to infer configurations. 

3.4- Data Mining Quality as the Class Label 
Since we have determined to use classifiers for solving automatic param­

eter setting problem, data mining quality attributes (each ^ in Definition 3) 
are converted to categorical attributes. Formal definition of discretized data 
mining quality Q is as follows: 

Definition 5. Let QD(QI '• Di,...,qn : Dn) be a relation schema defining 
quality features, qi, where 1 < i < n. Let dorrii be the set of pairs (l,u) 
associated with the domain named Di such that each pair corresponds to the 
lower and upper boundaries of a bin interval after discretization. An instance 
of QD that satisfies the domain constraints is a set of tuples with n fields: 
QDJ = {< <?i : (l,u)1, ...,qn : (l,u)n > \(l,u)1 G dom1,..., (l,u)n G domn} 

In order to use data mining quality as the class label of the classifier, 
QD given in Definition 5 is converted to a unary relation having a single 
attribute (say g^). Next, we define the aggregation function to derive aggre­
gated data mining quality. The aggregation function, f& that will be used 
for this purpose may consist of arbitrary operations given that a single value, 
qA is obtained by making use of all other quality attributes qi, ,qn and /^ 
should be an invertible function so that qi, ,qn could be re-generated given q^-

Definition 6. Let QtuPle be a set containing any single tuple from QDJ . Let 
Qf^p be a singleton set containing a unary tuple. Aggregation function for 
data mining quality, f& is an invertible function that defines the mapping 
from Qtuple to Q^ given as: fA : Qtuple —>• Q^ 
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Finally, formal definition of aggregated data mining quality is as follows: 

Definition 7. Let QA(QA '• DA) define a relation schema for aggregated data 
mining quality and dorriA = RfA is the set of values associated with the do­
main named DA- An instance of aggregated data mining quality, QA that 
satisfies the domain constraints is a set of tuples with 1 field: 
QAJ = {< QA • dA > \dA e domA} 

4. Predicting the Behavior of a Data Mining Algorithm with De­
cision Trees 

We propose to use decision tree classifier to obtain a model that maps 
the attribute sets consisting of circumstance (Definition 2) and parameters 
(Definition 1) to the class label aggregated data mining quality (Definition 
7): 

f:CxP^QA 

On the other hand, QA which is a composite attribute formed by aggrega­
tion of a number of attributes may result in high number of classes preventing 
accurate classification. For this reason, we consider different abstraction lev­
els of data mining quality as possible class labels. 

4-1. Abstractions over the Class Label 

A hierarchical structure that shows the taxonomy of data mining quality 
attributes in QD is used to abstract the data mining quality: 

Definition 8. Data mining quality abstraction is composed of: 

• A tree structure T representing data mining quality taxonomy where 
QT is the node set of T and data mining quality attributes QD C QT 
are the leaf nodes. Let QG = {gi,92, •••} = QT — QD be the set of 
abstract data mining quality attributes. QG is partially ordered such 
that a quality attribute in QG comes before its parent in T. 

• Domain sets gidom of each Qi G QG-
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Table 2: Relation Schema: Discretized Data Mining Quality. 

QD 

Relational Schema 

( avgjmem : adorn, 
maxjmem : mdom, 
prccycles : cdom, 
%jprc : pdom, 
batteryjusg : bdom, 
support : sdom, 
confidence : fdom) 

Domain 

adorn = {(0, 100000), (100001, 1000000), (1000001, 10000000) 
mdom = {(0, 250000), (250001, 4000000), 

(4000001,10000000)} 
cdom = {(0, 200K), (200K, 4M), (4M, 10M), (10M, 20M) 
pdom = {(0, 45), (46, 80), (81, 100)} 
bdom= {(0,25), (26, 100)} 
sdom= {(0,0.50), (0.51,0.80), (0.81, 1)} 
fdom= {(0,0.89), (0.9, 1)} 

Mappings to higher levels of abstractions: 

QProcessor = {prccycles, %-prc} 
cdom X pdom —» Processordom 
QMemory = {avgjmem, maxjmem} 
adorn X mdom —» Memorydom 
QResource = {Processor, Memory, batteryjusg} 
Processordom X Memorydom X bdom —» Resourcedom 
Q Model = {support, confidence} 
sdom X cdom —» Modeldom 
Qoverall = {Model, Resource} 
Modeldom X Resourcedom —» Overalldom 

Domains of abstract data mining quality: 

Memorydom = {VeryLow, Low, Average, 
High, VeryHigh} 

Processordom = {VeryLow, Low, 
Average, High, VeryHigh} 

Resourcedom = {Low, Average, 
High, VeryHigh} 

Modeldom = {Low, Average, High} 
Overalldom = {Good, Bad} 

• Stepwise mappings to higher abstract levels. 
For each gi G QG where i = 1,..., | QG \: 

— Let Q9i be the successor set of gi in T. 

— Every combination of elements from the domain sets of Q9i is 
mapped to the domain values of gi such that: 
f9i : qidcmn x q2dom x .... x q\qg,\dom —>• gidom 
where qidom is the domain set of i'th member of Q9i. 

Data mining quality abstraction given in Definition 8 is explained by the 
following example. Discretized data mining quality schema, QD in Table 2 
is used in the example to define usage measurements of device's resources 
such as memory (avgjmem, max-mem), processor (prc-cycles,%-prc) and 
battery (batteryjusg) by the data mining process as well as the calculations 
obtained from the data mining model such as confidence and support. Fig­
ure 2 is the data mining quality taxonomy where the leaf nodes are the 
"actual" data mining quality features (QD) whereas interior nodes are the 
quality abstractions (QG)-

The domains (gidom) of abstract data mining quality features which are 
the generalizations of the Memory, Processor and Resource usage as well as 
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Figure 2: Data Mining Quality Taxonomy Specific to Association Rule Mining 

the data mining Model and Overall quality are shown in Table 2. Successor 
sets of abstract data mining quality features (Q'processor, QMemory and so on) 
are derived from the taxonomy T according to Definition 8. The values of 
the features in its successor set determine the value of abstract feature. For 
this reason, each combination of values from the domains of the features in 
the successor set of an abstract feature is mapped to a value in its domain. 
For example, when average memory usage and maximum memory usage are 
in the range (0,100000) and (250001,4000000) respectively, then Memory 
usage of the process is Average, is a possible mapping that gives the value of 
an abstract data mining quality feature based on the quality features in its 
successor set. The appearance order of successor sets in Table 2 follow the 
partial order that is determined from the taxonomy T. 

Next, we will use the relational schemas, relations and functions that are 
defined to establish a method for constructing adequate behavior model(s) 
for algorithm configurations. 

4.2. The AS/BM Strategy 

We propose to abstract data mining quality using Definition 8 into sev­
eral class labels resulting in more than one candidate behavior model for 
predicting algorithm configurations. In that respect, we propose a strategy 
that we call AS/BM (Accuracy Specificity Balanced Behavior Model Selec­
tion) in which we aim to find a tradeoff between estimated accuracy and 
classification specificity by ranking the possible behavior models that can 
be generated using different abstractions of data mining quality as the class 
label attribute. AS/BM has the following phases: 
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ENUM : Enumerate possible class label attributes based on data mining 
quality taxonomy. 

SCRN : Apply a pre-screening to possible class label attributes for elimi­
nation of inappropriate ones for classifications. 

CONS : Construct a separate model in the form of decision tree by using 
each enumerated class label attribute that passes pre-screening. 

EVAL : Evaluate the performance of the models by observing the accuracy. 

MSEL : Select the most appropriate model by taking into account accuracy 
and specificity of classification provided by the models. 

We first ENUMerate the class label attributes sets and obtain Lset. 

Definition 9. Given a data mining quality taxonomy (T) and successor sets 
for abstract quality attributes (Q9i), Lset = {h,l2, •••} which is the set of class 
label attributes sets enumerated from data mining quality taxonomy (T) is 
obtained as follows: 

1. Initially Lset = {QD} and Oset = {QD}. 

2. Repeat a — c below until \ Oset |= 0 

(a) Repeat for each Ok in Oset (where k = 1,.., | Oset \), 

i. form a new class label attributes set by replacing successors 
of an abstract quality attribute with itself, e.g. {a,q3,...} is 
formed from ok = {qi,q2,q3---} if Qa = {<?i,<?2}-

ii. repeat step (i) until all possible abstractions for ok is done. 

(b) Union the class attribute sets formed in (a) to Lset. 

(c) Replace Oset with the class attribute sets formed in (a). 

Set of class label attributes sets (Lset) shown in Table 3 is enumerated 
according to Definition 9 from the data mining taxonomy given in Figure 
2. Group of sets that is placed between a pair of horizontal lines in the 
table corresponds to the sets merged to Lset after each iteration of line (2) in 
Definition 9 and also constitutes the contents of Oset for the next iteration. 
Abstract data mining quality features that are replaced in the last iteration 
are shown in bold in the table. 
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Table 3: Lset: Set of possible class label attribute sets. 

{{avgmem, maxmem, prccycles, %prc, batteryusg, conf, support}, 
{Memory, prccycles, %prc, batteryusg, conf, support}, 
{avgmem, maxmem, Processor, batteryusg, conf, support}, 
{avgmem, maxmem, prccycles, %prc, batteryusg, Model}, 
{Memory, Processor, batteryusg, conf, support}, 
{Memory, prccycles, %prc, batteryusg, Model}, 
{avgmem, maxmem, Processor, batteryusg, Model}, 
{Resource, conf, support}, 
{Memory, Processor,batteryusg, Model}, 
{Resource, Model}, 
{Overall}} 

Next, we augment Ei with abstract data mining quality attributes and 
subsequently with class labels which are the abstract data mining quality 
attributes aggregated according class label attributes sets in Lset. 

Definition 10. Definitions of abstract data mining quality relation schema 
(G), aggregation function for class labels (fALi) and class labels relation 
schema (QAL) are in order: 

• Abstract data mining quality 
Let G(gi : D\, ...,gn : D\QG\) be a relation schema defining abstract data 
mining quality such that Qi G QG-
GI for a particular QDJ is a set of tuples with \QG\ fields such that f9i 

given in Definition 8 maps successors of g^ (QgJ to g^ in QDJ-

• Aggregation function 
Let Lset = {h,l2, •••} be the set of class label attributes set enumerated 
from T (Definition 9). 
fALi (fori = 1,..., \Lset\) is an invertible function that aggregates tuples 
in QDJ and Gi based on class label attributes in U. 

• Class labels 
Let n = \Lset\ and QAL^H • Dah,qah : Dah, ...,qain : Datn) define a 
relation schema for class labels and dam^ = RfAL. is the set of values 
associated with the domain named Dait. 
QALI for a particular Q^I and Gi is a set of tuples with n fields such 
that fALi 9i>ven above maps attributes in U to qait. 
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We consider model's accuracy as well as the classification specificity that 
the class label attribute provides when choosing the most adequate class label 
attribute for the behavior model. Since the accuracy of the model can be 
assessed once it is built, we pre-screened the class label attributes by using 
a test in order to reduce the number of decision trees needed. One of the 
known reasons for the model with high error rates is to use a training set 
with insufficient number of instances per class. SCRN (Algorithm 1) tests 
whether the number of instances per class for each class label attribute set 
in Lset is sufficiently large and eliminates the ones that contain high number 
of classes with small number of instances in Ej. 

Algorithm 1 SCRN 
Require: Class label attributes are enumerated 

{Input is L s e t , QALJ } 
{Output is Sset, Q A S J } 

1: Sset 4— {} {Screened set of class label attributes sets} 
2: Sattr •<— {} {Screened attributes from QAL} 
3: recs 4— gcount(QALi) {Total number of instances} 
4: tjj •<— threshold {Number of instances in a class} 
5: t% •<— thresholdjpercent {Number of instances in a class as % of recs} 
6: n •<— number of ..classes Jbelow -threshold 
7: t •<— smallerjjj'(threes *t%) 
8: for k = 1 to |L s e t | do 
9: J, thresh •<— 0 {Number of classes below threshold} 

10: for i = 1 to \domaik | do 
1 1 : alfii «— member(domaik,i) 

{Returns the i class in the domain} 
1 2 : C^gcourA<7qalk=alk.(QALI)) 

13: if c < t then 
14: I thresh + + 
15: end if 
16: end for 
17: if J, thresh > n then 
18: Saet «- Saet U member(Laet,k) 
19: Sattr 4- Sattr

 U 9aifc 

20: end if 
2 1 : end for 
22: QASl ^- nsattr (QALT) 

SCRN returns Sset and QASJ which are the set of pre-screened class label 
attributes sets and projection of pre-screened class labels on QALI respec­
tively. Let relation schema of QASl be QAs(qaS1 • Dasi,qaS2 : DaS2,..., qaSn : 
DaSn) where DaSi is the name of the domain set of qaSi. 

As a result of classification of execution related data by decision tree 
using each qaSi as the class label attribute, the number of models that are 
CONStructed is \Sset\ : 
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Each Mi is EVALuated separately by using accuracy as the performance 
metric. Let Sset = {si,S2,---} be the screened set of class label attributes 
sets. Mi is the model obtained by classifying on the class label attribute qaSi 

which is the aggregation of attributes in the set Sj. Accuracy of Mi (acci) is 
estimated by k-fold cross-validation method where training and testing are 
repeated for k times. 

Algorithm 2 MSEL 
Require: Enumerated class labels are screened and QASJ ls produced. 

{Input is T, Sset , Ej, QASJ , coef ficient} 
{Output is M } 
maxscore •<— 0 
tops 4— returnJinestspecificitydegree(T) 
choose •<— 0 
for i = 1 t o |iSset| do 

Si •<— member (Sset, i) 
{Estimate accuracy when Si is the class label} 

6: accuracy-(^ EVAL(EJ,QASJ, Si) 
7: specificity •<— 0 
8: for j = 1 t o I Si I do 
9: qualjittr •<— member(si,j) 

{Returns the j attribute in class label set} 
10: I •<— taxonomyJevel(T,qual_attr) 

{Returns the attribute's level in the taxonomy} 
1 1 : specificity •<— specificity + I 
12: e n d for 

{Normalize specificity degree } 
13: specificity •<— specificity/tops * 100 

{Calculate score of classification by Si } 
14: score •<— accuracy + specificity * coefficient 
15: if score > maxscore then 
16: maxscore •<— score 
17: choose •<— i 
18: e n d if 
19: e n d for 

{Build a decision tree with highest scored class label} 
20: M 4- BUILD(EIt schoose, QASl) 

Specificity of classification by qaSi which is the aggregation of quality 
attributes in Si, is calculated by making use of Sj's every attribute's level 
in data mining quality taxonomy (T). MSEL (Algorithm 2) evaluates the 
model constructed for each s» by estimating the model's predictive accuracy, 
quantifies the specificity that s» provides and computes a score for Sj. A 
coefficient is added in the formula that computes the score so that the weights 
of the two factors contributing to the score can be adjusted. Behavior model 
that will be used for extraction of data mining algorithm's configuration, is 
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built using the class label which is scored highest in terms of accuracy and 
specificity of classification. 

5. Experimental Evaluation 

This section explains the experiments that we have performed in order 
to show the applicability of the proposed approach for obtaining a behavior 
model that can be used for recommending data mining configuration. The 
objectives of the experimental evaluation are: i) compare in terms of ac­
curacy and specificity, the behavior models that classify execution data by 
different data mining quality abstractions extracted from a taxonomy, ii) as­
sess the appropriateness of the heuristic used for pre-screening, iii) assess the 
configuration decisions derived from the behavior model. 

5.1. Experiment Setup 

We have developed a software that we call execution data generator to 
generate experiment data. Execution data generator (EDG) collects exe­
cution related data (E) for the experiment by running the data mining al­
gorithm with various configurations under various circumstances created by 
EDG. 

5.1.1. Execution Data Generator Architecture 
Main task of EDG is to run a data mining algorithm and to collect rel­

evant data from algorithm's each execution. EDG also creates the planned 
bottlenecks on the device's resources before running the algorithm. 

We have chosen well known association rule mining algorithm, Apriori 
([1]) as the sample algorithm that is run by EDG for the experiment. Data 
generator software consists of JAVA programs (Figure 3) except the bottle­
neck creator modules which are C++ programs. Apriori is run by calling 
Weka ([12]) API's within EDG. 

EDG input {preset file). Each record in preset file defines a particular 
execution of Apriori and contains associated context data for this execution, 
resource bottleneck requests, data set to be mined and configuration of Apri­
ori. Resource bottleneck requests state the amount of memory and/or pro­
cessor consumption in the device by the workload other than Apriori during 
execution. 

EDG output {execution file). A record which consists of circum­
stance (C), parameter (P) and quality (Q) attributes is written for each 
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Runnable 
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+LoadData() 
+RunAlgorithm() 

Preset 

Figure 3: Class descriptions of EDG. 

execution of Apriori. EDG output is real data collected before, during and 
after Apriori execution such that the gauges showing resources' availability 
when Apriori was run, actual resource usages by Apriori, quality indicators 
from the data model generated and Apriori configuration are stored in C, Q 
and P attributes respectively. 

Briefly, EDG reads a record from the preset file, generates the resource 
scarcity conditions if the given circumstance requires and runs Apriori with 
the given parameters. For example, if the stated resource state is the scarcity 
of memory, EDG starts dummy processes to use up the memory in order to 
run Apriori in memory constrained situation. Upon completion, an execution 
record which is populated by real statistics collected during the execution of 
Apriori, is created. 

Class descriptions of EDG are shown in Figure 3. There is a graphical 
interface (GUI) to set the name of the preset file and the execution file 
as well as to start the data generation. PresetParser is used to parse the 
contents of preset file and responsible for invoking bottleneck creators to call 
some " dummy programs" that will consume the requested amount of related 
resource. TestQueue is typically a queue that contains Algorithm instances. 
AprioriTest represents tests of the Apriori algorithm and implements the 
interface Algorithm, thus its instances can be added to TestQueue. ProcStats 
performs the gathering of performance statistics before, after and during the 
execution of the algorithm tests. Specific system metrics related to memory 
or processor usage are gathered using specific methods. This class is designed 
as an independent cohesive unit to measure performance metrics, gather 
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Table 4: Experiment Fact Table. 
1 
2 

3 

Data Mining Algorithm 
Number of configurable parameters 

Apriori 
5 

Mining Size Number of Number of 
data set (in bytes) attributes instances 

4,955,737 11 325,610 

Circumstantial Settings 
4 
5 

6 
7 
8 

9 
10 

Number of context features 
Number of resource features 

2 (ci,c2) 
2 (c3,c4) 

C\ C2 C'i C4 

Number of states 6 5 3 3 
Number of situations 
Number of repetitions of a situation 

Number of configuration templates 
Number of configurations generated 

150 
10 

30 
1500 

Data Mining Quality Results 
Resource Data mining 
usage model 

11 Number of attributes 5 3 

system information and statistics. 

5.1.2. Experiment Data 
Experiment data was generated using the execution data generator that 

we have designed and implemented. We have collected 1500 execution records 
of Apriori by running the algorithm through EDG. Figures related to exper­
iment setup are shown in Table 4. We chose five of the parameters Weka 
receives for Apriori API's as configurable parameters (line 2 in Table 4) and 
eliminated the parameters that are not subject to tuning. Throughout the 
experiments, we have used the same mining data set whose properties are 
given in line 3 in Table 4. 

We incorporated circumstantial factors into the experiment as we were 
generating data for a ubiquitous computing environment. Two context fea­
tures (ci and c2) with six and five states respectively as well as two re­
sources features (c3 and c4) each having three states, were used in the ex­
periments (line 4 through 6 in Table 4). We selected arbitrary names for 
the features aiming a neater presentation. On the other hand, it is pos­
sible to associate them to any ubiquitous computing application domain. 
For example, the following context features and state sets may be used: loca­
tion {indoor — con fined space, indoor — highroof, outdoor — urban, outdoor — 
landscape, outdoor—forest, outdoor—coast} and time {sunset, midday, night, 
sunrise, other} instead of c\ and c2. Likewise, resource features can be as-
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Figure 4: Cube of circumstances. 

sociated to available memory and processor idle percentage with a state set 
such as {plenty, sufficient, scarce}. 

During the experiments, we formed one hundred and fifty different cir­
cumstances by combining different context and resource states and we setup 
EDG to execute Apriori ten times for each circumstance (line 7 and 8 in 
Table 4). 

We associated to every possible c\ and C2 state combination a configu­
ration template which was used for setting the parameters of Apriori that 
would run in the associated context states. In a configuration template, ei­
ther an interval of values or an exact value is used as a setting of a parameter. 
When an interval of values is used as a parameter setting, a random num­
ber within the given interval was generated by the PresetParser to be used 
as the setting of the associated parameter. Consequently, we coded thirty 
different configuration templates containing intervals in the preset file but 
the number of different configurations that EDG generated and used while 
running Apriori was a lot more since EDG generated the settings randomly 
within the given interval (line 9,10 in Table 4). 

Generally, in order to determine how to set the parameters of an algo­
rithm, we need to know the objectives of running the algorithm. In our case, 
we need to know the requirements of the context so that we can determine 
the parameter settings in its configuration template. For this reason, we as­
sociated context states with data mining model and processing requirements. 
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Figure 4 shows the data mining model and processing requirement assump­
tions that we made on c\ (ci-coordinate of the cube) and c2 (c2-coordinate 
of the cube). For example, first state of C\ implies to generate a data mining 
model with many association rules, second state of C\, a data mining model 
consisting of rules bearing high certainty and so on. After then, we heuristi-
cally determined intervals or exact values of parameters in the configuration 
templates of the context state based on each of their requirements. 

Resource constraints dimension in Figure 4 shows the resource states sim­
ulated by EDG during the experiment. c3's and c4's all state combinations 
were not used instead a subset of c3's and c4's states were selected to cre­
ate five resource constraints for the experiment. In order to produce scarce 
memory condition, we setup EDG to consume all the memory leaving only 
an amount which is equal to 10% of the size of the data set to be mined 
whereas for sufficient memory available memory left was equal to 50% of 
the size of the data set to be mined. At CPU bottleneck and sufficient CPU 
situations 10% percent and 70% of available CPU were left respectively. 

We run Apriori under every resource state given in Figure 4 ten times 
with each configuration generated from every configuration template of c\ 's 
and c2's state combinations. Hence, we produced 1500 execution records. 

Finally, c3 and c4's (resources') usage measures by Apriori and quality 
indicators from the data mining model generated by Apriori were collected 
by EDG to constitute the base for the class label formation (line 11 in Table 
4). In the next subsection, we explain in detail the transformations made on 
the data mining quality and the taxonomy used in the experiment. 

5.1.3. Data Mining Quality Transformations and Taxonomy 

In the execution data of Apriori, we had eight quality attributes that 
we applied discretization, aggregation and abstraction operations in order to 
produce the class labels for decision tree. Let Q(qm : A , 9 i i 2 : A,<?i2i • 
A,<?i22 : A,<?i3 : D5,q2U '• D6,q2i2 • D7,q22 : A ) be the relation schema 
defining the quality attributes in the execution file of the experiment. 

Firstly, we discretized each quality attribute since associated domains of 
each Di,i = 1, ...,8 were continuous. Nominal values for class label attributes 
were obtained by using unsupervised discretization filter of Weka. There 
are two strategies for discretization: equal-interval and equal-frequency bin­
ning.We have chosen equal-intervals for the bins because data mining quality 
ranges which have low number of tuples are better preserved compared to 
equal-frequency binning. For example, with equal-interval binning, the min-
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Figure 5: Data Mining Quality Taxonomy Used in the Experiment 

imum range of memory usage observed as the result of the executions is 
preserved as a separate bin even though the number of executions that use 
memory in the minimum range is not high. Additionally, rather than using a 
constant value for the number of bins, we preferred the well-known method, 
entropy-based discretization that utilizes entropy of intervals to determine 
the number of bins. As a result, data defined by Q was transformed to 
comply with QJJ given in Definition 5. 

Secondly, we aggregated the attributes in Qn to generate aggregated 
data mining quality which is defined by QA (Definition 7). The aggregation 
function that we used consists of three simple steps: i) encode bins in the 
associated domain of every QD'S attribute with ordinal values, ii) find the 
ordinal value for every tuple's every attribute in QDU hi) concatenate in the 
order they appear in QD, all the attributes' ordinal values of each tuple in 

QD!-

Next operation on experiment data, is to generate the abstract data min­
ing quality attributes. Data mining quality taxonomy given in Figure 5(a) 
was used for this purpose. We again prefer to use symbols instead of the 
names describing the execution file attributes and the abstract attributes. 
On the other hand, corresponding attribute names can be found in Figure 
5(b). As can be seen in Figure 5(a) abstract data mining quality attributes 
are QG = {q, Qi, Q2, Qn, Q12, Q2, Q21, 922}- First of all, domain of each abstract 
data mining quality attribute in QG was determined. Afterwards, mappings 
from the domains of the attributes in the abstract data mining quality at­
tribute's successor set to its domain were defined for each element of QG- For 
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Figure 6: Mappings from Successor Set Domains to Abstract Domains 

these mappings, we used either a two or three dimensional coordinate system 
depending on the number of attributes in the successor set of the abstract 
data mining quality attribute (Figure 6). The axes of each coordinate sys­
tem were labeled by the ordinal values assigned to the bins in the domains 
of the attributes in the successor set. The space represented by the coordi­
nate system was divided into areas in two dimensional coordinate system and 
into cuboids in three dimensional coordinate system where each area/cuboid 
was assigned a corresponding value from the domain of abstract data mining 
quality. Figure 6(a) shows how we mapped the domains of g m and qn2 to 
the domain of qn. Both g m and gm have nine bins in their domain sets. 
The ordinal values that are associated with the bins label the axes. For this 
example, we combined three consecutive bins from the domains of each at­
tribute (gm and (/ii2) to map to a member in the domain of qn. In this 
way, we reduced the size of gn ' s domain from eighty one to nine. Similarly, 
Figure 6(b) shows how three domains are mapped. Afterwards, we used the 
mappings to generate the abstract data mining quality {G in Definition 10) 
for execution file. 

Finally, fifteen class label attribute sets were enumerated in Lset from the 
taxonomy (Definition 9). In the execution file, the ordinal values of attributes 
in each of the fifteen class label sets were aggregated and fifteen alternative 
class label attributes were formed (QAL in Definition 10). 
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Figure 7: Analysis of Decision Tree Models 

5.2. Experiment Results 

During the experiments, transformed content of the execution file was 
classified by building a separate decision tree for each of the fifteen class 
label attributes obtained from each member of Lset. J48 classifier of Weka 
was used for classification. 

5.2.1. Analysis of AS/BM Strategy 

We first analyzed the decision tree models to justify that data mining 
quality abstraction was necessary and also to understand the significance of 
finding a model balanced in terms of accuracy and specificity. For this pur­
pose, we compared the accuracies of the decision tree models which classify 
experiment data by various data mining qualities. The specificity degree 
versus the accuracy for each decision tree model is plotted in Figures 7(a). 
Decision tree's specificity degree which was computed by using Algorithm 
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2, indicates the specificity of the information that the class label attribute 
has. The decision tree specificity degrees in Figures 7(a) were normalized by 
dividing to the specificity degree of the decision tree that had the highest 
specificity. In Figure 7(a), training accuracy as well as the accuracy com­
puted by using ten-fold cross validation were plotted. As usual, training data 
accuracy is higher than generalization accuracy estimated by cross validation. 

General trend observed in both of the plots is that the accuracy of the 
decision tree increases as its specificity degree deteriorates. Accuracy derived 
after ten-fold cross validation is very low for some of the decision tree models. 
Clearly, if the model that provides most specificity was used for configuration 
decisions, without leveraging its accuracy by abstracting a subset of the data 
mining features, predictive accuracy would be very low. Hence, we conclude 
that abstraction of data mining quality is necessary. 

However, accuracy is not always better when specificity is less. If a model 
having an average specificity without estimating its accuracy, is chosen by 
assuming that it will provide an average accuracy, it is a possibility to have 
the lowest accuracy. Therefore, considering only the specificity of the model 
when choosing the most appropriate decision tree for parameter configuration 
is not sufficient. These results are in accordance with our predictions and 
explain the reason why we proposed our AS/BM strategy to choose a model 
that possesses a balanced amount of accuracy and specificity. 

5.2.2. Analysis of the Pre-Screening Presumption 
Decreasing the number of decision tree constructions is the main reason 

for pre-screening. However decision trees are eliminated without estimating 
accuracy in the pre-screening phase. In this section, we question whether 
among the pre-screened ones are there decision tree models which have high 
accuracy-preciseness scores. 

While pre-screening we presumed that the predictive accuracy of a deci­
sion tree is low if the associated class label attribute contains a high number 
of (garbage) classes that do not have representative examples in the training 
data. To validate the presumption, we contrasted decision tree models in 
terms of the number of class labels they have and their accuracy. In Fig­
ure 7(b), we plotted the decision tree models' accuracy figures derived from 
training data and computed by ten-fold cross validation respectively against 
the number of classes each decision tree possess. According to the results, ac­
curacy generally deteriorates as the number of classified class labels increases 
which complies with the presumption. 
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Figure 8: Effect of Garbage Classes on the Model's Accuracy 

Furthermore, we applied the pre-screening criteria given in Algorithm 1 
to determine the class label attributes that we expected to classify poorly due 
to high number of garbage classes. In Figure 8, we compare the predicted 
accuracy figures of the decision tree models against the number of garbage 
classes their class label attributes have. In general, it is possible to say that 
there is an aggravating effect of garbage classes on the accuracy. 

We also computed the score of each decision tree model by using Algo­
rithm 2. The following list ranks the decision tree models by their score: 

(8,12,2,6,15,5,14,10,9,13,1,4,3,7,11) 

Final observation supporting pre-screening presumption is that, five out 
of six class label attributes that are most likely to be eliminated by pre-
screening (first six bars in Figure 8) are among the class label attributes of 
six worst scored decision tree models. Hence, it is possible to say that pre-
screening eliminates the decision trees that are very unlikely to be selected 
as the appropriate model for configuration decisions by Algorithm 2. 

5.2.3. Assessment of Configuration Decisions 
In this part of the experiment, we derived configuration decisions from the 

selected decision tree model and subsequently we used the derived configura­
tions to configure Apriori. The purpose of this experiment is to compare the 
quality attained by Apriori executions which were run by a derived configu­
ration against the quality that is predicted from the decision tree model for 
the derived configuration. We accomplished this experiment in three main 
steps: 
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Extract Configuration. For configuration extraction, the decision tree model 
that classifies by the aggregation of the attributes in the set {q\, 5211, 9212, Q22} 
was used since it was found to be the highest scored model. We obtained 
decision rules from the decision tree model (that will be referred as dt8 there­
after) so that data mining quality class memberships of configurations are 
logically represented. An example decision rule which consists of parame­
ter setting predicates and the corresponding aggregated data mining quality 
class, is as follows: 

PA < = 0.668 AND P2 > 0.879 AND P5 > 0.324 AND 

P5 < = 0.429 AND PA > 0.526 AND P2 < = 0.976 : 19552 

Note that, reverses of the data mining quality class abstraction and ag­
gregation functions (Section 5.1.3) applied respectively to the data mining 
quality class give the individual quality predictions by the decision rule. For 
instance, the predicted data mining quality (19552) for the configuration in 
the example decision rule indicates high support, high confidence model hav­
ing number of rules below average obtained by average memory and high 
CPU usage within a short execution time. In fact, data mining quality pre­
dictions are associated to the cube of circumstances given in Figure 4 because 
we executed Apriori for the circumstances in Figure 4. For example, data 
mining quality (19552) must be attained under the circumstance where high 
certainty rules (c\ = 2) having highest degree of usefulness (c2 = 1) are 
needed in spite of the CPU bottleneck (C4 = 1) and barely sufficient memory 
(cs = 2) conditions in the device. The number of decision rules formed from 
dt8 is 144 bearing 116 different classes. 

In order to use for Apriori configuration in the next step, we formed a 
configuration template from each decision rule related to a circumstance in 
Figure 4. Parameter settings in a configuration template are ranges of val­
ues where boundaries are constituted by either the existing predicates in the 
decision rule or the highest/lowest possible settings of the parameters when­
ever predicate for the boundary is nonexistent. Although resource usage was 
abstracted in dt$, we obtained fine usage figures for memory and processor as 
well as the duration of the data mining process after decoding q\ so that we 
generated recommendations for specific resource usages rather than overall 
resource usage. When multiple decision rules were obtained for the same 
circumstance, we eliminated the ones other than the decision rule that has 
the highest number of classified instances. 
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Figure 9: Recommendation Assessment Charts 

In short, we extracted configuration templates that each one is predicted 
to achieve a specific data mining quality in this step. 

Execute Apriori with Derived Configurations. The configuration templates 
extracted in the previous step were used to configure Apriori while running 
it via EDG. During the verification runs of Apriori, if the corresponding de­
cision rule indicated a circumstance, that circumstance was simulated while 
executing Apriori. In this step, Apriori was run 724 times until sufficient 
number of executions resulting in designated data mining quality were col­
lected. 

Verify the Configuration Decisions. In the final step, we assessed the appro­
priateness of configuration decision rules. For this purpose, we made use 
of the quality measurement figures collected during the Apriori runs in the 
previous step. As we did when forming the class labels for the decision tree 
model, we abstracted and aggregated the data mining quality attributes in 
these execution records using the functions given in Section 5.1.3 to form the 
"realized" data mining quality. Afterwards, we compared the "realized" data 
mining quality of each Apriori that ran with a configuration derived from a 
decision rule against the data mining quality class of the same decision rule. 

Percentages of successful recommendations for a sample set of data mining 
quality classes are given in Figures 9(a). We selected a representative sam­
ple of classes to illustrate different levels of data mining quality objectives 
achieved. Percentages are plotted for each individual data mining quality 
attribute in the set {gi, g2n, ^212, to} as well as the combined model quality 
q2 which is the aggregation of attributes in the set {^211,̂ 212, to} • We tested 
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the equality of "realized" data mining quality and its class while calculating 
the percentages. On the other hand, "realized" resource usages (q\) of the 
classes given in Figure 9(a) always indicated lesser consumption than their 
respective classes from which the recommendations were formed. Therefore, 
it is reasonable to accept that the resource usage objectives of the recom­
mendations are satisfied. For this reason when plotting the percentages of 
successful recommendations in Figure 9(a), we considered all recommenda­
tions were successful in terms of resource usage (qi). 

Percentages of successful recommendations in overall are given in Fig­
ure 9(b) in which the percentage of the Apriori executions which achieve 
the objective of the parameter settings are grouped by the relevant quality 
measurement. In Figure 9(b), when calculating the successful recommenda­
tion percentages, we looked for an exact match between the "realized" data 
mining quality and the data mining quality class of its configuration deci­
sion rule. Although the percentage of executions that do not satisfy resource 
usage objective is around 19%, only 2% of the recommendations results in 
higher resource consumption (qi) than the designated objective which means 
that better resource usage were achieved. 

We proposed a mechanism to automatize data mining configuration based 
on the argument that a specific circumstance requires a specific data mining 
quality. As the final step of verification, we compared the experiment re­
sults to a baseline where there is no automatization but default values were 
used for parameter settings. For this purpose, we ran Apriori with the de­
fault settings of Weka and collected resource usage and resulting data mining 
model quality indicators to form a baseline. When compared to the baseline, 
Apriori executions that had been configured in the experiment (using dt8) 
to optimize the related resource had 20% less memory usage and 88% less 
cpu usage. Also, when run with a dt$ derived configuration with the ob­
jective to minimize the runtime of data mining, the elapsed time of Apriori 
had been 90% less compared to the baseline. Minimum support and mini­
mum confidence of the data mining model generated by Apriori with default 
configurations were 0.4 and 0.91 respectively. On the other hand, if either 
highest support or highest confidence rules are required, configurations de­
rived from dtg generated data mining models with minimum support value of 
0.8 and minimum confidence value of 1 respectively. If the parameters of data 
mining are not tuned, it is a possibility that data mining could not produce 
any model. In our case, although the default settings of Apriori resulted in 
a model, the data mining quality obtained was far below the figures that we 
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had obtained by running Apriori with the configurations derived to optimize 
a specific resource usage or data mining quality indicator. 

5.2.4- Impact of the Proposed Approach on Android Device's Resources 
In this section, we assess the overhead of behavior model generation and 

its deployment to the system. Every configuration of data mining does not 
trigger the generation of a new behavior model, on the contrary, behavior 
model is generated once and is deployed repeatedly until it decays. The decay 
of the model can be assessed by comparing the data mining quality realized 
against the data mining quality predicted. 

The overhead of behavior model deployment is minimal since the worst 
case complexity of classifying by data mining quality from a behavior model 
at hand is 0(d), where d is the depth of decision tree. The depth of the 
decision tree that we used in the experiment (dt$) was 16 which implies 16 
accesses at most for each configuration recommendation. 

On the other hand, since behavior model generation is much more com­
putationally intensive, we evaluate the feasibility our approach by measuring 
the behavior model generation although it is expected to run much less fre­
quently. For this reason, we constructed the decision tree models on an 
Android device which runs one of the prominent mobile operating systems. 
The Android device that we used for this purpose is Sony Xperia Tablet Com­
puter, SGPT12 model. Operating system installed on the device is Android 
4.0.3, kernel version 2.6.39.4. The tablet runs on a 1.4GHz Nvidia Tegra 3 
CPU with 1 Gbyte of RAM. Device is equipped with 16 Gbytes of internal 
storage and 16 Gbytes of storage on SD CARD. 

In order to find out the impact of our approach on Android operating sys­
tem, Weka libraries ported to Android platform were used for decision tree 
construction. We measured the overhead of the same decision tree learning 
algorithm (J48) that we used in the experiments and we supplied the same 
training sets. We applied the pre-screening (Algorithm 1) and eliminated 
seven decision tree models by pre-screening. Eight out of fifteen possible 
decision tree models need to be constructed to estimate their predictive ac­
curacies. On the Android device, the total elapsed time to construct eight 
decision tree models left after pre-screening was 5.44 minutes whereas longest 
and shortest run times of J48 were 57 and 17 seconds respectively. Since be­
havior model generation is independent of its deployment for configuring data 
mining, it runs as a background process but it must still end in a reasonable 
time range. The total elapsed time that we measured for behavior model 
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generation on an Android device can be considered as acceptable in that 
respect. 

We also analyzed the memory and CPU usage of J48 which learns be­
havior model from execution related data on an Android system. While 
constructing eight decision tree models left after pre-screening, highest peak 
memory usage observed for J48 was hhMbytes whereas average peak mem­
ory usage was 49Mbytes. We observed that J48 is a cpu-intensive task since 
almost 90% of its runtime is accounted for CPU usage. Battery level of the 
device decreased by 2 percentage during entire executions of J48. 

We conclude that, the overhead of deployment of an existing behavior 
model on the system is negligible. Behavior model generation takes some 
time but it does not require real-time computing and is expected to be much 
less frequently run. Furthermore, although behavior model generation is a 
cpu-intensive task, it does not cause a cpu bottleneck in the system since it 
runs in the background with low priority. 

6. Conclusion 

We tackled the problem of automatically configuring an algorithm, in par­
ticular a data mining algorithm and we searched a solution to this problem 
for ubiquitous computing because not only autonomous behavior is essential 
for this dominant computing model of today but also data mining is indis­
pensable for enriching ubiquitous computing applications with intelligence. 

A number of challenges lie in the design of a general solution for ubiqui­
tous computing. Since ubiquitous computing defines a broad range of appli­
cations and device types, configuration decisions should be dynamically given 
rather than applying a logic that is statically coded. Circumstantial factors 
are effective on ubiquitous computing and configuring an algorithm's exe­
cution by considering the circumstantial factors is important. Furthermore, 
assessing the success of the configuration decisions is essential. 

In order to meet the challenges of the problem, we proposed an approach 
based on machine learning so that the behavior of the data mining algorithm 
in varying circumstances is modeled to be used for the configuration of the 
algorithm. By our approach, data mining quality that is realized is part of the 
behavior model so that whether the configuration quality goals are attained 
or not is assessed. Most importantly, adapting to the changing conditions 
by generating a new behavior model of data mining is possible whenever the 
existing behavior model lacks in attaining the configuration quality goals. 
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We proposed a cost-effective solution aiming a reasonable accuracy with­
out either restricting the number of quality features or the measurement 
variety of any quality feature since data mining quality has a significant 
importance on generating appropriate configuration decisions. 

We currently work on the realization of the proposed approach within 
the framework of a ubiquitous computing application. We designed an ap­
plication that downloads movie ratings from a social network site so that 
associations among the movie lists are mined on the mobile devices of inter­
ested users to recommend them movies. We apply the proposed approach to 
configure mining of social network data on an Android device for personal 
recommendations generation using collaborative filtering. 
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