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Abstract

Graph-based summarization entails extracting a worthwhile subset of sen-

tences from a collection of textual documents by using a graph-based model

to represent the correlations between pairs of document terms. However,

since the high-order correlations among multiple terms are disregarded dur-

ing graph evaluation, the summarization performance could be limited unless

integrating ad-hoc language-dependent or semantics-based analysis.

This paper presents a novel and general-purpose graph-based summarizer,

namely GraphSum (Graph-based Summarizer). It discovers and exploits

association rules to represent the correlations among multiple terms that have

been neglected by previous approaches. The graph nodes, which represent

combinations of two or more terms, are first ranked by means of a PageRank
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strategy that discriminates between positive and negative term correlations.

Then, the produced node ranking is used to drive the sentence selection

process.

The experiments performed on benchmark and real-life documents demon-

strate the effectiveness of the proposed approach compared to many state-

of-the-art summarizers.

Keywords: Multi-document summarization, Text mining, Association rule

mining, Graph ranking

1. Introduction

Nowadays Internet provides access to a huge number of electronic textual

documents. However, to extract useful information from the accessed docu-

ments users commonly have to peruse tens and tens of pages. To ease the

knowledge discovery process, a significant research effort has been devoted to

studying and developing automated summarization tools, which produce a

succinct overview of the most relevant document content, i.e., the summary.

The multi-document summarization task entails generating a summary

of a collection of textual documents. Summarizers may be classified as: (i)

sentence-based, if they partition the documents into sentences and select the

most informative ones [8, 27, 42, 43], or (ii) keyword-based, if they detect

salient document keywords [15, 21]. To tackle the sentence-based summariza-

tion problem, several research efforts have been devoted to adopting informa-

tion retrieval and/or data mining techniques, such as clustering [29, 42, 43],

probabilistic or co-occurrence-based strategies [11, 35], or graph-based algo-

rithms [16, 41, 45, 46]. Specifically, graph-based summarization focuses on
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building a graph in which nodes represent either single terms or document

sentences, whereas an edge weighs the strength of the relationship between a

pair of nodes. Based on the assumption that the nodes that are connected to

many other nodes are more likely to carry salient information, the sentence se-

lection process is driven by a graph index that is produced by an established

ranking algorithm (e.g., PageRank [7], HITS [20]). However, graph-based

summarizers sometimes do not achieve fairly high performance because of

the intrinsic limitations of the graph-based models. In fact, on the one hand,

since they do not consider the underlying correlations among multiple terms,

some relevant facets of the analyzed data could be disregarded. On the other

hand, some of the considered term correlations are potentially misleading,

because they represent negatively correlated associations among terms (i.e.,

combinations of terms that occur less than expected in the analyzed data).

Hence, there is a need for novel graph-based summarizers that also consider

the correlations among multiple terms and the differences between positive

and negative term correlations.

This paper presentsGraphSum (Graph-based Summarizer), a new multi-

document summarizer that relies on a graph-based summarization strategy.

The proposed approach entails building and evaluating a correlation graph,

in which the graph nodes represent sets of document terms of arbitrary size,

whereas the edges have a weight that indicates the strength of the correla-

tion between the corresponding pair of nodes. Specifically, two nodes are

connected by a bidirectional edge if their corresponding terms co-occur fre-

quently and are strongly correlated with each other (either positively or neg-

atively) in the analyzed collection. The correlations among multiple terms
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are extracted using an established data mining technique, i.e., association

rule mining [1]. To guarantee the quality of the generated model and make

the extraction task computationally tractable, the mining process is driven

by the following constraints: (i) A minimum support threshold [1] (i.e., a

minimum frequency of occurrence of the mined term combinations in the

source data) and (ii) a maximum negative and a minimum positive correla-

tion thresholds [38] (i.e., the minimum significance levels of the mined data

correlations).

The selection of the most representative sentences is driven by the corre-

lation graph. To this purpose, GraphSum adopts a variant of the popular

PageRank ranking algorithm [7], which also discriminates between positive

and negative term set correlations. The key idea is to mitigate the propa-

gation of the PageRank scores through negatively correlated links in order

to assign, on average, a higher rank to the nodes that have no negatively

correlated links. The final summary will consist of the subset of sentences

that best cover the previously generated model. In such a way, summaries

are less likely to contain the sentences in which a combination of terms are

negatively correlated with each other.

GraphSum does not rely on advanced semantics-based models (e.g., on-

tologies or taxonomies) to perform document analysis. Furthermore, it ex-

ploits only two basic language-dependent steps, i.e., lemmatization and stop-

word elimination. Hence, the proposed summarizer is potentially applicable

to documents coming from rather different application contexts. A variety of

experiments have been conducted on benchmark document collections and

on a subset of real-life news articles which have been published by the most
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renowned newspapers. The results demonstrate that GraphSum performs

better than many state-of-the-art summarizers (e.g., [5, 11]) in terms of the

most commonly used Rouge evaluation scores [21].

The main contributions of the paper could be summarized as follows:

• Using association rules in graph-based summarization to represent cor-

relations among multiple terms,

• analyzing positive and negative term correlations separately for docu-

ment summarization purposes, and

• performing no semantics-based analysis and a minimal number of language-

dependent steps to preserve the flexibility and portability of the pro-

posed approach.

The paper is organized as follows. Section 2 compares our work with pre-

vious approaches. Section 3 thoroughly describes the GraphSum summa-

rizer. Section 4 experimentally evaluates our approach on a variety of multi-

document collections. Finally, Section 5 draws conclusions and presents fu-

ture work.

2. Related work

Many research efforts have been devoted to addressing the document sum-

marization problem. For example, graph-based summarizers generate and

exploit a graph to select the most relevant document sentences or keywords.

Among them, sentence-based approaches (e.g., [4, 16, 41, 45, 46]) model the

document sentences as graph nodes, whereas the graph edges are weighted

5



by a sentence similarity score. An indexing algorithm is commonly used to

rank the sentences based on their relative authoritativeness in the generated

graph. For example, in [16] the document sentences are ranked according

to their eigenvector centrality, which is computed on the sentence linkage

matrix by the established PageRank algorithm [7]. A similar graph-based

model has also been adopted in [3, 4] to tackle the summarization problem

by combining complex network analysis [31] with language-dependent text

processing. In parallel, keyword-based summarizers that are based on graph

indexing strategies have also been proposed [22, 45, 46]. For example, in [22]

the graph nodes represent single keywords, which are indexed by the HITS

algorithm [20]. A similar approach has been adopted in [45, 46] to address

Web page summarization driven by the user-generated content coming from

social networks. Unlike all of the above-mentioned approaches, our summa-

rizer discovers association rules from the analyzed document to also represent

the correlations among multiple terms in the graph-based model.

A parallel effort has been devoted to using clustering algorithms for sum-

marizing documents [29, 42, 43]. For example, in [43] a cluster represents a

group of sentences and the summary consists of the subset of the best cluster

representatives (e.g., the centroids or the medoids). In contrast, MEAD [29]

clusters documents rather than single sentences. For each cluster, it selects

a worthwhile subset of sentences by considering (i) the tf-idf value [21] of the

sentence terms, (ii) the sentence relevance within the cluster, and (iii) the

sentence length. The approach presented in [42] addresses the issue of dy-

namic summary updating by exploiting an incremental clustering algorithm.

Once a set of documents is added/removed from the analyzed collection, the
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previously generated summary is updated without the need for recalculating

the whole clustering model. However, clustering-based approaches appear

to be less suitable for being applied to collections of documents that range

over the same subject. Hence, their effectiveness is rather limited unless in-

tegrating advanced semantics-based models (e.g., ontologies or taxonomies)

or language-dependent analysis.

The use of linear programming algorithms and probabilistic models for

summarization purposes has also been investigated [12, 17, 37]. For exam-

ple, in [17, 35, 37] the authors formalize the sentence selection task as a

min-max optimization problem and tackle the problem by means of linear

programming techniques. To effectively address the summarization problem

in a multilingual context in [11] and [35] the authors exploit Markov Hid-

den Model and Singular Value Decomposition techniques, respectively, to

extract the most representative document sentences. Unlike [11, 17, 37], the

summarizer presented in this paper relies on a general-purpose, graph-based

approach that discovers and exploits high-order correlations among multiple

document terms.

Frequent itemset and association rule mining are widely exploratory tech-

niques [1] to discover relevant correlations among data. They find application

in many application domains (e.g., market basket analysis [1], biological data

analysis [10]). A significant research effort has been devoted to summarizing

transactional data by means of frequent itemsets [19, 24]. Since the result

is a worthwhile subset of itemsets, rather than a subset of document sen-

tences, the aim of the above-mentioned approaches is radically different from

the one of this paper. A preliminary attempt to use frequent itemsets for
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summarizing documents has been made in [5]. The authors select the most

informative sentences by considering a compact subset of frequent itemsets,

which have been extracted by means of an entropy-based strategy [24]. Un-

like [5], GraphSum is a graph-based approach that discovers and exploits

association rules to also consider the high-order correlations among multiple

terms. To effectively discriminate between reliable and unreliable term cor-

relations, a variant of an established graph ranking strategy [7] is used to

identify the most authoritative term combinations.

3. The Graph-based Summarizer

GraphSum (Graph-based Summarizer) is a novel graph-based multi-

document summarizer. Figure 1 summarizes its main steps, which are briefly

described below:

• Text processing. The raw textual documents are prepared for the

subsequent mining steps. To this aim, two established preprocessing

steps, i.e., lemmatization and stopword elimination, are applied.

• Correlation graph mining. Frequent itemsets, which represent cor-

relations among terms, are extracted from a transactional representa-

tion of the document collection and combined in a graph-based model.

The graph edges are weighted by an established quality index, i.e., the

lift [38], which measures the strength of the association between a pair

of term sets. To improve the quality of the generated model, the model

includes only the associations among terms that (i) occur frequently

and (ii) have a strong (either positive or negative) correlation in the

analyzed collection.
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• Graph indexing. A variant of the popular PageRank [7] indexing

algorithm is used to evaluate graph node relevance. The nodes that

are positively correlated with many others placed first. In contrast,

the nodes that are negatively correlated with their neighbors are, on

average, penalized.

• Sentence selection. To generate the summary of the document col-

lection, the subset of sentences that best covers the previously indexed

graph is selected.

A more thorough description of each step is given in the following sections.

Figure 1: The GraphSum summarizer
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3.1. Text processing

The raw textual content is commonly unsuitable for use in itemset and

association rule mining. Hence, this processing step aims at preparing the

document collection to the next mining steps. To preserve the portability

and usability of the proposed system in different application contexts, it

performs only two, very basic, language-dependent analysis. Specifically,

stopword elimination searches for a matching between the text words and the

words that are contained in a (language-dependent) stopword corpus. For

example, high-frequency words like The and To are eliminated. The goal is to

filter out of the documents before further processing the words that usually

have little lexical content, because the mining process fails to distinguish

them from other texts. To perform stopword elimination, we adopted the

Natural Language Toolkit (NTLK) stopword corpus [23]. Furthermore, a

lemmatization algorithm, which is based on Wordnet [44], is used to reduce

the document words to their corresponding lemma. For example, the word

Analyzes is reduced to its corresponding lemma Analyze.

The preprocessed collection complies with the bag-of-word (BOW) rep-

resentation [21]. Specifically, each document dk ∈ D consists of a set of

sentences Sk={s1k, . . . , szk}, where each sentence contains an unordered sub-

set of lemmas, which hereafter will be denoted as terms.

After the preprocessing steps, the document collection can be modeled as

a transactional dataset. Transactions are an established data format that is

commonly used for itemset and association rule mining [1]. A transactional

dataset is a set of transactions, where each transaction is a set of items. For

example, in the context of market basket analysis [1] a transactional dataset
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contains the list of all the customer purchases, in which each transaction con-

sists of a set of bought items (i.e., the market basket of a customer). For our

purposes, we tailor the document collection to a transactional data format,

in which each document sentence sjk is a transaction trjk that contains all

the distinct terms (i.e., the items) that occur in the BOW representation of

sjk. A more formal definition follows.

Definition 1. Transactional representation of a document collec-

tion. Let D={d1, . . . , dN} be a document collection. The transactional rep-

resentation T of D contains, for every sentence sjk such that sjk ∈ dk ∈ D,

a transaction trjk that is composed of distinct terms wq, where wq is the q-th

term in sjk.

For example, consider the document collection D in Table 1. It contains

three documents, which consist of two sentences each. The corresponding

transactional representation, which is reported in Table 2, contains 6 trans-

actions. For each sentence, the corresponding set of non-repeated terms is

reported. For instance, the first sentence of the document d1 contains the

distinct terms Data, Analysis, and Mine.

Table 1: Running example D before text processing.

Document Content

d1
This is about data analysis and data mining.

In particular, it analyzes contextual information.

d2
Information is hidden in data.

However, through the analysis of the context we may enrich data.

d3
Processing data is useful:

an in-depth analysis produces actionable information.
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Table 2: Running example D after text processing.

Document Sentence ID Sentence

d1
1 Data, Analysis, Mine

2 Analyze, Context, information

d2
3 Information, Data, Hide

4 Analysis, Context, Data, Enrich

d3
5 Data, Processing, Useful

6 Depth, Analysis, Information, Action

3.2. Correlation graph mining

This block aims at representing the most significant term correlations

hidden in the analyzed document collection by means of a graph-based model,

called correlation graph. It takes as input the transactional representation T

of the analyzed document collection D={d1, . . . , dN} and generates a graph

G that will be used in the subsequent step to extract the most relevant

sentences.

The correlation graph mining task entails the following steps: (i) Frequent

itemset mining, (ii) term set correlation estimate, and (iii) graph generation.

A more thorough description of each step is given below.

3.2.1. Frequent itemset mining

This step focuses on discovering recurrent combinations of terms, in the

form of frequent itemsets [1], from the transactional representation of the

document collection. In our context, a k-itemsets (i.e., an itemset of length

k) is defined as a set of k distinct terms. Two itemsets are disjoint if they

have no term in common. An itemset is said to cover a given transaction

(sentence) trjk if all of its terms are contained in trjk. Given an itemset I and

the transactional representation T of a collection D, the support of I in T is
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defined as the ratio between the number of transactions in T that are covered

by I and the total number of transactions in T . Every itemset for which its

support value in D is equal to or higher than a given minimum support

threshold minsup is said to be frequent in T . Recalling the running example

(see Table 2), {Data, Analysis} is a 2-itemset that covers 2 transactions in

T . Hence, its support value is 2
6
.

Given a transactional representation T of the analyzed document collec-

tion D and a minimum support threshold minsup, the frequent itemset min-

ing process entails extracting all of the frequent itemsets in T . To accomplish

the itemset mining task, GraphSum exploits an implementation [6] of the

traditional Apriori rule mining algorithm [2]. However, different and more

efficient itemset miners could be easily integrated as well.

3.2.2. Term set correlation estimate

This step aims at evaluating the significance of the previously extracted

term correlations. An established approach to discover and evaluate associa-

tions between pairs of itemsets is association rule mining [1]. An association

rule is an implication A → B, where A and B are disjoint itemsets that have

been extracted from the source collection. A more formal definition follows.

Definition 2. Association rule. Let A and B be two disjoint itemsets.

An association rule is represented in the form A → B, where A and B are

denoted as rule body and head, respectively. The length of A → B is defined

as the length of A ∪B.

A and B are also denoted as the antecedent and consequent of the association

rule A → B, respectively.
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Many quality measures could be exploited to select the most interesting

association rules [38]. GraphSum integrates three widely used rule quality

measures, i.e., support, the confidence, and lift. Their definitions are given

below.

Definition 3. Association rule support. Let A → B be an association

rule. Its support s(A ∪B) is defined as the support of the itemset A ∪B.

The support is the prior probability of A and B (i.e., its observed frequency)

in the source dataset.

Definition 4. Association rule confidence. Let A → B be an association

rule. Its confidence c(A ∪B) is given by s(A∪B)
s(A)

.

The confidence of a rule A → B is the conditional probability of occurrence

of B given A. It measures the strength of the implication. For example,

recalling the running example in Table 2, the association rule {Data} →

{Analysis} has a support equal to 2
6
in T and a confidence equal to 2

4
, because

the itemset {Data, Analysis} occurs twice in T , whereas the implication

{Data} → {Analysis} holds in half of the cases.

However, measuring the strength of a term set correlation in terms of rule

confidence could be misleading [38]. In fact, when the rule consequent has a

relatively high support value, the corresponding rule could be characterized

by a high confidence even if its actual strength is relatively low. To overcome

this issue, the lift (or correlation) measure [38] could be used, rather than the

confidence index, to measure the (symmetric) correlation between the body

and the head of the extracted rules.
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Definition 5. Association rule lift. Let A → B be an association rule.

Its lift l is given by

lift(A,B) =
c(A → B)

s(B)
=

s(A → B)

s(A)s(B)
(1)

where s(A → B) and c(A → B) are the rule support and confidence, re-

spectively, and s(A) and s(B) are the supports of the rule antecedent and

consequent.

If lift(A,B) is equal to or close to 1, then the itemsets A and B are not cor-

related with each other, i.e., they are statistically independent. Lift values

significantly below 1 show negative correlation, whereas values significantly

above 1 indicate a positive correlation between the itemsets A and B, mean-

ing that the implication between A and B holds more than expected in the

source data.

Since the interest of the statistically independent term associations is

marginal in our context of analysis, GraphSum only considers the frequent

and strongly correlated associations between pairs of term sets. Specifically,

it selects only the association rules for which:

• the support value is equal to or higher than a minimum support thresh-

old minsup, and

• the lift value is either in the range (0,max−lift ] or higher than or equal

to min+lift, where max−lift and min+lift are the maximum negative

and the minimum positive correlation thresholds, respectively.

The contribution of the positive and negative term correlations will be

differentiated during the summarization process, as described in the following
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sections.

The association rule extraction task is traditionally accomplished by first

generating all the possible subsets of the extracted frequent itemsets and

then evaluating the candidate associations [2]. GraphSum adopts the same

strategy and also exploits the symmetry of the lift measure [38] to avoid

generating all the possible candidates. Specifically, since lift(A,B)=lift(B,A),

to evaluate the interest of the correlation between the pair of term sets A

and B GraphSum exclusively considers distinct pairs of disjoint frequent

itemsets A and B such that the union A ∪ B (and, hence, the rule A → B)

is frequent with respect to the minimum support threshold minsup.

3.2.3. Correlation graph generation

To represent the most significant correlations among multiple terms a

graph-based model, named correlation graph, is generated. The concept of

correlation graph is formalized as follows.

Definition 6. Correlation graph. Let T be a transactional representation

of a document collection D and minsup, max−lift, and min+lift three non-

negative numbers. Let I be the set of frequent itemsets that were mined from

T by enforcing a minimum support threshold minsup. A correlation graph

G that is built on T is a bidirected graph for which the nodes are frequent

itemsets (term sets) in I, whereas its edges link arbitrary node pairs A and

B such that either lift(A,B) ∈ (0,max−lift] or lift(A,B) ≥ min+lift. The

bidirected edges are weighted by the corresponding rule lift value.

As an example, suppose setting minsup to 1%, max−lift to 4
5
, and min+lift

to 10. Since the support of {Data, Analysis} in the running example dataset
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is 33% and lift({Data},{Analysis})=3
5
, then the corresponding correlation

graph G contains two distinct nodes, which are related to the terms {Data}

and {Analysis} and are linked by an edge with weight 3
5
. Note that, by the

Apriori principle [2], both {Data} and {Analysis} are frequent with respect

to the support threshold. Unlike previous approaches (e.g., [45, 46, 22]), the

graph nodes could also represent a subset of terms with size higher than one

(e.g., {Analysis, Context}). Some extracts of the correlation graphs that

were mined from real-life documents are reported in Section 4.

3.3. Graph indexing

The term sets that are contained in the correlation graph typically do

not have the same importance in the analyzed documents. To measure the

relevance of the graph nodes that were extracted from the source collection,

GraphSum adopts a variant of the traditional PageRank graph ranking

algorithm [7].

PageRank [7], which has been brought to success by its adoption in the

popular Google search engine, has already been applied in different applica-

tion contexts to detect the most authoritative elements in a large collection.

The key idea behind the PageRank algorithm can be summarized as follows.

A weighted edge that connects the graph nodes A and B can be thought as

a vote assigned by A to B. The higher the sum of all of the weights that

are associated with any incoming link is the higher the relative importance

of B in the graph becomes. PageRank models the graph as a Markov Chain

model, in which Random Walks describe the probabilities of moving between

the graph nodes. Specifically, since PageRank focuses on mimic the process

of Web surfing, it analyzes the effect of simple Random Walks that incorpo-
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rate random jumps on the graph. The probabilities that are evaluated in a

stationary state of the Random Walk are those that should be reached after

an infinite walk on the graph. Since, in our context, a node represents a spe-

cific term set, the stationary probabilities describe the expected probabilities

of occurrence of each term set in the analyzed documents. In PageRank, the

authority of a graph node is estimated by an iterative algorithm that aggre-

gates the transitional probabilities between all graph nodes until a steady

state is reached. Such iterative process results in a graph node ranking that

is based on an authority score, called the PageRank score.

Formally speaking, the PageRank score PR(Ni) of a graph node Ni can

be approximated as follows [7]:

PR(Ni) =
(1− d)

|N |
+ d ·

e∑
k=1

PR(Nk)

C(Nk)
(2)

where |N | is the total number of graph nodes, e is the number of edges in-

coming into Ni, PR(Nk) is the PageRank score of an arbitrary Ni’s neighbor

Nk, C(Nk) is the outgoing degree of the node Nk, and d ∈ [0, 1] is a damp-

ing factor that weights the PageRank score propagation from one node to

another, which is usually set to 0.85 [7].

Our goal is to differentiate between negative and positive term set corre-

lations in order to assign, on average, a lower PageRank score to the nodes

that are negatively correlated to one another. To achieve this goal, we adopt

the following variant of the traditional PageRank score given in Formula 2:

PR(Ni) =
(1− d)

|N |
+ d · (

e∑
k=1

1√
C−(Nk)

PR(Nk)

C(Nk)
) (3)
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where C−(Nk) is the outgoing degree of a node Nk that is computed by

considering only the negatively correlated edges. Note that the penalization

factor 1√
C−(Nk)

mitigates the PageRank score propagation from the node Nk

that have a significant number of negatively correlated neighbors to Ni. A

penalization score corresponds to a rescaling of the transition matrix terms

that are related to a negatively correlated node pair. Such rescaling smooths

down the probability of randomly choosing, in a Random Walk, a negatively

correlated link to follow. The penalization is null for the nodes that are

linked to their neighborhood only through positively correlated links.

3.4. Sentence selection

GraphSum exploits the indexed correlation graph to evaluate and select

the most relevant document sentences. To this aim, two main sentence fea-

tures are considered: (i) the term relevance in terms of the corresponding

PageRank indexes and (ii) the correlation graph coverage.

In the following we formalize both sentence relevance and coverage.

Sentence relevance score. The relevance score of a sentence sjk in the

document collection measures the significance of a sentence in terms of the

authority of its contained term sets (nodes) in the correlation graph. It

is defined as the normalized sum of the PageRank scores that have been

assigned to each term set that occurs in the sentence:

SR(sjk) =

∑
i | ni⊆tjk

PRik

Ntjk

(4)

where tjk is the transaction that is associated with the sentence sjk,
∑

i | ni∈tjk PRik

is the sum of the PageRank scores PRik that are associated with every cor-
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relation graph node ni covering tjk, and Ntjk is the total number of nodes

that cover tjk.

Sentence coverage. The sentence coverage indicates how much a sentence

sjk is pertinent to the association rule graph G. To define the sentence

coverage, we first associate with each sentence sjk ∈ D a binary vector

SCjk={sc1, . . . , sc|N |}, which hereafter will be denoted as sentence coverage

vector, where |N | is the number of nodes that are contained in the correlation

graph G, and sci = 1trjk(ni) indicates whether a term set ni covers or not

trjk (see Section 3.2.1). Formally speaking, given an arbitrary term set ni

contained in G, 1trjk is an indicator function that is defined as follows:

1trjk(ni) =

1 if ni ⊆ trjk,

0 otherwise

(5)

The coverage of a sentence sjk with respect to the correlation graph is defined

as the number of ones in the coverage vector SCjk.

To our purposes, we formalize the problem of selecting the most repre-

sentative document sentences in terms of coverage and relevance scores as a

set covering problem.

The set covering problem. GraphSum addresses a set covering opti-

mization problem to select the sentences with maximal model coverage and

relevance score. Specifically, we focus on selecting the minimal number of sen-

tences that are characterized by maximal score. It applies the logic OR opera-

tor to the coverage vectors of the selected sentences, i.e., SC∗=SC1∨. . .∨SCl,

and selects the subset of sentences for which the resulting binary vector con-

20



tains the maximal number of ones. The result of the OR operation SC∗ will

be denoted as the summary coverage vector throughout the section.

Since the set covering optimization problem is NP-hard, we tackle the

problem by means of a greedy strategy similar to the one that has previously

been applied in [5] in the context of document summarization. The greedy

sentence selection strategy considers the sentence model coverage to be the

most discriminating feature, i.e., sentences that cover the maximum number

of graph nodes are selected first. At equal terms, the sentence with maximal

coverage that is characterized by the highest relevance score SR is preferred.

A more detailed description of the adopted greedy strategy follows.

The greedy strategy. The sentence selection algorithm relies on a step-wise

procedure. At each step, it identifies the sentence sjk with the best comple-

mentary vector SCjk according to the current summary coverage vector SC∗,

i.e., the sentence sjk that covers the maximum number of graph nodes that

have not already been covered by any sentence of the current summary.

A pseudo-code of the greedy selection strategy is given in Algorithm 1.

It takes as input the set of sentences S, the set of sentence coverage vectors

SC, and the set of sentence relevance scores SR. It generates a summary SU

that is composed of the sentences that best cover the correlation graph. The

main sentence selection steps are summarized below. The first step is variable

initialization (lines 1-2). Next, the best candidate sentence is iteratively

selected (lines 3-13). At each iteration, it selects, among the sentences with

maximum coverage the one with maximal relevance score (see Formula 4)

(line 6). Then, the selected sentence sbest is included in the summary SU

(line 7) and the sentence coverage vectors are updated accordingly (lines 8-
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Algorithm 1 Greedy sentence selection
Input: set of sentences S

Input: set of sentence coverage vectors SC

Input: set of sentence relevance scores SR

Output: summary SU

1: SU = ∅

2: SC∗ = set to all zeros() /*initialize the summary coverage vector with only zeros*/

/*Cycle until SC∗ contains only 1s (i.e., until the generated summary covers all the itemsets of the

model) */

3: while SC∗ contains at least one zero do

4: MaxOnesSentences = max ones sentences(S, SC) /*Select the sentences with the highest number

of ones*/

5: if MaxOnesSentences is not empty then

6: sbest = argmaxsj∈MaxOnesSentencesSR(sj) /*Select the sentence with maximum relevance

score among the ones in MaxOnesSentences*/

7: SU = SU ∪ sbest /*Add the best sentence to the summary*/

/*Update the summary coverage vector SC∗. SCsbest ∈ SC is the sentence coverage vector

associated with the best sentence sbest */

8: SC∗= SC∗ OR SCsbest /* Set the bits associated with the term sets covered by sbest to one*/

/*Update the sentence coverage vectors in SC*/

9: for all SCi in SC do

10: SCi = SCi AND SC∗ /*Set the bits of SCi associated with the term sets that are already

covered by the summary to zero*/

11: end for

12: end if

13: end while

14: return SU

11). The updating step excludes from the subset of coverable graph nodes the

ones that have already been covered by the current summary. The procedure

iterates until the graph-based model is fully covered by the summary, i.e.,

until the summary coverage vector contains only ones (line 3). Note that,

when minsup>0, each frequent itemset that is contained in the model covers

at least one document sentence. Hence, the sentence selection process always

achieves a full graph coverage.
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The experimental results, reported in Section 4.4, show that the greedy

sentence selection strategy is more effective and efficient than a traditional

branch-and-bound strategy [30] for summarization purposes.

4. Experimental results

We conducted an extensive experimental campaign to address the follow-

ing issues: (i) A performance comparison between GraphSum and many

other summarizers on benchmark documents (Sections 4.2), and (ii) an eval-

uation of the effectiveness of the proposed summarizer on real-life news docu-

ment collections (Section 4.3), (iii) an analysis of the impact of the main sys-

tem parameters and features on the GraphSum performance (Section 4.4).

All the experiments were performed on a 3.0 GHz 64 bit Intel Xeon PC

with 4 GB main memory running Ubuntu 10.04 LTS (kernel 2.6.32-31). The

code for GraphSum is available, for research purposes, at

http://dbdmg.polito.it/wordpress/wp-content/uploads/2013/03/GraphSum.zip.

A brief description of the analyzed document collections follows.

4.1. Document collections

We conducted experiments on (i) the benchmark dataset for the task 2

of the DUC’04 [14], i.e., the English-written benchmark collections that have

been used for the Document Understanding Conference (DUC) contest on

multi-document summarization and (ii) five real-life news article collections.

To the best of our knowledge, the task 2 of DUC’04 [14] is the latest Doc-

ument Understanding Conference (DUC) contest on generic English-written

multi-document summarization [42]. DUC’04 documents were clustered in 50

document groups. Each cluster consists of approximately 10 documents. For
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each group the DUC’04 conference organizers provided one or more golden

summaries, which were generated by a pool of domain experts.

To evaluate the effectiveness of the proposed summarizer in a real-life

context, we also tested GraphSum on Five English-written news article

collections that were retrieved from the Web from August 2011 to November

2011. Each real-life collection ranges over a different topic and consists of 10

news articles. Specifically, the list of the analyzed news topics is given below:

• Italian austerity: the package of austerity measures has been approved by the

Italian Government to lead Italy out of its debt crisis.

• World terrorism: the war of the U.S.A. government against the international

terrorism

• Strauss Kahn scandal: Dominique Strauss Kahn charged of sexual assault

• Libya war: The civil war in the North African state of Libya breaks out

• Irene hurricane: the Irene Hurricane beats down on the U.S. East Coast

From the result of a targeted query to the Google News search engine, the

top-10 news articles were selected. The considered topics are representa-

tives of different case studies, because they cover (i) Very focused news of

topical interest for a short time period (e.g., U.K. riots, Strauss Kahn), (ii)

averagely focused past events having side effects on future events (e.g., Irene

Hurricane), and (iii) broad-spectrum and multi-faceted news (e.g, Debt crisis,

Terrorism).

The news collections are available for research purposes at

http://dbdmg.polito.it/wordpress/wp-content/uploads/2013/03/news articles.zip.
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4.2. DUC’04 benchmark dataset summarization

We analyzed and compared the GraphSum performance on the DUC’04

benchmark collections with that of (i) the 35 summarizers that were submit-

ted to the DUC’04 conference, (ii) the 8 summaries that were generated by

the humans and made available by the DUC’04 organizers (beyond the golden

summaries), (iii) two widely used opensource text summarizers, i.e., the Open

Text Summarizer (OTS) [33] and TexLexAn [39], and (iv) a recently proposed

itemset-based summarizer [5], named ItemSum (Itemset-based Summarizer).

For the DUC’04 competitors, we considered the best results that were given

by the DUC’04 organizers [14], whereas for the other competitors we used

the best algorithm configuration that has been suggested by the respective

authors. Specifically, for ItemSum [5] the best configuration is minimum sup-

port threshold minsup=3% and model size ms=12. For GraphSum we set,

as standard configuration, the minimum support thresholdminsup to 3%, the

maximum negative correlation threshold max−lift to 0.6, and the minimum

positive correlation threshold min+lift to 15. Section 4.4 thoroughly ana-

lyzes the impact of the GraphSum input parameters on the summarization

performance.

To perform a quantitative comparison of the summarizer performance, we

used the ROUGE toolkit [21], because it has been adopted as official DUC’04

tool1. It measures the quality of a summary by counting the unit overlaps

between the candidate summary and the golden summaries. The summarizer

that achieves the highest ROUGE scores is considered to be the most effec-

1The provided command is: ROUGE-1.5.5.pl -e data -x -m -2 4 -u -c 95 -r 1000 -n 4 -f

A -p 0.5 -t 0 -d -a
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tive one. To perform a fair comparison the generated summaries have been

preliminary normalized before using the ROUGE tool by truncating each of

them at 665 bytes (rounding the number down in case of straddled words).

Hence, the summary size, in terms of word count, is approximately the same

for all the summaries. Several automatic evaluation scores are implemented

in ROUGE. For the sake of brevity, we only report the most representative

ones [21], i.e., ROUGE-2 and ROUGE-SU4. Similar results were achieved

for the other scores.

Table 3 reports the results that were achieved on the DUC’04 bench-

mark datasets by GraphSum, ItemSum, OTS, TexLexAn, the 8 humanly

generated summaries, and the 10 most effective summarizers that have been

presented in DUC’04. For the top ranked DUC’04 summarizer, i.e., CLASSY,

we reported all of its submitted versions (i.e., peer65, peer66, and peer67).

Note that the most recent CLASSY summarizer version has been presented

in [11]. It is just an extension of its preliminary DUC’04 version [12] that is

also able to cope with not English-written documents. Since CLASSY [11]

ranked first both in the DUC’04 contest [14] and in the multi-lingual TAC’11

contest [40] on the English-written document collections, it can be consid-

ered to be the most effective state-of-the-art summarizer on English-written

documents. To validate the statistical significance of the GraphSum per-

formance improvement against its competitors, we used the paired t-test [13]

at 95% significance level for all of the evaluated measures.

GraphSum performs significantly better than ItemSum, OTS, TexLexAn

for all of the tested measures. Furthermore, it performs significantly better

than all the DUC’04 competitors in terms of ROUGE-2 and ROUGE-SU4

26



Table 3: DUC’04 Collections. Comparisons between GraphSum and the other ap-

proaches. Statistically relevant differences in the comparisons between GraphSum (stan-

dard configuration) and the other approaches are starred.

Summarizer ROUGE-2 ROUGE-SU4

R Pr F R Pr F

TOP RANKED DUC’04 PEERS

peer67 0.089* 0.095* 0.092* 0.015 0.017* 0.016*

peer120 0.076* 0.103* 0.086* 0.015 0.018* 0.016*

peer65 0.087* 0.091* 0.089* 0.015 0.016* 0.015*

peer66 0.086* 0.093* 0.089* 0.013 0.014* 0.014*

peer121 0.071* 0.085* 0.077* 0.012* 0.014* 0.013*

peer11 0.070* 0.087* 0.077* 0.012* 0.015* 0.012*

peer44 0.075* 0.080* 0.078* 0.012* 0.013* 0.012*

peer81 0.077* 0.080* 0.078* 0.012* 0.012* 0.012*

peer124 0.078* 0.082* 0.080* 0.011* 0.012* 0.011*

peer35 0.081* 0.085 0.083* 0.010* 0.011* 0.011*

DUC’04 HUMANS

A 0.088* 0.092* 0.090* 0.009* 0.010* 0.010*

B 0.091 0.096 0.093* 0.013 0.013 0.013*

C 0.094 0.102 0.098 0.011* 0.012* 0.012*

D 0.100 0.106 0.102 0.010* 0.010* 0.010*

E 0.094 0.099 0.097 0.011* 0.012 0.012*

F 0.086* 0.090 0.088* 0.008* 0.009* 0.009*

G 0.082* 0.087* 0.084* 0.008* 0.008* 0.007*

H 0.101 0.105 0.103 0.012* 0.013* 0.012*

OTS 0.069* 0.079* 0.074* 0.008* 0.009* 0.009*

texLexAn 0.059* 0.068* 0.063* 0.006* 0.007* 0.007*

ItemSum 0.083* 0.085* 0.084* 0.012* 0.014* 0.014*

GraphSum 0.093 0.099 0.097 0.015 0.021 0.019

F1-measure. Although it does not exploit neither advanced linguistic pro-

cessing steps nor semantics-based analysis, GraphSum performs as good as

the top-ranked DUC’04 summarizers (i.e., CLASSY and Peer120) in terms

of ROUGE-SU4 Recall.

GraphSum and CLASSY are the only summarizers that, in some cases,

perform better than the humans. More specifically, both of them outperform
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the humans in terms of ROUGE-SU4 F1-measure. GraphSum performs

significantly better than 4 out of 8 humans in terms of ROUGE-2 F1-measure,

whereas the best CLASSY summarizer’s version (peer67) outperforms only

2 out of 8 humans. Hence, GraphSum appears to be, on average, more

effective than CLASSY on the DUC’04 collections.

4.3. Real-world news summarization

This section summarizes the results that were achieved by GraphSum

on the real-life news document collections (see Section 4.1). Specifically, Sec-

tion 4.3.1 reports a qualitative comparison between the generated summaries,

whereas Section 4.3.2 evaluates the performance of both GraphSum and its

competitors in terms of ROUGE scores [21] on the same documents.

4.3.1. Summary comparison

We performed a qualitative comparison between the summaries that were

generated by GraphSum and the subset of competitors for which a publicly

available code version is available (i.e., ItemSum, OTS, TexLexAn).

Tables 4 reports the summaries that were generated from the Irene Hur-

ricane collection, which has been chosen as representative of all the other

news collections. For further appreciation, the complete set of results that

were generated from the news collections is available at

http://dbdmg.polito.it/wordpress/wp-content/uploads/2013/03/news results.zip.

For GraphSum and the other summarizers we used the algorithm con-

figurations that are reported in Section 4.2.

GraphSum appears to produce the most focused summary, because the

summary provides a concise yet informative description of the news content.
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Figure 2 reports an extract of the correlation graph that were generated from

the Irene Hurricane collection. {Rain} ↔ {Torrential}, {Rain} ↔ {Heavy},

and {Rain} ↔ {Water,Creek} are three examples of strong term correla-

tions (e.g., lift({Rain}, {Heavy}) = 46). The same pair of terms occurs

in the first two sentences of the document summary, because the terms are

deemed to be significant for summarization purposes. In contrast, the as-

sociation {Town} ↔ {Flood}, which occurs in the TexLexAn’s summary, is

disregarded by GraphSum, because it is characterized by a negative cor-

relation value (lift=0.45). The summaries that were generated by the other

competitors seem to be rather generic and partially redundant. For example,

the summary that were generated by ItemSum also contains the following

uninteresting content: “If this is what it means to live in the nanny state,

I’m very content” Krasnow said.

Figure 2: Irene Hurricane collection. Portion of the extracted correlation graph.

4.3.2. Performance comparison

We compared the GraphSum performance on the real-life news articles

with that achieved by the following publicly available summarizers: (i) the

Open Text Summarizer (OTS) [33], (ii) TexLexAn [39], and (iii) ItemSum [5].
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Table 4: Summary examples. Irene hurricane news collection

Method Summary

GraphSum New York was pounded by heavy winds and torrential rain on Sunday morning

as Hurricane Irene bore down on the city, threatening to cause flash flooding

and widespread damage in the US’s most populous city.

It’s one of several towns in states such as New Jersey, Connecticut, New York,

Vermont and Massachusetts dealing with the damage of torrential rain and

flooding spawned by Hurricane Irene.

ItemSum New York was pounded by heavy winds and torrential rain on Sunday morning

as Hurricane Irene bore down on the city, threatening to cause flash flooding

and widespread damage in the US’s most populous city.

”If this is what it means to live in the nanny state, I’m very content,” Krasnow

said.

OTS As emergency airlift operations brought ready-to-eat meals and water to Ver-

mont residents left isolated and desperate, states along the Eastern Seaboard

continued to be battered Tuesday by the after effects of Irene, the destructive

hurricane turned tropical storm.

Dangerously-damaged infrastructure, 2.5 million people without power and

thousands of water-logged homes and businesses continued to overshadow

the lives of residents and officials from North Carolina through New England,

where the storm has been blamed for at least 44 deaths in 13 states.

TexLexAn As emergency airlift operations brought ready-to-eat meals and water to Ver-

mont residents left isolated and desperate, states along the Eastern Seaboard

continued to be battered Tuesday by the after effects of Irene, the destructive

hurricane turned tropical storm.

Search-and-rescue teams in Paterson have pulled nearly 600 people from

flooded homes in the town after the Passaic River rose more than 13 feet

above flood stage, the highest level since 1903.

Since the golden summaries are not publicly available for the real-life

collections, to quantitatively evaluate the summarizer performance by means

of the ROUGE toolkit [21] we performed, as previously done in [9], a leave-

one-out cross validation. More specifically, for each category we summarized

nine out of ten news documents and we compared the summaries with the

remaining document, which was considered to be the golden summary at

30



that stage. Next, we tested all the other combinations by varying the golden

summary and we computed the average performance results, in terms of

precision (P), Recall (R), and F1-measure (F1), achieved by each summarizer

for the ROUGE-2 and ROUGE-SU4 evaluation scores. Note that, in our

context, assuming that a document is a representative summary of the rest

of the collection is a good approximation, because we specifically cope with

documents that range over the same topic. For the ROUGE experimental

design, we used the same settings that have previously been described in

Section 4.2.

Table 5 compares the average results that were obtained by GraphSum

and the other summarizers. To validate the statistical significance ofGraph-

Sum performance improvement, we used again the paired t-test [13] at 95%

significance level for all of the evaluated datasets and measures. The statis-

tically relevant differences in the comparisons between GraphSum and the

other approaches are starred in Tables 5. Furthermore, for each considered

dataset and measure the best results are written in boldface.

The proposed approach yields promising results in terms of ROUGE

scores on the real-life news articles. GraphSum always performs signifi-

cantly better than all of its competitors in terms of ROUGE-SU4 Precision,

Recall, and F1-measure. Furthermore, it also performs best on 4 out of 5

news collections in terms of ROUGE-2 F1-measure.

4.4. Performance analysis

In this section we analyzed the impact of the main GraphSum param-

eters and features on the summarization performance. Specifically, we ana-

lyzed the effect of (i) the input parameters (i.e., the minimum support and
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Table 5: News Collections. Comparisons between GraphSum and the other approaches.

Statistically relevant differences in the comparisons between GraphSum (standard con-

figuration) and the other approaches are starred.

Article
Summarizer ROUGE-2 ROUGE-SU4

R Pr F R Pr F

ITALIAN AUSTERITY

OTS 0.044 0.313 0.077 0.014* 0.101* 0.024*

texLexAn 0.039 0.283* 0.068 0.009* 0.068* 0.016*

ItemSum 0.038 0.265* 0.067* 0.009* 0.065* 0.016*

GraphSum 0.042 0.299 0.073 0.015 0.108 0.027

WORLD TERRORISM

OTS 0.007* 0.069* 0.013* 0.001* 0.002 0.002*

texLexAn 0.008 0.073* 0.015 0.001* 0.001* 0.001*

ItemSum 0.008 0.118 0.015 0.002* 0.001* 0.002*

GraphSum 0.010 0.085 0.017 0.004 0.003 0.005

STRAUSS KAHN SCANDAL

OTS 0.017* 0.146* 0.030* 0.002* 0.015* 0.003*

texLexAn 0.018* 0.162* 0.032* 0.002* 0.014* 0.003*

ItemSum 0.019* 0.192* 0.035* 0.002* 0.019* 0.003*

GraphSum 0.023 0.198 0.040 0.004 0.040 0.008

LIBYA WAR

OTS 0.012 0.134 0.022 0.001* 0.002* 0.001*

texLexAn 0.012 0.138 0.022 0.001* 0.001* 0.001*

ItemSum 0.005* 0.114 0.009* 0.002* 0.002* 0.001*

GraphSum 0.012 0.135 0.022 0.004 0.004 0.004

IRENE HURRICANE

OTS 0.011* 0.108* 0.021* 0.002* 0.001* 0.002*

texLexAn 0.012* 0.122* 0.023* 0.001* 0.002* 0.002*

ItemSum 0.006* 0.153 0.012* 0.002* 0.002* 0.002*

GraphSum 0.016 0.157 0.029 0.005 0.005 0.006

lift thresholds), (ii) the use of a greedy graph coverage strategy, and (iii) the

type of extracted itemsets on the GraphSum performance.

For the experimental evaluation, we tested our summarizer on the DUC’04

collections using the same experimental setting that is described in Sec-

tion 4.2.

Impact of the input parameters. In Figure 3 we plot the representative ROUGE-

2 F1-measure that were achieved by GraphSum by varying the values of
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support and lift thresholds.

The support threshold affects the quality of the generated summary signif-

icantly. When enforcing relatively high support thresholds (e.g., 7%), many

(potentially relevant) patterns are discarded, because their support value is

less than the given threshold. Hence, some relevant facets of the analyzed

document collection are disregarded. On the other hand, when very low

support thresholds are enforced (e.g., 0.5%) the analyzed collection could be

overfitted by the generated model. Hence, the model coverage procedure is

prone to errors. At medium support thresholds (e.g., 3%), the best trade-off

between model specialization and generality was achieved.

The GraphSum performance appears to be slightly affected by the mini-

mum lift thresholds when setting the maximum negative and minimum posi-

tive correlation thresholds in the ranges [0.4,0.75] and [5,25], respectively. In

contrast, setting the lift thresholds out of these ranges yields, on average, a

relevant performance worsening. In fact, increasing the selectivity of the lift

thresholds (i.e., when max−lift<0.4 or min+lift>25) may cause the pruning

of potentially useful patterns. On the other hand, the term correlations with

lift value close to 1 are misleading and should be discarded.

Impact of the coverage strategy. To solve the set covering optimization prob-

lem GraphSum exploits a greedy strategy. It yields an approximated so-

lution to the problem of selecting the subset of sentences that best covers

the graph-based model. Since the set covering problem is a min-max prob-

lem, it has been converted into a linear programming problem and tackled

by means of combinatorial optimization strategies. To evaluate the impact

of the greedy strategy on the summarization performance, we compared the
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GraphSum performance with that achieved by a variant of our summarizer,

namely GraphSumBB, that accomplishes the coverage task by exploiting a

branch-and-bound algorithm [30]. In Figure 3 we compared the ROUGE-

2 F1-measure achieved by GraphSum and GraphSumBB by varying the

support and lift thresholds, respectively.

For all of the tested configurations, GraphSum performs significantly

better than GraphSumBB and appears to be less sensitive to errors and

data overfitting. Furthermore, GraphSum takes a lower execution time

compared to GraphSumBB (e.g., at least 20% less than GraphSumBB for

all of the considered settings).

Choice of the type of extracted itemsets. When coping with complex data

distributions [18], the redundancy of the itemset mining result could worse

the quality of the generated models. Hence, we also tested two variants of

the GraphSum summarizer, in which maximal and closed frequent itemsets

are extracted rather than the whole set of frequent itemsets. Specifically,

we integrated two traditional closed [28] and maximal [32] itemset mining

algorithms into the GraphSum summarizer.

The results, not reported here for the sake of brevity, demonstrate that

discarding some of the frequent itemsets on average worsens the GraphSum

performance, because some of the potentially relevant data facets remain

uncovered by the generated summary.

5. Conclusions and future work

This paper presents GraphSum, a general-purpose graph-based sum-

marizer that combines the association rules that were extracted from the
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Figure 3: Parameter analysis and comparison between GraphSum and GraphSumBB in

terms of Rouge-2 F1-measure

analyzed documents in a graph-based model in order to consider the corre-

lations among multiple terms during the summarization process. To select

the most informative sentences, GraphSum adopts a graph ranking strategy

that discriminates between positive and negative term correlations.

The experimental results demonstrate the effectiveness and usability of
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the proposed summarizer on benchmark and real-life documents. Graph-

Sum performs better than many state-of-the-art approaches, including those

that heavily rely on advanced semantics-based models (e.g., ontologies) or

complex linguistic processing steps.

As future work, we plan to (i) adapt and evaluate the proposed summa-

rizer into a multilingual contest (e.g., the TAC’11 contest [40]), (ii) exploit

advanced document structure analysis (e.g., [34]) to perform news document

summarization, (iii) integrate ontology- or dictionary-based mining strategies

(e.g., [25, 26, 36]) to further improve the summarization performance.
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