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Abstract

This work contributes to the development of ontology-based user models, devised
as overlays over conceptual hierarchies derived from domain ontologies. We tackle the
problem of propagation of user interests in such a conceptual hierarchy. In addition to
accounting for the hierarchical structure of the domain and the type and amount of feed-
back provided by the user, the principal contributions introduced in this work are: (i)
horizontal propagation which enables propagation among siblings, in addition to verti-
cal propagation among ancestors and descendants; (ii) anisotropic vertical propagation
which permits user interests to be propagated differently upward and downward; (iii)
context-dependance which introduces the possibility to propagate differently according
to various contexts for specific applications; (iv) support for dynamic ontology main-
tenance, i.e. preserving the user interest values when adding or removing a node from
the conceptual hierarchy. Our approach supports finer recommendation modalities and
contributes to the resolution of the cold start problem, since it allows for propagation
from a small number of initial concepts to other related domain concepts by exploiting
the conceptual hierarchy of the domain. A field evaluation confirmed the effectiveness
of our approach w.r.t. the traditional vertical propagation.
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1. Introduction

With the advent of the Semantic Web, ontologies emerged as powerful means for
representing domain knowledge in many areas [6, 4], such as cultural heritage, tourism,
e-commerce, e-learning, digital libraries, web search etc. One of the promising uses of
ontologies is in the area of adaptive systems, such as recommender systems and adap-
tive search engines, in which the final services are tailored to users’ needs to account
for differences in their individual requirements. These requirements are obtained from
users’ features, contained in the User Model [26]. In particular, the user model should
maintain the user’s attitude (such as interest, knowledge) in the main domain objects.
It has been devised as particularly useful to represent the domain objects as classes
of an ontology and the user model as overlay over such an ontology, giving rise to
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ontology-based user models. This is particularly useful since the conceptual hierarchy
derived from domain ontology can be exploited for different forms of interest propa-
gation (from ancestors to descendants and vice versa and among siblings) used further
to infer missing values for user interest in some ontological concepts. The work de-
scribed in this paper contributes to the development of ontology-based user models and
deals with the propagation of user interests in the ontology. In particular, we consider a
specific type of ontology, namely conceptual hierarchy derived from domain ontology.

We build upon our previous work presented in [14] where we introduced OBUM
- Ontology Based User Model, and an approach for propagating interests in a user
model designed as an overlay over the domain ontology constructed as a conceptual
hierarchy. In this previous approach, the conceptual hierarchy of the domain and the
type and amount of feedback provided by the user were taken into account in order to
propagate user interest among domain concepts, starting from a few feedback values
for some of them. In the present work, in order to make the approach more effective
and overcome some of its previous limitations, we introduced various improvements
for the propagation of user interests in the conceptual hierarchy:

e horizontal propagation which enables propagation among siblings, in addition to

propagation among ancestors and descendants;

e anisotropic vertical propagation which permits user interests to be propagated
differently upward and downward;

e context-dependance which introduces the possibility to change the propagation
according to various contexts for specific applications;

e support for dynamic ontology maintenance, i.e. the possibility to preserve the
user interest values when adding or removing a node from the conceptual hierar-
chy, hence making it possible to apply our approach not only to static ontologies
but also to the ontologies that change dynamically;

o new field evaluation that confirms the effectiveness of our approach.

In the rest of the paper, we give a detailed account of all these aspects, organizing
the paper as follows. First, in Section 2, we provide the background notions employed
when developing our approach, together with the most important state of the art work in
the corresponding fields. Next, we provide the details of our approach for user interest
propagation in Section 3, explaining the sensed and propagated interest values and
vertical and horizontal propagation. The algorithms are explained in Section 4, together
with an analysis of their correctness, termination, stability. In Section 5 we illustrate
the interest values calculation for a particular use case. In Section 6 we describe our
approach to possible ontology maintenance. The results of a real field evaluation can
be found in Section 7, followed by the comparative analysis with related work in the
field in Section 8. We conclude in Section 9 giving some directions for possible future
development.

2. Background and state of the art

In this section we provide a brief account of the background notions used to develop our
approach. For each related field, we indicate the most relevant work in the literature,
providing the state of the art we started from.



2.1. Ontologies and conceptual hierarchies

Ontologies are powerful formalisms for knowledge representation which enable
explicit specifications of domain concepts with their properties and relationships be-
tween them. In theory, an ontology can be seen as a “formal, explicit specification of a
shared conceptualization” [20]. Ontologies provide exact semantics for each statement,
avoiding any semantic ambiguities. Moreover, being expressed with standard formats
and technologies, they allow for extensibility and re-usability. Finally, the associated
rigorous reasoning mechanisms allow for different forms of reasoning (for example, to
deduce implicit classes).

A simplified view of an ontology is a network of concepts. It provides a natural
basis for modeling a domain of discourse following multiple examples in the area of
Al and Intelligent Systems. In our work, we focus on a particular type of ontology,
namely conceptual hierarchy derived from the domain ontology, also known as hierar-
chical ontology. This kind of ontology is a taxonomy of concepts where concepts are
organized based on the partial order relation IS-A, through which entities are grouped
into or subsumed by a higher level classes [9, 43]. A conceptual hierarchy can be seen
as a simple ontology where the properties of concepts are not taken into account. In
this sense the term “ontology” includes the term “conceptual hierarchy”. Hierarchi-
cal ontologies are important since they enable structuring of the domain knowledge
into categories and formulation of relations among concepts in an abstract way which
enables easier development, maintenance and reuse. Also, inference mechanisms and
reasoning are faster and more efficient.

2.2. User Model

Adaptive web systems belong to the class of user-adaptive software systems, which
provide each user with personalized services, i.e. they behave differently for different
users [26, 1, 11]. For example, when the user searches for information, the system
can adaptively select the most relevant items [29]. When the user navigates a web site,
the adaptive system can manipulate the links (e.g. hiding, sorting, annotating a link) to
provide adaptive navigation support [10]. When the user reaches a particular page, the
system can present the content adaptively [12].

Adaptive results are made possible due to the usage of a User Model (UM), a rep-
resentation of information about an individual user. The process of building and main-
taining a user model is known as “user modeling” process [11]. To create and maintain
an up-to-date user model, an adaptive system collects data for the user model from var-
ious sources which may include implicitly observing user interaction [26], exchanging
user data with other applications [7], using user information provided by social net-
working sites via APIs [38] or/and explicitly requesting direct input from the user.

Another step in the user modeling process is finding the best way to represent the
content in the user model: using simple vectors or bags of words [1], property-value
pairs [13], complex probabilistic approaches (such as bayesian networks [2]), or over-
lay over the domain model [11], where the user’s current state (e.g. interest or knowl-
edge) with respect to domain concepts is recorded.



2.3. Ontologies for user modeling

Ontologies (and conceptual hierarchies) started to be widely used in adaptive sys-
tems to represent the domain models [41, 31]. Their usage allows the internal knowl-
edge of adaptive systems to be sharable [33, 5], and offers a great opportunity to im-
prove the user modeling process.

Ontologies have been exploited to represent directly the user model features (de-
mographic features such as age, gender, profession, etc.) in a taxonomical structure.
Examples of this approach are the General User Model Ontology (GUMO) [22], the
Unified User Context Model (UUCM) [28], the User Role Model ontology [45] and
OntobUM [33]. This allows for simpler interoperability among adaptive systems which
want to exchange user model data.

When a domain model is represented as an ontology, the user model can be built
as an overlay over the ontology [41, 21, 24]. This ontology-based overlay user model
consists of a subset of concepts from the domain ontology, where the presence of a
concept in the user model means that the user has an interest in the corresponding con-
cept. The concepts can have associated values (weights, verbal labels), characterizing
how much the user is interested in them. The overlay model of user interests can be
represented as a set of pairs {concept, value), with one pair for each domain class (for
example, (wine, 0.9) on a scale 0 — 1 means strong interest in wine).

2.4. Motivations for our work

Ontology-based overlay user model is a great opportunity for user modeling, since
matching the user interests with the concepts in the domain ontology allows to benefit
from the conceptual structure of the ontology and attain the values for other concepts in
the ontology [30]. For example, starting from user interest in a class, we can propagate
this value to related concepts (subclasses, superclasses and concepts at the same level).
More specifically, such an ontological approach to user profiling brings the following
benefits:

o Solution of the cold start and sparsity problem. The cold start problem [37] hap-
pens at the beginning of the interaction when the system does not have enough
user data to provide appropriate adaptation. Sparsity problem is a related issue
that occurs when the available data are insufficient for identifying user interest
and it is a major issue that limits the quality of recommendations and the applica-
bility of adaptation in general. With this approach, it is possible to derive many
missing values starting from a few initial user interest values, and thus solving
both problems.

e Adaptation accuracy improvement. This approach is useful not only in the early
phases of interaction, but also in all the subsequent phases of the adaptation pro-
cess. In fact, propagation allows to have more information about users making
it possible to recommend to users the objects which might interest them more or
to personalize search results.

In this work, we propose to exploit the opportunity to devise a user model as an overlay
over a conceptual hierarchy for solving the cold start problem and to improve adap-
tation results in adaptive systems. The details of our approach will be given in the
following section.



3. User interest propagation

In this paper we present an approach for propagation of user interests in a conceptual
hierarchy derived from domain ontology (referred to as conceptual hierarchy from now
on) in order to obtain missing information about the user (i.e the interest in domain
concepts), and thus enrich the user model. The approach uses the notions described in
the previous section, and in particular:

o the domain model has to be represented using a conceptual hierarchy, modeling
domain items as instances of the classes in the ontology;

e the user model has to be represented as an overlay over domain model repre-
sented as a conceptual hierarchy: in particular, we propose to represent the user
interest as a weight which indicates how much the user is interested in each con-
cept.

o the system must have a way to obtain user feedback about interests and prefer-
ences of users, either explicitly or implicitly.

The procedure for user interest propagation consists of the following basic steps:

1. Calculate the conceptual distance between each pair of concepts in the concep-
tual hierarchy (Section 3.1).

2. Capture the user feedback for some concepts in the hierarchy (Section 3.2).

3. Determine the sensed interest value as a measure of how much of the direct user
feedback each node can sense. Sensed interest depends on the total amount of
direct user feedback for the given node and the level of the node in the hierarchy
(Section 3.3)

4. Calculate the propagated interest value and propagate it vertically and horizon-
tally in the conceptual hierarchy. Propagated interest depends on the sensed
interest of the starting node (i.e. the node receiving the feedback) and on the
conceptual distance between the starting node and the node receiving the propa-
gated value (Section 3.4).

5. Update the total interest value for each node in the hierarchical ontology. To-
tal interest value is the sum of the sensed interest value and all the propagated
interest values received (Section 3.5).

6. For each subsequent user feedback, calculate the difference between the newly
obtained sensed interest value for the given node and the old one, so as to prop-
agate only the appropriate portion of the sensed interest value (Section 4).

Hence, after collecting the feedback provided by the users, each node that received
direct feedback from a user re-calculates its own sensed interest. The change in the
previous sensed interest value will be propagated vertically and horizontally to the
neighboring nodes and update the user model. Each node which receives the propa-
gated interest will update its fotal interest value.

Our propagation of user interests can be seen as a special case of spreading activa-
tion theory [36]. The cornerstones of spreading activation are: (i) determining the ini-
tial set of nodes and their corresponding activation values, (ii) establishing the weights
of the relations in the network, (iii) establishing the firing threshold and decay factors.
In our approach the initial set of nodes is the set consisting of the nodes which received
the user feedback, taking their sensed interest values as their initial activation values.
Our conceptual hierarchy is an associative network in which each edge is assigned a



numeric weight corresponding to the conceptual distance between the two nodes. We
do not account for the firing threshold (any initial value is propagated, but only from the
initial node). Also, in order to account for the decay factor in spreading activation we
simulate attenuation law in physics. This means that from the initial set of nodes which
received the user feedback as the signal of user interest, adequately diminished interest
values would be propagated to the related nodes in the hierarchy. Another important
issue is a termination condition for spreading activation. In our case, since only the
nodes which received the feedback are propagating the interest values, and propagate
them to a finite number of nodes, there is no danger of encountering loops.

In the rest of the section, we will describe all the steps of the propagation process
and the algorithms, together with an analysis of their correctness, termination, stability.
Finally, we will present implementation details of our propagation algorithm.

3.1. Conceptual distance

The first step regards the calculation of distance among concepts. In a conceptual
hierarchy, the domain objects at the lower levels are closer than those with the same
relationship located at higher levels. For example, the wine Barbera d’Alba and its
particular variety Pio Cesare “Fides” Barbera d’Alba 2000 are closer than Barbera
d’Alba and Red Wine, concepts higher up in the conceptual hierarchy. Thus, it does
make sense to propagate user interests differently in the conceptual hierarchy, partic-
ularly when propagating upwards and downwards or to siblings, which brings us to
anisotropic propagation of user interests.

To achieve this, it is necessary to differentiate among concepts according to some
conceptual similarity measure. In the previous version of our work [14], we consid-
ered uniform distances in the conceptual hierarchy, calculating the distances between
two concepts by counting the nodes or the edges between the two concepts. This dis-
tance was then used to determine the similarity between concepts [32]. Now, instead
of considering all distances equal, we modified our approach by using the conceptual
distance and conceptual similarity introduced in [16] which provided us with the im-
mediate solutions to the above mentioned considerations.

We give here a brief summary of the approach for computing conceptual distances
among domain objects [16]. Ontology is considered a rooted, directed acyclic graph of
subclass-of and instance-of relations. A new notion of specificity (spEc) is introduced
to be able to distinguish the concepts relevant in a certain context. The specificity of
the irrelevant concepts is equal to infinity. Surface nodes are the first domain-relevant
concepts encountered when traversing the domain ontology with a finite specificity
spec(n) € N. If a node n is reachable from a single surface node s via a single path p,
spEc(n) is obtained by adding the number of edges in p to spec(s) (and if there are more
paths of different lengths, the longest path is used).

Specificity is used to calculate conceptual distances between objects of the ontol-
ogy, introducing exponentially decreasing edge lengths, as opposed to all the edges of
the same length. In particular, given an edge e : S — T, the edge length is given by

LEN(e) = ¢~ SPEC)

where ¢ € N is a constant (¢ > 2). The length of a path is the sum of the lengths of its
edges. Then, given two ontology nodes N;, N», we calculate their conceptual distance



dist as the length of the shortest path' connecting them via an ancestor node:
dist(Ny, Np) = min{Len(p;) + LEN(p2) | 3G such that G —,, Ny, G —,, Na}.

Whenever a path from N; to N, crosses a non-relevant node, then Fst(N 1,N,) = 0.

The choice of surface nodes depends on the context of the application and the level
of detail one wants to include in the given situation. To enable this context dependence,
in [16] it is possible to choose the surface nodes according to the application context:
for example, Wine could be given a lower specificity in the context of a wine festival,
while in any other non wine-specific context it could be given the default value 0. For
a detailed account of specificity and conceptual distance we refer the reader to [16].

3.2. Capturing user feedback

Capturing user feedback is very important, but in this work we do not go into details
of how user feedback is obtained. In many web-based adaptive systems, it is possible to
infer user interests indirectly by observing user interaction with the web-based system,
without explicitly asking the user for information. In our approach, we consider user
actions (selecting, tagging, bookmarking, commenting an item, etc) as indicators of
user interest [26] and we assign to each of these actions a certain weight f expressing
how much it indicates the strength of user interest (following [13]).

3.3. Sensed interest value

When a user performs an action on a certain domain object, the node corresponding
to that object “senses” a certain amount of the provided feedback. This value is what
we call a sensed interest, thus introducing the concept of a sensitivity of a node, i.e.
how much a node can react to user feedback. The sensitivity of a node depends on its
position in the conceptual hierarchy and user feedback for that node. The former is
important since the hierarchical structure of the ontology represents different levels of
generalization [34]. Thus, when a user expresses interest in an object lower down in the
conceptual hierarchy, it should have a stronger impact on the user model than interest
expressed in more generic concepts, since it provides the system with more precise
information. Following this direction, in our approach a lower amount of feedback is
required as a signal of strong user interest for a lower-level node.

In order to calculate the interest sensed by a node N, we use the following formula:

(N
L) = " sig PNy + fV) (1)

where
e {(N) is the level of the node that receives the feedback,

o max is the level of the deepest node in the conceptual hierarchy,
-1
o sig(x)is a variant of the sigmoid function given by sig(x) = —1=¢ ,
l+e™ e+ 1

Iconsidering the graph undirected.



e F(N) is the sum of the previous feedback values obtained from the user for the
given node N,

e f(N) is the current (new) feedback obtained from the user for the node N.

We decided to use the sigmoid function since it permits to take into account also
negative user feedback. In this paper, we do not consider negative user feedback, but
we wanted to propose the approach as general as possible. Using this sigmoid function,
the above Formula 1 can be written as:

N FNHN) _ |
max eFMN+fN) 4 1°

Is(N) = @)

Note that we calculate the level of the node in the conceptual hierarchy, as well
as the level of its deepest node, starting from the surface nodes, while the rest of the
nodes is not taken into account (see Section 3.1). This means that the surface nodes
are considered to be at level zero. As a consequence, the surface nodes do not sense
anything, since the sensed interest for these nodes is always equal to zero. This also
means that the surface nodes are not able to propagate anything. This is intuitively
correct, since the surface nodes are the least significant concepts in the given context.
This brings us back to the importance of context dependence, i.e. the possibility to
chose the surface nodes based on the context of application usage.

The order in which the user feedback is received does not influence the sensed
interest value. This is an important point corrected with respect to the previous ap-
proach [14]. In fact the order of the actions performed by the user should not have
any implications on the interest values of the user. For the same reason, the node does
not distinguish if it receives one feedback f or many single ones fi,..., f, such that

fitot =,

3.4. Propagated interest value

We first explain the concepts of vertical and horizontal propagation, followed by
the description of how to calculate the propagated interest values.

Vertical propagation. In the case of vertical propagation, user interest in a certain
domain concept can be propagated upward to its antecedents, as well as downward to
its descendants. For example, if a person is interested in red wine Barbera_d’Alba, we
can assume that the same person might be interested in a specific kind of this wine,
such as Pio_Cesare_Fides_Barbera_ d’Alba_2000, but also in Red_Wine in general. The
interest for the neighboring concepts is smaller than the interest in the original concept
that received the feedback and it diminishes with increasing distance from the initial
node. Hence, we can assume that the interest we can propagate vertically is inversely
correlated to the distance from the node that received the feedback. Another effect we
want to obtain is to have anisotropic propagation, i.e. stronger propagation downwards
than upwards in the hierarchy. This is allowed by using the exponentially decreasing
distance described in Section 3.1.

Horizontal propagation. 1t is also useful to be able to propagate horizontally, propa-
gating the user interests also to the sibling nodes of the node that receives the feedback.
For example, if a person is interested in red wine Barbera_d’Alba, the same person



could probably be also interested in its sibling Barbera_d’Asti. Again, we are less sure
about this interest and thus this value will be smaller.

Since both vertical and horizontal propagation are computed only by using the
shorter distance between the node that receives the feedback and the node that receives
the propagated interest value the procedure for calculating the propagated interest is the
same in both cases. The propagation of interests follows the conventional law which
rules the natural phenomena, where the attenuation is proportional to the initial value
of the variable and to the taken distance in a medium (see for instance DeBeer-Lambert
law [42] for light attenuation). The intensity is not a linear function of the taken dis-
tance, rather an exponential one. This formulation allows to obtain a decrease of the
interest value with respect to the distance from the initial node. Hence, for the initial
user feedback, we compute the initial propagated interest 7 »(M, N) from the node M
to the node N as follows:

T(M, N) = Ts(M)e ™ i 3

where

e [ s(M) is the sensed interest of the node M that received the feedback,

e dist(M, N) is the conceptual distance (i.e. exponentially decreasing distance) be-
tween the node M receiving the feedback and the node N receiving the propa-
gated interest,

e k € R is a constant, called attenuation coeﬁicient.2

Only with the initial user feedback for a certain domain object, all the sensed in-

terest is used in propagation. With each subsequent user feedback, the sensed interest
used to update the user model is equal to the difference between the newly obtained
sensed interest value for the given object and the old one that was already propagated:

O(N)

ATs(N)=TI'\(N) - IS (N) = —

(sig(F(N) + f(N) = sig(F(N)) “)

where t and 7 — 1 are two successive moments when the user feedback was received.

It is easy to verify that the amount of interest A7 s(N) propagated for the i-th feed-
back is lower than the amount of interest propagated for any previous feedback with
the same values. This helps to keep the system balanced avoiding the propagation of
redundant information. Therefore, for each subsequent feedback for the node M, the
propagated interest AZp(M, N) to the node N is calculated as:

AIp(M,N) = ¢ HSIMNA T (M), (3)

Since for the initial feedback, there is no previous feedback, we obtain A7 g(N) =
T s(N), and I(;)(M, N) = ATp(M, N). Hence, we can always use the value AZp(M, N)
when updating the user model with propagated interest.

2In physics, k depends on the characteristics of the medium relevant for the process, for instance opacity
of the material for a light wave.



In order to correctly propagate user interests, the contribution of the various nodes
to the propagation must be balanced. In particular, the node contribution to the propa-
gation process should decrease with the amount of feedback already propagated by that
node. This is needed to prevent the non-proportional propagation of interests when the
user concentrates solely on one or a few concepts. In that case, this input is redun-
dant and does not add any information. In our approach this is avoided since the total
sensed interest 7 s(N) is a sigmoid function which asymptotically saturates at i%.
This makes it impossible for a single node to unbalance the user model and it also re-
wards those cases in which a node receives feedback from a good part of its sub-nodes,
showing a consistent interest for that class.

In the previous version of our approach [14], the propagated interest value was in-
versely correlated with the amount of feedback already received by the node. It was
the first try to avoid unbalancing the user model by redundant feedback. However, this
approach had some flaws. It depended on the number of user actions and not on the
total amount of feedback, unfairly penalizing the items which received many little pos-
itive feedback values. In addition, the total interest in a domain object depended on the
order in which the individual feedbacks were provided. As stated before, we solved the

problem by making 7 s(N) a sigmoid function.

One dilemma is whether to propagate user feedback between two nodes which only
have a surface node as their common ancestor. For example, when a user feedback
for White_Wine is propagated to Red_Wine through the common ancestor surface node
Wine. Depending on how the surface nodes are chosen, this might not be desirable
in certain scenarios. To avoid this problem it is possible to set a maximum propaga-
tion distance maxP equal to the distance of two nodes which have a surface node as
their only ancestor. Since the distances decrease exponentially with the depth of the
ontology, this limit does not preclude the propagation between any other pair of nodes.

3.5. Total interest value

Finally, for each node N we calculate its total interest value, taking into account its
sensed interest value and the propagated interest values received from other nodes:

I(N) = oI s(N) + ZL il p(N;, N) (6)

where 7 g(N) is the sensed interest for the node N and 7 (N;, N) is the total propagated
interest from the node N; to the node N, n being the number of nodes which propagate
their interest values to the node N. o, x; € R are constants such that o + X m; = 1
which permit to assign different importance to sensed and propagated interest values.

4. The propagation algorithm

In this section we look into more details of the propagation algorithm and its per-
formance, as well as its correctness, termination and stability. Note that we are always
working only on the relevant part of the conceptual hierarchy, i.e. we only consider the
surface nodes and their descendants.
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The algorithm consists of two distinct procedures. The first one is distance matrix
computation (DMC), described by Algorithm 1, which takes as input the ontology de-
scribing the domain and returns a matrix DM which associates to any pair of nodes the
conceptual distance between them (see Section 3, step 1). In the first step, it uses the
ontology reasoner to infer the hierarchical structure and make explicit the subsumption
relationships between classes (line 2). It then exports this conceptual hierarchy to a
graph in which nodes are the classes of the ontology and edges are the IS-A relations
(line 3). Each graph edge is then assigned an exponentially decreasing weight as de-
scribed in Section 3.1 (line 4). Finally the procedure exploits the well-known three
nested for-loops formulation of the Floyd-Warshall algorithm [23] to find the shortest
paths between each pair of nodes and create the conceptual distances matrix DM (line
5). The matrix is saved in a binary file to be used by the interest propagation algorithm.
This procedure runs on the conceptual hierarchy at the beginning and should be run
again every time the ontology is modified, as described in Section 6.

Algorithm 1 Distance matrix computation

: function DMC (ontology) returns (DM)
. inferHierarchicalStructure(ontology);

: graph = extractTaxonomy(ontology);
graph = assignWeights(graph);

: DM = FloydWarshall(graph);

: return DM;

R R SR

The second procedure is the interest propagation, shown in Algorithm 2, which
uses the pre-computed distance matrix DM, user feedback values and users to update
the user models of the users providing the feedback (see Section 3, steps 2-6). The
interest propagation can be run once a day, but, if computational power is not an issue,
it may be run at shorter intervals and even after every user feedback.

The algorithm assigns the value zero to all the received propagated interest values
for all users. It then loops through all the feedback values and for each of them selects
the node N in the conceptual hierarchy on which the action was performed (line 8) and
determines the user U which provided the feedback (line 9). For the node which re-
ceived the feedback, the sensed interest value is updated using the Formula 1 (line 10)
and the total interest value is calculated as a weighted sum of sensed interest and the
received propagated interest (line 11). For all the other nodes in the conceptual hierar-
chy i.e. for all the nodes M in graph different from N the received propagated interest
value and total interest value are updated with deltalP(N,M) calculated according to
Formula 5 (lines 13 and 14). Note that the constants a, b, ¢, d, e, f in Algorithm 2 have
tobechosensothata+b=1,c+d=1ande+ f = 1.

4.1. Implementation details

We implemented the described algorithm as a Java class which can be controlled via
servlet or scheduled to run at chosen times on a 2.4 GHz Intel Core Due with 2 GB of

11



Algorithm 2 Interest Propagation

1: function interestPropagation (feedbacks, users)
2: for all N in graph do
3:  for all U in users do

4: IP(U,N) = 0;
5. end for
6: end for
7: for all (f in feedbacks) do
8: N = nodelD(f);
9: U = userID(f);
IS(U,N) = I(N)/max sig(F(N)+f(N));

[
—_ O

I(U,N)=a IS(U,N) + b IP(U,N);
12:  for all M in (graph - N) do
13: IP(U,M)=c IP(U,M)+d deltalP(U,N,M);

14: I(U,M)=e I(U,M)~+f deltalP(U,N,M);
15:  end for
16: end for

RAM. The domain ontology is written in OWL? and developed with Protege editor*.
We used the Java library Jena® to parse the OWL Ontology and Pellet reasoner® to
infer its hierarchical structure. We use our own lightweight implementation of a graph
object, which gives access to the taxonomy faster than Jena OntModel. The user model
values are stored in a MySQL database, hence the function updateUM directly updates
a row in the table representing the user model. The same table is queried to obtain the
user preferences for various concepts.

4.2. Algorithm correctness, termination and stability

Algorithm 1 uses the inferHierarchicalStructure procedure from Pellet reasoner
and a well-known Floyd-Warshall algorithm, hence its correctness and termination is
straightforward. We will only look into Algorithm 2.

Correctness of Algorithm 2
Claim: Each concept N in the user model of user U has the total interest value:

I(N) = cIs(N)+ZL,mIp(N;, N).

Proof: By induction on the number of feedbacks. Since we are proving the claim
for a certain user U, and thus considering only the feedback values for this particular
user, we would omit the argument U from algorithm’s notation.

3 http://www.w3.org/TR/owl-features/
“http://protege.stanford.edu
Shtp:fwww.jena.apache.org/
Shttp:fwww.clarkparsia.compellet/
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e k = 1. We distinguish two cases:

— Feedback f; is provided for the node N. Then according to Algorithm 2,
its sensed interest is calculated using the value fi (line 10) and I(N) =
alS(N) + bIP(N) = alS(N) since IP(N) = 0 initially (line 4). So in this
caseoc=aandm =0,i=1,...,nand

I(N)=0Is(N).

— Feedback f; is provided for some other node M. Then I(N) = el(N) +
fdeltalP(M, N) = fdeltal P(M, N) since I(N) = 0 (this is the first feedback
and it is given to another node). Also deltalP(M,N) = IP(M, N). In this
case o =0,m = fand

I(N) = ﬂ]IP(M, N)
o Suppose the induction hypothesis holds for k. This means that
I(N) = 0Is(N)+2_ mIp(N;,N)ie.

I(N) = sIS(N) + riIP(M1,N) + ... + riIP(M}, N).

where [ is the number of other nodes which received the feedback and IP(M;, N)
is the total received propagated value by the node N from the node M;,i =
1,...,L
e We prove the induction hypothesis for k + 1. We distinguish two cases:
— Feedback f;,; is provided for the node N. Then according to Algorithm 2,
its sensed interest is updated using the previous feedback values and value
fir1 (line 10) and I(N) = alS(N) + bIP(N) = alS(N) + b(ri{IP(M1,N) +
v + 1lIP(M;,N)). Inthiscaseoc =aand p;=b-r,i=1,...,l and

I(N) = 0Is(N) + I, m, I p(N;, N).

Note that the number of nodes which propagated their interest to the node
N remains /, since the feedback f;.; was provided for the node N. Also,
the value of the sensed interest for the node N was updated.

— Feedback f; is provided for some other node Q. Then I(N) = el(N) +
fdeltal P(Q,N) = e(sIS(N)+ri IP(M1,N)+...+r Il P(M;, N))+ fdeltal P(Q, N).
Soo=es,m=er;,i=1,...,land ;11 = f. So we obtain

I(N) = oIs(N) + Zi_ miIp(Ni, N) + 111 ALp(Q, N).

Note that if Q is one of the nodes which already propagated their interest to
N, the above sum would again sum only / propagated feedback values and
ATp(Q,N) would be summed with the already accumulated propagated
interest value from the node Q. If Q is obtaining the user feedback for the
first time, then AZ7p(Q, N) = Ip(Q, N).

13



Termination

Regarding termination, for each user feedback, the appropriate portion of the sensed
interest is propagated to all the nodes in the graph, but none of the nodes is fired to
propagate in the same cycle, as is the case in classical spreading activation. Since we
propagate the interests using the precomputed matrix DM, with finite distance between
each two pairs of nodes, in each cycle the interest values are updated for all the nodes
in the graph (except the node which received the feedback) and loops are avoided. If
n is the total number of feedbacks and m is the number of nodes in the graph, then the
propagation is executed n - (m — 1) times.

Stability

The sensed interest value is calculated according to the Formula 1. Sigmoid func-
tion can only have values in the interval (-1, 1) (even though in our evaluation the argu-
ments were only from the interval [0, 1]). This means that the value of sensed interest,
regardless of the number of feedback values provided by the user can only belong to
the interval (—%, %). Further, the propagated interest value, calculated according
to Formula 5, is computed by weighing the sensed interest by a factor smaller then 1,
hence again belongs to the same interval. Finally, the constants a, b, ¢, d, e, f in Algo-
rithm 2 are chosen in such a way to ensure that each weighted sum is again in the given

interval.

4.3. Performance

The distance matrix computation procedure is very fast on an average sized ontol-
ogy. We tested it on the two ontologies used for the evaluation (Section 7) consisting
of 26 and 37 classes, yielding runtimes of 2.5 and 4 seconds, respectively. The run-
times for interest propagation were satisfactory. On the ontology with 27 classes, the
interest propagation algorithm computed 696 feedback values from 87 users in about
50 seconds, taking 0.07 seconds for every feedback. On the ontology with 37 classes,
2,772 feedback values from 231 users were processed in about 250 seconds, which is
0.09 seconds for each feedback. Note that most of the run time was simply due to the
databases queries to retrieve and update the user models. It is possible to improve the
performance by optimizing the interaction with the databases or by setting a threshold
for the propagation distance, thus propagating the interest only to the nodes that are
considered similar enough.

5. Use Case

Let us consider the following scenario. A person is visiting a wine fair in Tuscany
and is using the application which permits her to explore the rich realm of Italian wines
and also employs our user interests propagation algorithm. The system already knows
that she likes Barbera wine, since she commented on it, and this allows the system to
give her recommendations based on her initial preference.

In order to illustrate the idea of user interest propagation we would consider the
Wine conceptual hierarchy given in Figure 1, which is a part of Drink conceptual hi-
erarchy used in the evaluation process (see Figure 7). In this conceptual hierarchy, the
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domain concept Wine is a surface node, i.e. its level is equal to zero. We will assume
that the level of the deepest node in the hierarchy (calculated starting from the surface
node) is max = 4. We will assume the following weights for different user actions [13]:
commenting f = 0.5, bookmarking f = 0.9 and tagging f = 0.7. Finally, the values of
the constants a, b, ¢, d, e, f are always %

Wine
I / 1
Red wine White wine
1/3 /3
Ve
Barbera Nebbiolo
SN
1/9 1/9
< . .
Barbera d'Alba Barbera d’Asti
1/27 1/27
- e ~
Pio Cesare “Fides” Vietti “Scarrone”

Barbera d’Alba 2000 Barbera d’Alba 2003

Figure 1: The portion of conceptual hierarchy representing wines

In the example, the user expressed interest in red wine Barbera, by commenting on
it, which corresponds to the value fi = 0.5. The level of Barbera in the hierarchy is
{(Barbera) = 2. With this information, our system is able to (i) infer the interest value
for this class, and (ii) infer the level of interest in the related classes (descendants and
ancestors, as well as siblings).

When the node corresponding to Barbera receives this first feedback f; = 0.5, its
sensed interest is

{(Barbera) e/l =1 1% -1
== =0.12 and
max e +1 205 +1 an

I s(Barbera) =

1
I(Barbera) = EI s(Barbera) = 0.06.

This value will be propagated “as is” through the conceptual hierarchy, since there is
no previous feedback to be taken into account

AT (Barbera) = 0.12.

When the same node receives the second feedback f, = 0.9 (the user bookmarks the
object), the total sensed interest will become

t(Barbera) efi* — 1
max efith +1

I s(Barbera) = = 0.3 and 7 (Barbera) = 0.15

The amount of interest that will be propagated to update the system will be

AI@(Barbera) =0.3-0.12=0.18.
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In order to illustrate vertical propagation, we additionally assume that k = 1 in
equation (3) and ¢ = 3 in the calculation of the edge lengths. The choice of ¢ depends
on many factors, for example how flat or deep certain sub-ontologies are. Starting from
the value 7 s(Barbera) of sensed interest for Barbera, we calculated above the varia-
tion in the sensed interest AT g(Barbera), i € {1,2,3} for each of the three feedback
values provided by the user. These values are propagated further, using the exponen-
tially decreasing edge lengths (see Figure 1). In what follows we use the following
abbreviations for better legibility: Red for Red Wine, Alba for Barbera d’Alba, Asti for
Barbera d’Asti, Fides for Pio Cesare “Fides” Barbera d’Alba 2000 and Scarrone for
Vietti “Scarrone” Barbera d’Alba 2003.

First of all, we calculate the conceptual distances between the nodes in the part of
the hierarchy describing wines.

dist(Barbera, Wine) = 1+ % ;‘
dist(Barbera,Red) = %
dist(Barbera, Nebbiolo) = 3 § = %

dist(Barbera, Alba) = dlst(Barbera,Asti)zé

dist(Barbera, Fides) = dist(Barbera,Scarrone) = é +L=4

27 < 27

In the case of downward propagation, after the first feedback for Barbera is ob-
tained and assuming that the descendants and ancestors of Barbera did not receive any
direct feedback from the user in the past, we have that:

I(Alba) = 3AIL(Barbera,Alba) = 2e 9AI1 L(Barbera) = 10.89-0.12 = 0.053
I (Fides) = lAfl p(Barbera, Fides) = e 7 AII g(Barbera) = —0.86 0.12 = 0.051.
On the other hand, for upward propagation, we obtain:

I(Red) = %A} (Barbera,Red) = % “3AT! L(Barbera) = 30.71-0.12 = 0.042
I(Wine) = $AIl(Barbera, Wine) = }e zAIl L(Barbera) = 50.26-0.12 = 0.015.

Finally, for the horizontal propagation we have:
I (Nebbiolo) = 1AI1 p(Barbera, Nebbiolo) = 2e 3Af‘lg(Barbera) = %0.51 -0.12 = 0.03.

We can see that in the downward propagation the highest value is obtained for the
direct descendants, followed by the next descendants in the hierarchy. In the case of
upward propagation, the propagated interest for the first antecedent is lower than the
value for descendants and rapidly decreasing. This prevents non-proportional propaga-
tion upwards, as the specificity of concepts, as well as their importance in the domain,
decreases. We can see that the propagated user interest for Nebbiolo is smaller with
respect to Red: this makes sense since Nebbiolo is a particular kind of red wine which
certain users who like Barbera might or might not like. Also, this value is lower than
the calculated interest values for specific Barbera wines. It simply gives us some esti-
mate of how much the user could like another kind of red wine.

After the second feedback from the user is received for Barbera, the appropriate
interest values for its descendant and ancestor nodes are the following:

I (Alba) 1AI ! p(Barbera, Alba) + AI p(Barbera, Alba)
= 2e 9(AI' (Barbera) + AI2 s(Barbera)) = 10 89-(0.12+0.18) =0.133
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I(Fides)=0.129  I(Red)=0.106  I(Wine)=0.039  I(Nebbiolo) = 0.076.

The same procedure would be repeated for the third feedback f; for Barbera. In
addition, in case some of these nodes receives a direct feedback from the user, this
value would be added to the total value of user interest for that item.

Of course, by using different values for k and ¢ we can model different propagation
behaviors. We can see that, as the user simply expresses his interest for Barbera, the
system starts to infer his interest in all the related classes. After a little feedback the
application will be able to suggest to the user other objects he probably likes. For
example, it will know that he prefers red wine to white wine.

6. Support for dynamic ontology maintenance

In many real systems the domain ontology is not immutable, actually there might
exist many reasons to modify it once it is already in use. For example, after some
time certain classes may not categorize the domain concepts precisely enough, thus
requiring modifications, or a certain category may need to be abandoned or added. This
is the issue of ontology maintenance [9, 8], i.e. the ability to automatically evaluate and,
in case it is needed, add new classes in the taxonomical structure in order to improve
the categorization. Our approach supports the ontology maintenance, not in the sense
of correcting the taxonomy by adding or removing classes, but allowing to update the
values after the modification happens. Thus, after changing the conceptual hierarchy,
our approach supports the update of the interest values for all the domain objects as if
the system had always used the modified conceptual hierarchy.

When a leaf node N needs to be removed from the conceptual hierarchy, it should
be possible to nullify the effect that the leaf had on the system. From formula 3 we can
obtain the exact amount of interest propagated from the node N to every other node in
the conceptual hierarchy. Hence, we can delete the effect of the past propagations from
the node N by propagating the value —Z (N, M) to each node M.

When a leaf node N needs to be added to the conceptual hierarchy, it is possible
to propagate the interest from all the nodes in the conceptual hierarchy, as if that node
had existed since the beginning. To achieve this, every node M should propagate to
the new node N the amount of interest 7 (M, N) using again formula 3. We can limit
this propagation to the nodes whose distance from N is smaller than maxP, in case we
want to avoid propagation to the nodes which only have a surface node as a common
ancestor with N (see end of Section 3).

If we need to remove or add a node which is not a leaf node, we must take into
consideration the fact that the distances between other nodes will change. With respect
to the portion of the ontology representing wines, given in Figure 1, the removal of
a non-leaf node is illustrated in Figure 2, whereas the addition of a non-leaf node is
illustrated in Figure 3. In the first case, the node Barbera is removed, changing all
the distances apart from dist(Wine, White), dist(Wine, Red) and dist(Red, Nebbiolo). In
the second case, the node Barbera Piemonte is added, changing again all the distances
apart from the above mentioned ones.

In case of the removal of the node N, the procedure is the following:
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Wine

AN

1

Red wine White wine
7
VY RN 1/3
Barbera d'Alba Barbera d'Asti Nebbiolo
/N
1/9 1/9

7
Pio Cesare “Fides” Vietti “Scarrone”
Barbera d’Alba 2000 Barbera d’Alba 2003

Figure 2: The portion of domain ontology representing wines with Barbera node removed

Wine

Red wine White wine

Barbera Nebbiolo

|

/9

|
* Barbera Piemonte

1/27 e /27

-~ ~
Barbera d'Alba Barbera d'Asti
1/81 1/8l
- [ — ~
Pio Cesare “Fides Vietti “Scarrone”

Barbera d'Alba 2000 pBarbera d’Alba 2003

Figure 3: The portion of domain ontology representing wines with Barbera Piemonte node added
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Cancel the effect of the previous propagation of interests from the node N by
propagating —Z »(N, M) to each node M in the conceptual hierarchy.
Modify the conceptual hierarchy by deleting the node N.
Re-calculate the distances in the modified conceptual hierarchy.
Re-propagate the interest 7 (M, Q) from each node M to each node Q in the
modified conceptual hierarchy, for which the distances have changed.
In case of the addition of the node N, the procedure is the following:

e Modify the conceptual hierarchy by adding the node N.

e Re-calculate the distances in the modified conceptual hierarchy.

e Re-propagate the interest 7p(M, Q) from each node M to each node Q in the

modified conceptual hierarchy, for which the distances have changed.

In the previous version of our approach [14] it was not possible to support the
change of the ontology and one of the reasons for improving our propagation mecha-
nism was to overcome this limitation.

7. Evaluation

In order to evaluate our approach, we used an adaptive application WantEat, devel-
oped as a part of the PIEMONTE Project [17]. The application is placed in the domain
of gastronomy, where intelligent objects such as products (cold cuts, wines, cheeses), as
well as shops, restaurants, market stalls etc. provide information and recommendations
to users. To represent the domain, we used a domain ontology where additional sub-
ontologies describing particular areas of the domain are imported (products, recipes,
actors, places). The domain objects are modeled as instances of the ontology classes.

The most important personalization aspect of the application is the personalized
ranking of the the objects returned by a search or displayed during navigation where it
is of utter importance to mirror the users preferences stored in the user model.

We tested the algorithm by running two evaluations on two different conceptual
hierarchies: the portion of domain ontology representing cold cuts (Figure 4) and the
one regarding drinks (Figure 7), since they constitute a well-known domain also for
people not expert in food domain, and they are fairly well balanced and easy for users
to provide feedback on. In both experiments, we empirically set ¢ = 3 when calculating
the edge lengths (see Section 3.1).

7.1. Hypothesis

Our assumption was that our algorithm can be used to predict users interests in
certain objects of a given domain. In particular, we wanted to measure the accuracy
of our prediction, showing that the lists of domain items generated by our algorithm
provide users with recommendations in good correlation with the lists of liked items
provided by the users themselves.

Furthermore, we wanted to prove that taking into consideration both the horizon-
tal and vertical propagation provides better results than using only vertical propaga-
tion, as it was the case in our previous work [14] and other similar state of the art ap-
proaches [30, 39] that will be discussed in Section 8. In this evaluation we use the term
Multi-Directional Approach (MDA) for the new approach, which takes into account
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both horizontal and vertical propagation, as opposed to the baseline Vertical Approach
(VA) used previously. Moreover, in the last test, we also compared the new Anisotropic
Propagation (see Section 3.1) based on conceptual distance with the old method which
uses uniform distances when calculating the distance between two nodes, in order to
show that the introduction of conceptual distance improves the propagation results.

7.2. Measures

The correlation between the list generated by the tested algorithm and the orig-
inal user’s list was estimated using Spearman’s rank correlation coefficient p, which
provides a non-parametric measure of statistical dependence between two ordinal vari-
ables and gives an estimate of the relationship between two variables using a monotonic
function.

In the absence of repeated data values, a perfect Spearman correlation of p = +1
or p = —1 is obtained when each of the variables is a prefect monotone function of
the other. Ties values are assigned a rank equal to the average of their position in their
descending order of the values. Usually p > 0.5 points to a “fair direct correlation”,
p > 0.7 to a “good direct correlation” and p > 0.9 to a “very good direct correlation”.

The performance of the different techniques were also compared with the chi-
square test, to check whether the differences were statistically significative.

7.3. Cold Cuts test

In order to collect users’ preferences regarding some domain objects, we used a
two-part questionnaire. In the first part, the users were asked to rank their preferences
for 8 non-leaf classes of our hierarchy (e.g. Raw_Whole_ColdCuts) on a scale from 1
to 10. In the second part, they were asked to indicate 4 leaf classes (e.g. Raw_Ham,
Mortadella etc.) they “liked very much” and 4 leaf classes they “liked enough” among
the total of 15 leaf classes. All the users were instructed to connect to the web site with
written instructions and compile the anonymous two-part questionnaire. Users’ ratings
were registered in a database. This permitted us to collect users’ preferences divided
in two parts, in order to test upward, downward and horizontal propagation.

7.3.1. Subjects

The initial sample included 100 subjects, 19-45 years old, recruited according to
an availability sampling strategy’. We restricted the initial sample to 87 subjects by
eliminating all the subjects who assigned the same vote to 5 out of 7 non-leaf classes,
since this was a strong indicator of random preferences assignment by these users.

7.3.2. Test description
We distinguished two phases in the evaluation process:

TEven though the best way for having a representative sample is random sampling, these strategies are time consuming
and not always financially justifiable. Therefore, much research in social science is based on samples obtained through
non-random selection, such as the availability sampling, i.e. a sampling of convenience, based on subjects available to the
researcher, often used when the population source is not completely defined.
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Cold cuts

2N

Whole cold cuts MinC]dcold cuts
Smoked whole Raw minced
cold cuts cold cuts
Bacon
Sausage Raw salami
Raw whole
cold cuts

Cooked minced
cold cuts
Raw ham Bresaola

Mortadella Wurstel Cooked salami

Cooked whole
cold cuts

Cooked ham Chicken breast

Figure 4: The portion of the conceptual hierarchy representing cold cuts

e Upward propagation evaluation, using both the MDA and the VA. The collected
8 user feedback values for the leaf classes for each user were used to generate a
list of direct parent classes that was then compared with the original list provided
by the user.

o Downward propagation evaluation, using again both MDA and VA. The col-
lected 7 user feedback values for the non-leaf classes for each users were used
to generate a list of leaf classes which were then compared with the original list
provided by the user.

7.3.3. Results

We collected a total of 1392 ratings and calculated Spearman’s rank correlation co-
efficient p for 87 pairs of lists. The graphs shown in Figures 5 - 6 refer to the distribution
of cases for various values of p. For example, the percentage of cases corresponding to
0.8 on the p axis is the fraction of cases which obtained 0.75 < p < 0.85.

a) Upward propagation.

Figure 5 shows that the MDA outperforms the VA yielding 92% of the cases with
a positive association as opposed to 62% in the VA. Moreover, it leads to 32% of cases
with a “good correlation” (p > 0.7) as opposed to 12% in the VA. The number of
cases with p < —0.5 is as low as 2% for the MDA, whereas it is 13% for the VA.
The difference between performances were statistically significant according to the
chi-square test, with a null hypothesis p = 6 - 10712,

b) Downward propagation.
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Upward Propagation (Cold Cuts)

= =% of cases VA =% of cases MDA
16%

14%

percentage of cases

Figure 5: Cold Cuts: distribution of cases for various values of p for the upward propagation. A comparison
between the MDA and VA approaches.
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Figure 6: Cold Cuts: distribution of cases for various values of p for the downward propagation.
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In this case the results of MDA and VA do not differ much. We were able to
generate a list with a positive association in 82% of the cases with MDA and in 81%
of the cases with the VA. In particular, in 34% of the cases with both approaches we
were able to generate the lists with a fair association (p > 0.5) and in 18% for MDA
(19% VA) of the cases a list with a good association (p > 0.7). We had 3% of cases of
misleading lists with a moderate inverse association (p < —0.5) for both approaches.
This is the only test in which the two approaches do not yield statistically significant
differences in performance.

7.4. Drinks test

As before the user preferences were split into two sets to serve as initial feedback
and ground truth. We computed on this basis the propagation and p for the ordered lists
of items. In this case we had many low-level leaves, and thus we tested also the leaf
to leaf propagation and the mixed propagation in which we propagated from leaf and
from non-leaf classes at the same time. Since this test is more general and complex,
we decided to use it also for evaluating the benefits of using an anisotropic technique
based on the conceptual distance.

Drink
Alcoholic Non-alcoholic
Beer Milk based Soft drinks
Lager/ Cappuccino Fanta
Ale Smoothi Coke
Dark Orchata Schweppes
Wine Tea, coffee
Juices
Liqueurs
Red / Coffee
White Tea Fruit
Sparkling Bitter Infusion Vegetable
Fruit Freshly squeezed

Figure 7: The portion of the conceptual hierarchy representing drinks

7.4.1. Subjects

The initial sample included 240 subjects, 19-38 years old, recruited as in the Cold
Cuts test. As before we restricted the initial sample to 231 subjects by eliminating all
the subjects who assigned the same vote to 25 out of 35 classes, since this was a strong
indicator of random preferences assignment by these users.
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7.4.2. Test description

We distinguished four phases in the evaluation process:

e Upward propagation, where using the same procedure as before we compared
the users’ real feedback for leaf classes to the computed list from non-leaf classes
(24 feedback values for each user).

e Downward propagation where, as before, we compared the users’ real feedback
for non-leaf classes to the list computed from leaf classes (10 feedback values
for each user).

o Leaf to leaf propagation, where we split randomly the user feedback values on
the leaves into two sets of 12 classes and computed the Spearman coefficient
between the two.

e Mixed propagation, where we compared the users’ real feedback for both non-
leaf and leaf classes to the list computed from both non-leaf and leaf classes. We
split the user feedback values in two sets of 12 leaf and 5 non-leaf classes each
and computed the Spearman coefficient between the two.

7.4.3. Results

For this test we collected a total of 7854 ratings and calculated Spearman’s rank
correlation coefficient p for 231 pairs of lists.

a) Upward propagation

Upward Propagation ( Drinks)
= =% of cases VA =% of cases MDA
20%

16%

12%
/

percentage of cases

Figure 8: Drinks: distribution of cases for various values of p for the upward propagation. A comparison
between the MDA and the VA

We can see in Figure 8 that the shapes of the curves obtained for upward propa-
gation are similar to the ones obtained for the Cold Cuts test, but the results are much
better due to the higher number of feedback values (24 instead of 8).

We were able to obtain a list with a positive correlation in 96% of the cases for
MDA (90% VA). Moreover, we obtained a list with p > 0.7 in 46% of the cases for
MDA (14% VA). In almost one fifth of the cases we suggested a list with a strong
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association (p > 0.9). It appears that, as the amount of feedback grows, the technique
becomes more reliable and in fact only in one case out of 231 we got a misleading
list (0 < —0.5). The performance improvement caused by the MDA is statistically
significative (p = 1072%0)

b) Downward propagation

Downward Propagation ( Drinks )

= =% of cases VA =% of cases MDA

20%

> 16%
7]
©
(8]

S 12%
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8
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7
=7 —
U
1 0.8 0.6 0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 9: Drinks: distribution of cases for various values of p for the downward propagation. A comparison
between the MDA and the VA.

As shown in Figure 9, in this case the MDA seems to work better for the downward
propagation. In 97% of the cases for MDA (87% VA) the lists had a positive associa-
tion. As in the upward propagation we obtained a good association in 47% of the cases
for MDA (7% VA). No misleading lists were obtained. The difference between the two
approaches is statistically significative with p = 5 - 1074,

¢) Leaf to leaf propagation

As shown in Figure 10 the leaf to leaf propagation gave results similar to those
obtained by using the upward and downward propagation. We recorded 92% of the
cases with a positive association and 36% with a good association (o > 0.7). In 9% of
the cases we were able to generate a list with p > 0.9 whereas less then 1% of the cases
fell under p < -0.5.

d) Mixed propagation

In this part of the test, we wanted to compare the anisotropic MDA, the non-
anisotropic MDA and the simplest case, the pure VA. As shown in Figure 11, the MDA
performs always much better than the VA. This is an expected outcome.

Moreover, the anisotropic MDA, used in the previous tests, works better than the
non-anisotropic version of the MDA, yielding both a higher percentage of cases with
a positive association and a lower percentage of errors. The former obtained a fair
association in 61% of the cases, whereas the non-anisotropic one in the 51%. It also
yields a strong association (p > 0.7) in 34% of the cases as opposed to 28% in the
non-anisotropic case. The differences between the VA and the not-anisotropic MDA
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Figure 10: Drinks: distribution of cases for various values of p for the leaf to leaf propagation.

Mix ( Drinks )
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Figure 11: Drinks: distribution of cases for various values of p for the mixed propagation. A comparison
between the anisotropic MDA, the non-anisotropic MDA and the pure VA.
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are significative (p < 1072%) , and so are the differences between the not-anisotropic
MDA and the anisotropic MDA (p = 2-10~*). This confirms that, while a MDA works
better than the classical VA, the anisotropic version of the MDA is even more effective.

7.5. Discussion

The tests and their statistical significance (via chi-square test) are summarized in
Table 1. All differences between the two approaches were found statistically signifi-
cant, with exception of the downward propagation for cold cuts.

Cold Cuts Drinks
Upward Downward Upward Downward Mix
r<o0
VA 37.9% 18.4% 10.4% 11.7% 12.6%
(28.2-48.5%) (11.3-27.6%) (6.9-14.8%) (8.0-16.3%) (8.7-17.3%)
MDA 8.0% 17.2% 39% 3.0% 35%
(3.6-15.3%) (10.4-26.3%) (1.9-7.0%) (1.3-5.9%) (1.6-6.5%)
r=07
VA 12.6% 19.5% 13.9% 6.9% 0.9%
(6.8-20.9%) (12.2-28.9%) (9.8-18.8%) (4.1-10.8%) (0.2-2.8%)
MDA 32.2% 18.4% 46.3% 46.8% 34.2%
(23.0-42.5%) (11.3-27.6%) (40.0-52.8%) (40.4-53.2) (28.3-40.5)
Chi-square test
VA vs =610 =0.99 =510 <102 <10
MDA | P p=0. P P P

Table 1: VA vs MDA: summary of the main results of the evaluation (in parenthesis the 95% confidence
interval). In bold the best result of each test (less is better for p < 0, more is better for p > 0.7 ).

The results show that both downward and upward propagation work well with two
different conceptual hierarchies, allowing to generate lists with a high degree of asso-
ciation with the user preferences. The MDA works better than the VA in all the tests
except for the downward propagation for cold cuts, where they fared in a similar way.
The Drinks test which used a total of 34 feedback values instead of 15 feedback values
for each user led to much better results, especially for the MDA. In particular, the good
correlation cases (p > 0.7) increased from 14% to 46% for the upward propagation and
from 7% to 47% for the downward propagation. Both the leaf to leaf and the mixed
propagation worked satisfactorily, yielding a list with a good association in more then
one third of the cases. Moreover the anisotropic MDA shows a significant improvement
with respect to the non-anisotropic MDA.

The misleading cases in which the suggested lists had a moderate inverse associ-
ation with the real preferences (p < —0.5) were very low (3% - 5%) in the first test
and less then 1% in the second. In all cases the MDA obtained a lower percentage of
misleading cases. Thus this approach appears to yield a lower risk of misinterpreting
the user preferences.
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8. Comparative analysis of related work

In this section we provide the comparative analysis of our approach with similar
approaches in the literature. Two main features of our approach are:

e usage of ontological-user model;

e exploitation of spreading activation technique in order to propagate user interests

in the conceptual hierarchy.

Hence, we look into the related work that deals with these two features. In Section 8.1
works that employ both features are analyzed. Section 8.2 deals with works that simply
use ontologies to represent user models but do not propagate interest values on the
corresponding ontologies. Finally, Section 8.3 is reserved for works that use spreading
activation but out of the context of user modeling.

8.1. Related work exploiting ontology-based user model and ontology propagation

The most similar related works are Sieg et at. [39, 40] and Middleton et al. [30].
All use the ontology based user model and propagate user interests in the ontology.

In Sieg et al. [39], ontological user profiles are used to improve personalized Web
search. The user profiles are instances of a reference domain ontology, where user
profiles are incrementally updated based on the user interaction with the system. The
weights for the relations between each concept and all of its subconcepts are computed
using a measure of containment, whereas in our case they are calculated using the
conceptual distance [16]. The concept hierarchy is treated as a semantic network and
interest values are updated by spreading activation. The amount of activation that is
propagated to each neighbor is proportional to the weight of the relation. This results in
propagation of the values only in one direction, whereas we perform a multi-directional
propagation of the values. In addition, they neither take into consideration the amount
and type of user feedback received for each node, nor the level of the node in the
conceptual hierarchy.

In Sieg et al. [40], the authors exploit the same propagation approach in a different
context, namely collaborative-filtering recommendation. They consider the relation-
ships among concepts in the ontology as well as the collaborative evidence derived
from the ontological profiles of similar users. User similarities are computed based on
their interest scores for ontology concepts, instead of their ratings of individual items.

In Middleton et al. [30], the authors try to increase the accuracy of the user profiles
and hence usefulness of the recommendations in hybrid recommender systems. The
user feedback is collected and mapped onto the domain ontology. The IS-A hierar-
chy is exploited to infer additional topics of interest (superclass topics starting from
specific topics browsed by a user), thus producing more complete profiles. The prop-
agation of interest values in the taxonomy is based on IS-A similarity. As opposed to
us, their propagation is static and one-directional (bottom-up, from specific to generic
concepts): given the interest value for a specific class, 50% of this value is spread to
its super class. Another difference is provided by their usage of a time decay function
which gives more weight to the recently seen concepts than to the older ones, while in
our approach past interaction is more important.
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Table 2 summarizes distinct and common features of these approaches, emphasiz-
ing the most relevant features: User model definition, Propagation modality, Propaga-
tion direction, Concept similarity measure, Propagation target, Time, User feedback,

Ontology level and Application domain.

Features

OBUM

Sieg et al. [40], [39]

Middleton et al. [30]

User model

taxonomy-based

taxonomy-based

taxonomy-based

Propagation modality

anisotropic spreading
activation based on
conceptual distance

uniform
spreading activation

anisotropic IS-A-based
propagation based on
cluster, specificity

Propagation direction

multi-directional
(siblings, ancestors,
descendants)

one-directional
(top-down)

one-directional
(bottom-up)

Concept similarity

conceptual distance

measure of containment

IS-A-similarity

Propagation target

classes and instances

classes (starting
from instances)

classes (starting
from instances)

Time past more important no time importance present more important
User feedback yes (different weights) yes (all equals) yes (all equals)
Ontology level yes (different weights) no (all equals) no (all equals)
Application domain adaptive systems recommendation, recommendation
Web search

Table 2: Comparison with the most similar related work

8.2. Works exploiting ontology-based user model

For many years, ontology-based user models have been recognized as useful for
adaptive systems, as discussed in Section 2. As examples we can cite Kalfoglou et
al. [24], Gauch et al. [19] and Hatala and Wakkary [21]. These works do not perform
spreading activation over the ontology, they rather make other forms of inferences in
order to infer missing values in the user model.

In MyPlanet [24], a recommender system for scientific information, user prefer-
ences are mapped to a set of seven ontologies representing research areas, research
themes, organizations, projects, etc. There is no weight associated with a preference,
rather it is a binary value. MyPlanet uses ontological inference to propagate user pref-
erences throughout an ontology and across different ontologies: starting from a user
query about a concept, it presents also related concepts.

Gauch et al. [19] explore techniques for implicit building of ontology-based user
profiles, starting from visited Web pages. They calculate the similarity between the
Web pages visited by a user and the concepts in a domain ontology. After annotating
each concept with a weight based on an accumulated similarity score, a user profile
is created consisting of all concepts with non-zero weights. They demonstrated an
improvement in the user model accuracy when it is supported by the use of a domain
ontology.

In ec(h)o, a museum guide presented by Hatala and Wakkary [21], user interests
are represented as a set of annotated concepts from the ontology of natural history.
The strength of user interest is represented by a weight calculated based on the user
activities in the physical museum place. In this model, the recent activities weigh more
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than past ones. When the interest value drops below a set threshold during the update
process the interest is removed from the model altogether.

8.3. Works using spreading activation

Spreading activation is not a new concept in semantic networks related research.
There is a number of applications of spreading activation: Crestani [18] uses spread-
ing activation on automatically constructed hypertext networks in order to support web
browsing; Xue et al. [44] propose a mining algorithm to improve web search perform-
ing spreading activation to re-rank the search results; Liu et al. [27] use spreading ac-
tivation on a semantic network of automatically extracted concepts in order to identify
suitable candidates for expanding a specific domain ontology; Katifori et al. [25] use
spreading activation through ontologies to support personal information management.

In Rocha et al. [35] spreading activation techniques are used to find related concepts
in the ontology given an initial set of concepts and corresponding initial activation
values. They assign both a semantic label and a numerical weight based on certain
properties of the ontology to each relation instance. This technique makes it possible
to find concepts not containing any of the words specified in the initial search. Similarly
to us, depending on the context, some relation types can be more important than others.
Differently from us, they exploit a full ontology with IS-A relations and properties and
then make the propagation considering a property-based similarity among concepts.

Another interesting work is ONTOCOPI (Ontology-Based Community of Practice
Identifier) [3], a relationship analysis tool, used to identify communities of practice by
applying a set of ontology-based network analysis techniques. It examines the connec-
tions of the instances with respect to the type, density, and weight. The set of close
instances are identified and ranked according to the weight of their relationships. A
breadth-first spreading activation search is applied to the ontology, traversing the se-
mantic relationships between instances until a defined threshold is reached.

9. Conclusions and future work

In this work we presented an effective approach to propagation of user interests in
an ontology-based user model. Starting from the feedback obtained for a certain node
in conceptual hierarchy, it is possible to propagate user interests:

e vertically, the propagation being anisotropic with respect to downward and up-

ward propagation using exponentially decreasing edge lengths from [16];
e horizontally to sibling nodes.
The conceptual hierarchy of the domain plays an important role in the propagation,
since propagated interest values depend on the level of the node receiving the feedback.
As a consequence, the nodes lower down in the hierarchy can sense and propagate more
user feedback. Moreover, in this work we introduced the context-dependent propa-
gation, which allows to take the application context into account in the propagation
algorithm (i.e. changing the surface nodes based on their relevance for the application).

This kind of ontological user modeling and maintenance of user interest values
finds application in many different contexts, among which to improve Web search re-
sults or recommendation accuracy.
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Our evaluation results showed that our multi-directional approach outperforms the
vertical one yielding a 12% average improvement for the cases with a positive associ-
ation and 24% average improvement for the cases with a “good correlation” (p > 0.7).
A higher number of feedback values emphasizes this difference: in fact we obtained
a 35% average improvement for the cases with a “good correlation” when taking in
consideration only the second test.

These positive test results are even more promising in the light of the fact that
our method needs only the feedback from a single user for calculating the interest
values, whereas other methods need a lot of feedback from many different users to
work properly.

On the other hand, our approach still has some open issues which we intend to
address in the future.

Very often it can be difficult to establish the correspondence among the users’ way
of thinking and their level of expertise and the experts’ views on the ontology (the
ones that actually designed and built the ontology). These possible mismatches can
affect the expression of real user interest, i.e. the user feedback does not represent real
user interest. As the first future step we would like be able to provide personalised
view of the ontology based on the user’s level of expertise and the context in which
the application is used. For example, offering a number of expertise levels to chose
from, would make the ontological concepts closer to the users and make them more
comfortable using the application.

Also, since all the siblings have the same distances from their parent, equal amount
of user interest is propagated to each of them. In this line, we would design an approach
which distinguishes various siblings based on some further differentiating properties.

In addition to propagation of interests based on distances in the ontology graph, we
considered the properties of various classes in order to better differentiate the siblings
and infer the similarities between them [15]. We are planning to put together the two
different approaches, but the integration is not trivial and it needs further investigation.

Taking properties into account would extend our approach to ontologies with im-
plicit classes, i.e. classes not explicitly defined which can be inferred from the structure
of of the ontology by some inferential engine.

Moreover, we want to add a mechanism for automatic ontology maintenance, i.e.
for refining or evolving the ontology by making use of top-down or bottom-up ap-
proaches to concept discovery, as in [9].

Another possible future direction is to exploit ontological user profile and our prop-
agation of interests to compute users’ similarity, as in [40].

In addition, we would like to explore adding constraints to our propagation algo-
rithm along the lines of [35], such as concept type constraints (no propagation to certain
kinds of nodes).
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