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This paper deals with the controller synthesis for a class of positive two-dimensional (2D) switched delay systems described by the 
Roesser model. This kind of systems has the property that the states take nonnegative values whenever the initial boundaries are 
nonnegative, some delay-dependent sufficient conditions for the exponential stability of positive 2D switched systems with state delays 
are given. Furthermore, the design of positive state feedback controller under which the resulting closed-loop system meets the 

requirements of positivity and exponent
illustrate the effectiveness of the propose

1. Introduction
bility is presented in terms of linear matrix inequalities (LMIs). An example is included to 
roach.
Two-dimensional (2D) systems exist in many practical applications, such as circuit analysis, digital image processing, 
signal filtering and thermal power engineering [8,19,48]. Thus the analysis and synthesis of 2D systems are interesting and 
challenging problems, and have received considerable attention, for example, 2D state-space realization theory was 
researched in [14], the stability and 2D optimal control theory were studied in [7,12,17], and the H1 filtering problem for 2D 
Markovian jump systems was addressed in [42].

The most popular models of 2D linear systems were introduced by Roesser, Fornasini and Marchesini [14,15] and Kurek 
[27]. These models have been extended for positive systems in [20,21]. A positive system means that its states and outputs 
are nonnegative whenever the initial conditions and inputs are nonnegative [13,21]. Positive 2D systems are needed in many 
cases such as the wave equation in fluid dynamics, the Poisson’s equation, and the heat equation which describes the 
temperature (using thermodynamic temperature scale) in a given region over time. These facts stimulate the research on 
positive 2D discrete-time systems. The choice of the forms of Lyapunov functions for positive 2D Roesser model was inves-
tigated in [23]. The problem of stability analysis for positive 2D fractional systems was investigated in [24]. Furthermore, the 
reaction of real world systems to exogenous signals is never instantaneous and always infected by time delays [16,36–38]. 
The reachability, minimum energy control and realization problem for positive 2D discrete-time systems with delays was 
analyzed in [22]. And the stability analysis for positive 2D delayed systems was investigated in [3,25,26].

On the other hand, a considerable interest has been devoted to the research of switched systems during the recent 
decades. A switched system comprises a family of subsystems described by continuous or discrete-time dynamics, and a
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switching law that specifies the active subsystem at each instant of time. Apart from the switching strategy to improve con-
trol performance [10,35], switched systems also arise in many engineering applications [2,6]. Many techniques are effective
tools dealing with switched systems, such as common quadratic Lyapunov function method, multiple Lyapunov function
method, and average dwell time approach [1,9,28–33,39–41,49]. Recently, [34,45] studied the model reduction for linear
switched systems, and [43,46] focused on the problems of stability and control synthesis by using sliding mode control
method.

In addition, it is well known that the switching phenomenon may also occur in practical 2D systems, so 2D switched sys-
tems have also attracted considerable research attention. There are a few reports on 2D discrete switched systems, Benza-
ouia et al. firstly considered 2D switched systems with arbitrary switching sequences in [4] and investigated the
stabilizability problem of 2D switched systems in [5], the generalized H2 fault detection for 2D Markovian jump systems
was studied in [44]. Recently, the exponential stabilization of 2D switched Roesser model was firstly investigated in [47].
For positive 2D switched systems, a typical physical application is the thermal process with multiple modes. The positive
value of temperature (using thermodynamic temperature scale) depends on position variable, time variable and the heating
intensity (switching among multiple modes), so this system can be modeled as a positive 2D switched system. By using alge-
braic techniques, sufficient and necessary conditions were first provided for the asymptotic stability of positive 2D switched
systems described by the Roesser models in [11]. However, to the best of our knowledge, there has been little literature con-
sidering the control problem of positive 2D switched systems with time delays, which motivates the present work.

In this paper we will investigate the problems of delay-dependent stability analysis and stabilization for positive 2D
switched linear systems with delays. The main contributions of this paper lie in: (1) By constructing an appropriate
co-positive Lyapunov function, we first analyze the delay-dependent exponential stability of positive 2D switched Roesser
model with state delays. (2) Instead of using algebraic techniques [11] which have been employed for the analysis of positive
2D switched systems, the average dwell time approach is applied to our developments which are based on LMIs. (3) Based on
the well established results of exponential stability analysis, equivalent conditions in terms of LMIs are obtained for the
existence of stabilizing positive state feedback controllers. A remarkable advantage of these conditions lies in the easy
verification by using some standard numerical software.

The remainder of the paper is organized as follows. In Section 2, problem statement and some definitions concerning the
positive 2D switched discrete linear systems with delays are given. In Section 3, some results concerning the delay-
dependent exponential stability and stabilization of positive 2D switched linear systems are presented. In Section 4, a
physical example is given to illustrate the effectiveness of the proposed approach. Finally, concluding remarks are provided
in Section 5. The following notation will be used.

Notations: In this paper, the superscript ‘‘T’’ denotes the transpose. The notation X > Y(X P Y) means that matrix X � Y
is positive definite (positive semi-definite, respectively). A � 0(�0) means that all entries of matrix A are nonnegative
(non-positive). A � 0(�0) means that all entries of matrix A are positive (negative). Rn�m denotes the set of n �m real
matrices. The set of real n �m matrices with nonnegative entries will be denoted by Rn�m

þ and the set of nonnegative integers
will be denoted byZ+. Rn

þ denotes the set of vectors with nonnegative entries. The n � n identity matrix will be denoted by In.

2. Problem formulation and preliminaries

Consider the following 2D switched Roesser model with state delays:
xhðiþ 1; jÞ
xvði; jþ 1Þ

" #
¼ Arði;jÞ xhði; jÞ

xvði; jÞ

" #
þ Arði;jÞ

d

xhði� dhðiÞ; jÞ
xvði; j� dvðjÞÞ

" #
þ Brði;jÞuði; jÞ; ð1Þ
where i and j are integers in Z+, xh(i, j) is the horizontal state in Rn1 ; xv ði; jÞ is the vertical state in Rn2 ; xði; jÞ is the whole state

in Rn. r(�): Z+ � Z+ ? N = {1,2, . . . ,N} is the switching signal. N denotes the number of subsystems. Ak, Ak
d and Bk, k 2 N, are

constant matrices with appropriate dimensions and can be represented as
Ak ¼
Ak

11 Ak
12

Ak
21 Ak

22

" #
; Ak

d ¼
Ak

d11 Ak
d12

Ak
d21 Ak

d22

" #
; Bk ¼

Bk
1

Bk
2

" #
;

dh(i) and dv(j) are delays along horizontal and vertical directions, respectively. We assume that dh(i) and dv(j) satisfy
dhL 6 dhðiÞ 6 dhH; dvL 6 dvðjÞ 6 dvH;
where dhL, dhH and dvL, dvH denote the lower and upper delay bounds along horizontal and vertical directions, respectively.
The boundary conditions are given by
xhði; jÞ ¼ hij; 80 6 j 6 z1; �dhH 6 i 6 0;
xhði; jÞ ¼ 0; 8j > z1; �dhH 6 i 6 0;
xvði; jÞ ¼ v ij; 80 6 i 6 z2; �dvH 6 j 6 0;
xvði; jÞ ¼ 0; 8i > z2; �dvH 6 j 6 0;
h00 ¼ v00

ð2Þ



where z1 <1 and z2 <1 are positive integers, hij 2 Rn1 and v ij 2 Rn2 are given vectors.
In this paper, the switch can be assumed to occur only at each sampling points of i or j. The switching sequence can be

described as
ðði0; j0Þ;rði0; j0ÞÞ; ðði1; j1Þ;rði1; j1ÞÞ; . . . ; ððip; jpÞ;rðip; jpÞÞ; . . . ;
where (ip, jp) denotes the p-th switching instant. It should be noted that the value of r(i, j) only depends upon i + j (see the
references [5,47]).

Definition 1 [11]. System (1) is called a positive 2D switched model if xh(i, j) � 0 and xv(i, j) � 0 for any nonnegative
boundary conditions hij 2 Rn1

þ and v ij 2 Rn2
þ .

The following lemma is a direct extension from positive 2D systems in [21] to 2D switched positive systems.
Lemma 1 [21]. System (1) is positive if and only if Ak � 0; Ak
d � 0 and Bk � 0.
Remark 1. When N = 1, positive 2D switched system (1) will degenerate into the following positive 2D system [26].
xhðiþ 1; jÞ
xvði; jþ 1Þ

" #
¼ A

xhði; jÞ
xvði; jÞ

" #
þ Ad

xhði� dhðiÞ; jÞ
xvði; j� dvðjÞÞ

" #
þ Buði; jÞ: ð3Þ
Definition 2 [18]. System (1) with u(i, j) = 0 is said to be exponentially stable under the switching signal r(�), if for a given
z P 0, there exist positive constants c and n such that
X

iþj¼D

kxði; jÞk 6 ne�cðD�zÞ
X
iþj¼z

kxði; jÞkC ; ð4Þ
holds for all D P z, where
X
iþj¼z

kxði; jÞkC , sup
�dhH6hh60;
�dvH6hv60

X
iþj¼z

fkxði� hh; jÞk; kxði; j� hvÞk; kdhði� hh; jÞk; kdvði; j� hvÞkg;

dhði� hh; jÞ ¼ xhði� hh þ 1; jÞ � xhði� hh; jÞ;
dvði; j� hvÞ ¼ xvði; j� hv þ 1Þ � xvði; j� hvÞ:
Remark 2. From Definition 2, it is easy to see that, for a given z,
P

iþj¼zkxði; jÞkC will be bounded, and
P

iþj¼Dkxði; jÞk will tend
to be zero exponentially as D goes to infinity, which also means kx(i, j)k will tend to be zero exponentially.
Definition 3. [47]. For any i + j = D P z = iz + jz, let Nr(z,D) denote the switching number of r(�) on an interval [z,D). If
Nrðz;DÞ 6 N0 þ
D� z
sa

; ð5Þ
holds for given N0 P 0 and sa P 0, then the constant sa is called the average dwell time and N0 is the chatter bound. As com-
monly used in the literature, we choose N0 = 0 in this paper.
Remark 3. Definition 3 gives a definition of average dwell time for 2D switched discrete systems and the definition can be
viewed as an extension of the proposed one in 1D (one-dimensional) switched systems. Similarly, if there exists a positive
number sa such that a switching signal has the average dwell time property, the average time interval between consecutive
switching is at least sa.

The aim of this paper is to design a state feedback controller for system (1) such that the resulting closed-loop system is
positive and exponentially stable.
3. Main results

3.1. Stability analysis

In order to address the control problem, we first focus on the problem of delay-dependent exponential stability analysis
for the following positive 2D switched discrete linear systems with state delays



xhðiþ 1; jÞ
xvði; jþ 1Þ

" #
¼ Arði;jÞ xhði; jÞ

xvði; jÞ

" #
þ Arði;jÞ

d

xhði� dhðiÞ; jÞ
xvði; j� dvðjÞÞ

" #
: ð6Þ
Theorem 1. For given positive constants dhL, dhH, dvL, dvH, and a scalar 0 < a < 1, if there exist vectors pk 2 Rn
þ; qk 2 Rn

þ; 1k
1 2 Rn

þ;

1k
2 2 Rn

þ; fk 2 Rn
þ; k 2 N, such that
Uk ¼ diag Uk
1;U

k
2; . . . ;Uk

n;U
k0

1 ;U
k0

2 ; . . . ;Uk0

n ;U
k00

1 ;U
k00

2 ; . . . ;Uk00

n ;U
k000

1 ;Uk000

2 ; . . . ;Uk000

n

n o
< 0; 8k 2 N ð7aÞ
where
Uk
l ¼

akT
l � aEl

� �
pk þ a�1akT

l þ ðdhH � dhLÞEl

� �
qk þ Elf

k þ d2
hHEl1k

1 þ d2
hH akT

l � El

� �
� dhHadhH El

� �
1k

2; 1 6 l 6 n1;

akT
l � aEl

� �
pk þ a�1akT

l þ ðdvH � dvLÞEl
� �

qk þ Elf
k þ d2

vHEl1k
1 þ d2

vH akT
l � El

� �
� dvHadvH El

� �
1k

2; n1 þ 1 6 l 6 n;

8><>:

Uk0

l ¼
akT

dl pk þ a�1akT
dl � adhH El

� �
qk þ d2

hHakT
dl 1k

2; 1 6 l 6 n1;

akT
dl pk þ a�1akT

dl � advH El

� �
qk þ d2

vHakT
dl 1k

2; n1 þ 1 6 l 6 n;

(

Uk00

l ¼
�adhH Elf

k þ adhH dhHEl 1k
2 � 1k

1

� �
; 1 6 l 6 n1;

�advH Elf
k þ advH dvHEl 1k

2 � 1k
1

� �
; n1 þ 1 6 l 6 n;

(

Uk000

l ¼
�adhH dhHEl1k

1; 1 6 l 6 n1;

�advH dvHEl1k
1; n1 þ 1 6 l 6 n;

(

with l 2 n ¼ f1;2; . . . ;ng, El ¼ 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{l�1

;1;0; . . . ;0
zfflfflfflffl}|fflfflfflffl{n�l24 35, and ak

l ðak
dlÞ represents the l-th column vector of matrix AkðAk

dÞ, then system

(6) is exponentially stable for any switching signals with the average dwell time satisfying
sa > s	a ¼
ln l
� ln a

; ð7bÞ
where l P 1 satisfies
pk � lpf ; qk � lqf ; fk � lff ; 1k
1 � l1f

1; 1k
2 � l1f

2; 8k; f 2 N; ð7cÞ
Proof. Without loss of generality, we assume that the k-th subsystem is active. For the k-th subsystem, we choose the fol-
lowing co-positive Lyapunov–Krasovskii functional candidate
Vkði; jÞ ¼ Vkhði; jÞ þ Vkvði; jÞ; ð8Þ
where
Vkhði; jÞ ¼
X5

g¼1

Vkh
g ði; jÞ;
with
Vkh
1 ði; jÞ ¼ xhTði; jÞpkh;

Vkh
2 ði; jÞ ¼

Xi

r¼i�dhðiÞ
ai�1�rxhTðr; jÞqkh; Vkh

3 ði; jÞ ¼
Xi�1

r¼i�dhH

ai�1�rxhTðr; jÞfkh;

Vkh
4 ði; jÞ ¼

X�dhL

s¼�dhHþ1

Xi�1

r¼iþs

ai�1�rxhTðr; jÞqkh; Vkh
5 ði; jÞ ¼ dhH

X�1

s¼�dhH

Xi�1

r¼iþs

ai�1�rghTðr; jÞ1kh;
and



Vkvði; jÞ ¼
X5

g¼1

Vkv
g ði; jÞ;
with
Vkv
1 ði; jÞ ¼ xvTði; jÞpkv ;

Vkv
2 ði; jÞ ¼

Xj

t¼j�dv ðjÞ
aj�1�txvTði; tÞqkv ; Vkv

3 ði; jÞ ¼
Xj�1

t¼j�dvH

aj�1�txvTði; tÞfkv ;

Vkv
4 ði; jÞ ¼

X�dvL

s¼�dvHþ1

Xj�1

t¼jþs

aj�1�txvTði; tÞqkv ; Vkv
5 ði; jÞ ¼ dvH

X�1

s¼�dvH

Xj�1

t¼jþs

aj�1�tgvTði; tÞ1kv ;
and
ghðr; jÞ ¼ xhTðr; jÞ dhTðr; jÞ
� �T

; gvði; tÞ ¼ xvTði; tÞ dvTði; tÞ
� �T

;

dhðr; jÞ ¼ xhðr þ 1; jÞ � xhðr; jÞ; dvði; tÞ ¼ xvði; t þ 1Þ � xvði; tÞ;
with pkh 2 Rn1
þ ; qkh 2 Rn1

þ ; fkh 2 Rn1
þ ; 1kh

1 2 Rn1
þ ; 1kh

2 2 Rn1
þ ; 1kh ¼ 1khT

1 1khT
2

� �T 2 R2n1
þ ; fkv 2 Rn2

þ , 1v
1 2 Rn2

þ ; 1kv
2 2 Rn2

þ , pkv 2 Rn2
þ ;

qkv 2 Rn2
þ and 1kv ¼ 1kvT

1 1kvT
2

� �T 2 R2n2
þ are real vectors to be determined.

Then we have
Vkhðiþ 1; jÞ � aVkhði; jÞ þ Vkvði; jþ 1Þ � aVkvði; jÞ ¼
X5

g¼1

Vkh
g ðiþ 1; jÞ � aVkh

g ði; jÞ
h i

þ
X5

g¼1

Vkv
g ði; jþ 1Þ � aVkv

g ði; jÞ
h i

: ð9Þ
Along the trajectory of system (6), one can obtain
Vkh
1 ðiþ 1; jÞ � aVkh

1 ði; jÞ ¼ xhTðiþ 1; jÞpkh � axhTði; jÞpkh; ð10Þ

Vkh
2 ðiþ 1; jÞ � aVkh

2 ði; jÞ ¼
Xiþ1

r¼iþ1�dhðiþ1Þ
ai�rxhTðr; jÞqkh � a

Xi

r¼i�dhðiÞ
ai�1�rxhTðr; jÞqkh

¼ a�1xhTðiþ 1; jÞqkh � adhðiÞxhTði� dhðiÞ; jÞqkh þ
Xi

r¼iþ1�dhðiþ1Þ
ai�rxhTðr; jÞqkh

� a
Xi

r¼iþ1�dhðiÞ
ai�1�rxhTðr; jÞqkh

6 a�1xhTðiþ 1; jÞqkh � adhðiÞxhTði� dhðiÞ; jÞqkh þ
Xi

r¼iþ1�dhH

ai�rxhTðr; jÞqkh

�
Xi

r¼iþ1�dhL

ai�rxhTðr; jÞqkh

6 a�1xhTðiþ 1; jÞqkh � adhH xhTði� dhðiÞ; jÞqkh þ
Xi�dhL

r¼iþ1�dhH

ai�rxhTðr; jÞqkh; ð11Þ

Vkh
3 ðiþ 1; jÞ � aVkh

3 ði; jÞ ¼
Xi

r¼iþ1�dhH

ai�rxhTðr; jÞfkh � a
Xi�1

r¼i�dhH

ai�1�rxhTðr; jÞfkh ¼ xhTði; jÞfkh � adhH xhTði� dhH; jÞfkh; ð12Þ

Vkh
4 ðiþ 1; jÞ � aVkh

4 ði; jÞ ¼
X�dhL

s¼�dhHþ1

Xi

r¼iþ1þs

ai�rxhTðr; jÞqkh � a
X�dhL

s¼�dhHþ1

Xi�1

r¼iþs

ai�1�rxhTðr; jÞqkh

¼
X�dhL

s¼�dhHþ1

½xhTði; jÞqkh � a�sxhTðiþ s; jÞqkh
 ¼ ðdhH � dhLÞxhTði; jÞqkh �
Xi�dhL

r¼i�dhHþ1

ai�rxhTðr; jÞqkh; ð13Þ
and



Vkh
5 ðiþ1; jÞ�aVkh

5 ði; jÞ¼ dhH

X�1

s¼�dhH

Xi

r¼iþ1þs

ai�rghTðr; jÞ1kh�adhH

X�1

s¼�dhH

Xi�1

r¼iþs

ai�1�rghTðr; jÞ1kh

¼ dhH

X�1

s¼�dhH

ðghT ði; jÞ1kh�a�sghT ðiþ s; jÞ1khÞ6 d2
hHghT ði; jÞ1kh�dhHadhH

Xi�1

r¼i�dhH

ghT ðr; jÞ1kh

¼ d2
hH xhT ði; jÞ xhT ðiþ1; jÞ�xhTði; jÞ
� � 1kh

1

1kh
2

" #
�dhHadhH

Xi�1

r¼i�dhH

xhT ðr; jÞ xhT ði; jÞ�xhTði�dhH ; jÞ
" #

1kh
1

1kh
2

" #
: ð14Þ
Similarly, we can get the following formulations in vertical direction.
Vkv
1 ði; jþ 1Þ � aVkv

1 ði; jÞ ¼ xvTði; jþ 1Þpkv � axvTði; jÞpkv ; ð15Þ

Vkv
2 ði; jþ 1Þ � aVkv

2 ði; jÞ 6 a�1xvTði; jþ 1Þqkv � advH xvTði; j� dvðjÞÞqkv þ
Xj�dvL

t¼jþ1�dvH

aj�txvTði; tÞqkv ; ð16Þ

Vkv
3 ði; jþ 1Þ � aVkv

3 ði; jÞ ¼ xvTði; jÞfkv � advH xvTði; j� dvHÞfkv ; ð17Þ

Vkv
4 ði; jþ 1Þ � aVkv

4 ði; jÞ ¼ ðdvH � dvLÞxvTði; jÞqkv �
Xj�dvL

t¼j�dvHþ1

aj�txvTði; tÞqkv ; ð18Þ

Vkv
5 ði; jþ 1Þ � aVkv

5 ði; jÞ 6 d2
vH xvTði; jÞ xvTði; jþ 1Þ � xvTði; jÞ
� � 1kv

1

1kv
2

" #

� dvHadvH
Xj�1

t¼j�dvH

xvTði; tÞ xvTði; jÞ � xvTði; j� dvHÞ
" #

1kv
1

1kv
2

" #
: ð19Þ
Substitute the above formulations (10)–(19) into (8), and take
pk ¼ pkh

pkv

" #
; qk ¼ qkh

qkv

" #
; fk ¼ fkh

fkv

" #
; 1k

1 ¼
1kh

1

1kv
1

" #
; 1k

2 ¼
1kh

2

1kv
2

" #
;

DH ¼
dhHIn1 0

0 dvHIn2

	 

; DL ¼

dhLIn1 0
0 dvLIn2

	 

; X ¼ adhH In1 0

0 advH In2

" #
;

xði; jÞ ¼ xhTði; jÞ xvTði; jÞ
� �T

;

xdði; jÞ ¼ xhTði� dhðiÞ; jÞ xvTði; j� dvðjÞÞ
� �T

;

xHði; jÞ ¼ xhTði� dhH; jÞ xvTði; j� dvHÞ
� �T

;

xsði; jÞ ¼
Xi�1

r¼i�dhHþ1

xhTðr; jÞ
Xj�1

t¼j�dvHþ1

xvTði; tÞ
" #T

:

Then we have
Vkhðiþ1; jÞ�aVkhði; jÞþVkv ði; jþ1Þ�aVkvði; jÞ¼ xTði; jÞ ðAkT �aInÞpkþða�1AkT þðDH�DLÞÞqk
n

þfkþD2
H1

k
1þðD

2
HAkT �D2

H�XDHÞ1k
2

o
þxT

dði; jÞ AkT
d pkþða�1AkT

d �XÞqkþD2
HAkT

d 1k
2

n o
þxT

Hði; jÞ �XfkþXDH1k
2�XDH1k

1

n o
þxT

s ði; jÞ �XDH1k
1

� �
: ð20Þ
If condition (7a) holds, one obtains
ðAkT � aInÞpk þ ða�1AkT þ ðDH � DLÞÞqk þ fk þ D2
H1

k
1 þ D2

HAkT � D2
H �XDH

� �
1k

2 � 0; ð21Þ

AkT
d pk þ a�1AkT

d �X
� �

qk þ D2
HAkT

d 1k
2 � 0; ð22Þ

�Xfk þXDH1k
2 �XDH1k

1 � 0; ð23Þ
�XDH1k

1 � 0: ð24Þ



Inequalities (21)–(24) imply that
Vkhðiþ 1; jÞ þ Vkvði; jþ 1Þ < aVkhði; jÞ þ aVkvði; jÞ: ð25Þ
Summing up both sides of (25) from D to 0 with respect to i and 0 to D with respect to j, for any nonnegative integer D > max
(z1,z2), one gets
Vkhð1;DÞ þ Vkvð0;Dþ 1Þ þ Vkhð2;D� 1Þ þ Vkvð1;DÞ þ � � � þ VkhðDþ 1; 0Þ þ VkvðD;1Þ
¼

X
iþj¼Dþ1

Vkhði; jÞ þ
X

iþj¼Dþ1

Vkvði; jÞ ¼
X

iþj¼Dþ1

Vkði; jÞ < afVkhð0;DÞ þ Vkvð0;DÞ þ Vkhð1;D� 1Þ

þ Vkvð1;D� 1Þ þ � � � þ VkhðD; 0Þ þ VkvðD;0Þg ¼ a
X

iþj¼D

Vkði; jÞ: ð26Þ
Now let t = Nr(z,D) denote the switching number of r(�) on an interval [z,D), and let (ij�t+1, jj�t+1), (ij�t+2, jj�t+2),
. . . (ij�1, jj�1), (ij, jj) denote the switching points of r(�) over the interval [z,D). Denoting mp = ip + jp, p = j � t + 1,
j � t + 2, . . . , j, thus, for D 2 [mj,mj+1), it holds from (26) that
X

iþj¼D

Vrðij ;jjÞði; jÞ < aD�mj
X

iþj¼mj

Vrðij ;jjÞði; jÞ: ð27Þ
Using (7c) and (8), at switching instant mj = i + j, we have
X
iþj¼mj

Vrðij ;jjÞði; jÞ 6 l
X

iþj¼mj

Vrðij�1 ;jj�1Þði; jÞ: ð28Þ
In addition, according to Definition 3, it follows that
t ¼ Nrðz;DÞ 6 N0 þ
D� z
sa

: ð29Þ
Therefore, the following inequality can be easily obtained by repeating the inequalities (27), (28) and using (29)
X
iþj¼D

Vrðij ;jjÞði; jÞ < aD�mj
X

iþj¼mj

Vrðij ;jjÞði; jÞ 6 laD�mj
X

iþj¼m�j

Vrðij�1 ;jj�1Þði; jÞ < laD�mj
X

iþj¼mj�1

Vrðij�1 ;jj�1Þði; jÞamj�mj�1

¼ laD�mj�1
X

iþj¼mj�1

Vrðij�1 ;jj�1Þði; jÞ 6 � � � < lt�1aD�mj�tþ1
X

iþj¼mj�tþ1

Vrðij�tþ1 ;jj�tþ1Þði; jÞ

6 ltaD�mj�tþ1
X

iþj¼m�
k�tþ1

Vrðij�t ;jj�tÞði; jÞ ¼ ltaD�mk�tþ1
X
iþj¼z

Vrðij�t ;jj�tÞði; jÞamj�tþ1�z

6 ltaD�z
X
iþj¼z

Vrðij�t ;jj�tÞði; jÞ: ð30Þ
Inequality (30) can be rewritten as follows:
X
iþj¼D

Vrðij ;jjÞði; jÞ 6 eð
lnl
sa
þln aÞðD�zÞ

X
iþj¼z

Vrðij�t ;jj�tÞði; jÞ: ð31Þ
Moreover, considering the definition of Vr(i,j)(i, j) in (8), we can find two positive scalars q1 and q2 such that (32) holds.
q1kxði; jÞk 6 Vrði;jÞði; jÞ 6 q2kxði; jÞkC ; ð32Þ
where
q1 ¼ min
ðl;kÞ2n�N

ðpk
l Þ;

q2 ¼ max
ðl;kÞ2n�N

pk
l þ

dH

2
ðdH þ dL � 1ÞðdH � dLÞ þ dH

	 

max
ðl;kÞ2n�N

qk
l þ dH max

ðl;kÞ2n�N
fk

l þ d2
H max
ðl;kÞ2n�N

1k
1l þ dHðdH þ 1Þ max

ðl;kÞ2n�N
1k

2l
with
dH ¼maxðdhH; dvHÞ; dL ¼ minðdhL;dvLÞ; pk ¼ pk
1;p

k
2; . . . ; pk

n

� �T
;

qk ¼ qk
1; q

k
2; . . . ; qk

n

� �T
; fk ¼ fk

1; f
k
2; . . . ; fk

n

h iT
; 1k

1 ¼ 1k
11; 1k

12; . . . ; 1k
1n

� �T
;

1k
2 ¼ 1k

21; 1k
22; . . . ; 1k

2n

� �T
:

Combining (31) and (32), one can obtain
X
iþj¼D

kxði; jÞk 6 q2

q1
e

ln l
sa
þln að ÞðD�zÞ

X
iþj¼z

kxði; jÞkC : ð33Þ



By Definition 2, we know that the positive 2D switched discrete system is exponentially stable if sa > s	a ¼
lnl
� lna. This com-

pletes the proof. h
Remark 4. Note that when l = 1 in (7b), we have s	a ¼ 0, which means that the switching signal can be arbitrary.
Remark 5. It should be noted that a co-positive Lyapunov functional is constructed for the stability analysis in the derivation
of Theorem 1. The motivation for using this type of Lyapunov functional is that the state of system (1) is nonnegative and
hence such a linear Lyapunov functional serves as a valid candidate. Compared with the existing stability result in [11],
the one presented here is in the form of LMIs which can be conveniently verified. However, there exists the conservatism
induced by Lyapunov functional (8) to some extent. The result can be improved by resorting to the delay-partition method
for which a modified Lyapunov functional could be chosen.
3.2. Controller synthesis

This subsection studies the stabilization problem of positive 2D switched discrete Roesser model (1) for which the control
law to be designed has the following state-feedback form
uði; jÞ ¼ Krði;jÞ xhði; jÞ
xvði; jÞ

" #
: ð34Þ
This control law will be designed to ensure the positivity and the exponential stability of the resulting closed-loop
system:
xhðiþ 1; jÞ
xvði; jþ 1Þ

" #
¼ ðArði;jÞ þ Brði;jÞKrði;jÞÞ xhði; jÞ

xvði; jÞ

" #
þ Arði;jÞ

d

xhði� dhðiÞ; jÞ
xvði; j� dvðjÞÞ

" #
: ð35Þ
The following lemma will be useful in the subsequent development.

Lemma 2. Given the open-loop positive system (1) and the controller given by (34), the closed-loop system (35) is positive if and
only if the following conditions hold for all k 2 N
Ak þ BkKk � 0;
Ak

d � 0:
Proof. The result can be obtained by applying Theorem 8 in [26] to system (35). h
Theorem 2. For given positive constants dhL, dhH, dvL, dvH and a scalar 0 < a < 1, if there exist vectors
pk 2 Rn

þ; qk 2 Rn
þ; 1k

1 2 Rn
þ; 1k

2 2 Rn
þ; fk 2 Rn

þ; wk 2 Rn
þ, such that
eUk ¼ diag eUk
1;
eUk

2; . . . ; eUk
n;
eUk0

1 ;
eUk0

2 ; . . . ; eUk0

n ;
eUk00

1 ;
eUk00

2 ; . . . ; eUk00

n ;
eUk000

1 ; eUk000

2 ; . . . ; eUk000

n

n o
< 0; 8k 2 N ð36Þ
where
eUk
l ¼

akT
l �aEl

� �
pkþ a�1akT

l þðdhH�dhLÞEl
� �

qkþElf
kþd2

hHEl1k
1þ d2

hH akT
l �El

� �
�dhHadhH El

� �
1k

2þElw
k; 16 l6n1;

akT
l �aEl

� �
pkþ a�1akT

l þðdvH�dvLÞEl
� �

qkþElf
kþd2

vHEl1k
1þ d2

vH akT
l �El

� �
�dvHadvH El

� �
1k

2þElw
k; n1þ16 l6n;

8<:
eUk0

l ¼
akT

dl pk þ a�1akT
dl � adhH El

� �
qk þ d2

hHakT
dl 1k

2; 1 6 l 6 n1;

akT
dl pk þ a�1akT

dl � advH El

� �
qk þ d2

vHakT
dl 1k

2; n1 þ 1 6 l 6 n;

(

eUk00

l ¼
�adhH Elf

k þ adhH dhHEl 1k
2 � 1k

1

� �
; 1 6 l 6 n1;

�advH Elf
k þ advH dvHEl 1k

2 � 1k
1

� �
; n1 þ 1 6 l 6 n;

(

eUk000

l ¼
�adhH dhHEl1k

1; 1 6 l 6 n1;

�advH dvHEl1k
1; n1 þ 1 6 l 6 n;

(

wk ¼ KkT BkT pk þ a�1qk þ D2
H1

k
2

� �
;



with DH ¼ diagfdhHIn1 ; dvHIn2g; l 2 n ¼ f1;2; . . . ;ng; El ¼ ½0; . . . ;0
zfflfflfflffl}|fflfflfflffl{l�1

;1;0; . . . ;0
zfflfflfflffl}|fflfflfflffl{n�l


, and ak
l ak

dl

� �
represents the l-th column vector of

matrix Ak Ak
d

� �
, then the closed-loop system (35) is positive and exponentially stable for any switching signals with the average

dwell time satisfying (7b) and (7c). Under the above conditions, the desired controller gain matrices can be computed by

wk ¼ KkT BkT pk þ a�1qk þ D2
H1k

2

� �
.

Proof. From Theorem 1 and Lemma 2, the closed-loop system (35) is positive and exponentially stable if conditions (7b),
(7c) and the following conditions hold.
ðAkT � aInÞpk þ ða�1AkT þ ðDH � DLÞÞqk þ fk þ D2
H1

k
1 þ AkT D2

H � D2
H �XDH

� �
1k

2 þ wk � 0; ð37Þ

AkT
d pk þ a�1AkT

d �X
� �

qk þ AkT
d D2

H1
k
2 � 0; ð38Þ

�Xfk þXDH1k
2 �XDH1k

1 � 0; ð39Þ
�XDH1k

1 � 0; ð40Þ
where wk ¼ KkT BkT pk þ a�1qk þ D2
H1k

2

� �
� 0, and Kk � 0, k 2 N.

Then the conditions in (36) can be easily obtained from (37)–(40). This completes the proof. h

The procedure for constructing the desired controller is given below.

Algorithm 1.

Step 1. Solve the LMIs in (36) to obtain pk, qk; 1k
1; 1k

2; fk and wk, k 2 N.

Step 2. By wk ¼ KkT BkT pk þ a�1qk þ D2
H1k

2

� �
, compute Kk, k 2 N.

Step 3. Compute l and s	a by (7c) and (7b).

Step 4. The desired positive state feedback controller can be given as (34) with the obtained Kk, k 2 N.
Remark 6. The condition (36) in Theorem 2 is given in terms of LMIs which are computationally tractable by using the LMI
toolbox and it is different from the results presented in [11], where the algebraic method is utilized for the case without state
delays. Also, this paper takes time delay into consideration firstly, which is universal in the application.
Remark 7. We would like to point out that the algorithm we proposed may bring some computational complexities. It can
be seen that we need to solve N matrix inequalities to obtain 6N variables in (36).
Remark 8. Many practical complicated systems can be modeled by the addressed system in this paper, among which a typ-
ical example is the thermal process under the standard measurement of absolute temperature. The features of positivity for
state, switching for the control law, and complexity for multi-dimensional systems constitute a challenging problem in the
control field. The co-positive type Lyapunov functional method and typical average dwell time method are merged together
to solve this significant problem in this paper. The proposed LMI approach is easy to be extended to more complex applica-
tions. The feasibility of the proposed method will be illustrated by the example given in the next section.
4. Example

In this section, we present an example to illustrate the effectiveness of the proposed approach. Consider the thermal pro-
cesses in chemical reactors with two modes, which can be expressed in the following partial differential equation with time
delays. We assume that one can switch from a mode to another mode arbitrarily.
@Tðx; tÞ
@x

¼ � @Tðx; tÞ
@t

� arðx;tÞ
0 Tðx; tÞ � arðx;tÞ

1 Tðx; t � sÞ þ brðx;tÞuðx; tÞ; ð41Þ
where T(x, t) is the temperature at x 2 [0,xf] (space) and t 2 [0,1) (time), u(x, t) is the input function, s is the time delay, and
arðx;tÞ

0 ; ar
1 , br are real coefficients with r(x, t) denoting the working subsystem at (x, t).

Take
Tði; jÞ ¼ TðiDx; jDtÞ; uði; jÞ ¼ uðiDx; jDtÞ; rði; jÞ ¼ rðiDx; jDtÞ;
@Tðx; tÞ
@x

� Tði; jÞ � Tði� 1; jÞ
Dx

;
@Tðx; tÞ
@t

� Tði; jþ 1Þ � Tði; jÞ
Dt

:



Denote xh(i, j) = T(i � 1, j), xv(i, j) = T(i, j), where T(i, j) = T(iDx, jDt). It is easy to verify that Eq. (41) can be converted into a 2D
Roesser model (1) with
Arði;jÞ ¼
0 1
Dt
Dx 1� Dt

Dx� arði;jÞ
0 Dt

" #
; Arði;jÞ

d ¼
0 0
0 �arði;jÞ

1 Dt

	 

; Brði;jÞ ¼

0
brði;jÞDt

	 

;

Let Dt ¼ 0:1; Dt 6 s 6 2Dt; Dx ¼ 0:4; a1
0 ¼ 2:5; a2

0 ¼ 5; a1
1 ¼ �5; a2

1 ¼ �2:5, b1 = 2.5 and b2 = 5. The thermal process is mod-
eled in the form (1) with
A1 ¼
0 1

0:25 0:5

	 

; A1

d ¼
0 0
0 0:5

	 

; B1 ¼

0
0:25

	 


A2 ¼
0 1

0:25 0:25

	 

; A2

d ¼
0 0
0 0:25

	 

; B2 ¼

0
0:5

	 


Then by using the LMI toolbox and following the steps of Algorithm 1, we make the following records.

Step 1. Solve the LMIs in (36) to obtain pk, qk; 1k
1; 1k

2; fk and wk with k = 1, 2.
p1 ¼
0:7660
0:3613

	 

; p2 ¼

1:0881
0:5748

	 

; q1 ¼

0:1813
0:6627

	 

; q2 ¼

0:3274
0:4545

	 

;

f1 ¼
0:1654
3:5834

	 

; f2 ¼

0:2728
2:4282

	 

; 11

1 ¼
0:5383
0:1439

	 

; 12

1 ¼
0:5935
0:3605

	 

;

11
2 ¼

0:0405
1:8798

	 

; 12

2 ¼
0:1065
1:4698

	 

; w1 ¼

0:1004
0:1248

	 

; w2 ¼

0:1879
0:2602

	 

;

Step 2. By wk ¼ KkT BkT pk þ a�1qk þ D2
H1k

2

� �
, compute Kk with k = 1, 2.
K1 ¼ 0:0464 0:0576½ 
; K2 ¼ 0:1075 0:1489½ 
:
Step 3. Compute l and s	a by (7c) and (7b).
l ¼ 2:6290; s	a ¼ 5:9477:
Step 4. The desired positive state feedback controller can be given as (34) with the obtained K1 and K2.
The boundary conditions are given by
xhði; jÞ ¼ 0:1; 80 6 j 6 52; �dhH 6 i 6 0;

xvði; jÞ ¼ 0:1; 80 6 i 6 52; �dvH 6 j 6 0:
Choosing sa = 6.12, the simulation results in Figs. 1 and 2 show the state responses of the resulting closed-loop system under
the switching sequence depicted in Fig. 3. It can be observed that the closed-loop system is positive and exponentially stable,
which demonstrates the effectiveness of the proposed method.
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Fig. 1. State response of xh(i, j).
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Fig. 2. State response of xv(i, j).
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Fig. 3. Switching sequence.
5. Conclusions

This paper has addressed the delay-dependent exponential stability analysis and stabilization for positive 2D switched
delay systems described by the Roesser model. Sufficient conditions for the delay-dependent exponential stability of positive
2D switched linear systems with delays have been established. A co-positive type Lyapunov functional has been used to get a
computationally tractable LMI-based sufficient criterion which ensures the exponential stability. A design methodology of
positive feedback controller has been provided to ensure the exponential stability and positivity of the resulting closed-loop
system. A numerical example has been given to illustrate the efficiency of the proposed approach. Furthermore, future work
will be devoted to the robust control problem to achieve the delay-dependent stability and the disturbance attenuation per-
formance of positive 2D switched systems.
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