
On Hardening Leakage Resilience of Random Extractors

for Instantiations of Leakage Resilient Cryptographic

Primitives

Danyang Chena,b, Yongbin Zhoua,∗, Yang Hana, Rui Xuea, Qing Heb

aState Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences

Beijing, China, 100195
bSchool of Mathematical Sciences, Beijing Normal University,

Beijing, China, 100875

Abstract

Random extractors are proven to be important building blocks in construct-
ing leakage resilient cryptographic primitives. Nevertheless, recent efforts
showed that they are likely more leaky than other elementary components
(e.g. block ciphers) in unprotected implementations of these primitives, in
the context of side-channel attacks. In this context, from the adversary’s
point of view, the extractors themselves could become the point of inter-
est. This paper extends the problem of how leakage resilience of random
extractors could be to the case of protected instantiations. Specifically, we
investigate the feasibility of applying classical countermeasures to amelio-
rate leakage resilience of cryptographic components and/or primitives against
side-channel attacks, and then show how to evaluate the physical leakage
resilience of these instantiations theoretically and practically. The coun-
termeasures we consider are masking, shuffling, and combination of them.
Taking one leakage-resilient stream cipher presented at FOCS 2008 as a case
of study, we not only examine the leakage resilience of the underlying extrac-
tor, but also discuss how leakages from the extractor and from the under-
lying pseudo-random generator respectively impact the leakage resilience of

∗Corresponding Author
Email addresses: chendanyang@is.iscas.ac.cn (Danyang Chen),

zhouyongbin@iie.ac.cn (Yongbin Zhou), hanyang@is.iscas.ac.cn (Yang Han),
xuerui@iie.ac.cn (Rui Xue), heqing@bnu.edu.cn (Qing He)

Preprint submitted to Information Science March 1, 2012

the stream cipher as a whole. On the one hand, our theoretical and experi-
mental results, which are consistent with each other, do justify some existing
observations. On the other hand, and more importantly, our results reveal
some new observations that contrast with these knowing ones, which explic-
itly indicates that previous observations are (mostly likely) incomplete. We
argue that our work is of both obvious theoretical interest and important
practical significance, and may help foster the further research on the design
and implementation of random extractors in leakage-resilient cryptography.

Keywords:
Side-Channel Attacks, Random Extractor, Cryptographic Instantiations,
Leakage Resilience, Masking and Shuffling

1. Introduction

Due to the prevalence of side-channel attacks in which the physical char-
acteristics of a computation can be physically observed and measured, one
has to carefully consider the physical security of implementations of crypto-
graphic primitives even provably secure under traditional black-box model,
especially when they are being instantiated on computing devices. Since
some of these leakages (e.g. execution time, power consumption, electromag-
netic emanation, acoustics, etc.[7],[5],[6]) are inevitably present in almost any
physical implementation, it is widely believed that the problem of achieving
cryptographic security on devices that leaks information about the internal
secret states of cryptographic schemes cannot just be addressed by physical
countermeasures alone. In order to deal with this problem, cryptology com-
munity began to consider the possibility of taking such leakages into consid-
eration during the design of the mathematical specification of cryptographic
primitives and of providing some formal and provable security thereof. Leak-
age resilient cryptography is one of such particularly meaningful attempts
along this direction.

Basically, leakage resilient cryptography (LRC for short) aims to provide
provable security against a wide spectrum of side-channel attacks. The orig-
inal idea of LRC dates back to the year of 2004[20]. After that, a number of
theoretical results about the design and analysis of leakage resilient primi-
tives have been presented, including symmetric schemes [4] [14], asymmetric
schemes [3] [1] [11], and pseudo-random generators [21]. These works rep-
resent some important academic steps towards building sound theoretical

2

foundations of side-channel security.
On the other hand, however, for these theoretically leakage resilient con-

structions to be meaningful in practice, they have to be instantiated and
implemented on some specific hardware platforms. Taking this important
point into consideration, it is pivotal to investigate and to evaluate the prac-
tical leakage resilience of various instantiations, so that the physical security
of different implementations could be objectively compared or that a more
secure implementation could be identified among others. Actually, it has
already been turned out that there really exist some gaps between theoreti-
cally leakage resilient constructions and specific hardware implementations of
them [14]. As a natural consequence, the problem of how to analyze the prac-
tical leakage resilience of a cryptographic instantiation and then to harden it
in some specific implementations becomes very relevant and interesting.

Among other existing building blocks, random extractors are proven to
be extremely important tools in constructing leakage resilient cryptographic
primitives. For example, they have been successfully employed in fabricating
both symmetric and asymmetric primitives [8]. Unfortunately, recent efforts
showed that random extractors are more leaky than other components such
as block ciphers in unprotected implementations of these primitives. In this
context, from the adversary’s point of view, the extractors themselves could
likely become the point of interest, or the point of attack. Additionally, it
has been recognized to be difficult (if not impossible) to discuss the physical
security of a cryptographic primitive without fully understanding the rela-
tions between its algorithmic description and its implementation properties.
Among many other relevant issues, the applicability of classical countermea-
sures, such as masking and hiding, to extractor implementations remains to
be a problem of both theoretical interest and practical significance.

Motivated by these, this paper extends this problem to the case of pro-
tected instantiations.Specifically, we investigate the feasibility of applying
classical countermeasures to ameliorate the leakage resilience of cryptographic
components and/or primitives against side-channel attacks, and then show
how to evaluate the physical leakage resilience theoretically and practically.
The countermeasures we consider are masking, shuffling, and combination of
them. Taking one leakage-resilient stream cipher presented at FOCS 2008
(LR-SC for short) as a case of study, we not only examine the leakage re-
silience of the underlying extractor (Ext for short), but also discuss how leak-
ages from the extractor and from the underlying pseudo-random generator
(PRG for short) respectively impact the leakage resilience of the leakage-

3

resilient stream cipher as a whole.
Theoretically, we use min-entropy 1© as a quantitative metric to capture

the physical leakage resilience of implementations of the extractor. To harden
the leakage resilience of these implementations, masking, shuffling, and the
combination of them are considered. All software implementations we con-
sidered are running on a typical 8-bit microcontroller STC89C58RD+. On
the one hand, our theoretical and experimental results are consistent with
each other, and justify some existing observations. On the other hand, and
more importantly, our results reveal some new observations that contrast
with knowing ones, which explicitly indicates that previous observations are
(mostly likely) incomplete. Our results may help foster the further research
on the design and implementation of random extractors in leakage-resilient
cryptographic constructions, even though our analysis mainly focuses on var-
ious instantiations of the random extractor used in leakage resilient stream
cipher of [4].

1.1. Related Work

Since the work of leakage resilient cryptography at FOCS 2008 [4], a
number of positive results on the constructions of leakage resilient primitives
have appeared [4] [14] [3] [1] [11]. For example, based on the ”Only Compu-
tation Leaks” (OCL for short) assumption, [4] constructed a leakage resilient
stream cipher using alternating extraction. The main idea of [4] is to split
the secret information into two independent parts. In each round of the
secret-dependent computation, one and only one part of the two secret parts
is accessed, while the other part remains unaccessed. According to the OCL
assumption, half of the secret that is not accessed will leak no information.
In this way, [4] proved that the output sequence of LR-SC is close to uniform
randomness (see Lemma1 in Section 2), and thus its provable security.

Afterwards, [14] considered the practical security of the scheme of [4],
and instantiated the LR-SC using the following two-source extractor and
length-tripling PRG based on block cipher.

A length-tripling PRG based on a block cipher, say AES for instance, is
constructed as follows,

PRG : {0, 1}n �→ {0, 1}3n : x �→ (AESx(c1), AESx(c2), AESx(c3))

1©We argue that min-entropy is more relevant than typical Shannon entropy in our case,
because the original definition of random extractor is based on the former.

4

where c1, c2 and c3 are constants.
A two-source extractor which allows extracting many random bits from

two weak sources, is defined to be

Ext : {0, 1}l × {0, 1}l �→ {0, 1}n : (x, y) �→ ((A1x) · y, (A2x) · y, · · · , (Anx) · y)

where A1, A2, . . . , An are l× l cyclic shift matrices over GF [2], · is the inner
product mod 2, and Aix is a matrix-vector multiplication over GF [2]. In this
extractor, l needs to be a prime having 2 as primitive root. Specifically we
set n = 128, l = 193, but we only used the first 192 bits of x and y.

[14] implemented the extractor and the PRG on an 8-bit device and used
DPA to attack them respectively. Equivalently, attacking the PRG equals
attacking AES three times with different plaintexts. Figure 1 in Section
3 presents the computation of the extractor in one masked implementation.
The illustrated process is to repeat 128 times in order to produce a PRG input
(i.e. an AES key). In [14], the authors used the HW model and attacked the
intermediate zji , i.e. they assume that adversary can get lji = HW (xj

i � yj)
from the sampled power traces, where j is the index for the 24 bytes of zi and
i is the index of Ai. The result of [14] shows that the extractor is the weak
point of the LR-SC scheme, because its extensive computation leads to larger
leakage. Therefore, [14] argued that it is unlikely that any extractor will be
able to provide high security levels (especially in small devices) without being
combined with other countermeasures.

Note that another independent work in [10], similar to ours, was done
almost at the same time as the writing time of the main part of this work 2©.
On the one hand, these two independent works share something in com-
mon. For example, both of them consider simulated power traces and target
the same extractor. On the other hand, however, these two independent
works actually differ a lot in many aspects from each other . Their
implementations are in (192-bit) hardware (where the specification is not pro-
vided), whereas ours are in software on 8-bit microcontroller STC89C58RD+.

2©The main part of this work was completed in May 2011, and was then submitted to
ICICS 2011(Thirteenth International Conference on Information and Communications
Security), with the Submission ID being NN07E34G201. Regretfully, our submission
was not accepted. The work in [10] first came to public at IACR ePrint Archive on June
27, 2011 with a Report ID 2011/348. Therefore, our work in this paper and that in [10]
were done independently almost at the same time.

5

They considered parallelism in their implementations, whereas we consider
sequentialism alone. They considered masking alone, whereas we considered
much more than that, i.e. masking, shuffling, and combination of them.
They performed higher-order DPA attacks in their experiments to challenge
the protected implementations, whereas we adopted template-based DPA at-
tacks, which are widely accepted to be most powerful and outperform the
former [13]. Mutual information is used in their theoretical evaluation, while
min-entropy in our work. The adoption of min-entropy implies our results
are (likely) more pertinent to the security notion of random extractor, and
thus are more reasonable and more rigorous. In addition, the evaluation of
mutual information is solely for the verification of theoretical analysis re-
sults in our work. They considered 4-bit (only 1/48 of the word size of
their hardware) key guess, whereas we considered 8-bit (which is exactly the
word size of microcontroller STC89C58RD+) key guess. They considered
1, 2, 3-order masking in masked implementations, while we only considered
1-order masking (Note that we use template-based DPA attacks instead).
They considered uniform distributed and biased distributed masks, whereas
we only consider the former. They treated the number of leakage samples per
plaintext exploited in the attacks to be a parameter, while we consider all
leakage samples per plaintext (which is the worst case). Putting together all
these above-mentioned aspects, we firmly believe that these two independent
works are constructively complementary to each other.

1.2. Our Contributions

In this paper, we study the problem of how the theoretical and practical
leakage resilience of random extractors would be in the scenarios of protected
instantiations, and then to what extend and how it would be hardened by
applying traditional countermeasures. Specifically, we investigate the feasi-
bility of applying classical countermeasures, such as masking, shuffling, and
combinations of them, to improve the leakage resilience of cryptographic
components and/or primitives against side-channel attacks. Our main con-
tributions are three-fold as follows.

• Theoretically, we demonstrate how to use pertinent information-
theoretic metric, such as min-entropy, to capture the theoretical leakage-
resilience of instantiations of typical extractors. For this purpose, min-
entropy is used to capture the pseudo-randomness of the outputs of
various instantiations of extractors. Taking one leakage-resilient stream

6

cipher presented at FOCS 2008 as a case of study, we not only examine
the leakage resilience of the underlying extractor, but also discuss how
leakages from the extractor and from the underlying pseudo-random
generator respectively impact the leakage resilience of the stream ci-
pher as a whole.

• Practically, we perform six sets of well-designed template based DPA
attacks on multiple extractor implementations and show how to ex-
amine the practical leakage-resilience of these instantiations. For this
purpose, mutual information for four extractor implementations is eval-
uated to verify the theoretical analysis results. In our protected imple-
mentations, masking, shuffling, and combinations of them are consid-
ered.

• Instructively, our theoretical and practical results reveal some new
observations that are not embraced in existing ones, which explicitly
means that previous observations are (mostly likely) incomplete. For
one example, it is claimed, in [14], that ”implementation of the extrac-
tor can become a better target for a DPA than an AES-based PRG”
(which means that extractor could be a weaker point of the LR-SC as
a whole), and in [10] this claim is re-clarified. Our experiment results
show that for instantiations of extractor with masking (resp. shuffling)
alone, this conclusion holds. However, this is NOT TRUE for instanti-
ations of the extractor with both masking and shuffling. In the latter,
it is harder for the adversary to attack the extractor than to attack the
PRG. In other words, our new observation evidently shows that this
claim is not always true. This important observation means that the
analysis of practical security of random extractor may be more perplex
than ever imagined, and may need more clarifications if possible.

2. Preliminaries

We will briefly introduce some elementary notations, definitions and lem-
mas used throughout the paper.

2.1. Notations and Definitions

Random variableX and Y take values in a finite set A, and their statistical
distance is d(X, Y) = 1

2

∑
a∈A |Pr[X = a] − Pr[Y = a]|. If X is distributed

over {0, 1}n, then let d(X) = d(X,Un) denote the statistical distance of X

7

from a uniform distribution Un over {0, 1}n. The min-entropy of a random
variable X is H∞(X) = − log(maxx Pr[X = x]). It measures the worst-
case predictability of X. The average conditional min-entropy of X given
Z is defined by H̃∞(X|Z) = − log(Ez←Z [2

H∞(X|Z=z)]), and it measures the
worst-case predictability of X by an adversary that may observe a correlated
variable.

Let b ≥ 0, ε ≥ 0. A (b, ε)-extractor is an efficient function EXT: {0, 1}l1 ×
{0, 1}l2 �→ {0, 1}n, such that for all random variableX over {0, 1}l1 with min-
entropy H∞(X) ≥ b, and the uniform distribution Ul2 over {0, 1}l2 , we have
d(EXT (X,Ul2)) ≤ ε.A (bX , bY , ε)-two-source extractor is an efficient function
TWO-EXT: {0, 1}l × {0, 1}l �→ {0, 1}n, such that for all random variable
X and Y over {0, 1}l with min-entropy H∞(X) ≥ bX , H∞(Y) ≥ bY , we
have d(TWO −EXT (X, Y)) ≤ ε. A (bX , bY , ε)-strong blender is an efficient
function BLE: {0, 1}l × {0, 1}l �→ {0, 1}n, such that for all random variable
X and Y over {0, 1}l with min-entropy H∞(X) ≥ bX , H∞(Y) ≥ bY , we have
d(BLE(X, Y)|Y) ≤ ε, i.e. given Y , statistical distance of BLE(X, Y) from
uniform distribution over {0, 1}n is less than or equal to ε.

From the definitions above we can see that if a function is a two source ex-
tractor, then it is a extractor. If a function is a strong blender, then it is a two
source extractor. That is, {StrongBlender} ⊆ {TwoSourceExtractor} ⊆
{Extractor}.

2.2. Lemmas and Corollary

Lemma 1 (Alternating Extraction)[4]: Let EXT: {0, 1}l×{0, 1}l �→
{0, 1}n be a (b, εext)-extractor. Let A,B,K0 ∈ {0, 1}l be random variables
where A and B are independent from each other and

d(K0|B) ≤ ε0, H∞(A) ≥ l −Δ, H∞(B) ≥ l −Δ

Consider any λ,Δ, l ≥ 0 and 0 ≤ εgap ≤ 1 which satisfy

b ≤ l −Δ− 	r/2
(λ+ n)− log(1/εgap)

where r is the round number, λ is the size of leakage, Δ is the lost of min-
entropy of A and B. In the following inequality, τr = B if r is odd, and
τr = A otherwise. We have

d(Kr+1|K0, . . . , Kr, leakage1, . . . , leakager, τr) ≤ (r + 1)εext + 2εgap + ε0

8

i.e. given τr, all the outputs and all the leakage after the computation of Kr,
the next key Kr+1 = EXT (Kr, τr) to be output by S is rεext+2εgap+ ε0-close
to uniformly random.

Lemma 2 (Metric/HILL Pseudo-entropy of a PRG) [4]: Let
prg: {0, 1}n �→ {0, 1}m and f : {0, 1}n �→ {0, 1}λ (where 1 ≤ λ < n < m)
be any efficiently computable functions. If prg is a (εprg, sprg)-secure pseu-

dorandom generator, then for any ε,Δ > 0 such that εprg ≤ ε2

2λ
− 2−Δ, with

X ∼ Un we have

Pry=f(x)[H
Metric
ε,sprg (prg(X)|f(X) = y) ≥ m−Δ] ≥ 1− ε

And for any εHILL > 0

Pry=f(x)[H
HILL
ε+εHILL,ŝ

(prg(X)|f(X) = y) ≥ m−Δ] ≥ 1− ε

where ŝ ≈ s2HILLsprg/8m.

Lemma 3 (Strong Blender) [2]: Let A1, A2, . . . , An be l× l matrices
over GF [2], such that for every non-empty subset S ⊂ [k], the rank of As =∑

l∈S Al is at least l − t, for some 0 ≤ t < l.

BLEA: {0, 1}l × {0, 1}l �→ {0, 1}n
(x, y) �→ ((A1x) · y, . . . , (Anx) · y)

where · is the inner product mod 2, and Aix is a matrix-vector multiplication
over GF [2]. Then the function BLEA is a (bX , bY , ε)-strong blender, with

log(1
ε
) = bX+bY +2−(l+t+n)

2
, that is

d(BLEA(X, Y)|Y) = d((Y,BLEA(X, Y)), (Y, Un)) ≤ 2−
bX+bY +2−(l+t+n)

2

In [16], it has been proved that if A1, A2, . . . , An are right cyclic shift
matrices, and l is a prime with 2 as a primitive root, then the rank of

∑n
i=1 Ai

is larger than or equal to l − 1, i.e. t = 1 in the inequality above.
According to the definitions of extractor and strong blender, the strong

blender presented in Lemma 3 is essentially an extractor. The LR-SC in [4]
makes use of an extractor and a pseudorandom generator. In the rest part
of this paper, we use the extractor given in Lemma 3 and an AES-based
pseudorandom generator to instantiate the LR-SC. Note that [14], [10] also

9

used these two constructs. Our theoretical analysis is based on the definition
of the extractor in Section 2.1 and on that of the strong blender presented
in Lemma 3. To analysis the security of the pseudorandom generator(i.e.
AES), we use the following corollary.

Corollary 1 (Security of AES) By combining Lemma 2, 4, 11 in [12],
one can draw the conclusion that for AES with s rounds, for any PPT adver-
sary A , the advantage to distinguish the output of AES from any uniform
randomness is

Adv(
∑

(F1, . . . , Fs)) ≤ (kd2 · 2−m/k)�s/3�

where Fi is the transformation of the ith round AES, d is the number of
plaintexts, k is the number of bytes of key, and m is the number of bits of
plaintext.

3. Security Analysis of Multiple Implementations of the Extractor

In this section, we will investigate the leakage resilience (aka physical
security in this paper) of multiple implementations of the Extractor. Using
multiple instantiations of the extractor with different countermeasures, we
will show how to analyze to what extend the extractor has been hardened.

For this purpose, we use min-entropy to analyze the pseudo-randomness
of the output of the extractor.For a (b, ε)-extractor Ext, if ε depends on b,
i.e. there exists a function f , s.t. ε = f(b), then the value of b can be used to
determine the security of the extractor. If ε = f(b) < 1, then the extractor
can be considered secure. If ε = f(b) ≥ 1, then it is hard to say whether
d(Ext(x, y)) is less than 1 or not. In the latter case, we cannot say that the
extractor is secure. Let S = {b|ε = f(b) < 1}. If b ∈ S, then the extractor is
secure; otherwise, it is insecure.

Next, taking the extractor used in [14] as a case study, we will con-
cretely investigate the security of multiple implementation of the extractor,
and they are unprotected implementation, masked implementation, shuffled
implementation, masked and shuffled implementation respectively. For the
purpose of simple yet clear illustration, we will take into consideration power
analysis attacks alone, even though other side-channel attacks may also mat-
ter. In addition, it is assumed that the Hamming Weight of any interesting
intermediate is available to the adversary, as presented in Figure 1. To sim-
plify the analysis, we assume the adversary only gets the leakage of the first

10

elementary operation 3©, i.e. she only gets HW (zji), wherej ∈ [1 : 24]. We
will show that even this small leakage could lead to serious threats to the
security of the extractor. The results are summarized in Table 1.

3.1. Unprotected Implementation

The unprotected implementation of the extractor is a naive implementa-
tion without any countermeasures. In this case, according to Lemma 3, ε is

dependent on b : ε = 2−
bX+bY +2−(l+r+n)

2 .
Without leakage, bx = by = 192. According to Lemma 3, d(Ext(x, y)|x) ≤

2−
bX+bY +2−(l+r+n)

2 = 2−32.5. The output of the extractor is quite close to
uniform randomness. After leakage, the min-entropy of x and y decrease
to bx = by = 111.3361 4©. According to Lemma 3, d(Ext(x, y)|x) ≤ 248.1639,
which is quite a large distance from uniform randomness. Therefore, the
unprotected implementation is not secure in terms of min-entropy. If we
want ε ≤ 1, then we need bx + by ≥ 319, so S = {(bx, by)|bx + by ≥ 319}.

3.2. Masked Implementation

Masking is a kind of algorithmic countermeasure, and it essentially be-
longs to secret sharing scheme. In concrete implementation, one usually uses
one or more random value(s) to XOR one sensitive intermediate value in
order to randomize the intermediate value. The number of random values
used is called the order of masking. If one single random values is used, then
the schema is called first order masking. If two or more random values are
used, it is called higher-order masking.Let d denote the order of masking. In
this paper, we consider d = 1 only.

Our masked implementation of the extractor is presented in Figure 1,
where mj

i ← {0, 1}8, i ∈ [1 : 128], j ∈ [1 : 24]. When computing zji , first
compute z′ji = xj

i � (mj
i ⊕ yj) = (xj

i � mj
i) ⊕ (xj

i � yj) = m′j
i ⊕ zji . After

the whole computation of bi, we compute bi = b′i ⊕
(⊕24

j=1 ⊕8
k=1 m

′j
i (k)

)
to

remove the mask, where mj
i (k) denotes the kth bit of mj

i .
Considering the fact that template based DPA attacks [9] are widely

accepted to be the most powerful [13], we perform template based DPA

3©For random extractor, an elementary operation is the computation of one bit of its
output in this paper.

4©bx (resp. by) is the average conditional min-entropy of x (resp. y) given HW (zji), j ∈
[1 : 24].

11

Figure 1: Masked Implementation of the Extractor

attacks against our masked implementation of the extractor. In this case,
one builds template for pair of HW (m) and HW (x� (y ⊕m)). After these
two leakages, the min-entropy of x and y decrease to bx = 111.3361, by =
167.3544. Consequently, bx+by = 278.7004 < 319, which directly means that
the masked implementation is not secure in terms of min-entropy either.

3.3. Shuffled Implementation

Shuffling is a kind of hiding technique. The basic idea of this approach is
to randomly arrange the execution sequences of some independent operations.
The number of independent operations to be randomized is called shuffling
degree, denoted byN . For example, in the computation of b1 in the extractor,

12

for all 24 bytes, the computation of ⊕ (AND) is independent from each other.
Therefore, we could naturally consider adopting shuffling to decrease the
adversary’s ability of exploiting the leakages from the power traces.

Surprisingly, it turns out that shuffling operations does NOT change the
min-entropy of x or that of y at all. For example, in Table 1, the min-entropy
of shuffled implementation equals that of unprotected implementation, and
the min-entropy of masked implementation is identical with that of masked
and shuffled implementation. This is due to the fact that min-entropy just
measures the worst-case predictability. For our present context, the worst-
case of shuffling is that the output after shuffling remains the same as that
without shuffling. So the min-entropy of x and that of y remain unchanged,
which consequently means that ε remains unchanged. Note that it is really
harder to attack shuffled implementations in real world than to attack un-
protected implementations. This is because the average-case predictability
does get lower after shuffling, although the worst-case predictability remains
unchanged. Obviously, the shuffled implementation is insecure in terms of
min-entropy.

3.4. Masked and Shuffled Implementation

In this subsection, we will apply both masking and shuffling into the
implementation of the extractor. Recalling that shuffling does NOT help de-
crease the min-entropy, the min-entropy of y of masked and shuffled imple-
mentation will be identical with that of masked implementation. Therefore,
masked and shuffled implementation is not secure in terms of min-entropy,
either.

Table 1: Min-Entropy and log(1ε) of Implementations of the Extractor

Implementations
Min-Entropy

log(1
ε
)

bx by bx + by

Unprotected 111.3361 111.3361 222.6722 48.1639
Shuffled, N = 24‡ 111.3361 111.3361 222.6722 48.1639
Masked, d = 1 111.3361 167.3544 278.7004 20.1498
Masked and Shuffled, d = 1, N = 24‡ 111.3361 167.3544 278.7004 20.1498
‡ Note that Min-Entropy is regardless of N.

13

4. Security of the LR-SC as a Whole

In this section, we will discuss how leakages from the extractor and from
PRG will influence the entire security of the whole LR-SC scheme in [DP2008]
as a whole.

4.1. Security of the Extractor

Lemma 1 in Section 2 requires that H∞(y) ≥ l − Δ, H∞(x) ≥ l − Δ.
Since bx = by = 111.3460, l − Δ ≤ 111.3460. The amount of leakages is
λ = 62.5320 5©. 0 ≤ εgap ≤ 1, so log(1/εgap) ≥ 0. Furthermore, Lemma 1 also
requires that

bx ≤ l −Δ− 	r/2
(λ+ n)− log(1/εgap)
≤ 111.3460− (62.5320 + 128)− log(1/εgap)
= −79.1860− log(1/εgap)

Since bx = 111.3460, the above requirement cannot be satisfied. Therefore,
the pseudo-randomness of the output of the LR-SC as a whole is not theo-
retically guaranteed.

In our shuffled implementation, l − Δ ≤ min{bx, by} = 180.6868, the
requirement becomes bx ≤ −9.8452 − log(1/εgap); in our masked implemen-
tation, l − Δ ≤ min{bx, by} = 111.3460, the requirement becomes bx ≤
−79.1860 − log(1/εgap); in our masked and shuffled implementation, l −
Δ ≤ min{bx, by} = 111.3460, the requirement becomes bx ≤ −79.1860 −
log(1/εgap). Whatever, all above four requirements cannot be satisfied. There-
fore, for all these four implementations, due to leakages from the extractor,
the LR-SC as a whole is NOT theoretically secure.

4.2. Security of the PRG

We consider the advantage of any PPT adversary in distinguishing the
output of AES from uniform randomness. According to Corollary 1,m = 128,
k = 16, s = 10, d = 3, then we have

Adv(
∑

(F1, . . . , Fs)) ≤ (kd22−m/k)�s/3� = (16×32×2−128/16)�10/3� = 36 ·2−12

We only consider unprotected implementation of PRG in this subsection.
Lemma 2 in Section 2 requires that εprg ≤ ε2

2λ
− 2−Δ. According to the

5©62.5320 equals the product of average code length of HW and 24 (bytes).

14

computation above, we have εprg = 36 · 2−12. To attack AES, HWs of 16
intermediates are needed. Then the leakage λ = (1 − (1 − 41.6880)3) =
88.7432 6©. Therefore, 36 · 2−12 ≤ ε2

288.7432
− 2−Δ. However, such ε,Δ do not

exist. Consequently, the AES-based PRG cannot meet the requirement of
Lemma 2, which means its output does NOT preserve high min-entropy after
some of its inputs are leaking. With respect to this fact, the PRG will not be
a theoretically secure component for the LR-SC as whole, even though the
PRG itself may not be the weakest point.

5. Experiments

In this section, we will present our theoretical and practical security eval-
uation and experimental results, in order to verify the relevance of those
results presented in Section 3. In theoretical side, we will study the leakage
resilience of Ext(resp. PRG) by computing the mutual information of its
respective implementations. In practical side, we will investigate the leak-
age resilience of Ext(resp. PRG) by performing template based DPA attacks
against multiple implementations of Ext(resp. PRG) respectively. Moreover,
our experiments are based on simulated power traces.

Specifically, we examine multiple instantiations of Ext(resp. PRG), and
they are unprotected implementation, masked implementation, shuffled im-
plementation, and masked and shuffled implementation respectively. All of
these instantiations of Ext(resp. PRG) are software implementations on an
8-bit microcontroller STC89C58RD+. However, for our all masked imple-
mentations of Ext, we adopt masking scheme presented in Figure 1; for those
of PRG, we adopt masking scheme in [19].

In our present context, one central question to answer is to determine the
target operations (which will subsequently determine the interesting inter-
mediate) for side-channel adversary. For this purpose, one generally selects
those operations where one known input and another secret key are mixed.
For our implementations of Ext(resp. PRG), this corresponds to the bitwise
AND (resp. S-box) operation. As a result, for the cases of Ext(resp. PRG),
we choose the output of AND(resp. S-box) operation to be our interesting
intermediate. In addition, we will consider a 8-bit key guess, which is exactly
the word size of our hardware platform STC89C58RD+.

6©41.6880 equals the product of code length of HW and 16 (bytes).

15

5.1. Theoretical Evaluation

For theoretical security evaluation of concrete cryptographic instantia-
tions, we use Mutual Information (MI for short) of any interesting interme-
diate as one quantitative metric to verify our analysis results in Section 3.
For the computation of MI, we use histogram estimation method [17], with
the number of bins being 9 [18]. In this way, we compute the MI for different
implementations of Ext(resp. RPG) to show their leakage resilience accord-
ingly. For our masked implementations of both Ext and PRG, the masking
order d = 1. For our shuffled implementations of Ext, the shuffling degree
N1 = 24, while it is N2 = 16 for PRG.The results are shown in Table 2.

Table 2: Mutual Information of Implementations of PRG (S-box) and Ext (AND)

Implementations Ext (AND) PRG (S-box)

Unprotected 0.7729 1.3640
Masked, d = 1 0.0348 0.1046
Shuffled 0.0459 (N1 = 24) 0.0788 (N2 = 16)
Masked and Shuffled, d = 1 0.0227 (N1 = 24) 0.0375 (N2 = 16)

Table 2 briefly shows how and to what extend typical countermeasures
applied to Ext(resp. PRG) has hardened the practical leakage resilience.
It can be seen from Table 2 that, for both Ext and PRG, applications of
masking and shuffling do decrease the MI of the target intermediates, and
hence decrease the leakages from the corresponding implementations. And
among our considered four implementations of Ext(resp. PRG), application
of combination of masking and shuffling increase the leakage resilience most.
In addition, the MI of each one of our four implementations of Ext is always
less than that of the corresponding implementation of PRG. This does justify
the observation made in [14] that the elementary operations of Ext are ”less
informative” than the ones of the AES. Note, however, that masking outper-
forms shuffling in terms of increasing the practical leakage resilience for the
case of Ext, while shuffling is better than masking for the case of PRG. We
guess this may due to the fact that the value of x randomly chosen in our
experiments has a large impact on the MI of subsequent AND operations(see
in Figure 1), which gave rise to partial independence of the MI in some cases
on y.

Another important aspect concerning the results worth noting is that the
MI of shuffled implementation of Ext is less than that of unprotected imple-

16

mentation of Ext. Contrary to the case of MI, the min-entropy of the shuffled
implementation of Ext is the same as that of unprotected implementation of
Ext(see in Table 1 of Section 3). This fact, in some sense, evidently highlights
some gaps between theoretically leakage resilient constructions and specific
implementations of them.

5.2. Practical Evaluation

For practical security evaluation of concrete cryptographic instantiations,
we perform template based DPA attacks against multiple implementations
of Ext(resp. PRG). In this paper, we choose template based DPA attacks
instead of other high-order DPA variants, because the former is widely be-
lieved to be the most powerful one and nearly always outperform the latter
[13]. The number of power traces used for building template for each case of
our experiments is shown in Table 3.

For masked implementation of Ext(resp. PRG), we consider 1-order
masking only, i.e. d = 1. For shuffled implementations of Ext, we consider
shuffling degree N1 = 6, 12, 24, respectively; for those of PRG, we consider
shuffling degree N2 = 4, 8, 16, respectively.

In our template building and attacks, the noise standard deviation is set
to be σ = 0.5. And Success Rate (SR for short) 7©, one quantitative security
metric, is adopted to measure the practical leakage resilience of cryptographic
implementations.

Table 3: Number of Traces Used for Building Templates

Implementations Ext PRG

Unprotected 20,000 20,000
Masked, d = 1 81,000 81,000

Shuffled
20,000, N1 = 6 20,000, N2 = 4
40,000, N1 = 12 20,000, N2 = 8
40,000, N1 = 24 20,000, N2 = 16

Masked and Shuffled, d = 1 81,000, N1 = 24 81,000, N2 = 16

7©As a rule of thumb, high success rate usually implies low guessing entropy; so we don’t
consider guessing entropy in this work.

17

The sketch of our template building and attacks is as follows. For un-
protected implementation of Ext(resp. PRG), we build template for each
interesting intermediate. For masked implementation of Ext(resp. PRG), we
build template for each pair of interesting intermediate and mask. During
attacks, one tries to match each samples trace with the template, and the key
guess that gives rise to the maximum matching probability will be treated as
the correct key[9]. For shuffled implementation of Ext(resp. PRG), we build
template for each interesting intermediate. During attacks, one tries to match
the template with each of the N power consumptions of the target interme-
diate values that has been shuffled, and the sum of these N results is viewed
as the template matching probability for one trace. In this way, the key
guess that gives rise to the maximum matching probability will be treated
as the correct key. For masked and shuffled implementation of Ext(resp.
PRG), we build template for each pair of interesting intermediate and mask
too. The template matching phase is identical with that of attacking shuffled
implementation of Ext(resp. PRG).

5.2.1. Comparison of Implementations of Ext

We performed template based attacks against four implementations of
Ext, with the target operation being bitwise AND. The results are presented
in Figure 2. The SR of our attacks against masked and shuffled implemen-
tation of Ext is nearly zero, so it does not appear in Figure 2. Note that
one power trace of Ext actually contains 128 AND operations, and therefore
1,536(= 128 × 12) power traces are used to attack the masked and shuffled
implementation of Ext.

As explained in Section 3.4, the min-entropy of shuffled implementation
of Ext is identical with that of unprotected implementation of Ext. However,
in real world, it is harder to attack shuffled implementation than to attack
unprotected implementation. Our experiments justify this intuition, because
the min-entropy considers the worst-case while average-case is usually taken
into account in practice. That is, shuffling helps increase the practical leakage
resilience of cryptographic implementations, if properly used. These results,
in some sense, again highlights the possible gaps between theoretically leak-
age resilient constructions and specific implementations of them. In addition,
of our four implementations, the masked and shuffled implementation of Ext
is the most secure in terms of SR, in the presence of template based DPA
attacks.

18

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#Traces

S
uc

ce
ss

 R
at

e

Unprotected
Shuffled, N1=6
Masked, d=1
Shuffled, N1=12
Shuffled, N1=24

Figure 2: Success Rates of Attacks against Implementations of Ext

5.2.2. Comparison of Leakage Resilience of Implementations of PRG and Ext

In oder to justify whether or not the extractor is still the weaker point
of the LR-SC scheme in protected implementations, we perform template
based DPA attacks against our four implementations of Ext and those of
PRG respectively. The results are presented in Figure 3. Similarly, the
results of our attacks against the masked and shuffled implementation of Ext
do not appear in 3, as the corresponding SR of these attacks are nearly zero.

The number of power traces for the SR of attacks against the masked
implementation of Ext to reach 1 is 9, while it is 50 for that of PRG. In
contrast, in the case of N1 = 24 and N2 = 16, the number of power traces
for the SR of attacks against the shuffled implementation of Ext to reach 1 is
only 13, while it is 55 for that of PRG. Therefore, for masked implementation
of LR-SC, the extractor is still a better target for DPA attacks than an AES-
based PRG. And it is also the same with the shuffled implementation of
LR-SC. These results are consistent with the observations made in [14],[10].

On the other hand, and more importantly, in the case of d = 1, N1 =
24 and N2 = 16, 235 traces are sufficient enough for one to successfully
attack the masked and shuffled implementation of PRG, while the SR of
attacking the masked and shuffled implementation of Ext is nearly zero.
This evidently shows that in this case, the extractor is no more a better
target for DPA attacks than an AES-based PRG. That is, in this case, one
should better attack the PRG other than the extractor. This observation

19

0 2 4 6 8 10
0

0.5

1
Unprotected Implementation

0 20 40 60 80
0

0.5

1
Masked Implementation

0 5 10 15 20
0

0.5

1
Shuffled Implementation, 25%

0 10 20 30
0

0.5

1
Shuffled Implementation, 50%

0 20 40 60
0.2

0.4

0.6

0.8

1
Shuffled Implementation, 100%

100 150 200 250 300
0.4

0.6

0.8

1
Masked & Shuffled Implementation

PRG
Ext

PRG
Ext

PRG, N2=4
Ext,N1=6

PRG,N2=8
Ext,N1=12

PRG,N2=16
Ext,N1=24 PRG,d=1,N2=16

Figure 3: Success Rate of Attacks against Implementations of Ext and PRG

do contrast with previous ones[14],[10], which explicitly indicates that those
existing observations are (mostly likely) incomplete.

6. Conclusions

Leakage resilient cryptography stands for one of important on-going ef-
forts within world-wide cryptology communities towards building sound theo-
retical foundations of side-channel security of cryptography systems. Nonethe-
less, leakage resilient cryptography is still in its infancy. A number of concerns
on leakage resilient cryptographic primitives need to be addressed. For ex-
ample, to what extent these theoretical constructions relate to the physical
reality. The possible practical significance of discussing this problem, among
others, is to reveal the possible gaps (if any) between meaningful physical
assumptions and sound theoretical proofs, thus unveiling the physical leakage
resilience these theoretical constructs could provide.

Taking the example of random extractors, which have been proven to be
fundamental building blocks for constructing leakage resilient cryptographic
primitives, this paper investigates the feasibility of applying classical coun-
termeasures to ameliorate the leakage resilience of cryptographic components

20

and/or primitives against side-channel attacks and show how to evaluate the
physical leakage resilience theoretically and practically. The countermea-
sures we consider are masking, shuffling, and combinations of them. Even
though our theoretical and experimental results justified some existing obser-
vations, they evidently and firmly reveal some new observations that contrast
with knowing ones, which explicitly indicates that previous observations are
(mostly likely) incomplete.

We argue that our work is of both obvious theoretical interest and impor-
tant practical significance, and may help foster the further research on the
design and implementation of random extractors in leakage-resilient cryp-
tographic constructions. Such efforts could open the way towards more in-
depth and more rigorous treatment of implementations and constructions of
physically observable cryptographic schemes.

Acknowledgements
This work is supported by the National Natural Science Foundation of

China (No.61073178) and Beijing Natural Science Foundation (No.4112064).

References

[1] Z. Brakerski, Y. Kalai, J. Katz, V. Vaikuntanathan. Overcoming the
Hole in the Bucket: Public-Key Cryptography Resilient to Continual
Memory Leakage.IEEE FOCS 2010, pp.501-510, 2010.

[2] Y. Dodis, A. Elbaz, R. Oliveira, R. Raz. Improved Randomness Ex-
traction from Two Independent Sources.APPROX and RANDOM 2004,
LNCS 3122, pp.334-344, 2004.

[3] Y. Dodis, K. Haralambiev, A. Lopez-Alt, D.Wichs. Cryptography
Against Continuous Memory Attacks. IEEE FOCS 2010, pp.511-520,
2010.

[4] S. Dziembowski, K. Pietrzak. Leakage-Resilient Cryptography. IEEE
FOCS 2008, pp.293-302, 2008.

[5] K. Gandolfi, C. Mourtel, F. Olivier. Electromagnetic Analysis: Concrete
Results. CHES 2001, LNCS 2162, pp.251-261, 2001.

[6] P. C. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. CRYPTO
1999, LNCS 1666, pp.388-397, 1999.

21

[7] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. CRYPTO 1996, LNCS 1109, pp.104-
113, 1996.

[8] S. Halevi, H. Lin. After-the-Fact Leakage in Public-Key Encryption.
TCC 2011, LNCS 6597, pp.107-124, 2011.

[9] S. Mangard, E. Oswald, T. Popp. Power Analysis Attacks Revealing the
Secrets of Smart Cards.Springer-Verlag Press, 2007.

[10] M. Medwed, F. Standaert. Extractors Against Side-Channel Attacks:
Weak or Strong? Journal of Cryptographic Engineering, Vol.1, No.3,
pp.231-241, 2011.

[11] T. Malkin, I. Teeranishi, Y. Vahlis, M, Yung. Signatures Resilient to
Continual Leakage on Memory and Computation.TCC 2011, LNCS
6597, pp.89-106, 2011.

[12] S. Moriai, S. Vaudenary. On the Pseudorandom of Top-Level Schemes
of Block Ciphers. ASIACRYPT 2000, LNCS 1976, pp.280-302, 2000.

[13] E. Oswald, S. Mangard. Template Attacks on Masking-Resistance Is
Futile. CT-RSA 2007, LNCS 4377, pp.243-256, 2007.

[14] F. X. Standaert. How Leaky Is an Extractor? LATINCRYPT 2010,
LNCS 6212, pp.294-304, 2010.

[15] F. X. Standaert, T. G. Malkin, M. Yung. A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. EUROCRYPT 2009,
LNCS 5497, pp.443-461, 2009.

[16] U. Vazirani. Efficiency Considerations in Using Semi-Random Sources.
ACM STOC 1987, pp.160-168, 1987.

[17] B. Gierlichs, L. Batina, P. Tuyls, B. Preneel. Mutual Information Analy-
sis A Generic Side-Channel Distinguisher. CHES 2008, LNCS 5154, pp.
426-442, 2008.

[18] N. V. Charvillon, F. X. Standaert. Generic Side-Channel Distinguishers:
Improvements and Limitations. CRYPTO 2011, LNCS 6841, pp.354-
372, 2011.

22

[19] C. Herbst, E. Oswald, S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. ACNS 2006, LNCS 3989, pp.239-
252, 2006.

[20] S. Micali, L. Reyzin. Physically Observable Cryptography (Extended
Abstract). TCC 2004, LNCS 2951, pp. 278-296, 2004.

[21] Y. Yu, F. X. Standaert, O. Pereira, M. Yung. Practical Leakage-Resilient
Pseudorandom Generators. ACM CCS 2010, pp. 141-151, 2010.

23

