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Abstract  
 

In this paper, we investigate a multi-period portfolio selection problem with a comprehensive set of 

real-world trading constraints as well as market random uncertainty in terms of asset prices. We 

formulate the problem into a two-stage stochastic mixed-integer program (SMIP) with recourse. The 

set of constraints is modelled as mixed-integer program, while a set of decision variables to rebalance 

the portfolio in multiple periods is explicitly introduced as the recourse variables in the second stage 

of stochastic program. Although the combination of stochastic program and mixed-integer program 

leads to computational challenges in finding solutions to the problem, the proposed SMIP model 

provides an insightful and flexible description of the problem. The model also enables the investors 

the make decisions subject to real-world trading constraints and market uncertainty.  

 

To deal with the computational difficulty of the proposed model, a simplification and hybrid solution 

method is applied in the paper. The simplification method aims to eliminate the difficult constraints in 

the model, resulting into easier sub-problems compared to the original one. The hybrid method is 

developed to integrate local search with Branch-and-Bound (B&B) to solve the problem heuristically. 

We present computational results of the hybrid approach to analyse the performance of the proposed 

method.  The results illustrate that the hybrid method can generate good solutions in a reasonable 

amount of computational time. We also compare the obtained portfolio values against an index value 

to illustrate the performance and strengths of the proposed SMIP model. Implications of the model 

and future work are also discussed. 

Key words: Stochastic programming; hybrid algorithm; Branch-and-Bound; local search; portfolio selection 

problems  

1. Introduction 

The essence of portfolio selection problem (PSP) can be described as finding a combination of assets 

that best satisfies an investor’s needs. The theory of PSP was developed by Harry Markowitz firstly in 

the 1950’s. In his work, the PSP was formulated as the mean–variance (MV) model (Markowitz 1952), 

a quadratic optimisation model. The basic MV model selects the composition of assets which either 

achieves a predetermined level of expected return while minimizing the risk, or achieves the 

maximum expected return within a predefined level of risk.  

From a practical point of view, however, the MV model is often considered to be too basic, as it 

ignores many constraints faced by real-world investors. Presences of real-world trading constraints 

dramatically increase the complexity of PSP. These constraints include the cardinality constraint (a 

limit on the total number of assets held in a portfolio), the minimum and/or maximum position size 

constraint (bounds on the amount of each asset), the minimum trade size constraint (bounds on the 

amount of transaction occurred on each asset) and transaction costs, etc. When such constraints are 
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considered into the basic MV model, the problem is recognized to be NP-complete (Bienstock 1996, 

Mansini and Speranza 1999).  

Along with the trading constraints, another important factor faced by the investors to make a proper 

investment decision is the market uncertainty. However, in the classic MV model and other models of 

PSP (Chang, Meade et al. 2000, Kellerer, Mansini et al. 2000, Crama and Schyns 2003, Konno and 

Yamamoto 2005, Mansini and Speranza 2005), the expected return and covariance between assets are 

usually based directly on historical data. These models do not account for the uncertainties of the 

market.  

Financial markets are unpredictable and decision should be made with the consideration of market 

conditions (Ji, Zhu et al. 2005, Baldacci, Boschetti et al. 2009). Moreover, investors apply flexible 

portfolio management strategies by rebalancing portfolios periodically in response to new uncertain 

market conditions (i.e. changing perceptions regarding the random asset price). Random uncertainties 

of market, i.e., in terms of asset prices and currency exchange rates etc. are main factors of market. 

Several non-probabilistic uncertainty factors such as vagueness and ambiguity are investigated mainly 

by fuzzy techniques (Gupta, Mehlawat et al. 2010, Gupta, Inuiguchi et al. 2013, Li and Xu 2013).  In 

this paper we focus on random uncertainty of the market, i.e., in term of asset prices. 

Stochastic programming becomes an increasingly popular technique to model decision making under 

random uncertainty. It is able to model uncertainties in a flexible way and impose real-world 

constraints relatively easily (King and Wallace 2012). It uses information in the future to make 

current decisions.  Higle and Wallace (Higle and Wallace 2003) investigate the uncertainty factors in 

general stochastic problems.  Generally speaking, taking into account of uncertainty helps to improve 

decision making. 

Stochastic programming has been applied to describe a variety of portfolio optimization problems. 

Models for asset-liability and risk management have been proposed in (Mulvey and Vladimirou 1992), 

(Topaloglou, Vladimirou et al. 2008, Stoyan and Kwon 2011). New approaches based on stochastic 

programming for portfolio management have also been proposed (Mulvey and Vladimirou 1992, 

Fleten, Høyland et al. 2002, Higle and Wallace 2003, Barro and Canestrelli 2005, Gaivoronski, 

Krylov et al. 2005, Ji, Zhu et al. 2005, Escudero, Garín et al. 2007, Topaloglou, Vladimirou et al. 

2008, Baldacci, Boschetti et al. 2009, Stoyan and Kwon 2010, Stoyan and Kwon 2011).  

In portfolio optimization problem domain, Gaivoronski, Krylov et al. (Gaivoronski, Krylov et al. 2005) 

investigate the issue of optimal portfolio rebalancing and try to determine whether to rebalance a 

given portfolio based on the transaction costs and new information of market. Fleten, Hoyland et al. 

(Fleten, Høyland et al. 2002) demonstrate how to evaluate stochastic programming models by 

comparing two different approaches to asset liability management. The first uses multistage stochastic 

programming, while the other is a static approach. They show that the stochastic programming 

method dominates the static method to the asset liability management problem due to its ability that 

adapts the market information.  

To solve the stochastic model of PSP, in the literature a wide range of decomposition techniques have 

been developed (Birge 1985, Mulvey and Ruszczyński 1995, Barro and Canestrelli 2005, Escudero, 

Garín et al. 2007, Stoyan and Kwon 2010, Stoyan and Kwon 2011). (Birge 1985) proposed the nested 

variant of the Benders decomposition. Mulvey and Ruszczyński proposed the augmented Lagrangian 

decomposition (Mulvey and Ruszczyński 1995). (Stoyan and Kwon 2011) proposed a novel 

decomposition method based on the particular structure of the problem concerned. It decomposes the 

problem geographically into security and bond sub-problems, which are then further broken into 

smaller sub-problems.  

In this paper, we model the multi-period PSP with a comprehensive set of real-world trading 

constraints including the cardinality constraint, the minimum position size, the minimum trade size 

constraint, and transaction costs, etc. In order to model these constraints, we apply a mixed-integer 

optimization approach. In addition, to account for the uncertainty in the market in term of asset prices 

to enhance the decision making of investors, we apply stochastic programming to capture future 

information in the market, i.e. asset prices, represented by a set of random variables. A set of decision 
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variables to rebalance the portfolio is explicitly introduced as the recourse variables in the second 

stage of stochastic program. These recourse variables are used to amend the first stage decision 

variables based on the realization of the random variables of asset prices. Thus, the problem is 

formulated into a two-stage stochastic mixed-integer program.  

We set the model in the framework of stochastic programming and formulate the problem in a two-

stage setting. This is for simplicity but not primarily.What is more, we see this as an appropriate 

framework to fulfil the purpose of our investment. The integral and stochastic nature of the problem 

makes the two-stage model complex enough. The purpose of the model is making current decision 

under a set of real-world trading constraint while taking account of future asset price changes. We do 

not intent to provide tactical rebalance strategy for each future trading but to make current more 

flexible decision with recourse for the future.  

We investigate the effect of asset price uncertainty upon the solution to the portfolio optimization 

problem. Although stochastic programming models have been used for other types of portfolio 

construction (Mulvey and Vladimirou 1992, Gaivoronski, Krylov et al. 2005, Ji, Zhu et al. 2005, 

Topaloglou, Vladimirou et al. 2008, Stoyan and Kwon 2010, Stoyan and Kwon 2011), to our 

knowledge, this is the first work to develop a multi-period PSP model with a comprehensive set of 

real-world constraints as well as market uncertainty.  

In our previous work (He and Qu 2013), initial tests of a hybrid local search method have been 

conducted on a relatively easier model for deterministic PSPs without uncertainties. In this present 

work, to address the complex two-stage portfolio selection problem with uncertainty, the model 

combines integral and stochastic variables. This leads to a more computational challenging SMIP 

model. Therefore, we adapt a simplification and hybrid method based on our previous method which 

hybrids local search with B&B (named LS-B&B) to solve the SMIP heuristically. In the LS-B&B, 

variable fixing together with a local search are applied to generate a sequence of simplified sub-

problems. The default B&B search then solves these restricted and simplified sub-problems more 

easily due to their reduced size comparing to the original one. The idea is to perform computationally 

inexpensive local search on the surface of certain variables, and then explore the sub-problems by 

B&B to completion. 

In summary, this paper presents two major contributions: (1) a two-stage stochastic mixed-integer 

program model that formulates a comprehensive set of real-world trading constraints, as well as 

random uncertainly in the market employing the concepts of scenarios and stages. (2) the application 

and analysis of an efficient simplification and hybrid solution method to the new two-stage SMIP 

model, which is proposed and examined in the literature for the first time in this work.  

The remainder of this paper is organized as follows. In Section 2, we describe and formulate the PSP 

with uncertainty into a two-stage stochastic mixed-integer program model. In Section 3, we present 

the simplification and hybrid solution method. In Section 4, we analyse the performance of the hybrid 

method. Finally, we draw our conclusions in Section 5. 

2. Problem Modelling 

We consider the problem of a decision maker who is concerned with the active management of a set 

of financial assets, to achieve certain goal while satisfying a set of market and trading constraints. 

These constraints include the cardinality constraint, the minimum position size constraint, the 

minimum trade size constraint and transaction costs. In order to model these constraints, mixed-

integer formulation is necessary. 

Many of the decisions, i.e., purchase or sell an asset, are based on the predicted price of assets. 

Different future prices can lead to different investment choices. This is the issue of market 

randomness (King and Wallace 2012). To account for the uncertainty of the stock market in term of 

asset price, we use stochastic program technique to capture any changes that may occur with the 

future asset price. That is, by using stochastic program we can use future information to make current 

decisions.  
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2.1 Scenario 

We formulate the problem as a two-stage stochastic mixed-integer program with recourse. The first-

stage decisions represent current portfolio construction decisions while the second-stage recourse 

variables represent the amendment of the portfolio based on the future market information.    The key 

uncertainty of the stock market we investigated, i.e. the assets prices, or, equivalently, their returns is 

represented by random variables. We can capture many possible future market realizations by 

expressing a finite number of possible outcomes of these random variables as scenarios. Hence, in the 

second-stage, if one of many market realizations occurs, the model has account for this situation and 

the decisions are made based on these future market realizations captured in the model. Thus we can 

say that the model respond to the new information on market conditions. 

Two important concepts, stage and scenario, should be clarified before we present the model. An 

information stage, normally simply called stage, is a point in time where decisions are made based on 

the new information. “It only makes sense to distinguish two points in time as different stages if we 

observe something relevant (new information) in between” (King and Wallace 2010). The concept of 

stage is different from period. Period is the time point where decision can be made regardless the 

consideration of new information realization. This means we can have more than one period within 

one stage if no new information is added between the periods. In Fig. 1, (a) is a multi-stage multi-

period scenario tree; (b) is a two-stage multi-period scenario tree; while (c) is a two-stage two-period 

scenario tree. In this work, we study a two-stage multi-period PSP problem as show in (b) in Fig.1. 

Since there is no new information coming in, i.e. no new random variable realization between each 

period within each stage, we can aggregate the periods into a stage as shown in Fig.1 (c).  

 

Fig. 1 Examples of scenario trees 

The second important concept is scenario. The possible outcomes of the random variables which 

represent the uncertainty are defined as scenarios. The progressive evolution of the random variables 

in our two-stage model can be described by a scenario tree as (c) in Fig.1.  The root node of the 

scenario tree represents the initial state at the current time.  The discrete evolutions of the random 

variables during the planning horizon are specified by nodes and arcs. In Fig.1 (c), node n = 1-9 

represents each realization of random variables in the second stage, i.e. the state of the market.  The 

arcs represent the possible transitions between two adjacent states. Each path, starting from the root 

node to leaf nodes, represents one scenario. 

The model based on the scenario tree in in Fig.1 (c) can be modelled as linear stochastic program for 

certain PSPs if the objective function and constraints of the problems can be represented by linear 

function; or it can be formulated as a mixed-integer linear program if integer variables are involved. 

In either case, the scenario tree represents the evolution of the random variables over the planning 

horizon. For multi-stage stochastic program model, one logical requirement must be conformed. This 

logical requirement is usually termed as non-anticipative constraint.  Since we study a two-stage 
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model in this paper, we do not need to enforce this constraint. We define the decision variables on 

each node, where node 0 belongs to the first stage while nodes 1, 2,.. belong to the second stage.  

Scenario generation methods for stochastic programme have been extensively studied in the literature. 

We apply a simple yet effective method proposed by (Stoyan and Kwon 2010) to generate scenarios 

for the SMIP model by employing historical market data. The reason is that if market behaviour is 

representative for a specific historic time interval, then we expect that this pattern will continue in the 

near future. (Jobst, Mitra et al. 2006) used the same rationale for their portfolio selection model. We 

investigate the past market asset prices and produce scenarios that fit in an approximation of that 

function. We refer to (Jobst, Mitra et al. 2006, Stoyan and Kwon 2010) for more information about 

the scenario generation methods. The information about the historic data that are applied to generate 

scenarios and number of scenarios generated will be presented in Section 4.  

2.2 SMIP model components 

The notations applied in this paper are given in Table 1. 

Table1. Notations 

Sets 

A The set of assets. Index i, i A  

User-specific parameters 

  The target expected portfolio return after the planning horizon 

  Critical percentile for VaR and CVaR 

Deterministic input data 

h The initial available capital to invest in the asset market 

0

iw  The initial position (in number of units ) of asset i  

i
  The fixed fee when purchasing asset i 

i
  The fixed fee when selling asset i 

i
  The variable cost when purchasing asset i  

i
  The variable cost when selling asset i 

i  The fixed transaction fee  

i  The variable transaction cost  

k The number of assets held in the portfolio 

wmin The minimum hold position 

tmin The minimum trading size 

F Feasible solution set 

Stage (scenario) dependent data 

N The set of nodes in the second-stage in Fig.1, index n,n N  

pn Probability of node n in the second stage 

0

iP  The price per unit of asset i in the first stage 

n

iP  The price per unit of asset i at node n in the second stage 

nV  The final wealth of the portfolio at node n 

nR  The return of the portfolio at node n 

Auxiliary variables 
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yn Portfolio shortfall in excess of VaR at node n 

z The variable in definition of CVaR which equals to VaR in the optimal solution 

Decision variables 

bi The number of units of asset i purchased in the first stage 

si The number of units of asset i sold in the first stage 

wi The position (in number of units ) of asset i after transactions in the first stage 

n

ib  The number of units of asset i purchased at node n in the second stage 

n

is  The number of units of asset i sold at node n in the second stage 

n

iw  The position (in number of units ) of asset i after transactions in the second stage 

ci Binary variable in the first stage. Is 1 if we hold asset i, 0 otherwise 

fi Binary variable in the first stage. Is 1 if we purchase asset i , 0 otherwise 

gi Binary variable in the first stage. Is 1 if we sell asset i , 0 otherwise 

n

ic  Binary variable in the second stage. Is 1 if we hold asset i at node n , 0 otherwise 

n

if  Binary variable in the second stage. Is 1 if we purchase asset i at node n , 0 otherwise 

n

ig  Binary variable in the second stage. Is 1 if we sell asset i at node n , 0 otherwise 

 

The basic portfolio selection problem (deterministic) framework can be expressed as: 

min  risk measure ( )             (1)

s.t    reutrn ( ) ;                 (2)

                                      (3)

       

i

i

i

w

w

w F




 

where objective (1) is to minimize the risk of the portfolio. Constraint (2) ensures the expected return. 

F in (3) represents the set of feasible portfolios subject to all the related constraints.  

2.1.1 Constraint set 

In financial practice, the transaction cost has significant effects on portfolio selection. It has been 

shown in (Arnott and Wagner 1990) that ignoring the transaction cost could result into inefficient 

portfolios. This has also been justified by experimental studies in (Yoshimoto 1996). If the transaction 

cost function is linear, which leads to a convex optimisation problem, then the problem is generally 

easy to solve. However, a function which better reflects realistic transaction costs is usually non-

convex (Konno and Wijayanayake 2001). The non-convex optimisation problem is more challenging.  

In this paper, we consider a model that includes a fixed transaction fee plus a linear cost, thus leads to 

a non-convex function shown in Fig. 2, as the cost decreases relatively when the trading amount 

increases (Yoshimoto 1996, Konno and Wijayanayake 2001, Konno and Wijayanayake 2002). This 

function is also applied in (Lobo, Fazel et al. 2007). The transaction cost function is given in (4), and 

shown in Fig. 2, notations given in Table 1.  In this work we aggregate the costs occurred in selling 

and buying an asset, and use a compact transaction cost function , 0i i i i ib b     .  

 

0, 0;

, 0;

, 0;

i

i i i i i

i i i i

x

b b

s s

  

 

 

 




  


 

 
(4) 
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Fig.2 The transaction cost function (Lobo, Fazel et al. 2007)  

Throughout the planning period cash inflows and cash outflows occur due to the assets selling, 

purchasing and transaction costs associated with asset trading. In other words, this constraint reflects 

the evolution of the cash balance of the investment over time. The cash balance constraint can be 

explained by Fig.3. 

 

 

Fig.3 Cash flow balance  

 

We state the cash balance constraint for the first stage (5) and second stage (6) as the following: 

0 0(1 ) (1 )           (5)i i i i i i

i A i A

h s P b P 
 

      

(1 ) (1 )        (6)n n n n

i i i i i i

i A i A

s P b P n N 
 

      

We have the asset balance condition for each asset at the first stage (7) and second stage (8): 

0                                     (7)i i i iw w b s i A     

     ,                  (8)n n n

i i i iw w b s i A n N      

Next, we introduce a binary variable 
ic  

and n

ic to control the number of assets to hold at the first stage 

and second stage. 
ic  =1 if the investor holds asset i, 

ic = 0 otherwise. The cardinality constraint states 

that the portfolio consists of k assets as the following: 

                                                      (9)i

i A

c k


  

                                        (10)n

i

i A

c k n N


   

The minimum position constraint prevents investors from holding very small positions after the 

rebalancing. We introduce a prescribed positive percentage value wmin. That is, holding a position 

strictly less than wmin is forbidden (Chang, Meade et al. 2000, Crama and Schyns 2003). Then small 
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positions can be forbidden by introducing the following constraints for the first stage (11) and second 

stage (12): 

min                                         (11)i iw c w i A   

min      ,                       (12)n n

i iw c w i A n N    

In addition, we introduce a minimum trading constraint to prevent trading a very small amount of 

assets less than a prescribed percentage value tmin. Two additional sets of binary variables, if  and ig  

(and n

if and n

ig ), are introduced to denote that the investor buys or sells asset i at the first (and second) 

stage. Similar to the modelling of the minimum position constraint above, the minimum trading 

constraint can then be expressed as follows: 

min

min

                                        (13)

                                       (14)

i i

i i

t f w i A

t g w i A

 

 
 

min

min

      ,                       (15)

     ,                        (16)

n n

i i

n n

i i

t f w i A n N

t g w i A n N

  

  

 

We also introduce the exclusive constraint to prevent buying and selling the same asset at the same 

time: 

1                                        (17)

1         ,                     (18)

i i

n n

i i

f g i A

f g i A n N

  

   

 

We denote the final wealth of the portfolio at node n in the scenario tree as nV , calculated by: 

                                         (19)n n n

i i

i A

V P w n N


   

Based on the final wealth we can define the return of the portfolio as nR :  

0
1                                            (20)

n
n V

R n N
V

    

Thus we have the expected return constraint as follows: 

                                                    (21)n

n

n N

p R 



 

The integer decision variables , , , , ,n n n

i i i i i iw b s w b s allow identifying the exact number of asset units to 

purchase or sell at a specific time. However, it dramatically increases computational difficulty. We 

adapt the same method used in the literature (Gaivoronski, Krylov et al. 2005, Woodside-Oriakhi, 

Lucas et al. 2013), and set , , , , ,n n n

i i i i i iw b s w b s  as real decision variables to represent the fraction 

invested in asset i in the portfolio. However, the binary integer decision variables , , , , ,n n n

i i i i i ic f g c f g  

still present great computational difficulty, for which we apply the tailored hybrid algorithm. 

2.1.2 Objective function 

The conventional MV model applies covariance of the assets in the portfolio as a risk measure, 

assuming normal distributions in asset returns. However, in practice returns of many financial 

securities exhibit skewed and leptokurtic distributions (Kaut, Wallace et al. 2007).  Many other 

investments are exposed to multiple risk factors, thus joint effect on portfolio returns often cannot be 

modelled by a normal distribution. Alternative risk measures have been sought. Such measures, such 

as Value-at-risk (VaR) (Jorion 2001), are concerned with additional characteristics of the return 

distribution (e.g., the tails) besides the variance.  

VaR is defined as the maximal loss (or minimal return) of a portfolio over a specific time horizon at a 

specified confidence level. However, VaR also suffers from a number of theoretical and practical 

limitations. The main drawbacks include that VaR is not a coherent risk measure in the sense defined 
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by Artzner et al. (Artzner, Delbaen et al. 1999). The VaR of a diversified portfolio can be larger than 

the sum of the VaRs of its constituent asset components (Kaut, Wallace et al. 2007), thus fails to 

reward diversification. Moreover, when the returns of assets are expressed in terms of discrete 

distributions (i.e., scenarios), VaR is a non-smooth and non-convex function of the portfolio positions 

and exhibits multiple local extreme (Rockafellar and Uryasev 2002). Incorporating such functions in 

mathematical programs is very difficult, thus making the use of VaR impractical in portfolio 

optimization models (Kaut, Wallace et al. 2007). 

To overcome the deficiencies of VaR, suitable alternative risk measures have been sought. (Artzner, 

Delbaen et al. 1999) discussed the properties that sound risk measures should satisfy, and specified a 

family of closely related coherent risk measures termed as expected shortfall, mean excess loss, tail 

VaR, and conditional VaR to quantify the mass in the tail of the distribution beyond VaR. 

(Rockafellar and Uryasev 2002) introduced a definition of the conditional value-at-risk (CVaR) 

measure for general distributions, including discrete distributions that exhibit discontinuities, and 

showed that CVaR is a continuous and convex function of the portfolio positions. Most importantly, 

they showed that a CVaR optimization model can be formulated as a linear program in the case of 

discrete distributions of the stochastic input parameters. In this work we choose CVaR as the risk 

measure. 

The objective of our SMIP model is to minimize the expected value of the CVaR in the tail (beyond a 

specific percentile,  ) of the portfolio losses at the end of the planning horizon. CVaR can be 

transformed to a linear programming (Rockafellar and Uryasev 2000) as the following. 

A minimization problem denoted as: 

min  

. . 

CVaR

s t Fw

 

where w denotes decision variables and F denotes their feasible region, can be reduced to the 

following linear programming problem: 

1
min  

(1 )

. . ( , ) ;

     0;

n

n N

n n

n

z y
n

s t y f y z

y

 




 





w
 

where  is a user specified percentile value (e.g. 95%), a parameter for VaR and CVaR. ( , )nf x y

represents portfolio loss over the planning horizon. z is the variable in the definition of CVaR which 

equals to the optimal VaR value. 
ny are auxiliary variables in the linear programming formulation 

which represent the portfolio shortfall (i.e. ( , )nf x y )  in excess of VarR value (i.e. z ) at node n.  

 

2.3 SMIP model 

Based on the definitions of constraints and objective function, the two-stage stochastic mix-integer 

programming model is defined as the following: 
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0

0 0

1
min                      (SMIP)

(1 )

. .              

,     

     ,

(1 ) (1 )

(1 ) (1 )      

n n

n N

i i i i

n n n

i i i i

i i i i i i

i A i A

n n n n

i i i i i i

i A i A

i

i A

n

i

i A

z p y

s t

w w b s i A

w w b s i A n N

h s P b P

s P b P n N

c k

c



 

 



 

 








   

    

   

   





 

 



min

min

min

min

min

min

     

     

      ,

      

      

       ,

     ,

1          

1          ,

    

i i

n n

i i

i i

i i

n n

i i

n n

i i

i i

n n

i i

n n n

i i

i A

k n N

w c w i A

w c w i A n N

t f w i A

t g w i A

t f w i A n N

t g w i A n N

f g i A

f g i A n N

V P w n


 

 

  

 

 

  

  

  

   







0
1       

      

0       

     

, , , , ,

, , , , ,   

,    

n
n

n
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3. Simplification and Hybrid Solution Approach 

The basic MV model developed by Markowitz can be formulated as a quadratic program model to 

minimise the risk of the portfolio for a given level of return.  However, the introduction of a single 

cardinality constraint which restricts the number of assets in the portfolio changes the classical 

quadratic optimisation model to a quadratic mixed-integer problem that is NP-complete (Bienstock 

1996). Exact and heuristic approaches for cardinality constrained PSP have been wildly investigated 

in the literature (Bienstock 1996, Chang, Meade et al. 2000, Jobst, Horniman et al. 2001, Crama and 

Schyns 2003). A branch-and-bound algorithm based on a lifted polyhedral relaxation of conic 

quadratic constraints was proposed in (Vielma, Ahmed et al. 2008). (Shaw, Liu et al. 2008) present a 

lagrangean relaxation based procedure to search for exact solutions of the cardinality constrained PSP. 

For those large-scale constrained PSPs, heuristic (or meta-heuristic) methods have also been widely 

applied. (Chang, Meade et al. 2000) present three heuristic algorithms based on a genetic algorithm, 

tabu search and simulated annealing for finding the cardinality constrained efficient frontier. For more 
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information with regard to cardinality constrained PSP we refer to (Woodside-Oriakhi, Lucas et al. 

2011). 

Due to the integer variables and the nature of the stochastic model, finding solutions to the two-stage 

model is challenging. Therefore, a simplification method is applied to accommodate the complexity of 

our problem models. 

A large variety of decomposition methods have been applied to SMIP models. A common strategy in 

stochastic programing is to decompose the problem based on time-stage or scenarios (Barro and 

Canestrelli 2005, Escudero, Garín et al. 2007, Shaw, Liu et al. 2008). Stoyan and Kwon (Stoyan and 

Kwon 2011) decomposed the problem geographically into security and bond sub-problems. The sub-

problems are further broken down by relaxing difficult constraints. In our previous work () … 

Motivated by this, in this paper, we adapt a simplification method in our previous work for solving … 

to eliminate the difficult constraints in the SMIP model, leading to easier sub-problems to tackle. 

Several researchers have pointed out that the cardinality constraint presents the greatest computational 

challenge to the problem (Bienstock 1996, Jobst, Horniman et al. 2001, Stoyan and Kwon 2010, 

Stoyan and Kwon 2011). Actually, the PSP with cardinality constraint has been recognized to be NP-

complete (Bienstock 1996, Mansini and Speranza 1999).  

To eliminate the cardinality constraint, we identify variables ci which define the cardinality constraint 

i

i A

c k


  as a set of core variables. Variable fixing (Bixby, Fenelon et al. 2000) then is applied on this 

set of core variables 
ic . There are two benefits after variable fixing. Firstly, the cardinality constraint 

which is defined by these core variables is eliminated (i.e., each core variable has a value assignment). 

This reduces the computational complexity. Secondly, sub-problems are generated by variable fixing. 

Based on the variable fixing, we perform local search on these core variables, which is 

computationally inexpensive, and then the default Branch-and-Bound search is performed on the sub-

problems to generate complete solutions to the original problems. That is, local search and Branch-

and-Bound methods are integrated to solve our SMIP models. In this work, we apply variable fixing 

only on the first-stage variable ci to simplify the problem. How to apply variable fixing on more 

variables, i.e. those in the second-stage will be investigated in our future work. 

3.1 Framework of Hybrid Local Search and B&B Algorithm 

We present the framework of hybrid Local Search and B&B (LS-B&B), as shown in Fig.3.  The 

framework of LS-B&B can be summarised as: we perform computationally inexpensive local search 

(line 9) on the core variables, and then perform default Branch-and-Bound search (line 7) on the sub-

problems defined by variable fixing to generate complete solutions to the original problems. These 

two search components work together in an overall search procedure (while loop) to obtain solutions 

to the original problems. 



12 
 

 

Fig. 3 Framework of LS-B&B 

LS-B&B consists of four main components. The first component is the initialization phase (line 1). In 

this phase, variable fixing is applied to generate two branches of sub-problems. Lower bound and 

upper bound of the problem are also initialized in this phase. 

The second component is a default B&B search (line 7). It is called to solve the sub-problems to 

optimality. From this, the solutions and the objective value of the original problem can be obtained. 

The third component is a local search (line 9) which is performed on set C of variable ci to update sets 

S and S’. With the updated S and S’, the sub-problems are updated correspondingly. Therefore, we 

state that this local search generates a sequence of sub-problems. 

The fourth component is an overall search procedure (while loop), which we name as Local Search 

B&B. In this search, a local search (i.e., the third component) is applied to generate a sequence of sub-

problems. This Local Search B&B search includes the pruning of inferior sub-problems and solving 

the promising sub-problems to optimality.  

We present explanations of key components next. 

3.2 Variable fixing 

(Hard) variable fixing has been used in MIP to divide a problem into sub-problems (Bixby, Fenelon et 

al. 2000). It assigns values to a subset of variables of the original problem (Bixby, Fenelon et al. 2000, 

Lazic, Hanafi et al. 2009). That is, certain variables are fixed to given values. For a given original 

MIP problem denoted as follows: 

: min

. . ;

{0,1},

[0,1],

T

org

j

j

P c x

s t Ax b

x j B

x j C



   

  

 

where x is the vector of variables. x are partitioned into two subsets: B corresponds to the set of binary 

variables and C corresponds to the set of continuous variables.  

LS- B&B 

 

/* LB: lower bound;  

UB: upper bound; 

(h,  x,): a solution (x) of the problem with a corresponding objective value h; 

solveB&B: a default B&B solver; 

C: set of ci; 

S and S’: two complementary subsets of C, i.e., S  = C/ S’ 

Porg: original problem defined by model (PSP); 

ysubP ',
ysubP : sub-problems defined by variable fixing; */ 

1: Initialization phase  

2: while (the number of iterations not met) // overall search 

3:           If (LB (
ysubP ) ≥ UB)  

4:                    prune the sub-problem 
ysubP ;  

5:                    go to line 9; 

6:           Else 

7:                    (h, x) = solveB&B(
ysubP ); 

8:                    if h <UB, set UB =h; 

9:           perform a Local search on the set C;  

10:         generate sub-problems by variable fixing:
ysubP  = Porg  (ci= 1), ciS; 

'ysubP = Porg (ci = 0), ci S’;    

11:  set (x*) as the best solution among all (x) and h* be the corresponding objective value; 
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Variable fixing, as its name suggests, fix a restricted subset S of the binary variable to certain values, 

e.g. 1. Then we have a reduced problem Pr as follows: 

: min

. . ;

1,

{0,1}, \

[0,1],

T

r

j

j

j

P c x

s t Ax b

x j S B

x j B S

x j C



     

  

  

 

We denote this problem as a reduced problem because certain binary variables (i.e., the variables in 

set S) are already fixed. Note that the variables outside the restricted subset S, i.e., variables in B/S, are 

still free binary variables. 

We apply variable fixing to simplify the original problem into sub-problems by fixing variables in the 

two complementary subsets S and S’, S’=B/S, to 1 and 0, respectively, to obtain two sub-problems 

ysubP  and 
'ysubP as the following: 

: min

. . ;

1,

{0,1}, '

[0,1],

y

T

sub

j
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s t Ax b
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
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' : min
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
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  

 

 

3.3. Initialization phase 

The main task of the initialization phase, shown in Fig.4, is the generation of two sub-problems 
ysubP  

and 
'ysubP by variable fixing on variables ci on sets S and  S’. From the definition of

ysubP , we can state 

that 
ysubP is the Porg with the initialization of variables in S to 1. And 

'ysubP is the Porg with the 

initialization of variables in S’ to 0. 

 

Fig.4. Initialization phase of Local Search B&B approach 

In the lines 1 and 2 of the initialization phase, a heuristic is applied to generate a good first sub-

problem. This heuristic is based on the first-stage problem of SMIP model where the second-stage 

Initialization phase 

R: continuous relaxation of the first-stage problem; 

solve: a quadratic program solver; 

C: set of binary variables ci; 

S, S’: two complement sets of C, S’ = C/S; 

k: the number of assets allowed in the portfolio, as defined in the model (SMIP); 

Porg: the original problem defined on model SMIP; 

 

1: solve the continuous relaxation problem R(Porg): solve (R(Porg)); 

2: sort the assets according to a sort rule;  

3: consider the sorted assets to generate sub-problems by variable fixing: 

4:        select the first k assets and add them into set S;  

5:        generate two branches of sub-problems by variable fixing: 

6:                
ysubP = Porg (ci = 1), ci S; 

7:                 = Porg (ci = 0), ci S’; 

8: obtain lower bound of sub-problem 
ysubP , discard

'ysubP : LB (
ysubP )= solve(

ysubP ); 

9: set UB = ; 
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recourse variables and constraints are dropped off. The integer decision variables ci are relaxed as 

continuous ones. 

In (Mansini and Speranza 2005), it has been shown that, the set of assets selected by the continuous 

relaxation problem often contains the assets which are included in the integer optimal solution. Based 

on this, we apply a heuristic to select the first subset S to construct the first sub-problem 
ysubP as the 

following: 

1. Relaxed problem solution: solve the continuous relaxed first-stage problem. Save the solution 

vector w; 

2. Sort on the assets: sort the assets in a non-decreasing order of the reduced cost of w of the 

continuous relaxation to model (Mansini and Speranza 2005); 

3. Select the assets: select the first k assets of the solution vector w. These assets form the first sub-

problem. 

This heuristic is applied in line 2 in the algorithm presented in Fig. 4 to ensure a proper selection of 

the first sub-problem. 

3.4  Local search to generate a sequence of sub-problems 

A local search is performed on the set C of variables ci to generate new value assignment for each 

variable ci
 
(see pseudo code in Fig. 5). Each move of the local search updates the subsets S and S’ thus 

a sequence of sub-problems is created.  

Theoretically, any local search technique can be applied to search on ci. In this paper, we apply a 

variation of Variable Neighbourhood Search (VNS) (Hansen, Mladenovic et al. 2001) to carry out the 

search on ci. The evaluation value of solution c and its neighbour are calculated by the continuous 

relaxation solution of the problems.  

 

Fig.5 Steps of VNS local search 

Three neighbourhood structures Nl are employed in the algorithm. N1 swaps one pair of elements in S 

and S’. N2 and N3 swap two and three pairs of elements, respectively. For each current neighbourhood 

structure Nl, a given number of it2 iterations are carried out before the search moves to the next 

neighbourhood structure Nl+1. This procedure terminates after it1 iterations. Therefore, Local Search 

B&B is an incomplete search. It aims to seek near optimal solutions in a limited computational time. 

Local search on Z 

c: current assignment of ci 

e: evaluation value of a solution: e = solve(R( )); 

1: Select the set of neighbourhood structures Nl, l = 1, …, lmax;  

2: Provide an initial solution vector c (c represents the assignment of zi) 

3: Repeat the following steps for it1 iterations: 

4:     set l =1; 

5:     Repeat the following steps for it2 iterations: 

6:             Exploration of the neighbourhood Nl of z with the aim to update the assignment of ci: Find the first improved 

neighbour c’ of c;  

7:             Move or not. If the new solution c’ is better than z in term of e, set c = c’; otherwise, set l = l+1; 
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3.5 The overall search procedure on the sequence of sub-problems  

The overall search explores on this sequence of sub-problems. This is shown in the while loop in 

Fig.3. In this search, the lower bound of the sub-problem 
ysubP is computed by a general LP solver, 

which relaxes the sub-problem to a continuous problem (line 3 in Fig.3). The objective value of the 

feasible solution to the concerned sub-problem 
ysubP serves as the upper bound of the original problem. 

If the lower bound of a sub-problem is above the current upper bound found so far, we can prune this 

sub-problem during the search (line 4 in Fig.3). Otherwise, these sub-problems are solved exactly by a 

default B&B in an IP solver (line 7 in Fig.3). The solutions to the sub-problems together with the 

assignments of core variables consist of the feasible solutions to the complete original problem. These 

sub-problems are solved in sequence and the best solution among them approximates the optimal 

solution to the original problem. The whole procedure terminates by terminating the generation of 

sub-problems by the local search. Therefore, the search is an incomplete search. It cannot guarantee 

optimality of the solution due to the nature of the local search on core variables ci. 

4. Experimental results 

We implement our two-stage stochastic mixed integer program model in C++ with concert technology 

in CPLEX on top of CPLEX12.3 solver on a set of benchmark instances. The aims of our experiments 

are: firstly, to investigate the efficiency of the proposed hybrid method for generating good solutions 

in a reasonable computational time; and secondly, to evaluate the performance of the two-stage 

stochastic model. 

4.1 Test problems 

In this paper, we investigate the multi-period PSP with a comprehensive set of real-world trading 

constraints, together with market uncertainty. We evaluate our algorithm on five general benchmark 

instances (see Table 2) which are publicly available in the OR library at 

http://people.brunel.ac.uk/~mastjjb/jeb/info.html, We extend the problems with additional constraints 

derived from a real-world problem at Société Générale Corporate & Investment Bank. We use the 261 

weekly historical price data for each asset to obtain scenarios for the SMIP model.  We generate 

market asset price scenarios for the SMIP model using the framework presented in (Stoyan and Kwon 

2010) based on the 261 weekly historical price data for each asset. A similar approximation technique 

is used in (Jobst, Mitra et al. 2006). 

Table.2 Properties of problem instances. m : the total number of assets available; k : the number of assets to be 

held. 

Instance m k  

Hang Seng 31 10 

DAX 85 40 

FTSE 89 50 

S&P 98 60 

Nikkei 225 150 

We set the minimum proportion of wealth to be invested in an asset, wmin, to 0.01% and the minimum 

transaction amount, xmin, to 0.01%. We also set the parameters in the transaction cost function ßi to 

0.01 for all the assets. Other values of k in the cardinality constraint have been tested, ranging from 10 

to 150 for different sizes of portfolios (see Table 2). The initial portfolio only involves cash in the 

based currency of the index market, and the model will invest them to the available assets. We set the 

minimum expected return, µ, as 0.01. The critical percentile level of CVaR in portfolio losses is set as 

95%.  
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4.2 Evaluations on hybrid LS-B&B algorithm  

In this section, we analyse our proposed hybrid local search and B&B algorithm for SMIP from 

different aspects, including sub-problem solving and overall problem solving. The hybrid local search 

and B&B algorithm is implemented in C++ with concert technology in CPLEX on top of CPLEX12.3 

solver. All experiments have been carried out on an Intel Core Duo machine with CPU @ 3.16GHz 

3.17GHz and 2.97GB memory. 

4.2.1 The size of the original problem and sub-problems 

First, we evaluate the effectiveness of the problem simplification of the variable fixing on the SMIP 

model. The original problem is SMIP and sub-problems are still MIP due to the binary variables , i if g . 

We compare the size of the original problem and sub-problems after the variable fixing in Table 3. 

Due to the variables needed to define each scenario at each node, the size of the original problem is 

very large.  After fixing the values for all variables ci by variable fixing, the resulting sub-problems 

are much smaller than the original ones. We can also observe that the size of the sub-problems are 

similar (Table 3 presents the approximate average size of sub-problems). Note that in this work we 

aim to reduce the computational time of solving the problem by heuristically simplifying the original 

problem. As the problem size is reduced by using variable fixing on ci, the sub-problems can be 

solved efficiently by the default B&B in CPLEX 12.3 in our experiments.  

Table 2. Size of the original SMIP problem and the approximate average size of SMIP sub-problems 

Instance Original problem Sub-problem 

 No. of  

rows 

No. of  

columns 

No. of  

nonzeros 

No. of  

rows 

No. of  

columns 

No. of  

nonzeros 

Hang Seng 22790 22560 78722 11364 11210 39789 

DAX 74109 73734 264652 38451 38412 154784 

FTSE 78989 78606 282408 41254 40245 120354 

S&P 90649 90191 324538 43214 42145 117453 

Nikkei  321181 320470 1171936 154876 157489 547890 

4.2.2 Computational anlysis of the sub-problem solving 

In this section, we analyse the deferent performance (i.e., CPU time spend) of the sub-problem 

solving. In the LS-B&B algorithm in Fig.3, after the simplification, the sub-problems are solved by 

default B&B. With the calculation of the lower bound and upper bound in the search, some sub-

problem can be pruned. Actually, when these sub-problems are processed, four possible situations 

could emerge: (1) a sub-problem could be solved by B&B to optimality; (2) the repairing heuristic 

imbedded in CPLEX could be evoked and applied to a sub-problem to obtain a feasible solution 

heuristically; (3) a sub-problem could be pruned; this will happen if the optimal solution under LP 

relaxation is larger than the current upper bound; and (4) the solution of a sub-problem could be 

infeasible. 

Table 4. Computational analysis on sub-problem processing. 

Instance 

Avg CPU time per sub-p  

for sub-problem 

solved 

Avg CPU time per sub-p 

for sub-problem 

repaired 

Avg CPU time per sub-p 

for sub-problem 

pruned 

Avg CPU time per sub-p 

for sub-problem 

infeasible 

Hang 

Seng 

0.76 0.07 0.1 0 

DAX 1.2 0.1 0.1 0 

FTSE 0.88 0.75 0.2 0 

S&P 1.40 0.6 0.2 0 

Nikkei 1.80 0.86 0.25 0.1 
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Table 4 clearly indicates that the CPU time for identifying infeasibility is negligible. The more sun-

problems pruned, the more efficient the search is. The CPU time for pruning the inferior sub-problem 

(by calculating its optimal solution of the LP relaxation) is quite efficient.   

4.3 Evaluations on SMIP model solutions 
 

In Section 4.2, we analyse the proposed LS-B&B from the aspects of solving the sub-problems and 

the overall problem. In this section, we examine the performance of the SMIP model and solutions 

generated by the proposed LS-B&B in static as well as in dynamic tests.  

4.3.1 Static tests on SMIP model solutions 

It is worth noting that LS-B&B is a heuristic approach. It cannot prove optimality of the solution to 

the overall problem due to the nature of the local search on core variables zi, although the sub-

problems can be measured by an optimality gap. In order to evaluate the quality of the solutions we 

obtained from LS-B&B, we compare it against the approximate optimal solution to the problem. It is 

very difficult, if not impossible, to obtain and prove the optimal solutions to the problems concerned. 

We therefore calculate the approximate optimal solution to the problem concerned by running the 

default B&B algorithm in CPLEX12.3 for an extensive amount of time. 

 

We run our hybrid algorithm and default B&B in CPLEX on the same instances with the parameters 

setting stated above (wmin, xmin,µ etc.), for a given same expected return µ. We calculate the CVaR at 

level   =95% of portfolio loss. 

We present the results of hybrid LS-B&B in comparison with the default B&B in CPLEX 12.3 and 

consider the solution quality and CPU time over the test instances. The two methods solve the same 

model, that is, employing the same risk measure (CVaR of the portfolio loss), starting with the same 

initial portfolio. We plot the resulting risk-return efficient frontiers of the two methods in Fig. 6 for 

the Hang Send instance.   From Fig. 6, we can see that the solution obtained by the hybrid method 

dominates the solution of the default CPLEX method. For any expected return target, the hybrid 

method can obtain better solution where risk is lower than the solution from CPLEX.  

 

Fig. 6 Efficient frontiers from the hybrid LS-B&B and pure B&B in CPLEX 

In Fig. 6, we have computed the frontier by setting the expected return from 0.01 to 0.06 with step of 

0.01 (six portfolios are thus plotted on the approximate efficient frontier). Linear interpolation is used 

to plot the intermediate values. For each point on the frontier, the CPU time needed to obtain the 
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solutions in Fig. 6 is presented in Table 5. For larger instances it is very time consuming to plot even a 

single point on the frontiers. For example, CPLEX needs 7258 seconds to plot one portfolio. The 

hybrid LS-B&B significantly outperforms the default CPLEX in all of the instances. In the worst case, 

CPLEX obtains a feasible solution in 7258.65 seconds while the hybrid method only needs 745.32 

seconds.  

Table 5. Comparison on CPU time between the hybrid LS-B&B method and CPLEX (in seconds). 

Instance Hybrid LS-B&B CPLEX 

Hang Seng 5.46 458.32 

DAX 585.63 1470.67 

FTSE 632.02 3526.45 

S&P 645.31 3641.23 

Nikkei 745.32 7258.65 

4.3.2 Dynamic tests on portfolio return values 

The static test results in Fig. 6 present information on the solution quality at certain points of time in 

the planning horizon. However, in practice, investors seldom make decisions and evaluate the 

constructed portfolios based on a single static result. We run dynamic tests to evaluate the constructed 

portfolios. This dynamic test reflects information on the solution quality in a more practical manner.    

In (Topaloglou, Vladimirou et al. 2008), authors ran dynamic tests to assess the performance of the 

models in backtracking simulations. The key idea of the test method is to compare the results (i.e. 

return values) that have been generated by the model with the actual return values. This is a widely-

used method, with several variants, to evaluate algorithm performance in the Stochastic Programming 

literature (Fleten, Høyland et al. 2002, Stoyan and Kwon 2010, Stoyan and Kwon 2011).   In this 

section, we adapt the same idea to evaluate solutions generated by the proposed LS-B&B for the two-

stage SMIP model. 

One of the methods an investor evaluates the performance of a portfolio is comparing the portfolio 

values against a well-known benchmark index. This is called index tracking, a well-known passive 

investment strategy (Canakgoz and Beasley 2009). In this section, we illustrate the performance and 

strengths of the proposed stochastic model by presenting the obtained portfolio values against the 

actual market index value.  

In Fig 7, for each index of the five world-wide index markets, we have 291 weekly (5 years) index 

values (solid lines). Our SMIP model was run, on a rolling horizon basis, at intervals of every six 

months. Starting from week one, the model is run to decide the assets and their positions in the 

portfolio, as well as the value of the portfolio. Then time moves forward 6 months and the model is 

run again to obtain new portfolios. Therefore, we can plot 10 points of the constructed portfolio 

values (with six-month intervals over 5 years), obtained by the SMIP model.  

From Fig. 7 we can see that in some cases, the constructed portfolios by the SMIP model outperform 

the market index value. In some cases it has difficulty to match the index values. However, the 

portfolio contains a low number of assets (k<m) and it is not very susceptible to market fluctuations. 

In order to see more clearly the fluctuations of the constructed portfolios, we use a moving smooth 

average trend line over the 10 values of the constructed portfolios. We average every two consecutive 

points to draw the trend line (dotted lines), which clearly shows that the constructed portfolio values 

match the market index with less holding of assets (k<m). 
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Fig. 7 Portfolio values from the SMIP model against the market index values 

In order to observe closer details in Fig. 7, we present the detailed data in Table. 6. The left column 

presents the absolution difference between the index value indexV
 and portfolio value portfolioV . The right 

column presents the percentage difference between the index value and portfolio value, from which 

we can see that for three instances (Hang Seng, DAX and S&P), our method obtained slightly better 

solutions on average. For instance FTSE, the portfolio values are worse than the index values, 

however at a negligible difference.  

Table 6.Comparisons between portfolio value from the SMIP model and index value  

Instance Absolute Value(=
portfolio indexV V ) Percentage Value(= ( ) /portfolio index indexV V V ) 

 Best Worst Average S.D Best Worst Average S.D. 

Hang Seng 1679.3 -3858.2 -96.3753 1479.203 0.137656 -0.18894 0.015966 0.094567 

DAX 148.53 -111.08 31.44375 85.64941 0.116543 -0.07061 0.018144 0.055668 
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FTSE 444.52 -547.02 -40.8275 340.819 0.091175 -0.08152 -0.00853 0.065765 

S&P 31.978 -67.767 -3.61219 33.12401 0.132128 -0.16952 0.008566 0.099073 

Nikkei 1362.3 -3779.9 -940.907 1551.7 0.056132 -0.17479 -0.04167 0.068627 

 

The evaluation method applied above, i.e. comparing the return values obtained from the model 

against actual market values, is a reasonable and well-justified method for the following reasons: (1) 

Comparing the results obtained from the model with the actual market values is convincing since facts 

speak for themselves. (2) The portfolio selection problem is one of the most studied topics in finance. 

A wide range of models have been proposed to tackle the problems. Different variable definitions, 

objective functions, constraints, and data sets have been proposed. It is therefore difficult to conduct 

fair and exhaustive comparisons of all the published work. What is more, to the best of our 

knowledge, our two-stage SMIP model with the comprehensive set of constraints, as well as 

uncertainties by employing scenarios, is presented in the literature for the first time. There is no 

existing work we could conduct comparisons against our hybrid LS-B&B approach on the same data.  

(3) The nature of SP models, i.e. the randomness, make it difficult or even impossible to make parallel 

comparing, i.e., comparing with other methods in the literature.  

5. Conclusions 

In this paper, we investigate a multi-period portfolio selection problem under random uncertainty in 

term of asset price and with a comprehensive set of real-world constraints. We formulate the problem 

into a two-stage stochastic mixed-integer program, and apply a hybrid method, where a simplification 

method and a local search with B&B are employed. The hybrid local search and B&B method can 

obtain good solutions for the highly computational expensive problem in less computational time 

comparing with default B&B. 

The stochastic mixed-integer programming model manages the risk by minimizing the conditional 

value at risk (CVaR) of portfolio loss.  We run static and dynamic experiments to investigate the 

performance of the model. We demonstrate that the constructed portfolio value can match the market 

index with holding of less number of assets. 

The stochastic model provides a flexible framework to multi-period portfolio optimization. In this 

work, we test and analyse the performance of the two-stage model. In our future work, we will 

analyse qualitatively in what ways the optimal solution changes as the uncertainty is introduced. We 

will also investigate alternative objective functions to reflect investors’ preferences and incorporate 

additional practical constraints. 
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