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Abstract

Decomposition-based methods are often cited as the sohatimulti-objective nonconvex optimization problems wathincreased
number of objectives. These methods employ a scalarizingtifin to reduce the multi-objective problem into a set oigke
objective problems, which upon solution yield a good appnation of the set of optimal solutions. This set is commaeffierred
to as Pareto front. In this work we explore the implicatiofisising decomposition-based methods over Pareto-basdubdset
on algorithm convergence from a probabilistic point of vieMamely, we investigate whether there is an advantage ofjusi
decomposition-based method, for example using the Chebystalarizing function, over Pareto-based methods. Wetffiat)
under mild conditions on the objective function, the Chéleysscalarizing function has an almost identicfitet to Pareto-
dominance relations when we consider the probability ofifigguperior solutions for algorithms that follovbalanced trajectory
We propose the hypothesis that this seemingly contradicgsult compared with currently available empirical ewicks signals
that the disparity in performance between Pareto-basedecamposition-based methods is due to the inability ofdheér class
of algorithms to follow a balanced trajectory. We also lirdngralized decomposition to the results in this work andvstaw to
obtainoptimalscalarizing functions for a given problem, subject to passumptions on the Pareto front geometry.
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1. Introduction

When considering nonconvex problems, guarantees abouwtitiagned solution can only be given when an ex-
haustive search is performed. That is, only if the entire @ionof definition of the objective function is explored.
Naturally, such a task can very easily become unmanageédblgever once the fact that a problem is nonconvex is
established, there are several metaheuristics that canjleyed to obtain a solution. Some examples of metaheuris-
tics, often referred to as evolutionary algorithms (EAs}he literature are, genetic algorithms (GAs) [17, 14, 26],
evolution strategies (ES) [36], ftierential evolution (DE) [40] particle swarm optimisatiorSO) [8, 31, 43] and
others[7, 1, 18, 33, 13].

Although a solution produced by any of the aforementionethods will most likely be suboptimal, metaheuris-
tics performwell in practice. Thus, compared to the alternative of using eandearch [30, 39], which has the
property of asymptotic convergence [46], EAs in practiaewergefasterto the neighbourhood of optimal solutions
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for a number of problems [50, 48]. Of course, this does notlyntipat EAs are superior to random search for all
problems. The implication is that fomain knowledgis exploited then EAs can be verffective [35], especially in
light of the fact that even convex problems become noncoatéhe slightesprovocation see [5] for example.

In this work our focus is on multi-objective nonconvex prerols. An issue with multi-objective problems is that
a complete ordering is not uniquely defined and instead afglesibptimal solution there is a set of optimal solutions
[44, pp. 113],[34, pp. 61]. In the field of evolutionary medtbjective optimization, there are two main approaches
employed to resolve this issue: Pareto-based and decatiopelsased methods. In both methodologies and assuming,
thea posterioripreference articulation paradigm [34, pp. 63] is employke relative importance of the objectives is
unknown. In the case that preference information is givethleydecision maker (DM), then using a decompaosition
method to combine the scalar objective functions can be, s@edSection 4. An alternative is to distill the preference
information given by the decision maker into a utility fuloet, however this requires extensive knowledge of the
problem structure and does not guarantee that its solutvdhise Pareto optimal [44, pp. 62]. Pareto-based methods
use the Pareto-dominance relations [34] to induce pantikdring in the objective space.

Multi-objective problems that have more than 3 objectives@mmon in real-world applications. Some exam-
ples are control and aerospace, see for instance [9]. Howevancreasing number of dimensions the number of
incomparable solutions dominates the population, heneesélection pressure is massively reduced which leads to
poor convergence rate to the Pareto front [24]. Another [pralihat Pareto-based methods face for multi-objective
problems with more than 3 objectives is that it is unclear hopwreserve diversity in the solutions.

Some authors allege that the solution is to use decompoditised algorithms since they scale well for large
population sizes and seem to have a better convergencerafmeced with Pareto-based algorithms [23], a view that
seems to be gaining support [16, 20] and as illustrated bguih@der of publications based on the MOBAalgorithm
introduced in [47]. However if relative performance is to cxensidered, the ffierence between decomposition-
based algorithms and Pareto-based algorithms is not isipeesNamely the performance of decomposition-based
algorithms is often of the same order of magnitude, in thecietl metrics, as Pareto-based algorithms, see for
instance [47, 32]. Additionally, decomposition-basedmoes have their fair share offficulties. For instance, a
straightforward method to distribute the solutions on taeeRo front seems elusive to obtain for decomposition-thase
methods. This deficiency stems from the fact that it is naightforward to select the weighting vectors and the
scalarizing function as most results available in theditere apply only to convex optimization problems [44, 34].
However recent results show that there is a way for thesdemhto be resolved under certain assumptions [11, 12].
Another issue with decomposition-based methods is thaalatalarizing functions can guarantee that all Pareto
optimal solutions will be obtainable [34, pp. 99]. An exdeptto this is the Chebyshev scalarizing function, that can
be used for convex or nonconvex problems whilst guarangeteiproduce solutions that are at least weakly Pareto
optimaf. Furthermore, there is a theorem that applies to the Chelystalarizing function, that states that all Pareto
optimal solutions can be obtained for some weighting vel@rpp. 99]. Perhaps this is the reason for the increased
use of this scalarizing function in the literature, see f@raple [47, 42].

To date, there is no theoretical evidence to support theexbmntioned view, namely, that decomposition-based
methods are superior to Pareto-based methods for problé@émmare than 3 objectives. Some studies have appeared
in the literature, for example [38, 41] but the assumptiotha the objective function is unimodal, i.e. convex or
guasi-convex. This assumption limits the scope of thesé&svsince evolutionary algorithms (EAs) are applied to
nonconvex problems. In this work we attempt to reveal a famgl#tal reason why Pareto-based EAs seem to be ill
suited for problems that have an increased number of obgs;tas opposed to decomposition-based optimization
algorithms. Additionally, our prior assumptions about fiteblem structure are much more relaxed and realistic
compared with [38].

The main contributions of this work can be summarised as\idl

e The dfect of Pareto dominance methods is studied from a theokgtirapective and an explanation of the
difficulties experienced by several Pareto-based algorithpresented.

e Decomposition-based methods are also studied and thatioreto dominance methods is clarified. A major
result is that methods based on the Chebyshev scalarizitgidn are equivalent to methods based on Pareto-
dominance under certain assumptions that are usuallglitsivnet in decomposition-based algorithms.

1see Section 2 for definition.
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e Lastly, given some prior information about the Pareto frgemetry theoptimal scalarizing function is iden-
tified. Optimal in the sense that with this scalarizing fumecthe probability of finding a better solution, given
a starting point., will have a slower rate of decrease compared to other szimgfunctions and at the same
time similar guarantees provided by the Chebyshev scalgrfanctions can be given.

The remainder of this paper is structured as follows. IniSac a definition of multi-objective optimization
problems is given. In Section 3 we discuss Pareto-basedoaetind explore theffect of dominance relations for
this type of problems. Furthermore, in Section 4 we perforginailar analysis to the one conducted for Pareto-
based methods, for a popular class of decomposition mettas#zi on the weighted metrics scalarizing functions. In
Section 5 we show that similar assurances to the ones pibbigiéhe Chebyshev scalarizing function can be given
for an¢,-norm based decomposition function with< co. Furthermore, in Section 6 we reflect on the consequences
of the presented results in this work and present contexthioh our results can be used constructively to improve
algorithms tackling problems with a large number of objeedi Lastly in Section 7, this work is summarised and
concluded.

2. Problem Definition
A multi-objective optimisation problem is defined as:

minF(x) = (f1(x), f2(x), ..., f(x))

subjecttax € S,

(1)

wherek is the number of scalar objective functions anid the decision vector with a domain of definiti®hc R",
while Z is the objective space and is the forward intageS under the mapping. When the number of objectives,
k, is more than 3 then the problem defined by (1) is referred taasy-objective in the evolutionary multi-objective
optimization community. This distinction in terms is duethe fact that for nonconvex multi-objective problems an
increase in number of objectives can have a profoufeteon the algorithm’s ability to find solutions near the Rare
front, while for convex problems this is not usually an isstfowever, to avoid confusion, in this work we simply
refer to such problems as multi-objective. For further dfetan multi-objective optimization the reader is referted
[44, 34].

3. Pareto Methods

3.1. Overview

In mathematical programming, the Pareto dominance relatioe mainly used for theoretical purposes. However,
in evolutionary computation they are heavily used in fitreessignment. Fitness assignment has a similar function to
the negative gradient in gradient search - it indicates anmiog direction of search. Therefore, if such a direction
is unavailable to the EA, then continuation of the searctobess increasingly morefiiicult as there is no indication
thatbettersolutions are being generated.

Specifically, in a minimisation context, a decision vectog S is said to bePareto optimal if there is no other
decision vectox € S such thatfi(x) < fi(X), for all i, and, fi(x) < fi(X) for at least one = 1,...,k. Namely there
exists no other decision vector that maps to a clearly sapebjective vector. Similarly, a decision vecfoe S is
said to beweakly Pareto optimalif there is no other decision vectgre S such thatfi(x) < fi(X) foralli = 1,...,k.
Lastly, the ordering induced by the binary relatien is calledpartial because of the following possibility,y € Z
butx £ y andy £ x, in which case the vectorsy are said to béncomparable.

Most multi-objective problem solvers attempt to identifget of Pareto optimal solutions. This set is a subset of
the Pareto optimal set(PS) which is also referred to &areto front. The Pareto optimal set is defined as follows:
P ={z:%2 4 z7e Z}, namely, it is the set of objective vectors that are not darteid by any objective vector in
the feasible objective space. The decision vectors whaseafd image under the objective function is the $&tare
also referred to as the Pareto set and are denot&] aamelyF : D — #. That is, the decision space is implicitly
ordered according to the partial ordering applied to thecje space.

2Namely,F : S — Z.
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3.2. Bias in the Objective Function

In the following sections of this work we assume that the ofje function is notbiasedtowards the Pareto
front. This term is related to what the authors of the WHRGolkit [19] refer to asbiasin the objective function.
An objective function is considered to hmbiasedwhen for decision vectors that are uniformly distributedSin
the resulting distribution in objective space is also umifpor close to uniform [19]. In this work we employ the
same notion obias however we also provide a definition which should clarifg tmderlying assumptions of the
statements: “an objective function has no bias”, or “an dipje function is biased toward the Pareto front” etc. In
this work we consider objective functions of the followirgyrn:

fh(zl,...,zk)dzl...dzk R Py(z € B),
B

B={z:inf{llz-zpll} <r,zpeP,z€ Z},

(2)

whereh, is the probability density function in the objective spacelB is the set of all feasible objective vectors with
distance or less from the Pareto front aiRl is an element oR = {<, >, =}. Also, Py(z € B) is the probability that
the objective vectorz, lies in the seB when sampling the decision space under the uniform digtobu{. In the
first two cases, namel; andR,, and for some > 0 we say that the objective function is biased towards, aral/aw
from, the Pareto-front, respectively. When the relatfarolds for allr > 0 the objective function has no bias.

3.3. Pareto Dominance for Multi-Objective Problems

In [24] Ishibuchi et al. provide empirical results in an atfg to explain the reason for theor performance of
Pareto dominance-based algorithms applied to multi-elbproblems. The main argument is that the ratio of non-
dominated (incomparable) individuals to the size of theypafion is approaching 1, meaning that almost the entire
population is non-dominated, therefore the algorithmEa&®n mechanism is provided with no useful information.
In what follows we elaborate further on this argument ana/@ttbat this behaviour is to be expected in multi-objective
problems and we reveal, to an extent, the underlying caussifth dificulties.

Consider the simplest multi-objective case, namely a 24aibje problem. Every point in objective space defines
4 regions, (i) a region that contains solutions that arerlyldsetter denoted &S, (ii) a region that contains solutions
that are clearly worsd, and (iii, iv) two regions where the solutions are incomjpéedo the point in questiori).

In the general case, fdedimensional problems, there is always 1 region with clebdtter solutions, 1 region with
clearly worse solutions and‘2 2 regions containing incomparable solutions. Furthermassuming that there is
no bias towards any of these regions in the problem (obgétimction), the probability that a solution is generated
in any one of these regions by a stochastic process (alggrithproportional to the volume of these regions divided
by the volume of the entire feasible set in objective spae However, as the number of dimensions increases, the
likelihood that a solution will be generated within the r@gF, is reduced significantly for any point in the objective
space.

Although the assumption that the problem has no bias seelimsitthe generality of the above argument, this is
not entirely true. To illustrate this let us consider thatek directionsof bias in the objective function in the context
of optimization. This bias can be: (i) towards the Paretmfrmamely it is easier to obtain solutions near the PF
than in any other region, (ii) towards the region containifearly worse solutions, and (iii) towards any region or
regions containing incomparable solutions. Only in casthé solution of the optimisation problem becomeesier
compared with the unbiased version. However this favoerabénario is seldom encountered in practice. So by
assuming no bias in the objective function, all the prolitidsl that we calculate are in the worst case upper bounds
on the probabilities of obtaining solutions in the Setn other words, the probabilities reported in this workresent
thebestattainable probability with respect to the location of ajjeative vector. We elaborate further on this point in
Section 6.

To better appreciate and understand the reasons for theesmpificulties that multi-objective optimization
algorithms face with such problems, we frame the aforernarti example on a more concrete basis. Assume that

Swalking Fish Group. The WFG toolkit can be used to createabbaltest problems in objective and decision space.
4We assume that the feasible objective set is bounded.

4
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Figure 1. Trajectory for the experiment described in Sec8a! comparing decomposition and Pareto-based metiddss the upper bound of
the feasible objective space whilg is the Pareto front and the lower bound of the feasible obgdpace. AlsoV is thevolumebelow the
Pareto front andVz is the volume of the feasible objective space, whiilg is the volume of the region containing superior solutionghecurrent
solutionz.. Lastly,zs andze are the starting and target objective vectors, witheing Pareto optimal. THeft figure illustrates the aforementioned
quantities forz; = zg and theright figure illustrates how the above quantities change.anoves towardg, along the e — zs) direction. The
results can be seen in Fig. (2).

the objective spaceZ, is bounded from above by a hyperplane as shown in Fig. (¥gifgally the upper bound
is the set of pointp = {z : ¥,z = M, z > 0}. The reasons for selecting a feasible objective region thith
particular geometry will become clear in what follows. Aléet the Pareto front be & ¢ 1)-simplex, namely Pareto
optimal objective vectors are part of the égt = {z : !‘:12a = L, z > 0}, obviously we have to selett < M for
minimization problems ak > M would imply Z = {}. If we also assume that the problem has no bias, then for a
given objective vectorz. € Z, it would be possible to calculate the probability of obtagna better solution for any
point in the objective space. This information can be usefatany ways, we elaborate on those in Section 6.

Now, given a point in objective spacg,where the subscript is an abbreviation éoirrent point we can calculate
the probability of obtaining a better solution using thddwaling relation,

Vs(zc)

P(zeS|z) = 35

®3)
where, Vs(z) = Vp(zc), for Pareto-based method®y is thevolumeof the feasible objective space which is equal
to the volume of the slab in betwedfy, L, and the positive orthaiitX, see Fig. (1). AdditionallyP(z € S|z), is the
probability of finding a better objective vectay, given the objective vecta.. The expression in (3) is valid only for
problems whose objective function would produce objectiwetors uniformly distributed, or nearly so, given a set
of uniformly distributed decision vectors. For biased peaiis knowledge of the exact probability density function in
objective space would be necessary so that wewsighthe integrals. However, as we mentioned above, in all but
the most trivial problems the bias will be towards the Pafeint, otherwise it will be away from it, and so (3) will
still describe a useful quantity, namely the upper boundhefgdrobability of finding a better solution, assuming that
there is no bias towards the Pareto front.

The volume of the region containing clearly better solutioly(z.), for Pareto dominance or cone dominance
using an ordering conié = RX is,

k
V@)= |z-Ve. 4)
i=1
whereVg is the volume of the non-dominated region beneath the Pémtd, which is the volume beneath the

5
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simplex,Ly. The k — 1)-simplex corresponds to a Pareto front witfiree geometry ant/r is calculated as,

det[ VR vk]
Vo= T(k+ 1)

()

Here,v;, are the vertices that the Pareto front intersects with xee and’(-) is the gamma function [2]. The vectors,
v; for the Pareto front are equal 19 = L - &, whereg is a vector of zeros and " element is equal to one.
Furthermore, the volume beneath the hyperpldiaeVy, is calculated using (5) and = M - . OnceVy andV,
have been evaluated, the volume of the entire feasible th@espace is calculated as,

YV =Vu-VL.. (6)

Also the volume of the non-dominated region fsdominance is simply,

k
Ve, @ = [@-2)- Ve, (7)
i=1

assuming that the samevalue is used for every objective. Ifftkrent values foe are used it is trivial to modify
(7). The volume of the non-dominated region for car@ominance [4] is much more involved to calculate exactly,
however, given that its defining set is the intersection ofappr cone and the s&" + ¢ it stands to reason that its
volume,V,, will be within,

(Vﬂ_ < (VKE < Vp, (8)

depending on the selected acute cone.

3.4. Experiment

The question that we seek to answer is the following: Do dguasition-based optimization algorithms possess
some inherent advantage over Pareto-based algorithmeahdie attributed to the way partial ordering is induced
in objective space? To answer this question we remove thieimgntation details of algorithms belonging to these
families and study theffect of the fithess assignment on the likelihood that a supsoiation is found as a function of
the distance of the current best approximate solution tdusisn on the Pareto front. To do this we select the shortest
path in objective space from an initial pontto a point on the Pareto frort,, as shown in Fig. (1). Next we calculate
the probability of finding a better solution for points pregsively closer t@.. This will inform us whether there is
some advantage in using decomposition-based methods awetofbased methods. However, there is an inherent
assumption that approximate solutions in these algoridmmilfes will tend to follow this particular trajectory. Thi
means that we assume that if an algorithm starts from the pgimtermediate solutions will tend to be close to the
trajectory shown in Fig. (1) and that upon convergence weakilain the solutiorze. Therefore we have to justify
two points, (i) why it would be reasonable to assume an algorivould tend to follow this trajectory and (ii) why
it should converge to that particular poiat, and not any other point on the Pareto front. For decompostiased
methods this is trivial as this is the direction in which tlwalarization function monotonically decreases and the
target pointze, can be selected by appropriate selection of the weightaagov,w as shown in [12, 11]. And it is
conceivable that the poirzt, is part of a set of points that are targeted by the algorithor. Fareto-based methods
however, even if we assume that a solution is admissible whign it dominates the current solutiany, the end
point need not necessarily kg Nevertheless, this would be true only if we ignore the pha Pareto-based method
that preserves diversity of solutions in objective spaeget®-based algorithms as mentioned in the introductidin wi
attempt to lead a set of solutions towards the Pareto frahsamnultaneously cover the entire Pareto front. This means
that there is some mechanism to force solutions that arealesg to each other in objective space to either move
in unexplored regions of objective space or be eliminatadeéd Pareto-based algorithms actively seek to preserve
diversity and the employed measures are variations of trenmearest neighbour distance in objective space [49].
This, in dfect, allows an approximate solution to move only withiocaridor in objective space. Given an adequate
number ofindividualsin the EA thiscorridor can be approximated by a single trajectory as in Fig. (1) hedihal
solution will be withine distance frone., wheree a small constant that can be made arbitrarily small by irginga
the number of individuals in the population of the algorithifiin fact a Pareto-based algorithm is unable follow

6
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Figure 2. Probability of finding a better solution 2g, P(z € S|z), as a function of the Euclidean distance of the solutigio ze, denoted by
dist(ze, z), for different number of objectives (see Fig. (1)). Hepeo, ¢, X, o} correspond td = {2, 5, 10, 15, 20} objectives respectively.

the trajectory in Fig. (1), then this will only serve to demse the probability of finding a superior solution to the
current point, as we have shown that algorithms whose soisitend to wander in objective space tend, in the mean,
to obtain inferior solutions [10]. Hence the obtained ptabties will still be an upper bound for the probability of
finding a superior solution to the current solutiag, This could be one reasons for the reported inferior peréoree
of Pareto-based algorithms.

Therefore, using (3)-(5) and a trajectory in objective gpae can explore the change in the probability to obtain
a solution inS from a current pointz.. Assuming we start from a point that is on the upper bound efthiective
spacezs € Mp, and a target point on the Pareto fragtthe question is how likely is to find laettersolution with
respect to any point on the trajectory with directim— zs, see Fig. (1). This information for Pareto dominance
methods will give us a basis for comparison with other mestfodinducing a partial order in the objective space and
should illuminate any dierences. The steps involved, for Pareto-based and decidiopdssed methods described
in Section 4, can be summarised as follows:
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e Setz; = z;. Subsequently we divide the line segment franito ze into N — 1 segments, thus from start to end
there areN pointsze[i] = zs + (ze — z5)§; andi = 0,...,N - 1, see Fig. (1).

e For everyz[i] we calculate (3). This procedure is illustrated in Fig.4hy the results are shown in Fig. (2)(
for Pareto-dominance methods.

4. Decomposition Methods

ol Z
— 1
P=3
St | S | Se Se, Se,
p=oo p=10y p=2 p=1

Mpmee(7e) Ongeto(s)  1pma(a) oz f1

Figure 3. Thecurvesin this figure represent the boundary of solutions that vellgerceived as clearly better with respect to the correspgnd
p-norm.

4.1. Overview

An alternative for defining a partial order in objective spaan be found in decomposition methods. As mentioned
in Section 1, these methods employ a scalarizing functi@ytgegate all the objectives into a single scalar objective
function. To obtain dierent Pareto optimal points, a set of weighting vectors eanded which would result in a set
of single objectivesubproblemsThis is the reason why such methods are calledomposition-basedt is because
the employed strategy is to decompose a complex problenaiséd ofsimplerones. Simpler in this context does not
necessarily mean easier to solve, it means that it is stfaigbard to apply standard EAs to the resulting subproblems

The family of scalarizing functions that we focus our atiemtin this work, is the weighted metrics method [34,
pp. 97] defined as:

K 0
rryn(_z;vwlfi(X)—a*lp) : ©)
I=
where,w; are the weighting cdBicients,w; > O foralli = 1,...,k, andzikzlwi = 1, alsop € (0, ). The vector
Z* = (&, ...,%), is called thddeal vectorand is defined ag* = (ir)l(f{fl(x)}, ey iQf{fk(x)}). For the purpose of this

work we will assume that* = (0,.. ., 0), which means that (9) can be rewritten as,

K 3
mxin[z Wi f (x)p] . (10)
i=1

Notice that we are allowed to remove the absolute value whidtaining the equivalency relation between (9) and
(10), since,z* = (0,...,0), implies thatz € RX. The formulation shown in (10) obviates the relationshigtef

8
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weighted metrics scalarizing function with the weightingthrod and the Chebyshev decomposition. Namely, for
p = 1 we obtain the weighting method [34, pp. 78],

K
n}(inz wi fi(x), (11)
i1

while for p = oo we obtain the Chebyshev scalarizing function,
min (maxwi fa(x), .. ., Wi fi(x)}) - (12)

It should be noted that the assumption that the ideal vestegual to the zero vector also implies that the objective
function is bounded from below. In extension, if the ideatte® is known and is nonzero, a changevafiablesin
the objective function would be flicient to meet our assumption.

Although all norms arequivalentin the sense that for every norm in a finite dimensional spackiplicative
constants can be found relating two norms [6, pp. 636], &fé&éct in an optimization problem can be significantly
different, depending on the intricacies of the problem. For g@kanfor p = oo, namely the Chebyshev scalarizing
function, there exist theoretical results stating thatstbl@tions of (12) will be at least weakly Pareto optimal faya
weighting vectomw € R and that any Pareto optimal solution can obtained for somghting vector [34, pp. 99].
The interest of the MOEA community with respect to this mardar norm is that the previous statement holds for
nonconvex problems as well. Note that this does not imply tthere is a guarantee that the algorithm will be able
to find a Pareto optimal solution for a nonconvex problermheathe statement refers to the equivalency of the two
problems. In other words, assuming that the selected éhgolis able to solve the problem defined in (12) then the
solution will be at least a weakly Pareto optimal, and thbthed Pareto optimal solutions can be obtained for some
weighting vector. Such a result does not existfior . In Section 5 we show that, given some prior information,
it is possible to find a norm other than infinity with the sameparties mentioned above. Namely, the ability of the
a scalarized problem to converge to a weakly Pareto optiofatisn for every weighting vectow > 0 and that all
Pareto optimal solutions can be reached.

However, it is not obvious as to why a norm, other thanthenorm that is employed in the Chebyshev scalarizing
function, would be more useful for decomposing a multi-cbje problem. For this reason we extend the experiment
conducted for Pareto-based methods to decompositiordasthods that employ (10) as the scalarizing function to
decompose a multi-objective problem and study tifeots that dierent values op have on the resulting subproblems,
see Section 4.2.

4.2. Decomposition Methods for Multi-Objective Problems

The diference between scalarizing functions and the various fofrdeminance relations discussed in Section 3,
is that the former define a complete ordering in the objectpace. Namely, regions containing incomparable solu-
tions are eliminated, and depending on fhenorm used in (10), parts of the regions are absorbed by the region
containing inferior solutiond], and the region containing clearly better solutidhsT his phenomenon has the poten-
tial to reduce the rate of decrease of the probability th@teebsolution is generated as the current solution appesac
the optimal point, see Fig. (2J3{d). A better solution in this context is a solution that yie&dwer value for the se-
lected scalarizing function. In turn, this can reduce atpar stagnation caused by a large number of non-dominated
solutions, a phenomenon observed in Pareto-based metbdddsGonsider a scenario in which the weighted sum
method is used. In this scenario the weighting vector remtsshe normal of a hyperplane that divides the feasible
objective space in two partitions. One, a region contaitiatier solutionss,,, and one with worse solution¥;,,
shown in Fig. (3). Solutions above the hyperplane are censilto bevorsewhile solutions below the hyperplane
are taken to be better with respect to the particular sutdpnobTherefore, since the volume of tReegion is larger
comparatively to dominance-based methods, it would besefmsi the algorithm to identify solutions that are some-
what closer to the front with respect to the currently begctive vector. However we have made a concession here,
as the new solution may not Pareto-dominate the previousb&gion. We will return to this issue in Section 5 and
Section 6.

To explore how decomposition-based methods relate to drheted methods, we must be able to calculate (3)
for everyp = (0, ]. The volume of the feasible objective space is calculatetthé same way as in (6), while the

9
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volume of theS region forp = (0, =) is calculated as:

RUCH
Vs, = W : li:l[al(z) -V, (13)

which is essentially the volume of the positive orthant of/pdrellipsoid calculated as seen in [45]. The factp(s)
represent the distance of the ideal vector from the intéiseof the ellipsoid with the positive axis of i€ objective,
shown in Fig. (3) and are calculated as,

K WinZP H
ai(2) = (%] , (14)
see [45]. Since for the special case that o,
1\K
P
the volume of the region becomes,
Vs, () = 01(2) ... al2) = Ve, (16)
and,
i(2) = maxwi2s, . ..,wkzk}. (17)

W
Furthermore, to replicate the selected trajectory deedrib Section 3.3 and shown in Fig. (1), the weighting vector
is set tow = % -(4,...,1) ascribing equal importance to all objectives so the tegusubproblem will tend to follow
this trajectory and converge to the poiat For this particular weighting vector (16) becomes,

maxwiz, ..., Wz} = WmZm,

() 2, (18)
Vs,.(2) = =% - Ve =20 - Ve
(%)
However, as can be seen in Fig. (1), all points in the trajgdtom z; to z, havezy = z, = - - - = %, hencez, = z for

alli =1,...,k, thus (18) can be calculated for any point on the trajectory.

As seen in Fig. (2)4-d), the probability of finding a better solution asapproaches the optimal solutiande-
creases more rapidly for the Chebyshev scalarizing funetia Pareto-based methods when compared to scalarizing
functions employing thé;-, £>-norm. However, the results for the Chebyshev scalarizimgtion are remarkably
similar to the Pareto-based method. In fact, for this ttajgcthe two are identical, see (4) and (18). This intenesti
result means that Pareto-based methods and decompdsitsaa methods using the Chebyshev scalarizing function
are identical in the sense that,

Vs, = Vep. (29)

This result is quite intriguing given the increased numbfereports showing decomposition-based algorithms out-
performing their Pareto-based counterparts for multeotiye problems [22, 23, 37, 20, 42]. However, we have only
shown that the above equality holds for one particular ¢tajgy and not necessarily for every possible trajectory
towards any point on the Pareto front. We claim that (19) &idtat an entire family of trajectories and that these
particular trajectories are the ones that both decompaosithd dominance-based algorithms attempt to follow irrthei
approach towards the PF.

Consider a subproblem defined by the following weighting@ec

C C
WS, ),
S S

k

S= ZCi,Ci e R,
i=1
10

(20)
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el 2

k
s= Zc. ¢ €R,,Ce[L,M].
i=1

and the trajectory defined by,

(21)

The starting pointzs is defined foilC = M and the end point, (Pareto optimal point), fo€ = L. For this trajectory,

CoX
Vp(ze) = 1_[ kzj— Ve = (k ) - Ve, (22)
i=1 [Tz G
and .
max{WiZe1, . . ., W
Vo (2) = (max 1Zc,1k KZe k) _
[Tiea Wi
(23)
(C9X
= =7 _
[liz: G

At this point we need to justify the assumption that a solutiagll attempt to follow the trajectory (21) defined
by a weighting vector (20), since it appears to be artifidir this we refer to the work by Ballestero [3] where the
author refers to this trajectory asll-balanced basketiue to the relation,

WiZi = WoZp = - -+ = WiZ, (24)

for a solutionz € Z. This essentially describes thetion of the scalarizing function on the objective vector, which
is to minimize the largest deviation in the givégrnorm. This is most easily observed in the-norm used by the
Chebyshev decomposition whereby only the largest deviasidaken into account thus reeling the solution toward
the balancedtrajectory. By this reasoning, when tlig-norm is used in a minimization problem, thecusof the
algorithm will be to maintain the Hadamard product z as close as possible to the vectbr 1 while attempting
to minimize||C - 1]|. By changing the weighting vector, thégjuilibriumthat the Chebyshev scalarizing function is
attempting to maintain, changes, so fiefient trajectory is followed, which of course converges thifierent Pareto
optimal point if the optimization algorithm is successfillhat trajectory can be identified by finding the objective
vector thatsendsthe weighting vectowv to the unit vector. This means that whenever the objectictove are
allowed to follow the balanced trajectoryp(zc) = Vs, (2c).

It follows that for objective vectors following a balancedjectory,

(Vs[l > (stz >0 > (VS[oo = (V¢>. (25)

Therefore, it follows that,
]P)fl(Z € Sfl | ZC) > ]P)fZ(Z S §f2 | Zc) > ...

> Pe. (2€Se, 12) = Pp(z € S z),

wherez € Z andS,, is the region containingetter solutions according to th&-norm version of the scalarizing
function andP,,(z € S,) is the probability of finding a better solution, given that the current best solutionzs

The result in (26) can be read directly from Fig. (3). It isewsbrthy that in the case where a Pareto-based algorithm
is unable to follow aballancedtrajectory, it follows that it is likely, in the mean, to hageslower convergence rate
compared with a decomposition-based algorithm [10]. Hexeas the probabilities in (26) are upper bounds for the
probability of obtaining a better solution from a curreniugion, z., this equation still holds.

(26)

5. Scalarization and Stability of the Equivalent Problem

The results in the previous section must be interpreted gatie since (26) does not imply in any way that by
using a scalarizing function based on a norm wviith o, all the Pareto optimal solutions will beachable However
11
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f2 fa

T

Figure 4. Stable and unstable scalarizing functioVigg is the volume bounded by the ideal vectd, and the Pareto front.

it does imply that by using a scalarizing function witsmall, there is a better chance in finding better solutionls wi
respect to that norm. Nevertheless, we require Pareto aptiatutions and not just any solutions that are closer to
the front in soméy-norm, which means that if we cannot ensure that the subpmubbre able to converge to Pareto
optimal solutions and that all Pareto optimal solutiond b obtainable, the importance of (26) would be limited to
the fact that Pareto-dominance methodseayaivalento decomposition-based methods that employ the Chebyshev
scalarizing function. Equivalent in the sense that for ajective vector following a well balanced trajectory the
probability to obtain a solution dominating the currentsion is the same in both methods.

To understand the tradfdetween using a dominance-based method versus a decoimpasised method let
us consider thefeect of a scalarizing function on the objective space. A stz function projects the entire
objective space onto a lihgtherefore some regions that contain incomparable soisitio the Pareto sense, now
become solutions that are either better or worse for thécp#at subproblem. Therefore, a majoffdrence between
decomposition-based and Pareto-based algorithms isthbabtmer provide unambiguous information about the
quality of the produced solutions at every iteration whiile katter cannot always guarantee such information because
the likelihood of generating incomparable solutions ishhigr problems with a large number of objectives [24].
However it is easy to reduce the above argument irdeadlockbetween Pareto-based methods and decomposition-
based methods. This is accomplished by the simple obsenvttat theclearly betterregions in the Chebyshev
scalarizing function|f = oo in Fig. (3)) are identical to the regions generated by Padetninance based methods,
while the incomparable and clearly worse regions in Pabeiged methods are mappedtearly worseregions by
the Chebyshev scalarizing function. Namely, if we requideeomposition method that can guarantee the generation
of Pareto optimal solutions, then, we have to use the Chelwystalarizing function, but in so doing we give up the
favourable convergence rafexchieved when using, for example the weighted sum methadyiaa versa. In general
there are two competing trends:

e As p — 0, the probability of finding a better solution with respextites,-norm increases, hence itis less likely
that the algorithm stagnates due to its inability to find clien of search. Additionally, it becomes increasingly
more dificult to obtain all Pareto optimal solutions.

e However, asp — oo, we can obtain more Pareto optimal solutions on the Paretd,fbut the probability
of finding a better solution with respect to the norm definedpbg also decreasing. In the limit, namely
for p = 0, we obtain the Chebyshev scalarizing function that guaemthat we will be able to find all Pareto

5In this work a segment of a ray, since the objective spacetisdbed.
80r more correctly the potential for favourable convergerates.

12
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optimal solutions for some weighting vectaibut this scalarizing function is equivalent with Paretadieance
methods.

So the question is: is there a way that a scalarizing funat&onbe used witlp relatively small while preserving
the guarantees that the Chebyshev function provides? Tdveearis dfirmative for multi-objective problems whose
Pareto front geometry is continuous (see Section 2) and eaescribed by the following parametrization,

fref2+. +fx=C (27)

wherep; > 0 for alli andC is a positive constant. This parametrization for the Pafietot is often used in the
literature, see for example [29, 28, 15]. For simplicity vesame thaf; > 0. We claim that if the weighted metrics
scalarizing function is used with = maxpa,..., pk}, then this scalarization will have the same guaranteeseas th
Chebyshev function, given that our estimate of fjmax . ., px} is correct and that the objective function is continuous.
The reason for this is illustrated in Fig. (4). To see thisisider that wher. reache. in Fig. (4), the volume of the
regionSy, is still positive, meaning that according to thhenorm there are still better solutions to the current sotuti
Continuing on the same line of reasoning, the soluiowill either converge taa or zg since at these two locations
there is no way that thé -norm to be improved. This result follows directly from (2&)d the results in [45] for
calculating the volume in (27), it follows that,

lim (Ver —Vy,) <0, (28)
Zc—Ze
whenp > maxp;}, in which case we say that the scalarizatiostablewhile if p < maxXp;} the scalarization is
unstableand we have,
lim (Vg, - Ver) > 0. (29)
Zc—Ze
where, Ve, is the volume of the region enclosed by the Pareto-frontheddeal vectoz* as shown in Fig. (4).
Stability in terms of sclarizations is taken to mean thediwlhg:

e A subproblem of a multi-objective problem istable scalarizationif for a given weighting vectow > 0, it is
able to converge to a Pareto optimal solutlar= (z4, . .., %), with z > O for everyi = 1,... k.

e Conversely, a subproblem is anstable scalarizationif for a given weighting vectow > 0, it converges to a
Pareto optimal solutiom. with z = O for at least onée€ {1,...,k}.

Therefore, if the Pareto front geometry is known and it caexmressed in terms of (27), then we can select the
£p-norm that will have the maximum probability to produce betolutions while preserving the guarantee that the
final population will be (weakly) Pareto optimal and thattalt Pareto optimal solutions will be obtainable for some
weighting vector.

6. Discussion

By calculating the probability to find a better solution, wavh essentially turned the problem of extending a
multi-objective optimization algorithm into a functionaptimization problem. Namely, the question that can now
be posed is: “what is theptimal £,-norm for the scalarization and trajectory for an objectieetor?”. By optimal
trajectory we mean the trajectory in objective space thipnesent the leasesistanceo our optimization algorithm
while simultaneously moving towards a Pareto optimal sohg as fast as possible. This question, although very
interesting, it either has a trivial answer: the straigh¢ Iconnecting the current solutianto the target solution, or
for biased problems knowledge of the probability densityction in the objective space is required, something which,
in general, is unknown even for test problems. Thereforeyseea balanced trajectory, since this is in accord with
the scalarizing functions, in the sense that this is the fieththey tend to follow. Using this we investigated how the
probability to obtain better solutions varies as a functibthe distance of the current best solution and the sought fo
Pareto optimal solution. We found that this probabilityasgest the smaller th&-norm is, with respect t@. This
information can be used to produce better algorithms fotirobjective problems.

13
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However, we cannot simply use the smallest norm that is nigalrfeasible since with decreasimgthe ability
of a scalarizing function to converge to a particular pofrthe Pareto front is also reduced, hence, a concession must
be made. Although, if the Pareto front is continuous and eddscribed in a parametric way (see (27)), an optimal
value, p*, can be obtained for which the decrease of the probabilitiinofing a better solution is minimal while
the ability of the scalarizing function of finding every Par@ptimal solution is retained. The optimal value pf
separates the family of scalarizing functions into two sases. First, values @f < p* produceunstablescalarizing
functions andp > p* result in stablescalarizing functions. Here stability refers to the apilif the scalarizing
function to converge to any point on the Pareto front, whikgability refers to the opposite.

7. Conclusion

Based on the results in Section 3 and Section 4 we have seteumither mild conditions the Chebyshev function
is identical to Pareto-dominance methods. Identical instrese that, for a solution following a balanced trajectory,
the reduction of probability to find a better solution is itleal for both methods. This curious fact suggests that
the decomposition-based methods using the Chebyshevigtajadunction are actually ndvetter compared with
Pareto-based methods. But if that is so, how can the resbfisreed by several researchers for multi-objective
problems be justified? Given the fact that the reported resuk onlyslightly better in [16, 20] our hypothesis
is that the diference is simply due to the ease with which a constant dinectf search in objective space can be
maintained in decomposition-based methods, while the sawery dificult to achieve with Pareto-based methods.
This argument is further supported by the results in [10]erehwe show that varying weighting vectors can have
significant impact on algorithm convergence. A good exanopldis behaviour is seen in a variation of MOGLS
[27], initially introduced by [21, 25], when compared withQEA/D in [47]. In the aforementioned work MOGLS
was outperformed by MOE®, and as the authors note, one reason was that MOGLS gethdifiezent weighting
vectors on every iteration. This amounts to an attempt tatifjethe entire Pareto front, but also means that the
direction of search in objective space is not constant akescase for MOEAD. The same problem is present in
Pareto-based methods, however there is no clear way fosithition to be remedied. Another potential cause for
the apparent disparity in performance between Paretodiras¢hods and Decomposition-based methods is that the
aforementioned equivalence depends on the degree to whigtoPbased methods are able to follow a balanced
trajectory, and, in higher dimensions this would potehtibe more challenging due to the relative lower density of
solutions.

The results in this work show that:

e Pareto-dominance methods and the Chebyshev scalarizingidn are equivalent, in the sense that neither
method in itself, has better probability to fisdperiorsolutions. In fact the aforementioned probabilities are
the same.

e Given some prior information about the problem, namely thengetry of the Pareto front, we can find the
optimalscalarizing function. Optimal in this context means thamgshe above scalarizing function all Pareto
optimal solutions will be obtainable for some weighting tegcand that, the probability of obtaining a bet-
ter solution, with respect to the particular scalarizingdiion, decreases mostowly compared to all other
scalarizing functions (and Pareto-dominance methodsg#raprovide the same guarantee of finding all Pareto
optimal solutions.

e Using generalized decomposition (gD) [11, 12] in conjumativith the results in this work, the required weight-
ing vectors for obtaining Pareto optimal solutions in sfieddcations on the Pareto front, can be identified for
any{p-norm.

Some of the mentioned benefits apply only when we are ableetdifgt the Pareto front geometry prior to obtaining
Pareto optimal solutions.

“Multi-Objective Genetic Local Search.
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