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Abstract

This paper presents a highly distinctive local surface feature called the TriSI
feature for recognizing 3D objects in the presence of clutter and occlusion. For
a feature point, we �rst construct a unique and repeatable Local Reference
Frame (LRF) using the implicit geometrical information of neighboring trian-
gular faces. We then generate three signatures from the three orthogonal coor-
dinate axes of the LRF. These signatures are concatenated and then compressed
into a TriSI feature. Finally, we propose an e�ective 3D object recognition al-
gorithm based on hierarchical feature matching. We tested our TriSI feature
on two popular datasets. Rigorous experimental results show that the TriSI
feature was highly descriptive and outperformed existing algorithms under all
levels of Gaussian noise, Laplacian noise, shot noise, varying mesh resolutions,
occlusion, and clutter. Moreover, we tested our TriSI-based 3D object recogni-
tion algorithm on four standard datasets. The experimental results show that
our algorithm achieved the best overall recognition results on these datasets.

Keywords: Local surface feature; 3D object recognition; Point-cloud; Feature
description; Clutter; Occlusion.

1. Introduction

Determining the identities and poses (i.e., positions and orientations) of
objects present in a point cloud is the main task of any 3D object recogni-
tion system. Three-dimensional object recognition has numerous applications
including robotics, biometrics, navigation, remote sensing, medical diagnosis,
entertainment, and CAD/CAM engineering [45, 49, 20]. Because of the rapid
technological development of 3D imaging sensors, point clouds are becoming
more available and accessible. The data availability together with the progress
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in high-speed computing devices have contributed to the �ourishing of research
on 3D object recognition algorithms in recent years [19, 16].

Existing 3D object recognition algorithms can broadly be divided into two
categories: global feature-based and local feature-based. Global feature-based
algorithms extract features from the whole input object/scene. They have
achieved promising results in the areas of 3D model retrieval and shape clas-
si�cation [13, 14]. Examples of this type of algorithm include Shape Distribu-
tion [34], Spatial Structure Circular Descriptor [11], and view-based methods
[13, 12, 15, 38]. They are, however, sensitive to occlusion and clutter and re-
quire the objects of interests to be segmented beforehand from the background.
In contrast, local feature-based algorithms are the major focus of research in
3D object recognition because they are more robust to occlusion and clutter
compared to their global counterparts. In a local feature-based algorithm, local
features are �rst extracted from each model and stored in the library. The algo-
rithm then extracts a set of local features from an input scene and matches them
against the model features to yield feature correspondences [24]. These feature
correspondences are then used to generate candidate models and transforma-
tion hypotheses, which are �nally veri�ed to obtain the identity and pose of the
object in the scene. In the process of object recognition, the descriptiveness
and robustness of the local surface features play a signi�cant role [40]. A fea-
ture should, therefore, be descriptive and robust to a set of nuisances, including
noise, varying mesh resolutions, occlusion, and clutter.

A number of local surface features have been proposed in the literature (the
reader should refer to [20] for a comprehensive review). Some examples are the
Point Signature [4], spin image [23], 3D Shape Context (3DSC) [10], tensor [31],
Variable-Dimensional Local Shape Descriptors (VD-LSD) [40], Exponential Map
(EM) [1], Signature of Histograms of OrienTations (SHOT) [42], and Rotational
Projection Statistics (RoPS) [17]. However, most of the existing local surface
features su�er from either non-uniqueness, low descriptiveness, weak robustness
to noise, or high sensitivity to varying mesh resolutions [1] (see more details in
Section 2).

To address these limitations, we propose a highly discriminative and robust
local surface feature named Tri-Spin-Image (TriSI). We �rst build a unique and
repeatable Local Reference Frame (LRF) for each feature point to achieve the
invariance with respect to rigid transformations. We then generate three signa-
tures to encode the geometrical information of the local surface around three
di�erent reference axes. The signatures are then concatenated to form a raw
TriSI feature vector. The feature is further compressed using the Principal
Component Analysis (PCA) technique. The performance of the TriSI feature
was tested on two popular datasets, namely, the Bologna Dataset 1 (BoD1) [42]
and the UWA 3D Object Recognition Dataset (U3OR) [30]. The experimental
results show that the TriSI feature is very descriptive in terms of precision and
recall. It is also very robust with respect to noise, varying mesh resolutions,
occlusion, and clutter. We also develop a hierarchical 3D object recognition al-
gorithm. The performance of the object recognition algorithm was evaluated on
four standard datasets (i.e., BoD1 [42], U3OR [30], the Queen's LIDAR Dataset
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(QuLD) [40], and the Ca' Fascari Venezia Dataset (CFVD) [35]). These datasets
contain several nuisances including various object poses, di�erent imaging tech-
niques, noise, varying mesh resolutions, occlusion, and clutter. The experimen-
tal results show that the TriSI-based algorithm outperformed the state-of-the-art
algorithms, such as the spin image-, SHOT-, 3DSC-, tensor-, VD-LSD-, EM-,
and RoPS-based algorithms.

The rest of this paper is organized as follows: Section 2 introduces related
work. Section 3 describes the proposed TriSI feature and 3D object recogni-
tion algorithm. Section 4 presents the feature matching results on two popular
datasets. Section 5 presents the object recognition results on four standard
datasets. Section 6 presents a summary and discussion. Section 7 concludes
this paper.

2. Related Work

Descriptiveness and robustness are two important requirements for a quali-
�ed local surface feature [17]. Because a point cloud is an explicit representation
of the 3D surface of an object/scene, it is rational to describe a local surface by
generating histograms according to the spatial distributions of the neighboring
points. Several features following this scheme have been proposed, which are
described in detail in this section.

One of the most popular local surface features is the spin image [23]. It
�rst uses the normal of a feature point as the reference axis and encodes each
neighboring point of the feature point by two parameters. It then accumulates
the number of neighboring points into a 2D histogram according to these two
parameters. The spin image is robust to occlusion and clutter [23]. However, be-
cause the cylindrical angular information of the neighboring points is discarded
when projecting these points from a 3D space onto a 2D space, the discrim-
inating power of the spin image is limited [50]. Moreover, the spin image is
sensitive to varying mesh resolutions [32]. Several variants of the original spin
image have been proposed, including a spin image with spherical parameteri-
zation [22], multi-resolution spin image [8], spherical spin image [36], and scale
invariant spin image [6]. Because all of these improved spin image features still
project the 3D information of the neighboring points onto a single 2D map, their
descriptiveness cannot be signi�cantly improved.

To achieve relatively higher descriptiveness, several methods were proposed
to encode the local surface information by accumulating geometric or topologi-
cal measurements (e.g., point numbers, mesh areas) into a 3D histogram rather
than a 2D histogram. Frome et al. proposed a 3DSC feature [10]. It has proved
to perform better than spin images for 3D object recognition [10, 40]. However,
its application is signi�cantly limited because of its uncertainty in the rotation
around the surface normal. To cope with this limitation, Tombari et al. pro-
posed a Unique Shape Context (USC) feature by assigning a unique LRF to
each 3DSC feature [43]. The experimental results show that the USC reduces
the memory requirement of 3DSC with an improvement in its feature matching
performance. Sukno et al. [39] also proposed an Asymmetry Patterns Shape
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Context (APSC) to make the descriptor invariant to rotations. Another ex-
tension of the shape context feature is the Intrinsic Shape Context (ISC) [25],
which is invariant to isometric deformations. Beyond these shape context fea-
tures, Mian et al. proposed a tensor representation by aggregating the surface
areas into a set of 3D grids. The tensor feature attained a better performance
for 3D object recognition compared to the spin image [30]. However, the di-
mensionality of a 3D tensor is too high to achieve e�cient feature matching.
Further, Zhong developed an Intrinsic Shape Signature (ISS) by counting the
number of points falling into each grid of a uniformly and homogeneously di-
vided spherical angular space [50]. ISS outperformed the spin image and 3DSC
in the presence of noise, occlusion, and clutter.

Taati and Greenspan [40] �rst extracted a set of invariant properties (includ-
ing position, direction and dispersion properties) for each point of a point cloud.
They then performed histogramming on the invariant properties of neighboring
points of a feature point to generate a VD-LSD feature. Two histogramming
schemes (i.e., scalar quantization and vector quantization) are used to obtain
the VD-LSD(SQ) and VD-LSD(VQ) features, respectively. VD-LSD is a gener-
alization for a large class of features including the spin image, point signature,
and tensor. VD-LSD requires a training process to learn the optimal subset of
properties for the feature generation of a particular object. Recently, Guo et al.
[17] proposed a RoPS feature by rotationally projecting the neighboring points
of a feature point onto three 2D planes and by calculating a set of statistics for
the distributions of these projected points. The experimental results showed
that RoPS outperformed the state-of-the-art algorithms, including SHOT, spin
image, and VD-LSD.

Achieving both a high power of descriptiveness and strong robustness to
various nuisances is still a challenging task faced by existing methods. We,
therefore, propose a novel TriSI feature that simultaneously satis�es all of these
requirements (as demonstrated in Section 4). Note that while our proposed
TriSI feature is somewhat in�uenced by the spin image concept, the major
di�erence between the TriSI feature and spin image is twofold. First, we use a
robust 3D LRF rather than a normal vector to generate spin images. Because
the calculation of a normal vector requires surface di�erentials, it is relatively
sensitive to noise. In contrast, our LRF does not rely on any surface di�erential.
It is very robust to both noise and varying mesh resolutions. Second, we generate
three signatures around the three axes of the LRF rather than just a single spin
image around the normal. Consequently, the proposed TriSI feature is more
discriminative compared to the spin image because the former encodes more
information of the local surface.

Similar to [17, 10, 23, 30], the proposed algorithm follows a scheme, which
consists of three key steps (i.e., LRF construction, feature generation, and ob-
ject recognition). The LRF proposed in this paper is based on the one presented
in [17]. However, the underlying techniques used in this paper are di�erent and
more advanced compared with all of these other techniques (including our previ-
ous work in [17]). First, the LRF is improved, and di�erent weight combinations
are investigated to select the optimal parameters (Sections 3.1.1 and 4.1.1). The
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experimental results show that the improved LRF is more robust to shot noise
compared to the LRF in [17]. Second, the TriSI feature is generated in a com-
pletely di�erent way compared to [17] (Section 3.1.2). Rather than rotating
the local surface and encoding the distributions of a set of projected points on
the coordinate planes (as in [17]), the TriSI feature succinctly concatenates the
signatures that represent the point distribution in three cylindrical coordinate
systems. Third, the proposed 3D object recognition algorithm is more adaptive
to parameter settings by using a hierarchical feature matching strategy (Sec-
tion 3.2). Comparative results clearly demonstrate that the proposed algorithm
outperforms our previous work [17] on all datasets in terms of both feature
matching (Section 4) and object recognition (Section 5).

The main contributions of this paper are as follows:

(i) We propose a discriminative and robust TriSI feature as an improvement
of the method previously presented in [17]. More speci�cally, the improvement
consists of an improved LRF and a new 3D local surface feature. The experimen-
tal results show that our TriSI feature outperformed existing features including
spin image, SHOT, and RoPS by a large margin in terms of recall and preci-
sion. The TriSI feature is also very robust to noise, varying mesh resolutions,
occlusion, and clutter.

(ii) We propose a hierarchical 3D object recognition algorithm. The ex-
perimental results show that the TriSI-based 3D object recognition algorithm
achieved the best recognition performance on all of these datasets when com-
pared with a number of existing techniques.

3. TriSI-based 3D Object Recognition

3.1. TriSI Feature

A 3D local feature should be invariant to rigid transformations including
rotations and translations. A unique and repeatable LRF is, therefore, adopted
to represent the local surface in a pose-invariant local coordinate system rather
than a sensor-centered coordinate system (Section 3.1.1). A local feature should
also be highly descriptive, which is achieved by encoding the information of a
local surface around three orthogonal axes (Section 3.1.2). For the sake of
e�cient feature matching, a feature should be compact. This is achieved by
performing the PCA transform on the feature vector and by extracting the
most signi�cant components of the feature (Section 3.1.3). Consequently, the
process of generating a compact TriSI feature includes LRF construction, TriSI
generation, and TriSI compression.

3.1.1. LRF Construction

Our LRF is based on our previously presented LRF in [17]. However, [17]
did not fully consider the cases of outliers and shot noise, which led to unstable
LRFs in these circumstances. In this paper, we enhance the LRF by considering
a di�erent weighting strategy, which is more robust than the one described
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in [17]. For the sake of completeness, we describe below the LRF, which was
originally introduced in [17], and the improvements made in this paper.

Given a point cloud P ∈ R3, which represents the local surface, it is �rst
converted into a triangular mesh S [30]. The mesh S consists of Np vertices
and Nf triangular faces. For a given feature point p and its support radius
r, a local triangular mesh L is cropped from S such that all vertices in L are
within the distance of r from point p. Assume that L contains np vertices and
nf triangles with the ith triangle consisting of three vertices qi1, qi2 and qi3. It
is possible to derive a scatter matrix of all points lying on the local surface L,
including �invisible� points within a triangle (interpolated points on the surface
of the triangle). For any invisible point qi (γ1, γ2) in the ith triangle, it can be
expressed with the three vertices qi1, qi2 and qi3 as:

qi (γ1, γ2) = qi1 + γ1 (qi2 − qi1) + γ2 (qi3 − qi1) . (1)

The scatter matrix Ci of all points in the ith triangle can therefore be
calculated through an integral over this triangular face. That is,

Ci =

ˆ 1

0

ˆ 1−γ2

0

(qi (γ1, γ2)− p) (qi (γ1, γ2)− p)
T
dγ1dγ2

=
1

12

3∑
m=1

3∑
n=1

(qim − p) (qin − p)
T

(2)

+
1

12

3∑
m=1

(qim − p) (qim − p)
T
. (3)

The overall scatter matrix C of the local surface L is then calculated as a
weighted sum of the scatter matrices of all individual triangles on L. That is,

C =

nf∑
i=1

ωi1ωi2Ci, (4)

where the weight ωi1 is proportional to the area ai of the ith triangle related to
the whole area of the local surface L. That is,

wi1 =
aκ1
i∑nf

i=1 a
κ1
i

. (5)

The weight ωi2 is proportional to the distance from the centroid of the ith
triangle to the feature point p. That is,

wi2 =

(
r −

∥∥∥∥p− qi1 + qi2 + qi3

3

∥∥∥∥)κ2

. (6)

where k1 ∈ Z+, k2 ∈ Z+. k1 and k2 are used to control the relative weight of each
individual triangle according to its area and the distance to the feature point,
respectively. Consequently, di�erent parameters κ1 and κ2 result in di�erent
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weighting strategies. The selection of the two parameters is further investigated
in Section 4.1.1. To address irregular triangles (e.g., caused by outliers and shot
noise), an outlier-rejection technique is proposed. That is, the weight ωi1 is
set to 0 if one or more edges in the ith triangle are longer than τe times the
mesh resolution. Based on an experiment and observations of several real-life
datasets, τe is chosen as �ve in this paper. Note that irregular triangles cannot
be handled well using the LRF in [17] because no such technique is adopted.

We then perform an eigenvalue decomposition on C:

CV = VD, (7)

where D is a diagonal matrix with diagonal entries equal to the eigenvalues
of C and V is a matrix with columns equal to the eigenvectors of C. These
eigenvectors v1, v2, and v3 are ordered according to their associated eigenvalues
such that v1 corresponds to the largest eigenvalue. Because v1, v2, and v3 are
orthogonal, they can be used as the basis of an LRF. However, their directions
are ambiguous. That is, −v1, −v2, and −v3 are also eigenvectors of the scatter
matrix C. We therefore, adopt a sign disambiguation technique.

For any asymmetric surface, the sign of an eigenvector vk (k = 1, 3) can be
determined by calculating the scalar products between the eigenvector vk and
the vectors from the feature point p to all points qi (γ1, γ2) (i = 1, 2, . . . , nf ) on
the local surface L. If the majority of the scalar products are positive, the sign
of vk remains unchanged. Otherwise, the sign of vk is inverted. Speci�cally,
the sign of the eigenvector vk (k = 1, 3) is de�ned as:

Λk = sgn
(∑nf

i=1 ωi1ωi2

´ 1
0

´ 1−γ2

0
(qi (γ1, γ2)− p)vkdγ1dγ2

)
= sign

(∑nf

i=1 ωi1ωi2

(∑3
m=1 (qim − p)vk

))
.

(8)

where, the function sgn (·) returns a value of +1 for a positive number and -1 for
a negative number. Therefore, two unambiguous vectors ṽ1 and ṽ3 are obtained
by:

ṽk = Λkvk. (9)

Given ṽ1 and ṽ3, the vector ṽ2 is then de�ned as ṽ3 × ṽ1. Consequently,
the position of feature point p and the three unambiguous vectors {ṽ1, ṽ2, ṽ3}
constitute an LRF for point p.

It is commonly known that the traditional PCA is highly sensitive to noise
and outliers [7, 46]; even a single corrupted point can signi�cantly alter the
results. A number of algorithms have been proposed in the literature to improve
the robustness of the traditional PCA using the techniques of outlier pursuit [46],
M-estimation [7], and convex optimization [3]. In contrast, our proposed LRF is
generated by a weighted continuous PCA technique with outlier rejection. The
experimental results show that it is su�ciently robust to both noise and outliers
(Section 4.2).
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3.1.2. TriSI Generation

Given a feature point p, the local surface L and its LRF vectors {ṽ1, ṽ2, ṽ3},
the information from this local surface is encoded by three signatures {SI1,SI2,SI3}
which are generated around three axes. Because the three axes are orthogonal to
each other, the information from the three signatures is complementary and rel-
atively irredundant. Therefore, the resulting TriSI feature is highly descriptive.
An illustration of the generation of a TriSI feature is shown in Fig. 1.

3
ɶv

2
ɶv

1
ɶv

2SI

3SI

1SI

Figure 1: An illustration of the generation of a TriSI feature (Figure best seen in color).

We generate a signature SI1 by encoding the point distribution around the ṽ1

axis. Given a point q ∈ R3 on the local surface L, we use a function f : R3 → R2

to map its 3D coordinate to a 2D space. The 2D space is represented by two
parameters α and β. Here, α is the perpendicular distance of q from the line
that passes through p and is parallel to ṽ1, and β is the signed perpendicular
distance to the plane that goes through p and is perpendicular to ṽ1. That is,

α =

√
∥q − p∥2 − (ṽ1 · (q − p))

2
, (10)

β = ṽ1 · (q − p) . (11)

Once all points on L are represented by the two parameters (α, β), we dis-
cretize the 2D space (α, β) by b × b bins. We count the number of surface
points falling into each bin, which results in a 2D histogram. In fact, this 2D
histogram records the distribution of points in a cylindrical coordinate system
with ṽ1 as its reference axis. Because the 2D histogram encodes the informa-
tion for the relative position of 3D points lying on the local surface L, part of
the 3D metric information is preserved, and the shape of the local surface is
presented. To make the resulting feature less sensitive to the position variations
of the points (e.g., because of noise and di�erent viewpoints), the 2D histogram
is further bi-linearly interpolated, resulting in a �nal signature SI1. Because
SI1 is generated with respect to the feature point p and its intrinsic direction
ṽ1, the signature is invariant to rigid transformations. Note that a spin image
feature [23] is generated by encoding the point distribution around the surface
normal n at point p rather than the axis ṽ1, while the remaining process is the
same as SI1. Therefore, most variants [8, 36] of the original spin image can be
seamlessly integrated with our method to obtain various TriSI features.
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The signature SI1 generated from a single reference axis is insu�cient to
represent the rich information of a local surface. We therefore create two other
signatures SI2 and SI3 by following a similar method we adopted to produce
SI1. That is, SI2 and SI3 are generated by substituting the ṽ1 in equations (10-
11) with ṽ2 and ṽ3, respectively. These three signatures encode the information
of the local surface L from three orthogonal axes. To produce a relatively high
discriminative feature, the three signatures are concatenated to obtain a raw
TriSI feature, that is,

f = {SI1,SI2,SI3} . (12)

3.1.3. TriSI Compression

To make the feature vector more compact, the raw TriSI feature is further
compressed by projecting it onto a PCA subspace. The PCA subspace is learned
from a set of training feature vectors

{
f1,f2, · · · ,fnt

}
, where nt is the total

number of training features. The PCA algorithm converts a set of possibly
correlated features into a set of values for linearly uncorrelated variables (i.e.,
principal components).

Given the training features
{
f1,f2, · · · ,fnt

}
, the covariance matrix M is

calculated as:

M =

nt∑
i=1

(
f i − f

) (
f i − f

)T
, (13)

where,

f =
1

nt

nt∑
i=1

f i. (14)

The eigenvalue decomposition is then applied to M:

MV = VD, (15)

where D is a diagonal matrix with diagonal entries equal to the eigenvalues of
M and V is a matrix with columns equal to the eigenvectors of M. The PCA
subspace is constructed by using the eigenvectors, which correspond to the nsf

largest eigenvalues. The value of nsf is chosen such that ϑ of the �delity of the
training features is preserved in the compressed features (as further discussed
in Section 4.1.3).

Therefore, the compressed vector f̂ i of a feature f i is:

f̂ i = VT
nsf

f i, (16)

where VT
nsf

is the transpose of the �rst nsf columns of V.
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3.2. 3D Object Recognition

Our 3D object recognition algorithm follows the most common recognition
scheme [40, 41, 17, 20], and it consists of four modules: o�ine preprocessing,
feature generation, feature matching, and hypothesis veri�cation. The block
diagram of the 3D Object recognition algorithm is shown in Fig. 2.

Figure 2: Block diagram of TriSI based 3D Object recognition algorithm

Module I-O�ine Preprocessing: Nm feature points are �rst uniformly
selected from each model Mm. Next, Nm model features

{
fm
1 ,fm

2 , · · · ,fm
Nm

}
are obtained from the model Mm by extracting a TriSI feature fm

i at each
feature point. These features from all models are used to construct a PCA
subspace VT

n . Then, each feature fm
i is projected onto the PCA subspace to

obtain a compressed feature f̂m
i using equation 16. These compressed features

are indexed and stored in the library.

Module II-Feature Generation: Given an input scene S, Ns feature
points are uniformly selected. For each feature point, an LRF is de�ned, and a
TriSI feature fs

i is then generated. The feature is then projected onto the PCA

subspace to obtain the compressed TriSI feature f̂s
i using equation 16.

Module III-Feature Matching: For each scene feature f̂s
i , the nearest

and second nearest distances between f̂s
i and the stored model features are cal-

culated. If the model feature f̂m
i is the nearest neighbor to f̂s

i and the ratio of
the nearest distance to the second nearest distance is less than a threshold τ , the

scene feature f̂s
i and model feature f̂m

i are considered a feature correspondence(
f̂s
i , f̂

m
i

)
[28]. It is demonstrated that the adopted nearest neighbor distance

ratio-based feature matching strategy outperforms the nearest neighbor based-
strategy because the former additionally penalizes the features, which have sev-

eral similar matches [28, 33]. Then, each feature correspondence
(
f̂s
i , f̂

m
i

)
gives
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one vote to the mth model Mm. It also provides a transformation estimate Tm
i

between the input scene S and model Mm by aligning their LRFs.

Module IV-Hypothesis Veri�cation: The models are sorted according to
their associated number of feature correspondences (i.e., votes) and are veri�ed
by turn. For each transformation estimate Tm

i between S and the candidate
model Mm, all transformation estimates that are close to Tm

i are retrieved.
These retrieved estimates form a cluster of consistent transformation estimates.
The cluster center provides the �nal transformation T̂m

i for the feature corre-

spondence
(
f̂s
i , f̂

m
i

)
. Note that the dimension of each cluster center is 6DOF

because the dimensions of the rotation and translation are 3DOF each. A con-
�dence score is then assigned to each cluster based on the number of members
in the cluster and their feature distances. The transformations with con�dence
scores larger than half of the maximum score are elected as transformation can-
didates. The candidate model Mm is then aligned with the input scene S using
each transformation candidate. If Mm is accurately aligned with a portion of
S, the candidate model is accepted, and the scene points that are close to the
candidate model are segmented from the scene (for more details on alignment
and veri�cation, the author should refer to [17]). Otherwise, the transformation
candidate is rejected, and the next transformation candidate is veri�ed by turn.
If all of the transformation candidates between S and Mm have already been
veri�ed, the next candidate model is veri�ed using the same approach. This
veri�cation procedure continues until all of the candidate models have been ver-
i�ed or too few points are left in the scene S. Beyond pose clustering, other
techniques such as the constrained interpretation tree [1], Random Sample Con-
sensus (RANSAC) [9, 40], and geometric consistency [23] can also be used to
generate transformation hypotheses for veri�cation (for a comprehensive review,
the author should refer to [20]).

Most existing object recognition algorithms [28, 17] use a �xed threshold τ
for feature matching (Module III). It is, however, very challenging to select the
most appropriate threshold for a speci�c application. On one hand, although
the produced matching results using a low threshold are accurate, the object
recognition rate is low because the recall of the feature matching is low. On the
other hand, a large threshold increases the recognition accuracy at the expense
of a high computational cost. This is because more hypotheses (which are gen-
erated from the feature matching phase) need to be veri�ed in the subsequent
steps. In this paper, we propose a hierarchical matching strategy for e�ective
and e�cient 3D object recognition. Speci�cally, we �rst use a small threshold
τ to perform feature matching (Module III) and hypothesis veri�cation (Mod-
ule IV), and the recognized objects are segmented from the scene. Meanwhile,
the scene features that are associated with the recognized objects are removed.
Next, we increase the threshold τ and perform feature matching (Module III)
using the remaining scene features. This is subsequently followed by hypothesis
veri�cation (Module IV) which works on the remaining scene points. The afore-
mentioned feature matching and hypothesis veri�cation processes are repeated
with a set of thresholds. In this paper, we increase the threshold from 0.7 to
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1 with an increment step of 0.1. The minimum threshold is set to 0.7 because
too few feature correspondences can be produced with a low threshold of less
than 0.7. The maximum threshold is set to one because no ratio of the nearest
distance to the second nearest distance can be larger than one.

The advantage of the proposed hierarchical matching strategy is threefold.
First, the e�ciency of the object recognition algorithm is improved by starting
with a low threshold. That is, a low threshold (e.g., τ=0.7) results in a rela-
tively small number of feature correspondences. These correspondences are very
reliable, and the resulting model hypotheses are likely to be present in the input
scene. Second, the accuracy of the object recognition algorithm is boosted by
subsequently using a set of thresholds. That is, a large threshold (e.g., τ=1)
results in a large number of feature correspondences and produces more plau-
sible hypotheses for veri�cation. Because our algorithm starts from the lowest
threshold, most of the input scene can be recognized and segmented e�ciently
by the processes that are based on low thresholds, leaving only a small number
of points to the subsequent processes (which are based on large thresholds).
Third, the proposed algorithm is more general because it adaptively uses a
range of thresholds rather than a �xed threshold. However, with the existing
algorithms, the �xed threshold used may be dependent on and only appropriate
for a speci�c dataset.

4. Evaluation of the TriSI Feature

The parameters for TriSI feature generation were �rst trained on an inde-
pendent tuning dataset (Section 4.1). The TriSI feature was then tested on two
popular datasets (Sections 4.2 and 4.3), namely BoD1 [42] and U3OR [30]. The
performance of feature matching was evaluated with the frequently used Recall
versus 1-Precision Curve (RPC) [33]. Ideally, an RPC should lie at the top left
corner area of a plot with a high recall and high precision. The performance of
TriSI was compared with the spin image [23], SHOT [42], and RoPS [17] with
respect to a set of nuisances including Gaussian noise, Laplacian noise, shot
noise, varying mesh resolutions, occlusion, and clutter.

4.1. Selection of the Parameters

The tuning dataset contains six models and six scenes. The models were
obtained from the Stanford 3D Scanning Repository [5], and the scenes were
created by downsampling each model to half of its original mesh resolution (mr)
and adding both Gaussian noise (with a standard deviation of 0.1 mr) and shot
noise (with a outlier ratio of 0.2%). For each scene and its corresponding model,
we �rst randomly selected 1000 feature points from the model. The scene and
model were then automatically aligned using the ground-truth transformation,
and the closest points in the aligned scene were selected. Each feature point in
the model and its closest feature point in the scene constitute a ground-truth
point correspondence. We tested the LRF with di�erent weight combinations
(i.e., κ1 and κ2). We also tested the TriSI feature with di�erent bin numbers b
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and �delity percentages ϑ. The optimal parameters were selected by the tuning
experiments.

For any local surface feature, the support radius r is an important parameter,
which determines the amount of local surface that is described by the feature
descriptor. A large support radius provides more descriptiveness at the cost of
a higher sensitivity to occlusion and clutter. Based on our previous work [17],
in this paper, we set the support radius r to 15 mr for the generation of the
local feature as a compromise between the matching accuracy and robustness.
Note that although a �xed support radius was used in this paper, any adaptive
scale detection algorithm can alternatively be integrated with our TriSI feature.
However, the work of feature scale detection is out of the scope of this paper
and our focus is on the quality of the feature description rather than feature
detection. For more details on feature position and scale detection, the reader
should refer to the review and evaluation papers in [44, 20].

4.1.1. LRF

We used nine di�erent weight combinations wmn (m,n = 0, 1, 2) to generate
LRFs, where wmn denotes that κ1=m and κ2=n. Given a weight combination,
we generated a LRF for each of the scene and model points used for a point
correspondence. We then calculated the error of this LRF estimation as the
rotation angle between the two LRFs [31]. If the error was less than an error
threshold, the estimation was considered correct. Finally, we calculated the
percentage of correct estimations with respect to the total estimations as our
performance measure. The results achieved with the two di�erent error thresh-
olds (i.e., 5◦and 10◦) are shown in Fig. 3. It can be seen that the ranking of
these LRFs is the same under the two di�erent error thresholds. It is also clear
that the LRF with κ1=1 and κ2=2 achieved the best performance (which was
then selected as the optimal combination in the rest of the paper). Moreover, all
combinations with κ1=1 achieved a better performance compared to those with
κ1=0 or κ1=2. Because the overall scatter matrix is an integral over the point
scatter matrices of all individual triangles, it is reasonable that the contribution
from each triangle is linearly related to its surface area (i.e., κ1=1). We also
tested the performance of the LRFs used in EM [1], keypoint [32], SHOT [42],
and RoPS [17] features, as shown in Fig. 3. It is clear that our LRF with κ1=1
and κ2=2 outperformed the state-of-the-art methods by a large margin. With
an error threshold of 10◦, the percentages of correct estimations for the LRFs
in EM, keypoint, SHOT, RoPS, and our LRF are 39.6%, 35.3%, 39.4, 45.1%,
and 78.3%, respectively. Note that the proposed LRF signi�cantly improved
the LRF used in RoPS [17] in the case of combined Gaussian noise, shot noise,
and decimation.

4.1.2. Bin Number Analysis

We further tested the performance of the TriSI feature with respect to di�er-
ent bin numbers b. We set the bin number to 5, 15, 25, 35, 45, and 55. We used
the raw TriSI features without PCA compression to perform feature matching.
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Figure 3: Comparison between di�erent LRFs.

The results are shown in Fig. 4(a). The performance of the TriSI feature im-
proved as the bin number increased from 5 to 15. With a bin number of 15, the
TriSI feature achieved the best performance. The performance decreased slightly
as the bin number increased further from 15 to 25. For bin numbers larger than
25, the performance of the TriSI feature dropped signi�cantly compared to the
results with a bin number of 15. These observations can be explained based
on the following two reasons. First, a small bin number (e.g., 5) results in a
coarse signature. That is, each bin of the signature encodes information from
a large patch of the surface. Consequently, most of the geometrical details are
lost, and the resulting TriSI feature lacks descriptiveness. Second, a large bin
number (e.g., 55) makes the signature very sensitive to noise and to varying
mesh resolutions. Moreover, the signature with a large bin number is also very
sparse, and many bins have a value of zero. Consequently, the descriptiveness
and robustness of the TriSI feature deteriorates. Moreover, a large bin number
will result in an increase in both memory usage (during feature generation) and
computational time (during feature matching). We therefore set the bin number
to 15 throughout this paper.

4.1.3. PCA Compression

The PCA technique not only transforms the possibly correlated features into
uncorrelated variables but also reduces the dimensionality of a TriSI feature [29].
To test the TriSI feature with respect to di�erent levels of compression, we set
the �delity percentage ϑ to 75%, 80%, 85%, 90%, 95%, and 100%. The TriSI
features of the six models were used to train the PCA subspace. The feature
matching results are shown in Fig. 4(b). It can be seen that the performance
increased with the value of ϑ. Speci�cally, an obvious improvement was achieved
as the �delity percentage ϑ increased from 75% to 95%. Because a small ϑ causes
a signi�cant loss of information for the original features, which subsequently
deteriorates the performance of the compressed features. The performance for
the compressed features with ϑ equal 95% and 100% was nearly the same.
This means that the compressed features with a �delity percentage of 95%
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are su�cient and can be considered as a useful representation of their original
features. We therefore set the �delity percentage ϑ to 95% throughout the rest
of this paper.
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Figure 4: The performance of TriSI features with di�erent parameters.

4.2. Performance on the BoD1 Dataset

We �rst tested the performance of our TriSI feature on the BoD1 dataset
[42]. The BoD1 dataset contains six models and 45 scenes. The models were
taken from the Stanford 3D Scanning Repository [5]. The scenes were generated
by randomly placing three to �ve models to create clutter and pose variances.
The ground-truth transformations between each model and its instances in the
scenes were provided as a prior. To test the performance of feature matching,
1000 feature points were randomly selected from each model [42]. Their cor-
responding points in each scene were also obtained to produce ground-truth
point correspondences. Note that each pair of corresponding feature points in
the scene and models are extracted at approximately the same physical posi-
tion (i.e., no keypoint localization error is considered). This is the ideal case for
feature matching where the in�uences of keypoint detection and feature descrip-
tion are separated. Then, TriSI, spin image, SHOT, and RoPS features were
extracted at each feature point for all scenes and models. The TriSI features
were further compressed using the PCA subspace trained on the model features.
The lengths for the compressed TriSI, spin image, SHOT, and RoPS features
were 29, 225, 320, 135, respectively. Finally, the RPC results for each feature
were generated by matching the scene features against the model features [33].
These features were tested with respect to Gaussian noise [42, 48], Laplacian
noise, shot noise [48], and varying mesh resolutions [42].

4.2.1. Robustness to Gaussian/Laplacian Noise

To test the performance of these features with respect to Gaussian noise, we
added three levels of Gaussian noise with standard deviations of 0.1 mr, 0.3 mr,
and 0.5 mr to each scene. For a given standard deviation, Gaussian noise was
independently added to the x−, y−, and z− axes of each scene point (see Fig.
5(a)). The RPC results at di�erent levels of Gaussian noise are shown in Fig.
6.
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(a) Gaussian noise (b) Laplacian noise (c) Shot noise (d) Decimation

Figure 5: Scenes with di�erent deformations (Figure best seen in color).
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Figure 6: Recall vs 1-precision curves in the presence of Gaussian noise. (a) Standard deviation
of 0.1mr. (b) Standard deviation of 0.3mr. (c) Standard deviation of 0.5mr.

The proposed TriSI feature was highly descriptive and robust to Gaussian
noise. The TriSI feature achieved the best performance at all levels of Gaussian
noise, followed by the RoPS, SHOT and spin image. The TriSI feature achieved
the highest recalls of 96%, 85%, and 70% with noise deviations of 0.1mr, 0.3mr,
and 0.5mr, respectively. As the deviation of Gaussian noise increased from
0.1mr to 0.5mr, the performance of all four features decreased. However, our
TriSI feature was more stable and robust to Gaussian noise compared with the
other three features. We also tested the performance of these features with
respect to three levels of Laplacian noise (with standard deviations of 0.1mr,
0.3mr, and 0.5mr). The results under Laplacian noise were consistent with those
achieved under Gaussian Noise.

4.2.2. Robustness to Shot Noise

To test the performance of these features with respect to shot noise, we
added three levels of shot noise with outlier ratios of 0.2%, 1.0%, and 5.0% to
each scene. Given an outlier ratio γ, a ratio γ of the total points in each scene
was �rst selected, and a displacement with an amplitude of 20 mr was then
added to each selected point along its normal direction (see Fig. 5(c)), the same
as in [48]. The RPC results at di�erent levels of shot noise are shown in Fig. 7.

The TriSI feature was very robust to shot noise. The performance of the
TriSI, spin image, and SHOT features was comparable with an outlier ratio of
shot noise less than 1.0%. The recall results achieved by all of these features
except RoPS were larger than 90%. RoPS is very sensitive to shot noise, and
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Figure 7: Recall vs 1-precision curves in the presence of shot noise. (a) Outlier ratio of 0.2%.
(b) Outlier ratio of 1.0%. (c) Outlier ratio of 5.0%.
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Figure 8: Recall vs 1-precision curves with respect to varying mesh resolutions. (a) 1/2 mesh
decimation. (b) 1/4 mesh decimation. (c) 1/8 mesh decimation.

its performance dropped sharply as the outlier ratio of shot noise increased. In
contrast, the TriSI feature obtained the best results with high recalls of more
than 85% when tested on scenes with an outlier ratio of 5.0%. The TriSI feature
performed slightly better than the SHOT feature. Note that the scenes with
an outlier ratio of 5.0% are very spiky (as illustrated in Fig. 5(c)). Most of
the details of these scenes are lost, and their shapes are deformed dramatically
from their original shapes. However, our proposed TriSI feature still achieved
acceptable results. This clearly indicates that the TriSI feature is very robust
to shot noise.

4.2.3. Robustness to Varying Mesh Resolutions

To test the performance of these features with respect to varying mesh reso-
lutions, we resampled each scene to 1/2, 1/4, and 1/8 of its original mesh resolution
(see Fig. 5(d)). The RPC results of these features are shown in Fig. 8.

It is clear that the proposed TriSI feature was very robust to varying mesh
resolutions. It outperformed the other features by a large margin under all
levels of mesh decimation with RoPS in the second position. The TriSI feature
achieved a high recall of approximately 95% under 1/2 mesh decimation, as
shown in Fig. 8(a). It also achieved a recall of approximately 90% under 1/4
mesh decimation, as shown in Fig. 8(b). The TriSI feature consistently achieved
good performance even under 1/8 mesh decimation with a recall of more than
80%, as shown in Fig. 8(c). It is worth noting that the performance of the TriSI
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feature under 1/8 mesh decimation was even better than the performance of the
spin image under 1/2 mesh decimation, as shown in Figs. 8(a) and (c).

4.2.4. Overall Performance

To test the overall performance of these features, we �rst resampled each
scene to 1/2 of its original mesh resolution. We then added Gaussian noise (with
a standard deviation of 0.1 mr) and shot noise (with an outlier ratio of 0.2%)
to each scene. The RPC results of the TriSI, spin image, SHOT, and RoPS
features are shown in Fig 9. It is clear that the TriSI feature outperformed
spin image, SHOT, and RoPS in the presence of Gaussian noise, shot noise, and
mesh decimation.
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Figure 9: Recall vs 1-precision curve with respect to combined noise and mesh decimation.

To further investigate the individual e�ectiveness of the proposed LRF and
the TriSI feature, we introduced modi�ed spin image, modi�ed SHOT, and
modi�ed RoPS features by substituting their original LRFs with our LRF (the
same as TriSI). For the generation of the modi�ed spin image, the axis ṽ3 of our
LRF is used as its reference axis. The RPC results of these modi�ed features are
shown in Fig 9. The performance of all of these modi�ed features was improved
compared with their original counterparts. However, their performance was still
inferior to the performance of the TriSI feature. The TriSI feature achieved the
best performance, followed by the modi�ed RoPS and modi�ed SHOT features.

It can be concluded that the superior performance of the TriSI feature is
because of two factors. First, the proposed LRF is more stable and repeatable
compared with the LRFs used in the SHOT, spin image, and RoPS features
(see Figs. 3 and 9). Second, the TriSI feature represents a more discriminative
description of the local surface compared with the spin image, SHOT, and RoPS
features. Note that although the same LRF is used by the TriSI and modi�ed
spin image features, the proposed TriSI descriptor outperformed the modi�ed
spin image in terms of recall by a large margin (see Fig. 9). It is therefore
clear that the TriSI feature o�ers more discriminative power compared to the
modi�ed spin image, because the TriSI feature records the shape information
of the local surface around the three orthogonal axes rather than just a single
axis.
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4.3. Performance on the U3OR Dataset

We further tested the performance of our TriSI feature on the U3OR dataset.
The U3OR dataset is one of the most widely used real-life datasets in 3D com-
puter vision [30, 1, 32, 40]. It contains �ve models (namely, Chef, Chicken,
Parasaurolophus, T-Rex, and Rhino) and 50 real scenes [30]. Each scene con-
tains four to �ve objects in the presence of clutter and occlusion and was ac-
quired with a Minolta Vivid 910 scanner. Each model was reconstructed from
several point clouds which were scanned at di�erent viewpoints. Two sample
models and two sample scenes are shown in Fig. 10. One thousand ground-truth
point correspondences were generated from each scene and its corresponding
models. Di�erent features were then extracted at these feature points. TriSI
features were further compressed using the PCA subspace trained on the model
features. The lengths for the compressed TriSI, spin image, SHOT, and RoPS
features were 48, 225, 320, and 135, respectively. These features were tested in
terms of RPC with respect to occlusion and clutter of the objects present in the
scenes (refer to [30, 17] for the de�nitions of occlusion and clutter).

(a) T-Rex (b) Rhino (c) Scene 1 (d) Scene 2

Figure 10: Two sample models and two sample scenes of the U3OR dataset (Figure best seen
in color).

4.3.1. Robustness to Occlusion

The RPC results with respect to di�erent levels of occlusion of the underlying
objects are shown in Fig. 11. Several observations can be made from these
results. First, the TriSI feature achieved the best performance under all levels of
occlusion, followed by RoPS and spin image. Second, the TriSI feature obtained
nearly the same performance under low and medium levels of occlusion (as
shown in Figs. 11(a) and (b)). Then, its performance decreased slightly under
a high level of occlusion (as shown in Fig. 11(c)). This clearly indicates that the
TriSI feature is very robust to occlusion. The robustness is because that a TriSI
feature is generated from a small patch of the scene. Therefore, the information
in the local surface is not sensitive to the missing points of the whole shape
(because of occlusion). The slight performance drop in Fig. 11(c) is because
of an excessive level of occlusion. That is, for the scenes with a high level of
occlusion, the missing points signi�cantly a�ect the completeness of the local
surface, and ultimately the descriptiveness of the extracted local feature.
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Figure 11: Recall vs 1-precision curves with respect to occlusion. (a) Occlusion between 60%
to 70%. (b) Occlusion between 70% to 80%. (c) Occlusion between 80% to 90%.

4.3.2. Robustness to Clutter

The RPC results with respect to di�erent levels of clutter are shown in Fig.
12. It can be seen that i) the TriSI feature achieved the best performance
compared to the RoPS, SHOT, and spin image features. ii) the TriSI feature
achieved similar results under low and medium levels of clutter and a relatively
low performance under a high level of clutter. These conclusions are similar to
those made with respect to occlusion (Section 4.3.1). Note that the robustness
to occlusion and clutter is one of the major advantages of a local surface feature
compared with its global counterparts.
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Figure 12: Recall vs 1-precision curves with respect to clutter. (a) Clutter between 40% to
60%. (b) Clutter between 60% to 80%. (c) Clutter between 80% to 100%.

5. Evaluation of the 3D Object Recognition Algorithm

To test the performance of our proposed 3D object recognition algorithm, we
conducted extensive object recognition experiments on four standard datasets
(i.e., BoD1 [42], U3OR [30], QuLD [40], and CFVD [35]). These datasets in-
corporate several variations including complicated background, various poses,
real noise, varying mesh resolutions, occlusion, clutter, and di�erent imaging
techniques. We used the compressed TriSI feature with our object recognition
algorithm to perform experiments on these datasets. We also present the re-
sults, which were originally reported by the state-of-the-art algorithms in the
literature.
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5.1. Results on BoD1 Dataset

We �rst added di�erent levels of Gaussian noise with standard deviations of
0.1 mr, 0.2 mr, 0.3 mr, 0.4 mr, and 0.5 mr to the 45 scenes, and the recognition
rates are shown in Fig. 13(a). We then added di�erent levels of shot noise
with outlier ratios of 0.2%, 0.5%, 1.0%, 2.0%, and 5.0% to the 45 scenes (the
same as in [48]), and the recognition rates are shown in Fig. 13(b). We further
resampled the noise-free scenes to 1/2, 1/4, 1/8, and 1/16 of their original mesh
resolution, and the recognition rates are presented in Fig. 13(c).

5.1.1. Results under Di�erent Types of Noise

Figure 13(a) shows that the TriSI-, SHOT- and RoPS-based algorithms
achieved a high recognition rate of 100% at all levels of Gaussian noise. The
recognition rate of the spin image-based algorithm was 100% under minor Gaus-
sian noise with a standard deviation of 0.1 mr. However, it dropped signi�cantly
when the standard deviation of the Gaussian noise was larger than 0.2 mr. These
recognition results are consistent with the feature matching results shown in Fig.
6. Because the matching accuracy of the spin image decreased as the level of
noise increased, it was reasonable to expect that the recognition performance
deteriorated.
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Figure 13: Recognition rates on the BoD1 dataset. (a) Gaussian noise. (b) Shot noise. (c)
Varying mesh resolutions.

As shown in Fig. 13(b), the TriSI-based algorithm achieved a high recog-
nition rate of 100% at all levels of shot noise. The SHOT-based algorithm
achieved the closest performance. It achieved a recognition rate of 100% with
outlier ratios for shot noise of no more than 2.0%. As the outlier ratio of shot
noise increased to 5.0%, the performance of the SHOT-based algorithm declined
slightly. The spin image-based algorithm achieved a relatively poor performance
at all levels of shot noise. The RoPS-based algorithm was very sensitive to shot
noise. It achieved an acceptable recognition rate when the outlier ratio for shot
noise is less than 0.5%. Its performance however deteriorated signi�cantly as
shot noise increased.

5.1.2. Results under Varying Mesh Resolutions

Fig. 13(c) indicates that the TriSI-based algorithm achieved a 100% recogni-
tion rate at all levels of mesh resolution. The recognition rate of the SHOT-based
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algorithm was 100% when the mesh decimation was larger than 1/8, and then
it decreased to 99.4% under 1/16 mesh decimation. The spin image-based al-
gorithm was substantially more sensitive to varying mesh resolutions compared
to the TriSI- and SHOT-based algorithms. Its recognition rate deteriorated
sharply when the number of vertices in the decimated scenes was less than 1/8
of their original number.

Overall, our proposed TriSI-based algorithm achieved the best performance
with respect to both noise and varying mesh resolutions. In contrast, the spin
image-based algorithm was very sensitive to noise and varying mesh resolutions.

5.1.3. Computational Complexity

To evaluate the computational complexity, we conducted timing experiments
for the whole 3D object recognition pipeline on the BOD1 dataset using com-
pressed TriSI, spin image, and SHOT features. These algorithms were imple-
mented in nonoptimized MATLAB codes without using any parallel program-
ming. The experiments were run on an Intel Core i7-2700K 3.5GHz windows
machine with 16GB RAM. Because the runtime is related to the number of
points in a scene, we resampled the scenes down to 1/2, 1/4, 1/8, and 1/16 of
their original mesh resolution, and recorded the runtime at each mesh resolu-
tion level. The average number of points for the models and original scenes are
45,998 and 191,649, respectively. The average runtime results for recognizing
an object instance in each scene are summarized in Table 1.

Table 1: Average online runtime with respect to varying mesh resolutions on the BoD1 dataset.
Here, �SI� stands for �Spin Image�.

Rate #Points
Feature Generation (s) Object Recognition (s) Overall (s)

TriSI SHOT SI TriSI SHOT SI TriSI SHOT SI

1 191649 40.3 14.4 14.0 43.6 43.7 45.2 83.9 58.1 59.2

1/2 95652 19.7 7.1 6.3 26.5 32.7 27.2 46.2 39.8 33.5

1/4 48120 10.0 3.6 3.2 19.7 22.3 36.7 29.7 25.9 40.0

1/8 24232 4.8 1.8 1.6 12.5 21.5 36.5 17.2 23.3 38.2

1/16 12153 2.1 1.0 0.8 12.2 34.7 118.8 14.3 35.8 119.6

It was observed that i) the average overall runtime increased with the num-
ber of points in a scene. For scenes with less than 48120 points, the TriSI-based
algorithm consumed less computational time compared to the SHOT- and spin
image-based algorithms. As the average number of scene points increased, the
TriSI-based algorithm cost relatively more overall time for the whole 3D ob-
ject recognition pipeline. ii) The generation of TriSI features consumed more
computational time compared to the generation of the SHOT and Spin image
features. However, the TriSI-based algorithm was more e�cient during the ob-
ject recognition phase because the matching results of the TriSI features are
more accurate and reliable compared to the SHOT and spin image features (as
shown in Section 4). Therefore, the hypothesis veri�cation module (as shown
in Section 3.2) of the object recognition pipeline can be performed more e�-
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ciently. Note that the computation can further be accelerated by employing
several speedup strategies, such as parallel programming and C or GPU imple-
mentations.

5.2. Results on the U3OR Dataset

The U3OR dataset contains �ve models and 50 real scenes. More details
regarding the dataset are presented in Section 4.3. To achieve a fair comparison
with [1], Figs. 14 (a) and (b) show the recognition rates for the �ve models on
the 50 scenes with respect to occlusion and clutter, respectively. The results of
the EM-based algorithm (which was reported in [1]) are also plotted in Figs. 14
(a) and (b). The TriSI-based algorithm outperformed the EM-based algorithm
[1], especially in the presence of signi�cant occlusion and clutter. The average
recognition rate of TriSI-based algorithm was 99.1%, which was higher than the
average recognition rate of 93.6% achieved by the EM-based algorithm.
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Figure 14: Recognition rates on the U3OR dataset. (a) Recognition rates for �ve models
with respect to occlusion. (b) Recognition rates for �ve models with respect to clutter. (c)
Recognition rates for four models with respect to occlusion.

To make a fair comparison with [30, 1, 32, 40, 17], Fig. 14 (c) presents the
recognition rates for four models on the 50 scenes with respect to occlusion.
We used the same dataset and experimental setup as [30, 1, 32, 40, 17] and ex-
cluded the model Rhino from our recognition results. Our TriSI-based algorithm
achieved the best recognition results, and it obtained an average recognition rate
of 99.4% with up to 84% occlusion. In contrast, the recognition rates of EM- [1],
tensor- [30], spin image- [30], and RoPS- [17] based algorithms with up to 84%
occlusion were 97.5%, 96.6%, 87.8%, and 98.8%, respectively. Moreover, the
TriSI-based algorithm was robust to severe occlusions. It achieved a recognition
rate of more than 80% even under 90% occlusion.

5.3. Results on the QuLD Dataset

The QuLD dataset contains �ve models and 80 scenes [40]. Each scene was
acquired with an LIDAR sensor and contains one, three, four or �ve objects in
the presence of clutter and occlusion. Each model was generated by merging
several point clouds. Fig. 15 shows two sample models and two sample scenes.
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(a) Angle (b) Gnome (c) Scene 1 (d) Scene 2

Figure 15: Two sample models and two sample scenes of the QuLD dataset (Figure best seen
in color).

To make a rigorous comparison with the results given by [1, 17], we �rst
performed 3D object recognition experiments on the full dataset, which contains
80 scenes. The recognition rates are presented in Table 2 with a comparison of
the results reported in [1, 17]. The average recognition rate of the TriSI-based
algorithm was higher than the EM-based algorithm [1] by a margin of 14.7%.
The proposed TriSI-based algorithm also outperformed our previous work (i.e.,
RoPS-based algorithm) [17] with average recognition rates of 97.1% and 95.4%,
respectively. Moreover, the proposed TriSI-based algorithm achieved the best
results for all individual models.

Table 2: Recognition rates on the full QuLD dataset. The best results are in bold faces.

Algorithm Angel

(%)

Big-bird

(%)

Gnome

(%)

Kid

(%)

Zoe

(%)

Average

(%)

TriSI 100 100 100 97.9 87.5 97.1

RoPS [17] 97.9 100 97.9 95.8 85.4 95.4

EM [1] 77.1 87.5 87.5 83.3 76.6 82.4

To make a direct comparison with the results given by [1, 40, 17], we then
performed 3D object recognition on the same subset dataset (which contains
55 scenes) as in [1, 40, 17]. The recognition rates on the subset dataset are
presented in Table 3 with a comparison to the results achieved by EM- [1],
VD-LSD-(SQ) [40], VD-LSD- (VQ) [40], 3DSC- [10, 40], spin image- [23, 40],
spin image spherical- [22, 40], and RoPS- [17] based algorithms. Our average
recognition rate in this case was 96.9%, which was higher than the best result
reported in the literature by RoPS [17]. The TriSI-based algorithm achieved a
100% recognition rate for models Angel, Big-bird, and Gnome. It also achieved
the highest recognition rates for both models Kid and Zoe.

5.4. Results on the CFVD Dataset

The CFVD dataset contains 20 models and 150 scenes [35]. It is the most
challenging and is currently the largest publicly available dataset for 3D object
recognition [35]. Each scene was captured with a virtual camera and contains
three to �ve objects. Fig. 16 shows two sample models and two sample scenes.
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Table 3: Recognition rates on a subset of the QuLD dataset. `NA' indicates that the corre-
sponding item is not available. The best results are in bold faces.

Algorithm Angel

(%)

Big-bird

(%)

Gnome

(%)

Kid

(%)

Zoe

(%)

Average

(%)

TriSI 100 100 100 97.4 87.2 96.9

RoPS [17] 97.4 100 97.4 94.9 87.2 95.4

EM [1] NA NA NA NA NA 81.9

VD-LSD (SQ) [40] 89.7 100 70.5 84.6 71.8 83.8

VD-LSD (VQ) [40] 56.4 97.4 69.2 51.3 64.1 67.7

3DSC [40] 53.8 84.6 61.5 53.8 56.4 62.1

Spin Image [40] 53.8 84.6 38.5 51.3 41.0 53.8

Spin Image Spherical [40] 53.8 74.4 38.5 61.5 43.6 54.4

(a) Centaur1 (b) Horse7 (c) Scene 1 (d) Scene 2

Figure 16: Two sample models and two sample scenes of the CFVD dataset (Figure best seen
in color).

As in [35], we left two models out of the 20 models from recognition tests
and used these two models to produce additional clutter. Table 4 shows the
recognition results on the dataset. We present the recall and precision results
for each individual object together with the average results on all of the 18
objects. For a direct comparison, we also present the results reported in [17]
and [35] (which used SHOT features and a game theory (SHOT+Game) for
object recognition). Our average recall was 96.7%, which was better than the
recall of 94.7% reported in [35]. The TriSI-based algorithm achieved the best
recall performance on 15 individual objects out of a total of 18 objects. The
average precision of the TriSI-based algorithm was 99.3%, which outperformed
the result achieved by the SHOT+Game algorithm (reported in [35]) by a margin
of 6.3%. Note that the TriSI-based algorithm also achieved better recall and
precision results compared to the RoPS-based algorithm [17]. The TriSI-based
algorithm obtained the best precision results on 16 individual objects. That is,
the TriSI-based algorithm results in less false positives compared with the other
algorithms.
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Table 4: Recognition results on the CFVD dataset. (a) Recall (%). (b) Precision (%). The
best results are in bold faces.

(a) Recall results.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

TriSI 100 100 60 100 100 100 91 100 100 96

SHOT+Game [35] 97 97 82 100 100 100 86 89 95 100

RoPS [17] 100 100 44 100 100 100 91 100 100 100

M11 M12 M13 M14 M15 M16 M17 M18 Average

TriSI 100 100 96 100 100 100 95 100 96.7

RoPS [17] 100 100 100 97 100 100 95 100 96.0

SHOT+Game [35] 91 100 100 94 91 97 83 95 94.7

(b) Precision results.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

TriSI 100 100 100 100 93 100 100 100 100 100

RoPS [17] 97 100 100 100 100 97 100 100 100 100

SHOT+Game [35] 100 100 78 96 93 93 95 100 91 89

M11 M12 M13 M14 M15 M16 M17 M18 Average

TriSI 100 97 100 97 100 100 100 100 99.3

RoPS [17] 100 100 100 97 96 100 100 100 99.1

SHOT+Game [35] 95 97 88 97 91 97 83 82 93.0

6. Summary and Discussion

Based on the experimental results and analysis in Sections 4 and 5, it can be
summarized that i) the compressed TriSI feature outperforms existing feature
descriptors including the spin image and SHOT features on both the BoD1 and
U3OR datasets. The TriSI feature is very robust to Gaussian noise, Laplacian
noise, shot noise, varying mesh resolutions, occlusion, and clutter. It is also
very compact because its length is shorter compared to the spin image, SHOT,
and RoPS features. Therefore, The compressed TriSI feature is not only rich
in information content, but also compact in dimensionality. ii) The TriSI-based
algorithm achieves the best overall object recognition results on four standard
datasets. Note that the datasets were acquired with di�erent techniques, in-
cluding the synthetic simulation, LIDAR, and triangulation laser scanner (e.g.,
Minolta Vivid 910). These results clearly demonstrate the superiority of our
proposed TriSI-based algorithm.

Although the proposed TriSI feature is only used for 3D object recognition
in this paper, other possible application areas include 3D model/shape retrieval
[2], 3D face recognition [47, 26, 27], and 3D object/scene reconstruction [16, 21].
For example, the idea to construct an LRF using all of the implicit information
of a local surface can also be extended to improve the accuracy for pose nor-
malization in 3D model retrieval and 3D face recognition. The TriSI features
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can further be integrated with di�erent classi�cation algorithms to perform 3D
shape retrieval. It is also possible to improve the performance of existing 3D re-
construction algorithms using the proposed highly descriptive and robust TriSI
feature.

In spite of these positive points, our TriSI feature is not without limitation.
The TriSI feature is designed for rigid objects, and it may face challenges when
dealing with deformable objects. In future works, the intrinsic geodesics can
be integrated with the TriSI feature to achieve invariance to isometric deforma-
tions. In addition, the TriSI feature is best suited for objects with rich shape
and geometric information. Completely symmetric and bland objects (e.g., a
balloon) or planar objects (e.g., a wall) cannot be addressed and are out of the
scope of these types of features. However, these objects can be addressed by
integrating both shape and color information [18]. Finally, all object recognition
experiments were conducted in indoor environments. In future works, we intend
to explore in depth the application of the TriSI-based algorithm for large-scale
object recognition from 3D point clouds in urban environments.

7. Conclusion

In this paper, we proposed a novel TriSI feature for local surface descrip-
tion. Feature matching experiments demonstrated that the TriSI feature was
highly descriptive. It was also very robust to Gaussian noise, Laplacian noise,
shot noise, varying mesh resolutions, occlusion, and clutter. We also proposed a
hierarchical 3D object recognition algorithm. Extensive experiments were per-
formed on a number of standard and challenging datasets that incorporate a set
of variations including complicated backgrounds, real noise, varying mesh reso-
lutions, occlusion, clutter, and various imaging techniques. The Experimental
results showed that the TriSI-based algorithm achieved the best overall results
on all of these datasets. It consistently outperformed the state-of-the-art algo-
rithms. Our future work will include an implementation of the proposed TriSI
feature in C++ that is compatible with the Point Cloud Library (PCL) [37].
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