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Abstract. In this paper, we study the conjunction of possibility measures

when they are interpreted as coherent upper probabilities, that is, as upper
bounds for some set of probability measures. We identify conditions under

which the minimum of two possibility measures remains a possibility measure.

We provide graphical way to check these conditions, by means of a zero-sum
game formulation of the problem. This also gives us a nice way to adjust the

initial possibility measures so their minimum is guaranteed to be a possibility

measure. Finally, we identify conditions under which the minimum of two pos-
sibility measures is a coherent upper probability, or in other words, conditions

under which the minimum of two possibility measures is an exact upper bound

for the intersection of the credal sets of those two possibility measures.

1. Introduction

1.1. Possibility Measures: Why (Not). Imprecise probability models [36] are
useful in situations where there is insufficient information to identify a single proba-
bility distribution. Many different kinds of imprecise probability models have been
studied in the literature [37]. It has been argued that closed convex sets of proba-
bility measures, also called credal sets, provide a unifying framework for many—if
not most—of these models [36, 24].

A downside of using credal sets in their full generality is that they can be com-
putationally quite demanding, particularly in situations that involve many random
variables. Therefore, in practice, it is often desirable to work with simpler models
whose practicality compensate their limited expressiveness. Possibility measures
[39, 15, 8, 10] are among the simplest of such models, and present a number of
distinct advantages:

• Possibility measures can be easily elicited from experts, either through
linguistic assessments [9] or through lower confidence bounds over nested
sets [29].
• Possibility distributions provide compact and easily interpretable graphical

representations.
• In large models, when exact computations are costly, possibility measures

can be simulated straightforwardly through random sets [1] (for example
to propagate uncertainty through complex models [2]).
• Lower and upper expectations induced by possibility measures can be com-

puted exactly by Choquet integration [32, Section 7.8].
• When interpreted as sets of probability measures, possibility measures have

a limited number of extreme points [25, 22]. Many inference algorithms,
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for instance many of those used in graphical models, employ extreme point
representations: using possibility measures in such algorithms will reduce
the computational effort required.

An obvious disadvantage of using a family of simpler models is that the family
may not be rich enough to allow certain standard operations. For instance, multi-
variate joint models obtained from possibilistic marginals are usually not possibility
distributions [26], hence outer-approximating possibility measures have been pro-
posed [33, 13] to allow one to use the practical advantages of such models.

1.2. Formulation of the problem. In this paper, we focus exclusively on the con-
junction of two models, that is, the intersection of two credal sets. The conjunction
is of interest, for instance, when possibility measures have been elicited from dif-
ferent experts, and we want to know which probability measures are compatible
with the assessments of all experts simultaneously. As such, the conjunction is a
combination rule that aggregates pieces of information consisting of several inputs
to the same problem.

Many combination rules for imprecise probability models are discussed in the
literature; see for instance [6, 27, 18, 20, 4, 11]. In this paper, we define the con-
junction of two possibility measures as the upper envelope of the set of probability
measures that are compatible (i.e., dominated) by both. The following questions
arise:

• It may happen that there is no probability measure that is compatible
with both possibility measures, in which case the conjunction does not
exist. In the language of imprecise probability theory, this means that the
conjunction incurs sure loss. When does this happen?
• Even when there is at least one probability measure that is compatible

with both possibility measures, the upper envelope may not be a possibil-
ity measure. In order words, it is not guaranteed that the conjunction on
possibility measures is closed [18]. When is the conjunction of two possi-
bility measures again a possibity measure? If it is not, can we effectively
approximate it by a possibility measure?
• Finally, if the conjunction is a possibility measure, can we express that

possibility measure directly in terms of the two possibility measures that
we are starting from, without going through their credal sets?

We will answer each of the questions above, using the notions of avoiding sure
loss, coherence and natural extensions from the behavioural theory of imprecise
probabilities [36]. The main contributions of this paper are:

• From a theoretical viewpoint, we provide sufficient and necessary conditions
for the intersection to be again a credal set that can be represented by a
possibility measure (Theorems 14 and 16).
• From a practical perspective, we derive from these conditions correction

strategies such that the intersection of the corrected models is an outer-
approximating possibility distribution (Lemma 21 and Theorem 22).

Interestingly, some of our results can be proven quite elegantly by means of standard
results from zero-sum game theory (Theorem 15). This theory also leads us to a
graphical method to check the conditions and to apply the correction strategy
(Section 4.3).
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1.3. Related literature. The literature on the conjunction of possibility measures
is somewhat scarce. However, there are quite a few related results that have been
proven in the context of evidence theory, which from a formal point of view includes
possibility theory as a particular case.

The compatibility of two possibility measures, meaning that the intersection of
their associated sets of probabilities is non-empty, was characterised by Dubois and
Prade in [17]. Related work for belief functions was done by Chateauneuf in [5].

With respect to the conjunction of two possibility measures again being a possi-
bility measure, a necessary condition is the coherence of the minimum of these two
possibility measures. This coherence was investigated by Zaffalon and Miranda in
[40]. We are not aware of any necessary and sufficient conditions for the conjunction
determining a possibility measures, and the only existing results are counterexam-
ples showing that this need not be the case: see [17], and also [5] for the case of
belief functions.

A related problem that has received more attention is the connection between
conjunction operators of possibility theory and the conjunction operators of evi-
dence theory: for example Dubois and Prade [16] study how Dempster’s rule relate
to possibilistic conjunctive operators, and Destercke and Dubois [12] relate belief
function combinations to the minimum rule of possibility theory.

1.4. Structure of the paper. The paper is organised as follows. Section 2
presents the notation we use and the problem we propose to tackle, namely the
properties of the conjunction of two possibility measures. We begin in Section 3
by providing conditions for the intersection of the credal sets associated with two
possibility measures to be non-empty, which means that the conjunction of the
possibility measures avoids sure loss. Then we investigate in which cases this con-
junction is a coherent upper probability, meaning that it is the upper envelope
of a credal set (namely, the intersection of the two credal sets determined by the
possibility measures).

As we shall see, the coherence of the conjunction of two possibility measures
does not guarantee it is a possibility measure itself. We deal with this problem in
Section 4, by studying under which conditions the upper probability resulting from
the minimum of two possibility measures is again a possibility measure. We also
provide a graphical way to check these conditions that we also use to propose some
correction strategy, as well as some illustrative and practical examples.

When this conjunction avoids sure loss but is not coherent, we can always con-
sider its natural extension, that corresponds to taking the upper envelope of the
intersection of the credal sets, and that is the greatest coherent upper probability
that is dominated by the conjunction of the two possibility measures. In Section 5,
we consider the problem of establishing when this natural extension is a possibility
measure. Section 6 illustrates the usefulness of our results on a medical diagnosis
problem. We conclude the paper in Section 7 with some additional comments and
remarks.

2. Notation

2.1. Upper Probabilities, Conjunction, Possibility Measures. Consider a
possibility space X . In this paper, we assume that X is finite. ℘(X ) denotes the
power set (set of all subsets) of X . A function Q : ℘(X )→ [0, 1] is called a probability
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measure [21] whenever Q(A ∪ B) = Q(A) + Q(B) for all A and B ⊆ X such that
A ∩B = ∅, and Q(X ) = 1. The set of all probability measures is denoted by P.

A function P : ℘(X ) → [0, 1] is called an upper probability [34, 36]. We can
interpret P (A) behaviourally as a subject’s infimum acceptable selling price for the
gamble that pays 1 if A obtains, and 0 otherwise [30, 36]. The credal set M induced
by P is defined as the set of probability measures it dominates,

(1) M := {Q : Q ∈ P ∧ (∀A ⊆ X )(Q(A) ≤ P (A))}.
We say that P avoids sure loss when its credal set is non-empty. In this case, the
natural extension E of P is defined as the upper envelope of its credal set, that is

(2) E(A) := max
Q∈M

Q(A) for every A ⊆ X .

An upper probability is called coherent if it coincides with its natural extension,
that is, if P (A) = E(A) for all A ⊆ X . As a consequence, if P avoids sure loss
then its natural extension is the greatest coherent upper probability it dominates.
A coherent upper probability P is always sub-additive: P (A ∪B) ≤ P (A) + P (B)
for any disjoint subsets A and B of X .

The conjunction [35] of two upper probabilities P 1 and P 2 is defined as

(3) P (A) := min{P 1(A), P 2(A)} for every A ⊆ X .
It embodies the behavioural implications of both P 1 and P 2. Unfortunately, even
if both P 1 and P 2 are coherent, the conjunction P may not be coherent. One can
check that the credal set of the conjunction of P 1 and P 2 is the intersection of the
credal sets of P 1 and P 2 [35]:

(4) M =M1 ∩M2.

If M is non-empty, P can be made coherent through its natural extension.
In this paper, we will be interested in coherent upper probabilities of a very spe-

cific form. A function π : X → [0, 1] is called a (normalized) possibility distribution
[39, 15, 8, 19] whenever

(5) max
x∈X

π(x) = 1.

A possibility distribution π induces a possibility measure Π: ℘(X )→ [0, 1] by

(6) Π(A) := max
x∈A

π(x) for every A ⊆ X .

A possibility measure is a coherent upper probability [37, p. 37].

2.2. Conjunction of Two Possibility Measures. Consider two possibility dis-
tributions π1 and π2 that induce possibility measures Π1 and Π2, with associated
credal sets M1 and M2. As just mentioned, the conjunction of these two possi-
bility measures is the upper envelope of M = M1 ∩ M2, and is denoted by E.
Alternatively, E is the most conservative (i.e. pointwise largest) coherent upper
prevision which is dominated by the upper probability P defined by

(7) P (A) := min{Π1(A),Π2(A)}
for all events A ⊆ X . Throughout the entire paper, we will use the symbols π1, π2,
Π1, Π2, M1, M2, M, P , and E, always as defined in this section.

Note that, in general P may not avoid sure loss (in which case the conjunction
does not exist), or may be incoherent (in which case P does not coincide with
E), and even when it is coherent, it may not be a possibility measure itself. In
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this paper, we investigate in detail each of these cases, by providing necessary and
sufficient conditions for P to satisfy each of these properties.

3. Avoiding sure loss and coherence

We begin by investigating under which conditions the upper probability deter-
mined by the conjunction of two possibility measures avoids sure loss or is coherent.
These are the minimal behavioural conditions established by Walley in [36].

3.1. When does P avoid sure loss? It is not difficult to show that P does not
avoid sure loss in general.

Example 1. Let X = {1, 2} and

1 2
π1 1 0.3
π2 0.5 1

Then any probability measure Q ∈ M1 ∩ M2 must satisfy Q({1}) ≤ 0.5 and
Q({2}) ≤ 0.3. This is incompatible with 1 = Q({1, 2}) = Q({1}) + Q({2}), and
therefore M1 ∩M2 = ∅.

The following theorem, proven by Dubois and Prade [17, Lemma 5], gives a
necessary and sufficient condition for the upper probability P to avoid sure loss:

Theorem 2. [17] P avoids sure loss if and only if for all A ⊆ X

(8) 1 ≤ Π1(A) + Π2(Ac).

This result was also established for belief functions by Chateauneuf in [5], who
refers to the non-empty intersection of the credal sets as the compatibility of their
associated imprecise probability models; see also [7]. Other characterisations of
avoiding sure loss for the conjunction of possibility measures can be found in [17,
Propositions 6 and 7].

3.2. When is P coherent? Recall that P is coherent if and only if it coincides
with its natural extension E, that is, if and only if it coincides with the upper
envelope of its credal set M, as in Eq. (2). The conjunction P can be incoherent
even if it avoids sure loss, as the following example shows:

Example 3. Let X = {1, 2, 3} and

1 2 3
π1 1 0.3 0.5
π2 0.5 1 0.7

Then every probability measure Q ∈ M =M1 ∩M2 must satisfy Q(A) ≤ P (A) =
min{Π1(A),Π2(A)} for all A ⊆ X . In particular,

Q({1}) ≤ 0.5, Q({2}) ≤ 0.3, Q({3}) ≤ 0.5,(9)

Q({1, 2}) ≤ 1, Q({1, 3}) ≤ 0.7, Q({2, 3}) ≤ 0.5.(10)

Since Q({1}) ≤ 0.5 and Q({2}) ≤ 0.3 imply that Q({1, 2}) ≤ 0.8, but on the
other hand P ({1, 2}) = 1, it follows that P is incoherent. Still, P avoids sure loss
because M contains the probability measure Q with Q({1}) = 0.5, Q({2}) = 0.3,
and Q({3}) = 0.2.
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Given a credal setM, the upper envelope of the set of expectation operators with
respect to the elements ofM is called a coherent upper prevision. The conjunction of
two coherent upper previsions with respective credal setsM1 andM2 is coherent if
and only ifM1∪M2 is convex [40, Theorem 6]. From the proof of [40, Theorem 6,
(a)⇒(b)⇒(c)], one can easily see that convexity of M1 ∪ M2 is still sufficient
(but not necessary) for the conjunction of two upper probabilities on events to
be coherent. This leads immediately to the following sufficient condition for the
coherence of P :

Proposition 4. P is coherent if M1 ∪M2 is convex.

The convexity ofM1∪M2 can be checked in polynomial time [3]. The following
example shows that convexity of M1 ∪M2 is not necessary for P to be coherent.
It simultaneously shows that P does not need to be a possibility measure, even if
it is coherent.

Example 5. Let X = {1, 2, 3} and

1 2 3
π1 1 0.5 0.5
π2 0.5 1 0

Then P is the probability measure with probability mass function (0.5, 0.5, 0). This
is not a possibility measure, but it is a coherent upper probability (because it is
trivially the upper envelope of itself).

Also, M1 ∪M2 is not convex. Using vector notation for probability mass func-
tions, we have that

(11) (0.5, 0.25, 0.25) ∈M1 and (0.25, 0.75, 0) ∈M2

but their average (0.375, 0.5, 0.125) does not belong to M1 ∪M2, because

(12) Q({2, 3}) = 0.625 > 0.5 = Π1({2, 3}) and Q({3}) = 0.125 > 0 = Π2({3}).

Indeed, that Q(A) > Πi(A) for some event A implies that Q 6∈ Mi.

Regarding [40, Theorem 6], let P 1 and P 2 denote the upper envelopes of the
sets of expectation operators with respect to the credal sets M1 and M2 in this
example. Then the conjunction min{P 1, P 2} is not equal to the expectation oper-
ator associated with (0.5, 0.5, 0) = M1 ∩M2. To see this, consider the gamble f
given by f(1) = 1, f(2) = 2, and f(3) = 3. For this gamble, Q(f) = 1.5 < 2 =
min{P 1(f), P 2(f)}.

Next we show that the minimum P of two possibility measures can be a coherent
upper probability that is not even 2-alternating (and thus not a possibility measure,
either). Recall that P is 2-alternating if P (A) + P (B) ≤ P (A ∪B) + P (A ∩B) for
any A,B ⊆ X .

Example 6. Let X = {1, 2, 3, 4} and

1 2 3 4
π1 0.3 0.4 0.6 1
π2 0.3 0.6 0.4 1
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It can be shown by linear programming that P is coherent. However, it is not
2-alternating: for A = {1, 2} and B = {1, 3}, it holds that

P (A ∪B) + P (A ∩B) = P ({1, 2, 3}) + P ({1}) = 0.6 + 0.3 = 0.9(13)

> P (A) + P (B) = P ({1, 2}) + P ({1, 3}) = 0.8.(14)

The following result is rather surprising: we can show that the conjunction P of
two possibility measures is 2-alternating when M1 ∪M2 is convex; it strengthens
Proposition 4.

Proposition 7. P is 2-alternating if M1 ∪M2 is convex.

Proof. By [34, Corollary 6.4], to show that P is 2-alternating, it suffices to establish
that for every A ⊆ B ⊆ X there is a Q ∈ M such that Q(A) = P (A) and
Q(B) = P (B).

Consider A ⊆ B ⊆ X . Because Π1 is a possibility measure and therefore 2-
alternating, there is a Q1 ∈ M1 such that Q1(A) = Π1(A) and Q1(B) = Π1(B).
Similarly, there is a Q2 ∈ M2 such that Q2(A) = Π2(A) and Q2(B) = Π2(B).
Now, since M1 ∪M2 is convex, it follows from [40, Theorem 6] that there is an
α ∈ [0, 1] such that Q := αQ1 + (1 − α)Q2 belongs to M1 ∩M2 = M, and as a
consequence Q is dominated by P :

Q(A) ≤ P (A) Q(B) ≤ P (B).(15)

But, by construction of Q, we also have that that

Q(A) = αQ1(A) + (1− α)Q2(A)

≥ min{Q1(A), Q2(A)} = min{Π1(A),Π2(A)} = P (A)(16)

Q(B) = αQ1(B) + (1− α)Q2(B)

≥ min{Q1(B), Q2(B)} = min{Π1(B),Π2(B)} = P (B).(17)

Concluding, Q(A) = P (A) and Q(B) = P (B), so P is 2-alternating. �

To see that the convexity ofM1∪M2 does not guarantee that P is a possibility
measure, consider the following example:

Example 8. Let X = {1, 2} and

1 2
π1 0.5 1
π2 1 0.5

Then P is the probability measure determined by the probability mass function
(0.5, 0.5), which is obviously not a possibility measure. However, M1 is the set
of all probability measures Q for which Q({x1}) ≤ 0.5, and M2 is the set of all
probability measures Q for which Q({x1}) ≥ 0.5, so M1 ∪ M2 is the set of all
probability measures on X , which is convex.
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From the proof of Proposition 7, we see that the convexity ofM1∪M2 is actually
a really strong requirement. Specifically, it requires that, for all A ⊆ B,

Π1(A) < Π2(A) =⇒ Π1(B) ≤ Π2(B)(18)

Π1(A) > Π2(A) =⇒ Π1(B) ≥ Π2(B)(19)

Π1(B) < Π2(B) =⇒ Π1(A) ≤ Π2(A)(20)

Π1(B) > Π2(B) =⇒ Π1(A) ≥ Π2(A)(21)

Indeed, ifM1∪M2 is convex, following the proof of Proposition 7, taking Eqs. (16)
and (17) and noting that Qi(A) = Πi(A) and Qi(B) = Πi(B), we know that there
is an α ∈ [0, 1] such that

αΠ1(A) + (1− α)Π2(A) = min{Π1(A),Π2(A)}(22)

αΠ1(B) + (1− α)Π2(B) = min{Π1(B),Π2(B)}(23)

So, if Π1(A) < Π2(A), then it must be that α = 1 by the first equality, and therefore
also Π1(B) ≤ Π2(B) by the second equality. The other cases follow similarly.

These implications give us a simple way to check for typical violations of con-
vexity of M1 ∪M2, through the following corollary.

Corollary 9. IfM1∪M2 is convex, then for all subsets A, B, and C of X such that
Π1(A) < Π2(A), Π1(B) > Π2(B), and C ⊇ A ∪B, we have that Π1(C) = Π2(C).

In a way, Example 8 is thus showing a very peculiar situation (corresponding to
A = {x1}, B = {x2}, and C = {x1, x2} in Corollary 9).

One of the advantages of possibility measures over other imprecise probability
models is their computational simplicity, that follows from Eq. (6): possibility mea-
sures are uniquely determined by their restriction to singletons, called their possi-
bility distributions. Moreover, possibility distributions connect possibility measures
with fuzzy sets [39]. The minimum of two possibility distributions was defined by
Zadeh as one instance of fuzzy set intersection. However, the connection between
imprecise probabilities and fuzzy sets by means of possibility measures does not hold
under the conjunction operator we are considering in this paper, in the sense that,
as we have seen in Example 6, coherent conjunctions of possibility measures need
not be determined by their restrictions to singletons. One might wonder if these
restrictions suffice to characterise the coherence of P . Clearly, a necessary condition
for the coherence of P is that for every x ∈ X there is some Q ∈ M1 ∩M2 such
that Q({x}) = P ({x}). However, this condition is not sufficient, as the following
example shows.

Example 10. Let X = {1, 2, 3} and

1 2 3
π1 0.8 0.2 1
π2 0.2 0.9 1

Then (0, 0, 1) belongs to M1 ∩ M2, so P avoids sure loss. However, it is not
coherent because P ({1, 2}) = 0.8 > P ({1}) + P ({2}) = 0.4.

One can easily check that both (0.2, 0.2, 0.6) and (0, 0, 1) are inM1∩M2, and that
(0.2, 0.2, 0.6) achieves the upper bound for {1} and {2}, and (0, 0, 1) achieves the
upper bound for {3}. We have thereby shown that P ({x}) = maxQ∈M1∩M2 Q({x})
for all x ∈ X .
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The following graph summarises the implications between conditions established
in this section:

P possibility

M1 ∪M2 convex P 2-alternating P coherent

∀x ∈ X :
P ({x}) = max

Q∈M
Q({x})

The examples in this section show that the converses of these implications do
not hold in general. To see that there is no implication between the convexity of
M1 ∪M2 and P being a possibility measure, consider Example 8 above as well as
Example 11 later on.

4. When is P a possibility measure?

Next, we are going to study under which conditions the conjunction P of two
possibility measures is again a possibility measure. We shall begin by providing a
simple sufficient (yet not necessary) condition, followed by more advanced necessary
and sufficient conditions. One of them will establish a link with game theory, along
with a corresponding method for graphical verification.

4.1. Sufficient conditions. Clearly, P is a possibility measure (and therefore also
coherent) when π1(x) ≤ π2(x) for all x ∈ X , or equivalently, when Π1(A) ≤ Π2(A)
for all A ∈ X , since then M(P ) = M1 ∩M2 = M1. This condition means that
the possibility measure Π1 is more specific [38, 14] than Π2. However, this is not
the only case in which the conjunction of possibility measures is again a possibility
measure, as the following example shows.

Example 11. Let X = {1, 2, 3} and

1 2 3
π1 1 0.5 0.7
π2 1 0.6 0.6

Then

P ({1}) = 1, P ({2}) = 0.5, P ({3}) = 0.6(24)

P ({1, 2}) = 1, P ({1, 3}) = 1, P ({2, 3}) = 0.6.(25)

Thus, P is a possibility measure, even though π1(2) < π2(2) and π1(3) > π2(3).
We can also note that, in this case, M1 ∪M2 is not convex: Π1({2}) < Π2({2}),
Π1({3}) > Π2({3}), and yet Π1({2, 3}) = 0.7 6= 0.6 = Π2({2, 3}); now use Corol-
lary 9.

In the example, the possibility distributions π1 and π2 follow the same order, in
the sense that πi(2) ≤ πi(3) ≤ πi(1) for both i = 1 and i = 2. This ordering con-
dition turns out to be sufficient for the conjunction of the two possibility measures
to be again a possibility measure:
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Theorem 12. P is a possibility measure whenever there is an ordering x1, . . . , xn
of the elements of X such that for both i = 1 and i = 2 we have that

(26) πi(x1) ≤ πi(x2) ≤ · · · ≤ πi(xn).

Proof. Consider A ⊆ X and let j(A) := max{j ∈ {1, . . . , n} : xj ∈ A}. Then, by
Eq. (26), Πi(A) = πi(xj(A)), and so

P (A) = min{Π1(A),Π2(A)} = min{π1(xj(A)), π2(xj(A))}(27)

= P ({xj(A)}) = max
xi∈A

P ({xi})(28)

where the last equality follows from

(29) P ({x1}) ≤ P ({x2}) ≤ · · · ≤ P ({xn}),
which also follows from Eq. (26). Thus, P is a possibility measure. �

Equivalently, this means that P is a possibility measure when π1 and π2 are
comonotone functions. To see that this sufficient condition is not necessary, simply
note that it may not hold when π1 ≤ π2:

Example 13. Let X = {1, 2, 3} and

1 2 3
π1 1 0.9 0.8
π2 1 0.5 0.6

Then Π2 ≤ Π1, so P = min{Π1,Π2} = Π2 is a possibility measure. However, π1

and π2 are not comonotone because π1(2) > π1(3) and π2(2) < π2(3).

4.2. Sufficient and necessary conditions. Next we give a necessary and suffi-
cient condition for P to be a possibility measure. It will allow us to make a link
with game theory.

Theorem 14. P is a possibility measure Π if and only if

(30) min

{
max
x∈A

π1(x),max
x∈A

π2(x)

}
= max

x∈A
min{π1(x), π2(x)}

for all non-empty A ⊆ X . In such a case, E coincides with P , and whence, E is a
possibility measure as well.

Proof. Note that the left hand side is P (A).
“if”. If the equality holds, then P is a possibility measure, and therefore is

coherent. Whence, E = P , and so E is a possibility measure too.
“only if”. On the one hand, by the definition of P ,

(31) P (A) = min{Π1(A),Π2(A)} = min

{
max
x∈A

π1(x),max
x∈A

π2(x)

}
On the other hand, if P is a possibility measure, its possibility distribution must
be π(x) = P ({x}) = min{π1(x), π2(x)}, and so,

(32) P (A) = max
x∈A

min{π1(x), π2(x)}.

Combining both equalities, we arrive at the desired equality. �

Theorem 14 has a very nice game-theoretic interpretation. Consider a zero-sum
game with two players, where player 1 can choose α from {1, 2} and player 2 can
choose β from {1, . . . , n}, with the following payoffs to player 1:



A STUDY OF THE CONJUNCTION OF POSSIBILITY MEASURES 11

β = 1 . . . β = n
α = 1 a11 . . . a1n

α = 2 a21 . . . a2n

This table with payoffs to player 1 is called the payoff matrix. For example, if
(α, β) = (2, 3), then player 1 gains a23 and player 2 loses a23. A pair (α, β) is called
pure strategy.

A pure strategy (α̂, β̂) is said to be in equilibrium if it does not benefit either
player to change his choice if the other does not change his choice [23, p. 62–64]:

(33) aα̂β̂ = max
α

aαβ̂ = min
β
aα̂β

Theorem 15. P is a possibility measure Π if and only if for all non-empty A ⊆ X ,
the zero-sum game with choices α ∈ {1, 2} and β ∈ A, and payoffs aαβ := −πα(β),
has a pure equilibrium strategy.

Proof. “if”. If the zero-sum game associated with A ⊆ X has a pure equilibrium

strategy (α̂, β̂), then [23, p. 67]

(34) aα̂β̂ = max
α

min
β
aαβ = min

β
max
α

aαβ .

But aαβ := −πα(β), so this is precisely Equation (30).

“only if”. If P is a possibility measure, then Equation (30) can be rewritten as

(35) max
α

min
β
aαβ = min

β
max
α

aαβ .

This means that the zero-game has a pure equilibrium strategy, for example

α̂ := argmax
α

min
β
aαβ β̂ := argmin

β
aα̂β(36)

�

Although Theorem 15 is in essence nothing more but a rephrasing of Theorem 14,
it highlights an interesting fact: we can use any method for solving 2× n zero-sum
games in order to determine whether our conjunction P is a possibility measure.

The traditional way of finding pure equilibrium strategies goes by removing
dominated options from the game, until only a single strategy remains. For 2 × n
games, this is a particularly simple process: it suffices first to remove columns that
are not optimal for player 2, and then to check whether, in the payoff matrix that
remains, one of the rows dominates the other. For example, consider the following
2× 4 game with the following payoff to player 1:

β = 1 β = 2 β = 3 β = 4
α = 1 3 2 2 4
α = 2 0 3 1 0

We can remove the column β = 2 because its payoff is higher than the payoff of
column β = 3 regardless of α—remember that the column player wants to minimize
the payoff. We can also remove the column β = 4 because its payoff is higher than
the payoff of column β = 1 regardless of α. No further columns can be removed.
Now, in the remaining payoff matrix, the row α = 2 can be removed because its
payoff is lower than the payoff of row α = 1—remember that the row player wants
to maximize the payoff. So, the row player will play α = 1. In the remaining row
α = 1, clearly β = 3 achieves the minimum payoff for player 2. This game therefore

has a pure equilibrium strategy, namely (α̂, β̂) = (1, 3).
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The two sufficient conditions provided in Section 4.1 follow immediately from
Theorem 15. Indeed, let A = {a1, a2, . . . , am} ⊆ X . By Theorem 15, we need to
consider the payoff matrix

β = 1 . . . β = k . . . β = m
α = 1 −π1(a1) . . . −π1(ak) . . . −π1(am)
α = 2 −π2(a1) . . . −π2(ak) . . . −π2(am)

• If π1(x) ≤ π2(x) for all x ∈ X , then clearly −π1(x) ≥ −π2(x) for every x ∈
A, regardless ofA. Therefore the first row of the payoff matrix will dominate
the second row. As player 1 aims to maximize his payoff, α = 1 will achieve
his optimal strategy, regardless of what player 2 does. Consequently, the
second row can be eliminated, and the pure equilibrium is reached for α = 1
and β = argmink∈{1,...,m}{−π1(ak)}.
• If there is an ordering x1, . . . , xn of the elements of X such that πi(xj) ≤
πi(xj+1) for all i ∈ {1, 2} and j ∈ {1, . . . , n − 1} then, without loss of
generality, we may assume that the elements a1, . . . , am of A are ordered
reversely, that is, −πi(ak) ≤ −πi(ak+1) for all i ∈ {1, 2} and k ∈ {1, . . . ,m−
1}. But then the first column is dominated by all other columns. As player
2 aims to minimize his payoff, β = 1 will achieve his optimal strategy,
regardless of what player 1 does. Consequently, all columns other than the
first can be eliminated, and the pure equilibrium strategy is reached for
α = argmaxi∈{1,2}{−πi(a1)} and β = 1.

It is important to note that not every 2 × n game has a pure equilibrium. For
example, consider the 2× 2 zero-sum game with the following payoff matrix:

β = 1 β = 2
α = 1 1 0
α = 2 0 1

Luce and Raiffa [23, Appendices 3 and 4] discuss two very nice graphical ways
of representing and solving 2 × n zero-sum games. Both methods are particularly
suited also to determine whether there are pure equilibrium points. Without going
into too much detail, their first method makes it easy to identify whether player
1 has a pure equilibrium strategy, whilst their second method makes it easy to
identify whether player 2 has a pure equilibrium strategy. Because player 2 must
have a pure equilibrium strategy whenever player 1 has a pure one, the first method
is most straightforward for our purpose.

First, we draw all lines fβ(p) := pa1β + (1 − p)a2β , for p ∈ [0, 1] and all β ∈ A.
We then determine the lower envelope fA(p) of these lines:

(37) fA(p) := min
β∈A

fβ(p).

Note that fA will be a concave function. If fA is monotone (i.e. has its maximum
at p = 0 or p = 1), then there is a pure equilibrium point.

A further substantial gain can be made by recognising that the monotonicity
of a concave function fA(p) between p = 0 and p = 1 is uniquely determined by
f ′A(0) and f ′A(1): f is monotone if and only if f ′A(0)f ′A(1) ≥ 0. Because fA(p) is
piece-wise linear, it suffices therefore to look at the left-most line and right-most
line only: the lower envelope is monotone if and only if these lines are sloped in
the same direction. Consequently, for application to Theorem 15, it suffices to look
at pairs of lines. In fact, it suffices to look at pairs of intersecting lines, because if
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the lines do not intersect, then the lower envelope is linear and so guaranteed to be
monotone.

We have thus reached the following rather surprising result, for which we also
give a simple proof that does not rely on zero-sum games:

Theorem 16. P is a possibility measure if and only if

(38) min
i∈{1,2}

(
max
j∈{1,2}

πi(xj)

)
= max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
for all {x1, x2} ⊆ X . In such a case, E coincides with P , and whence, E is a
possibility measure as well.

Proof. First, note that Eq. (38) is equivalent to saying that

(39) P ({x1, x2}) = max{P ({x1}), P ({x2})}

for every {x1, x2} ⊆ X . We show that this is indeed equivalent to P being a
possibility measure

‘if’. Consider any non-empty A ⊆ X . Let

x1 := argmax
x∈A

π1(x), x2 := argmax
x∈A

π2(x).(40)

Since Π1 and Π2 are possibility measures, it immediately follows that

Π1(A) = Π1({x1}) = Π1({x1, x2}),(41)

Π2(A) = Π2({x2}) = Π2({x1, x2}).(42)

Consequently,

P (A) = min{Π1(A),Π2(A)}(43)

= min{Π1({x1, x2}),Π2({x1, x2})}(44)

= P ({x1, x2})(45)

and now applying Eq. (38),

= max{P ({x1}), P ({x2})(46)

≤ max
x∈A

P ({x})(47)

The converse inequality follows by monotonicity of P—indeed, both Π1 and Π2

are monotone, so their minimum must be monotone too. Specifically, for every
x ∈ A we have that Π1(A) ≥ π1(x) and Π2(A) ≥ π2(x), so

P (A) = min{Π1(A),Π2(A)} ≥ min{π1(x), π2(x)} = P ({x})(48)

and therefore P (A) ≥ maxx∈A P ({x}). Thus, P (A) = maxx∈A P ({x}) and as a
consequence it is a possibility measure.

‘only if’. If P is a possibility measure then P (A) = maxx∈A P ({x}) for all
non-empty A ⊆ X , and in particular also for all A = {x1, x2}. Eq. (39) follows. �
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Figure 1. Example 17 game-theoretic figure.

4.3. Examples. The verification of Theorem 15 entails looking at every pair of
lines fβ and fγ , and checking:

• whether fβ and fγ intersect for some 0 < p < 1, that is, whether fβ(p) =
fγ(p) for some 0 < p < 1;
• if so, whether fβ and fγ have the same slope.

If for all intersecting pairs, both lines have the same slope, then the conditions of
Theorem 15 are satisfied, and the conjunction will be a possibility measure.

Let us first provide an example, inspired by Sandri et al. [29], where the condi-
tions hold.

Example 17. Two economists provide their opinion about the value (X = {1, . . . , 9})
of a future stock market:

1 2 3 4 5 6 7 8 9
π1 1 0.95 0.95 0.8 0.7 0.2 0.3 0.1 0.05
π2 1 0.8 0.6 0.7 0.6 0.6 0.3 0.4 0.1

which are pictured as fβ for β ∈ {1, . . . , 9} in Figure 1. We actually pictured
−fβ, to make it easier to relate the lines to the possibility distributions. It can
be checked that the conditions required by Theorem 15 hold for every pair. This
means that the merged opinion P of the two economists can be represented as a
possibility distribution. Figure 1 makes verification even easier: there are only
three intersecting pairs, namely (f3, f4), (f6, f7), and (f7, f8), and in each pair,
both lines have the same slope. Consequently, P is a possibility measure induced by
the possibility distribution

1 2 3 4 5 6 7 8 9
π 1 0.8 0.6 0.7 0.6 0.2 0.3 0.1 0.05

When π1 and π2 do not satisfy the conditions of Theorem 15, our graphical
verification technique also allows us to heuristically adjust π1 and π2 into new
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Figure 2. Example 18 game-theoretic figure and adjustment (in dashed).

possibility distributions that do satisfy the conditions of Theorem 15. The next
example illustrates this heuristic procedure.

Example 18. Two economists provide the following opinions:

1 2 3 4 5 6 7 8
π1 1 0.9 0.7 0.6 0.5 0.4 0.3 0.1
π2 0.8 0.2 1 0.6 0.1 0.2 0.3 0.9

The left hand side of Figure 2 depicts our graphical method. Many pairs of in-
tersecting lines have opposite slopes, for instance (f8, f2). Therefore, the condi-
tions of Theorem 15 are not satisfied. Interestingly, there is no x ∈ X such that
π1(x) = π2(x) = 1—this is a necessary condition for P to be a possibility measure;
see proof of Lemma 21(c) further on.

A possible adjustment that allows to satisfy the conditions of Theorem 15, can
be done for example by modifying f1, f2 and f8, so that f1 and f2 become posi-
tively slopped, and so that f8 no longer intersects with f5—of course, conservative
adjustments should only be done by moving lines upwards. The right hand side
of Figure 2 shows the adjusted lines dashed. They result in the following adjusted
possibility distributions:

1 2 3 4 5 6 7 8
π′1 1 0.9 0.7 0.6 0.5 0.4 0.3 0.5
π′2 1 0.9 1 0.6 0.1 0.2 0.3 0.9

The resulting adjusted conjunction is:

1 2 3 4 5 6 7 8
π′ 1 0.9 0.7 0.6 0.1 0.2 0.3 0.5

It is clear that any upward adjustment implies a loss of information. In general,
there is no unique adjustment minimizing this loss. In any case, upward adjustment
ensures that the obtained result will be consistent with the initial information, as
it will give an outer approximation.



16 ENRIQUE MIRANDA, MATTHIAS C. M. TROFFAES, AND SÉBASTIEN DESTERCKE

If there is an element x such that π1(x) = π2(x) = 1, then adjustments can also
be done downwards, in which case the obtained approximation would be an inner
approximation.

5. When is E a possibility measure?

The above condition for P to be a possibility measure is obviously sufficient for
E to be a possibility measure. However, the condition is not necessary, as shown
by the next example:

Example 19. Let

1 2 3
π1 1 1 0
π2 1 0 1

The credal set of the conjunction is the singleton M = {Q} for which Q({1}) =
1 (and zero elsewhere), because this is the only probability measure that satisfies
Q({x}) ≤ P ({x}) for all x. Whence, the natural extension E of P is obviously a
possibility measure.

Nevertheless, P is not a possibility measure. Indeed,

(49) min
i∈{1,2}

(
max
j∈{2,3}

πi(j)

)
= max
j∈{2,3}

(
min
i∈{1,2}

πi(j)

)
as the left hand side is one, and the right hand side is zero. This is because P is
not a coherent upper probability, since P ({2, 3}) = 1 > P ({2}) + P ({3}).

Indeed, when P is coherent then it coincides with E, and therefore in that case
E is a possibility measure if and only if P is. Below, we state a number of necessary
conditions for E to be a possibility measure. So far, we failed to identify a condition
that is both sufficient and necessary.

Lemma 20. If E is a possibility measure Π, then there is an x ∈ X such that
π(x) = π1(x) = π2(x) = 1.

Proof. If E is a possibility measure, then E({x}) = π(x) = 1 for at least one x ∈ X .
For any such x,

(50) 1 = E({x}) ≤ min{π1(x), π2(x)},
whence, it can only be that π1(x) = π2(x) = 1 for such x. �

Of course, if E is a possibility measure and P is not coherent, then E and P
will not coincide on all events. We shall show next that they are always guaranteed
to coincide on the singletons. In order to see this, note that if P is a possibility
measure, then its possibility distribution is given by

(51) π(x) := min{π1(x), π2(x)} = P ({x}).
We denote the possibility measure determined by this distribution by

(52) Π(A) := max
x∈A

π(x).

We can establish the following.

Lemma 21. The following statements hold.

(a) P ≥ Π.
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(b) Π is normed if and only if there is an x ∈ X such that P ({x}) = 1. In that
case, P avoids sure loss and P ≥ E ≥ Π.

(c) P is a possibility measure if and only if P = Π.
(d) E is a possibility measure if and only if E = Π.

Proof. (a) Consider any A ⊆ X . Observe that, for any x ∈ A,

max
x′∈A

π1(x′) ≥ π1(x) ≥ π(x),(53)

max
x′∈A

π2(x′) ≥ π2(x) ≥ π(x).(54)

Whence,

(55) P (A) = min

{
max
x′∈A

π1(x′),max
x′∈A

π2(x′)

}
≥ π(x)

for all x ∈ A. We immediately arrive at the desired inequality.
(b) Π is normed if and only if there is some x ∈ X such that π(x) = P ({x}) = 1.

In that case, the degenerate probability measure on x belongs to M1 ∩
M2, and as a consequence P avoids sure loss. Moreover, Π is then a
coherent upper probability that is dominated by P , whence Π must also be
dominated by the natural extension E of P , because E is the point-wise
largest coherent upper probability that is dominated by P [36, 3.1.2(e)].

(c) If P is a possibility measure, then P ({x}) = 1 for some x ∈ X . Conse-
quently, by (b)

(56) P (A) ≥ E(A) ≥ Π(A) for all A ⊆ X .

Because P ({x}) = min{π1(x), π2(x)} = Π({x}) for all x ∈ X , it follows
that also

(57) P ({x}) = E({x}) = Π({x}) for all x ∈ X .

Because both P and Π are possibility measures, they are uniquely deter-
mined by their restriction to singletons, and therefore P = Π. The converse
implication is trivial.

(d) Similarly, if E is a possibility measure, then E({x}) = 1 for some x ∈ X .
Because P ≥ E, it can only be that also P ({x}) = 1 for that same x.
Consequently, by (b), Eq. (56) must hold here as well. Again, because
P ({x}) = min{π1(x), π2(x)} = Π({x}) for all x ∈ X , it follows that Eq. (57)
holds here too. Because both E and Π are possibility measures, they are
uniquely determined by their restriction to singletons, and therefore E = Π.
(Note that P does not always coincide with Π in this case because P may not
be a possibility measure; see Example 19.) Again, the converse implication
is trivial. �

To see that Π need not be normed for P to avoid sure loss (or even to be
coherent), it suffices to consider Example 5. However, for P to be a possibility
measure, Π need to be normed, as we can deduce from Lemma 21(c).

Lemma 21(a) also indicates that taking the minimum between two possibility
distributions π1 and π2, which is the most conservative conjunctive operator in
possibility theory, will always provide an inner approximation of P when P is
not a possibility measure. In a way, our heuristic method for adjusting possibility
distributions to ensure that the conjunction is a possibility measure provides an even



18 ENRIQUE MIRANDA, MATTHIAS C. M. TROFFAES, AND SÉBASTIEN DESTERCKE

more conservative conjunctive operator, which in addition also ensures coherence
unlike the plain minimum operator.

The next result shows that Example 19 hinges on π1 and π2 not being strictly
positive.

Theorem 22. Let π1 and π2 be two strictly positive possibility distributions. Then
E is a possibility measure if and only if P is a possibility measure.

Proof. ‘if’. If P is a possibility measure, then P is coherent, and therefore coincides
with its natural extension. So, E will be a possibility measure as well.

‘only if’. If E is a possibility measure then, by Lemma 21(d), E = Π, with π
and Π defined as in Eqs. (51) and (52). In particular, there is some x∗ ∈ X such
that E({x∗}) = P ({x∗}) = π1(x∗) = π2(x∗) = 1.

Assume ex-absurdo that P is not a possibility measure. By Theorem 16, there
must be {x1, x2} ⊆ X such that

(58) min
i∈{1,2}

(
max
j∈{1,2}

πi(xj)

)
6= max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
This inequality can only hold if the matrix

(59)

[
π1(x1) π1(x2)
π2(x1) π2(x2)

]
has neither dominating rows nor dominating columns, or in other words, we must
have either

(60)
π1(x1) < π1(x2)
∧ ∨

π2(x1) > π2(x2)
or

π1(x1) > π1(x2)
∨ ∧

π2(x1) < π2(x2)

Without loss of generality, we can assume that the first situation holds, as we can
always swap x1 and x2. From these strict inequalities, it follows that

max{π1(x1), π2(x2)} = max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
= max{E({x1}), E({x2})},(61)

where last equality follows from Lemma 21(d). So, if we can show that

(62) E({x1, x2}) > max{π1(x1), π2(x2)},

then we have established a contradiction. By Eqs. (1) and (2), it suffices to show
that there is a Q ≤ P such that

(63) Q({x1, x2}) > max{π1(x1), π2(x2)}.

Now, a probability measure Q which is zero everywhere except on {x1, x2, x
∗}

satisfies Q ≤ P if and only if all of the following inequalities are satisfied:

Q({x1}) ≤ π1(x1)(64)

Q({x2}) ≤ π2(x2)(65)

Q({x1}) +Q({x2}) ≤ min{π1(x2), π2(x1)}(66)

Indeed, consider any A ⊆ X .

(a) If A ∩ {x1, x2, x
∗} = ∅ then Q(A) = 0, and no constraints are required.

(b) If x∗ ∈ A ∩ {x1, x2, x
∗} then P (A) = 1, and no constraints are required.
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(c) If A∩ {x1, x2, x
∗} = {x1} then Q(A) = Q({x1}). Clearly, Q({x1}) ≤ P (A)

for all such A if and only if

(67) Q({x1}) ≤ P ({x1}) = min{π1(x1), π2(x1)} = π1(x1).

This is precisely Eq. (64).
(d) If A∩ {x1, x2, x

∗} = {x2} then Q(A) = Q({x2}). Clearly, Q({x2}) ≤ P (A)
for all such A if and only if

(68) Q({x2}) ≤ P ({x2}) = min{π1(x2), π2(x2)} = π2(x2).

This is precisely Eq. (65).
(e) If A ∩ {x1, x2, x

∗} = {x1, x2} then we obtain Q(A) = Q({x1, x2}). Clearly,
Q({x1, x2}) ≤ P (A) for all such A if and only if

Q({x1, x2}) ≤ P ({x1, x2}) = min{Π1({x1, x2}),Π2({x1, x2})}(69)

= min{π1(x2), π2(x1)}(70)

where the last equality follows from Eq. (60) (left case). This is precisely
Eq. (66).

So, we are done if we can construct a probability measure Q on {x1, x2, x
∗}

which simultaneously satisfies Eqs. (63), (64), (65), and (66).
Also note that we always have x∗ 6= x1 and x∗ 6= x2 (and obviously also x1 6= x2),

because Eq. (60) (left case) implies that π1(x1) < 1 and π2(x2) < 1, so {x1, x2, x
∗}

always contains exactly three elements.
We consider two cases.
1. If π1(x1) + π2(x2) ≤ min{π1(x2), π2(x1)}, then the probability measure Q

with

Q({x1}) := π1(x1), Q({x2}) := π2(x2), Q({x∗}) := 1− (π1(x1) + π2(x2))(71)

clearly satisfies Eqs. (64), (65), and (66). We also have that

(72) Q({x1, x2}) = Q({x1}) +Q({x2}) = π1(x1) + π2(x2) > max{π1(x1), π2(x2)}

because both π1(x1) and π2(x2) are strictly positive by assumption, so Eq. (63) is
satisfied as well, finishing the proof for this case.

2. If π1(x1) + π2(x2) > min{π1(x2), π2(x1)}, then the probability measure Q
with

Q({x1}) := π1(x1),(73)

Q({x2}) := min{π1(x2), π2(x1)} − π1(x1),(74)

Q({x∗}) := 1− (min{π1(x2), π2(x1)})(75)

clearly satisfies Eqs. (64), (65), and (66). We also have that

(76) Q({x1, x2}) = min{π1(x2), π2(x1)} > max{π1(x1), π2(x2)}

where the strict inequality follows from Eq. (60) (left case), so Eq. (63) is satisfied
as well, finishing the proof for this case. �
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6. Exampe: a simple medical diagnosis problem

To conclude this paper, we illustrate our results on a medical diagnosis problem,
inspired by Palacios et al. [28].

Consider X = {d, h, n} where d, h, and n stand for dyslexic, hyperactive and
no problem, respectively. As is explained by Palacios et al. [28], it may be difficult
for physicians to recognize between dyslexia and hyperactivity of children, yet it is
important to provide reliable information.

Let us now assume that the available information is expressed by means of pos-
sibility distributions: these may be the result of a classification process [28] or of
an elicitation procedure. We wish to provide a joint summary of these distribu-
tions which is still representable as a possibility distribution, for instance because
we want to use it in methods tailored for possibility distributions, or because it is
easier to present possibility distributions to physicians.

Example 23. Two physicians provide the following possibility distributions:

d h n
π1 1 0.5 0.2
π2 1 0.3 0.4

The two physicians actually agree that dyslexia is quite possible, but they are not in
agreement on the possibility of the other two options.

The conjunction P := min{Π1,Π2} avoids sure loss: for example, the probability
measure Q with Q({d}) = 1 is dominated by P . It can be verified that P is coherent.
Interestingly, the condition of Proposition 4 is not satisfied: no convex combination
of the probability measures determined by the mass functions (0.5, 0.3, 0.2) ∈ M1

and (0.6, 0, 0.4) ∈M2 belongs to M1 ∪M2.
The natural extension E of P , which is the upper envelope of the credal set

M1 ∩M2, coincides with P in this example, because P happens to be coherent:

E({d}) = 1 E({h}) = 0.3 E({n}) = 0.2(77)

E({h, n}) = 0.4 E({d, h}) = E({d, n}) = E({d, h, n}) = 1.(78)

However, E is not a possibility measure because

(79) E({h, n}) = 0.4 > max{E({h}, E({n})} = 0.3.

The graphical procedure summarized at the beginning of Section 4.3 suggests a
possible correction of π2 for the conjunction to become a possibility measure:

d h n
π′2 1 0.4 0.4

By Theorem 12, the conjunction of π1 and π′2 is then a possibility measure with
possibility distribution

d h n
π 1 0.4 0.2

which is still quite informative.

7. Conclusions

In this paper, we have characterized in different ways the conjunction of two
possibility measures. In particular, we have addressed the following questions:

(1) When does the conjunction avoid sure loss?
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(2) When is the conjunction coherent?
(3) When is the conjunction again a possibility measure?
(4) When is the natural extension of the conjunction again a possibility mea-

sure?

For each of these, we have provided both sufficient and necessary conditions. We
demonstrated through many examples that these conditions remain quite restric-
tive; this seems to be the price to pay for working with possibility distributions.

From a practical point, one result that we find particularly interesting is the
game-theoretic characterization of the conditions under which the conjunction is
again a possibility measure. Indeed, this characterization offers a very simple and
convenient graphical verification method. It can also be used in practice to heuris-
tically adjust possibility distributions to ensure that their conjunction remains a
possibility distribution.

It is not too difficult to extend some of our results to the conjunction of more
than two possibility measures, by noting that the conjunction can be taken in a
pairwise sequential manner. Note nevertheless that these pairwise conjunctions
being possibility measures is sufficient, but not necessary, for the conjunction of all
the possibility measures to be a possibility measure. For some other results, such
as Theorem 16, some adjustments should be made.

As for future lines of research, we would like to point out a few. It would be
interesting to study under what conditions possibility measures are closed under
other combination rules, such as those discussed in [17, 27, 31]. We could also study
if the results can be extended to infinite possibility spaces; although clearly the
game-theoretic interpretation may prove problematic in this respect. Finally, many
other imprecise probability models, such as belief functions, probability boxes, and
so on, might benefit from similar studies.
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