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Abstract

This work has been motivated by the growing demand of energy coming
from the Information Technology (IT) sector. We propose a goal-oriented
approach where the state of the system is assessed using a set of indicators.
These indicators are evaluated against thresholds that are used as goals of
our system. We propose a self-adaptive context-aware framework, where we
learn both the relations existing between the indicators and the e�ect of the
available actions over the indicators state. The system is also able to respond
to changes in the environment, keeping these relations updated to the cur-
rent situation. Results have shown that the proposed methodology is able to
create a network of relations between indicators and to propose an e�ective
set of repair actions to contrast suboptimal states of the data center. The
proposed framework is an important tool for assisting the system administra-
tor in the management of a data center oriented towards Energy E�ciency
(EE), showing him the connections occurring between the sometimes con-
trasting goals of the system and suggesting the most likely successful repair
action(s) to improve the system state, both in terms of EE and Quality of
Service (QoS).
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1. Introduction

The general interest about environmental issues is continuously growing.
One of the main contributors to pollution and energy consumption is Infor-
mation Technology (IT). The impact of technology and its growing rate is
evident at the everyday scale, and even more signi�cant at a larger scale.

This work has been motivated by this recent attention towards Green
IT and Energy E�ciency (EE) [1][2][3] from di�erent perspectives (usage of
resources, applications, and networks), and by the growing demand of en-
ergy coming from IT. This demand is comparable with the one of the major
countries and it is expected to keep growing in the next years [4]. In this
work we focus on e�ciency considering the data center level, with a special
attention to the contribution of Service Oriented Architectures (SOAs) to
energy consumption and performance. In SOAs, applications hosted in the
servers are services that can be represented by processes. Each service is
decomposed in a set of activities connected in a work�ow. Recently, virtu-
alization and cloud computing have changed the way resources are handled
in a data center, allowing a more dynamic redistribution of computational
resources among the several applications hosted by the data center or the
cloud. As a consequence, the waste of resources is (potentially) reduced.

We face the problem of EE by proposing a comprehensive approach. The
approach includes the de�nition of the goals for the organization, the selec-
tion of metrics for the assessment of the system state, and the de�nition of
techniques for the improvement of the system. In order to do so, we propose
the use of a goal-oriented approach.

The context in which we are going to implement our goal-oriented ap-
proach for EE is a data center composed of several servers, each one with
di�erent features in terms of amount and kind of components. We focus on
the application perspective for improving e�ciency. For this reason we are
not considering issues related to cooling or other facilities, but we look in de-
tails at applications and their IT infrastructure. We consider that the data
center uses virtualization for hosting its applications and we consider that
each single activity runs on a dedicated Virtual Machine (VM). A monitor-
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ing system is available for monitoring the system behavior with sensors that
can work at several levels: data center level, server level, Virtual Machine
level, and application level. Di�erent kinds of monitoring systems can be
employed (e.g. Zabbix1 and Nagios2), as they do not have any in�uence on
the approach.

The purpose of this work is to design a model which allows the described
environment to improve its behavior in terms of EE while respecting con-
straints related to the Quality of Service (QoS) required by the users. The
tradeo� between these two perspectives is a challenging topic nowadays and
has been faced in many research papers [5][6][7]. However, most of the ap-
proaches underestimate the complexity of the environment they describe. A
data center, especially modern data centers employing techniques such as vir-
tualization and consolidation, is a dynamic environment where the number
of applications and their con�guration and deployment are continuously and
rapidly changing. Also, external factors can impact on the performance and
e�ciency of the deployed applications, due to servers overload or to service
unavailability. In such an environment, adaptation techniques requiring hu-
man intervention can be applied but at the cost of a lack of reactivity in the
system. An automatic approach is needed to maximize the performance of
the data center and to optimize its e�ciency in terms of energy consumption
by applying a set of adaptation techniques. In the literature, several tech-
niques for adaptation are described and their e�ectiveness is proved. Starting
from this knowledge we propose a methodology for modeling adaptation in
data centers while automatically reacting to its dynamic modi�cations.

The main contributions of this work can be summarized as follows:

• De�nition and learning of a goal-oriented model for e�ciency
management An adaptation approach is proposed to learn a goal-
oriented model for e�ciency management. The aim of the model is to
provide an adaptive environment able to automatically react to subop-
timal situations by enacting adaptation strategies that impact directly
or indirectly over e�ciency and quality. The model is not derived from
the knowledge of an expert, but it is build starting from available data
using machine learning techniques. It is also able to automatically
respond to modi�cations in a dynamic environment.

1http://www.zabbix.com/
2http://www.nagios.org/
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• Representation and learning of indicators relations We express
the relations occurring among the various metrics used for monitoring
the system state. These relations are very important for predicting the
future behavior of the system and for conducting what-if analysis.

• Adaptive strategy selection E�ects of actions over EE and QoS are
automatically learned providing an adaptive and dynamic environment.

In order to realize the described model, we used a goal-driven approach
where two layers are de�ned: a goal layer and a treatment layer. Goals
correspond to the desired values for a set of metrics collected through the
monitoring system, such as the energy consumption of the data center or
of the physical machine and the QoS provided measured in terms of re-
sponse time or throughput. Relations among metrics are represented using a
Bayesian Network (BN) and automatically learned through the employment
of machine learning techniques, such as a modi�cation of the Max-Min Hill
Climbing Algorithm (MMHC) [8] for learning links and the Maximum a Pri-
ori Estimation (MAP) for learning parameters [9]. Results have shown that
the proposed methodology is able to learn the whole model from a set of
monitored data. Given the model, it is possible to decide which is the best
repair action in order to bring the system in a new con�guration as near as
possible to the optimal one, given a speci�c context for the system. Repair
strategies are contained in the treatment layer and examples are migration,
server switch o�/on, and VM resources recon�guration, or combinations of
them. The e�ect of actions over the system are learned using the Multi
Armed Bandit Selection (MABS) paradigm [10] and properly adapting the
Adaptive Operator Selection (AOS) algorithm [11]. Once learned, the model
can be used to prescribe the best adaptation action given a context.

The rest of this work is organized as follows. In Sect. 2 we analyze other
approaches using adaptive models to manage EE and/or QoS of a data center.
Then we propose our approach in Sect. 3. In Sect. 4 and Sect. 5 we analyze
in details the two layers of the proposed model and show how it can be used
to improve the system state in Sect. 6. Finally we discuss some experimental
results (Sect. 7) and future work (Sect. 8).

2. State of the Art

In this work we focus on EE from the application perspective by adopting
the SOA approach, where web services are supported and provided in terms
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of Business Processes (BPs). In a SOA, interactions between several services
and the combination in which they are used inside a process can be easily
modi�ed, by providing a �exible architecture.

One of the issues that have to be faced is the dynamism of the environment
where the availability and quality of the o�ered services can change due to
several external and unpredictable factors, such as a modi�cation of the load
of a server or the unavailability of a VM. In this case, the system needs to be
modi�ed to respond to these modi�cations in order to respect the contract
agreed with the user through the Service Level Agreement (SLA).

The issue of adaptive services has been one of the main goals of the S-Cube
Network3, which developed adaptation concepts and techniques for SOAs in-
cluding proactive adaptation and predictive monitoring techniques [12]. An-
other approach is discussed in [13], where authors propose a QoS based Web
Service framework, WebQ, which enables the selection of an appropriate ser-
vice for each of the tasks in the underlying work�ow, and dynamically re�nes
existing services by keeping high the performance level. In the present work,
we consider adaptation at the application level, considering adaptive actions
similar to the one described in [12] and [13], but we propose a more compre-
hensive approach considering adaptation also at other levels (infrastructure
and virtual level adaptation) and by considering EE in conjunction with QoS.

The framework proposed in [6] aims at avoiding Key Performance Indi-
cators (KPIs) violation considering in�uential factors between metrics. The
approach is based on the construction of a dependency tree learned using
machine learning techniques. Adaptation actions are described by their pos-
itive and negative e�ects on metrics. To select the best strategy, the �rst
step consists in selecting the set of KPIs for which violation has to be pre-
vented. Once metrics are identi�ed, in�uential factors are analyzed using
the dependency tree, by retrieving the desired state for each of the metrics
in order to avoid violations. The next step consists in selecting the set of
actions that improve each violated metric without negatively a�ecting other
metrics. The resulted set of actions is combined using a Cartesian combi-
nation and ranked considering negative e�ects over other metrics (the less
the better). This work shows the importance of building a model to pro-
vide adaptation in SOAs by describing e�ects of actions over indicators and
by stressing the importance of being aware of how indicators in�uence each

3http://www.s-cube-network.eu/
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other. The motivations of the described approach are similar to ours and also
the methodology has some signi�cant similarities even if di�erent techniques
are employed. However, some limitations can be highlighted. First of all, the
in�uential factors existing among indicators and the e�ects of actions over
indicators are statically and manually de�ned by the user. We think that
this is a �rst step towards adaptation, but not enough in a dynamic environ-
ment such as a modern data center. Also, adding a new indicator or a new
action requires to build again the model from scratch, while we want to cre-
ate a mechanism that can automatically react to this kind of modi�cations.
Finally, the approach considers only the application level, without exploring
the in�uence of indicators and repair actions de�ned at the infrastructure
and at the virtualization level, considered in our approach.

A goal-oriented approach for EE has been also proposed in [14], where pro-
cesses are represented using Goal Requirement Language (GRL) to improve
EE. In this approach, EE goals are modeled as non functional requirements.
A goal is de�ned as the objective that the organization wants to achieve
which can be a business and a system goal. Goals related to non functional
requirements are called soft-goals, while tasks are di�erent strategies that can
be used to achieve a goal, which can be decomposed in subtasks. Di�erent
kinds of links are used to relate all the elements of the model, expressing the
kind and the strength of the relation. This approach allows the authors to
deal with performance and energy issues at the same time, even if the main
focus is on performance. The approach starts from a context-based model
proposed in [15] where three layers are considered for modeling a goal-driven
adaptive approach, namely treatment, event, and goal. In this approach the
focus is on requirement engineering instead of EE. The main limitation of
these approaches is that they do not manage the dynamism of the modeled
environment, proposing a static model created by experts.

Arti�cial intelligence and machine learning techniques can give an im-
portant contribution in the management of complex and dynamic environ-
ments such as a data center, and an opportunity to implement best practices
and improve EE. One possible application is the detection of hidden rela-
tions among variables. A recent study conducted by Google [16] employs a
neural network framework that learns from monitored data to model plant
performance and predict Power Usage E�ectiveness (PUE). This approach
identi�es interactions existing among components, automatically searching
for patterns in the monitored data. In the speci�c case, a neural network is
used to predict the outcome of some modi�cations over the PUE, but the
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technique is general and can be used to predict more and di�erent variables
enabling what-if analysis for several aspects of the data center.

Another application of arti�cial intelligence consists in a support to de-
cision making. In [7] authors use Dynamic Fuzzy Q-Learning (DFQL) to
optimize energy-performance tradeo�. Q-Learning is a model free reinforce-
ment learning algorithm. It computes state-action qualities as the reward
of taking action a in state s, by partitioning continuous states and creat-
ing fuzzy rules associated with a set of actions. Each action is associated
to a quality factor which is continuously updated. The approach combines
exploration and exploitation using double ε-Greedy algorithm. The algo-
rithm considers CPU performance, disk, RAM and network, splitting the
work among a local manager (which decides when to migrate a VM) and a
global manager (issuing migrations and power state modi�cations). A similar
issue is faced in [17], where authors propose an algorithm for host overload
detection by maximizing the mean inter-migration time under the speci�ed
QoS goal based on a Markov chain model. In order to be e�ective, the algo-
rithm needs to work with stationary workloads. The QoS metric is de�ned as
Overload Time Fraction (OTF) measuring the percentage of time in which
the host has been overloaded. Only CPU is considered and the state space is
discrete and de�ned in terms of CPU usage intervals. A probability matrix
is computed in order to model the transition among states.

Optimizing based on the tradeo� between EE and QoS is also the goal of
the approach proposed in [18], using a Constrained Markov Decision Process
(CMDP) for adaptation. Repair strategies are limited to frequency scaling
and turning on/o� of servers. The model de�nes a tuple {X,A, P, c, d} where
X is the set of possible states, A(x) is the set of actions available at state X,
P is a transition probability from a state to another one applying action a, c
is an immediate cost that has to be minimized (energy), and d is a vector of
costs related to a set of constraints (QoS). Some assumptions are made when
de�ning the model (e.g., all servers are of the same type and CPU is the
bottleneck). The performance of the system is measured using request time
and adjustments are activated by the violation of a threshold over the jobs
queue length. The algorithm for adaptation tries to improve the situation by
increasing CPU frequency. If frequency is higher than a given threshold, a
new server is activated. The approach has been evaluated using simulation.

According to what has been discussed, machine learning has proven to
be an important resource when dealing with modeling dynamic and com-
plex environments. This gave us a good motivation to employ some of the
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techniques described (Decision Support Systems, Reinforcement Learning,
Markov Decision Processes) to reach our goal.

In this work, we propose a goal-driven approach to EE considering also
a set of QoS metrics as goals of our system. We propose a model able
to automatically discover hidden relations among variables of the system at
di�erent levels (application, virtual, and physical), and to automatically learn
the e�ect of adaptation actions. Contrary to other approaches discussed in
this section, the number of states of the system does not need to be de�ned a-
priori. Also, we consider a non-binding set of metrics for measuring both EE
and QoS. Moreover, we consider a more complete set of adaptation actions,
modifying the action selection according to the current context of the system.
Finally, the proposed approach does not require any constraint about the
physical components employed, allowing the usage of heterogeneous servers.

3. A Goal-Oriented Model for Green Data Centers

The model adopted as a basis for our approach is a goal-driven model
for EE. It is obtained from a simpli�cation of the approach proposed in
[19], following the path started in [20]. In [19], authors present a model for
risk assessment where three layers are depicted: a goal layer where the goals
and their relations are described, an event layer where events that can impact
over the goals are described, and a treatment layer where a set of actions and
their ability to mitigate the e�ect of events are modeled. In [20], the authors
apply the model to a di�erent �eld, by focusing on e�ciency and QoS in data
centers, focusing on the event layer. Goals are represented by a set of metrics
for which the value has to be maintained inside a given interval. When a
violation occurs, an event is raised. The adaptation process is composed
of two phases: the event creator and the adaptation strategy selector. In
the �rst phase, the state of the system is analyzed in order to identify the
violations that can be considered signi�cant. In fact, temporary violations
can be ignored since they can automatically recover without enacting any
strategy. The aim of the approach proposed in [20] is to identify which
events are signi�cant and which are not.

The aim of the proposed approach is to provide a model depicting in-
teractions in the system, which can be used to lead the system towards a
better con�guration through adaptation. The goal-oriented model, depicted
in Fig. 1, is composed of two layers:
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Figure 1: The goal-driven approach for Energy E�ciency

• Goal Layer: this layer is composed by the goals of the system and the
relations existing among them;

• Treatment Layer: it is composed of a set of repair actions that can be
used to react to suboptimal situations.

Repair strategy are enacted when the violation of a threshold over the
indicators value occurs. Even if not explicitly shown, we are referring to
the event creator described in [20] to consider only relevant violations, while
ignoring temporary ones.

In the proposed approach, goals are represented through satisfaction of
a set of metrics used to monitor the system state. In the IEEE standard
glossary of software engineering terminology published in 1990 [21], metrics
are de�ned as follows:

�A metric is a quantitative measure of the degree to which

a system, component, or process possesses a given attribute. A

qualitative metric is a quantitative measure of the degree to

which an item possesses a given quality attribute.�

According to this de�nition, the qualitative metrics are the parameters
that have to be computed from measurements of the system behavior. In our
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approach, the metrics of interest are related to EE and QoS of the data center.
Examples are response time, throughput, energy consumption, VM and host
resources utilization. Finally, the term indicator is de�ned as follows [21]:

�An indicator is a variable that can be set to a prescribed state

based on the results of a process or the occurrence of a speci�ed

condition.�

An indicator can be seen as an instance of a metric, applied to a speci�c
aspect of a system and associated with a comparative term used to assess
if the monitored value is in line with the prescribed one or not. Examples
of indicators in our approach would be CPU utilization of a speci�c VM or
of a speci�c host, both associated with a range of desirable values. Given a
set of available metrics, the system administrator has to be able to choose a
subset of them able to lead the system towards its goals. According to this,
we de�ne the system state as follows:

De�nition 1. The state of the system at a given time t is composed

of the values of all the indicators selected to lead the system towards the

prede�ned goals at the time t:

state(t) = {I1(t) . . . In(t) . . . IN(t)} (1)

where In(t) is the value of indicator n at time t and N is the number of

selected metrics.

Once indicators are selected, a monitoring system has to be installed or
con�gured accordingly to this selection. Indicators give relevant informa-
tion about the actual system state and the desired state, allowing focusing
attention over signi�cant aspects that need to be improved. One or more
thresholds are associated to each indicator:

De�nition 2. A threshold is a constraint or a reference value de�ned for

an indicator, dependent on the pursued goals. A set of thresholds associated

to an indicator de�nes the interval of allowed values for a speci�c goal.

Thresholds allow the system administrator to compare the current sit-
uation with the optimal one and to understand which aspects should be
improved. The satisfaction of these thresholds represents the goal layer of
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Figure 2: Indicator thresholds intervals with �ve states

the proposed model. In general, three zones can be de�ned for each indica-
tor as previously discussed in [22]: (i) the normal zone identi�es the values
that are in the desired range; (ii) the alarm zone identi�es values out of the
desired range; (iii) the warning zone identi�es values that are still in the
normal zone but near to be in the alarm zone. In general, two thresholds
need to be de�ned for each indicator, namely ThresholdMin and Threshold-

Max, de�ning where the alarm zone starts. The dimension of the warning
zone can be de�ned automatically using Eq. 2:

size(Warning(In)) = γ · (ThresholdMax− ThresholdMin)

2
(2)

with γ ∈ [0, 1]. The value of γ depends on the strategy chosen by the designer.
A value near to 1 can be used in order to adopt a proactive approach, where
the problem needs to be identi�ed before its actual veri�cation. On the
contrary, a small value can be used for a reactive behavior, reacting only
when the violation is near to occur. A value from 1 to 5 can be assigned to
each of the zones represented in Fig. 2, increasing left to right. This value is
used for identifying the state of an indicator.

We can de�ne the context C of the system as:

De�nition 3. The context C is the state of the indicators in a given

moment in which the system is evaluated. This state can be of three kinds:

satis�ed, violated or almost violated, corresponding to the indicators zones

normal, alarm and warning.

Relations exist between di�erent goals and their satisfaction, since indi-
cators are not necessarily independent from each other. That means that
a goal satisfaction/violation can have e�ects on other goals of the system.
Relations are expressed through links among goals in the model of Fig. 1.

Whenever a goal is not satis�ed, something needs to be done. We indicate
these treatments as repair actions :

11



De�nition 4. A repair action Al is a modi�cation of some aspects of the

system which can be used in the attempt of improving the system state. Each

action can have a positive or negative outcome over one or more indicators

in the system, depending on the context C in which it is applied.

A repair action can contribute to improve the state of the speci�c indi-
cator but can also be damaging for it. This e�ect is depicted in the model
using an annotated link between actions and indicators. The annotation on
the link indicates the ability of the action of increasing (�+�) or decreasing
(�-�) the value of the indicator when applied. If this e�ect is positive or neg-
ative for the indicator is evaluated according to the context. Examples of
repair actions are VM recon�guration or migration.

Starting from the de�ned model, we propose a methodology for manag-
ing QoS and EE in data centers from an application perspective. Modern
data centers continuously evolve their con�guration and the way applica-
tions are deployed. Thereby, an approach aiming at dealing with such an
environment needs being able to adapt to modi�cations, reducing human in-
tervention. According to this, we propose a technique to automatically learn
relations among the goals of the system, represented using a BN, as described
in Sect. 4. We also de�ne available actions and automatically learn the links
connecting actions and goals by proposing an adaptive approach called Adap-
tive Action Selection (AAS), inspired to the AOS approach (Sect. 5). The
system is able to respond to changes in the environment, keeping these rela-
tions updated to better �t the current situation.

The proposed framework can be an important tool for assisting the sys-
tem administrator in the management of a data center oriented towards EE.
Connections among goals can be used to predict the outcome of modi�ca-
tions in the system and can put light over unexpected connections occurring
between the sometimes contrasting goals. Moreover, action-to-goal connec-
tions enable a repair mechanism suggesting the most likely successful repair
action(s) to improve the system state, both in terms of EE and QoS. The
AAS algorithm is designed to dynamically update its knowledge about the
actions e�ects, �tting a system that can frequently change in time.

4. De�ning and Learning the Goal Layer

In this section we analyze the goal layer, composed of a set of indicators,
described in Sect. 4.1, and of the relations existing among them (Sect. 4.2).
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Table 1: Green Performance Indicators and Key Performance Indicators

Indicator Levels Description

Energy all levels The amount of energy used by a component
in the system. It is measured in kilowatt-
hour

CPU Usage VM, host The ratio between the amount of CPU used
and the amount of CPU allocated

Memory Usage VM, host The amount of memory used as a fraction of
memory allocated. It is a number between
0 and 1

Response Time application Time elapsed between the start and the
completion of an instance of an activity. It
is measured in seconds

I/O throughput application The number of I/O operations that each ac-
tivity executes per time unit

Performance per Energy application The number of transactions that each ac-
tivity executes per energy unit expressed in
kilowatt-hour

Throughput application The number of operations that each activity
executes per time unit

Storage Usage application, host The amount of disk space used as a fraction
of total disk space allocated

4.1. Goal De�nition

An indicator can be de�ned as a measure of a relevant aspect of an or-
ganization or a system, and it can be used to assess the success of an entire
organization or of a speci�c department. The assessment is lead by the def-
inition of strategic goals or, at a lower level, of organizational goals. The
selection of a relevant set of indicators is an important and non trivial ac-
tivity in the life-cycle of a system, since it requires a good understanding
of what is important to the organization. Usually, performance aspects are
privileged, but even the economical and green aspects should be considered.
Indicators allow the organization to assess the current state of the system and
to identify the key activities. They also enable the identi�cation of potential
improvements. Indicators can be de�ned at di�erent granularity levels, de-
pending on the level of detail used to collect the information that participates
in their computation. Possible levels are: host, VM, and application. Values
at the di�erent levels can be computed starting from the measurements in
the �nest level and aggregating them along di�erent dimensions.

Several metrics and their de�nition have been analyzed and discussed in
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[23], and a subset of indicators is shown in Tab. 1. This subset has been se-
lected considering the most considered metrics in the literature for measuring
both EE and QoS. However, this set is only used as an example and other
metrics can be considered without changing the nature of the approach.

The selected indicators allow the data center administrator to investigate
the state of the system in terms of QoS and EE. In order to decide the
satisfaction intervals for each indicator we referred to two main sources. The
�rst source is the client who establishes constraints about the performance of
his applications through the SLA. The second source is the Green Grid Data
Center Maturity Model (DCMM) [24], a document suggesting best practices
for energy e�cient data centers by indicating some thresholds related to
resource usage percentages. The threshold de�nition issue has been discussed
in more details in a previous work [25].

4.2. Learning Relations among Goals

In a data center, the set of metrics used to assess EE and QoS are not
independent in many cases. In some contexts, metrics can have a negative
e�ect on others, but they can be also related by positive interactions. It
means that improving the state of one indicator can improve the state of
another one related to it. Also, these in�uences can change in time if the
environment where the metrics are collected is subject to modi�cations. For
these reasons, it seems very important to investigate about the relations
between indicators. Knowing these relations has multiple advantages when
trying to improve the e�ciency (in terms of quality and energy) of the data
center. First of all it enables an indirect �xing approach: the violation of an
indicator can be �xed acting directly over the indicator, or intervening over
other indicators that result to be related to it. Moreover, a what-if analysis
approach is also possible: the knowledge about relations allows us to predict
how the variables of the system react to a modi�cation of an indicator state,
predicting possible critical outcomes.

In this paper, we propose a methodology for automatically learning re-
lations between indicators by automatically building a Bayesian Network
representing the relations between the indicators violation and/or satisfac-
tion, starting from the data collected by the monitoring system. Indicators
are represented by the nodes of the network, while relations between indica-
tors are represented through edges. A Conditional Probability Table (CPT)
corresponds to each edge expressing the relations between each of the states
of the two indicators involved. The proposed approach is used to build the
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Figure 3: Bayesian Network Learning Approach

higher level of the goal oriented model represented in Fig. 1. A graphical
synthesis of the approach is represented in Fig. 3.

The �rst step in learning the BN is to discover the relations between in-
dicators which can be translated in learning the edges connecting variables.
There are plenty of techniques in the state of the art to learn the structure
of a BN from collected data [26][27][28]. However, they require discrete or
Gaussian variables. The values obtained through the monitoring system are
continuous variables. Transforming continuous values into discrete values
applying thresholds is not a solution since it reduces the amount of infor-
mation available to compute relations. The noise introduced by thresholds
application in learning BN is also discussed in [9]. We propose an algorithm
to learn a BN starting from continuous variables. First, we use correlations
to discover relations between variables, using the Pearson product-moment
correlation coe�cient, by dividing the covariance for the product of the stan-
dard deviations σ as shown in Eq. 3. The covariance is a value expressing
how two variables change together and is computed using the expected value
function E[X]. Values of the correlation can be both positive and negative,
and are included in the range [−1, 1]. A positive value indicates an increas-
ing linear relationship between X and Y , while a negative value indicates
an anti-correlation, or a decreasing linear relationship. The nearer is the
correlation value to 1 (or -1), the stronger is the relation.

ρX,Y =
cov(X, Y )

σX · σY
=
E[(X − E[X])(Y − E[Y ])]

σX · σY
(3)

15



The second step concerns learning the directions of edges. In fact, using
the correlation matrix to obtain the structure of the BN is not straightfor-
ward, since correlation is a symmetric property and no information is given
about the directionality of the relations. On the contrary, BNs are oriented
graphs, so a direction needs to be speci�ed for each edge in the network.
In order to �nd the network that better describes our dataset, we apply a
technique to learn directionality inspired to the approach described in [8].
Knowing the possible parent-children set for each node, obtained putting a
threshold over the correlation matrix, we can apply a MMHC-like algorithm
to orient the edges. The algorithm starts from an empty matrix and at each
step explores all the neighbor networks, by adding, removing or reverting
edges. A Directed Acyclic Graph (DAG) is considered neighbor of another
Directed Acyclic Graph (DAG) if it has the same structure except for one
connection that can be added, removed or reverted. All the networks ob-
tained are scored and the one with the highest score is chosen for the next
step. Scoring functions are available in literature [29] and they assign a score
to a BN according to its ability to describe a training set. The MMHC algo-
rithm is enriched using the concept of TABU list during the greedy search,
following the Sparse Candidate implementation [30]. This list contains the
lastM explored structures and select the best DAG from the neighbors list
that does not belong to the TABU list.

Once the structure of the BN has been learned, the model has to be
completed learning CPT tables. Here, we use the Maximum a Priori Estima-
tion, that learns parameters given a training set of data. The training set is
obtained applying thresholds to the indicators e�ective values, since we are
interested in predicting the state of indicators.

The complete network can be used to predict the state of an indicator,
when it is unknown. In fact, the network is able to suggest the most likely
values given a context (the state of the other indicators in our system). This
property can be used in what-if analysis. Unlike other techniques introduced
in Sect. 2, the model is valid for each kind of load and does not require
to work with prede�ned stationary workloads or a homogeneous physical
environment. However, the elasticity of the model depends on the conditions
under which data have been collected: only collecting training data under a
variable workload can generate a workload independent network.
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5. De�ning and Learning the Treatment Layer

The treatment layer de�nes a set of repair actions that can be applied
to solve critical situations and to improve the state of the system. Since the
environment is continuously changing, it is important to learn the impact of
the actions over the indicators and to keep this information updated. After
de�ning a set of repair actions in Sect. 5.1, we describe an algorithm for
learning and updating their e�ect on the indicators (Sect. 5.2).

5.1. Repair Actions De�nition

A repair action is a modi�cation of the system con�guration that can
a�ect the state of one or more indicators. In this work, a repair action is
described by the following set of elements: (i) ID, an identi�er for referring
to the action; (ii) description, a brief description of the repair action; (iii)
parameters, the parameters needed to apply the action; (iv) execution time,
the average time needed to apply and observe the outcome of the action; (v)
energy consumption: the amount of energy needed to execute the action; (vi)
preconditions, the conditions that have to be veri�ed for applying the action.

A cost can be associated to each action. This cost is expressed through
the variable cAl

, which is dependent both on the execution time of the action
(tAl

) and on its energy cost (EnAl
):

cAl
= f(tAl

, EnAl
) (4)

Several repair actions have been identi�ed. The selected actions have
been chosen starting from the most common strategies proposed in the state
of the art for dealing with EE [2], also discussed in Sect. 2. Actions are
classi�ed into four categories: VM level, host level, application level, and
general. A summary of the available actions is reported in Tab. 2. The ones
that we have tested in the experiments are discussed in more details.

The actions de�ned at the VM level concern the management of VMs
con�guration, placement, and deployment.

VM Migration (A1) This repair action moves a VM from a server to
another. Parameters are the ID of the VM that has to be migrated and the ID
of the server where it has to be moved. In order to be executable the selected
server must have the resources requested by the VM. The amount of time
required to execute migration can be approximated using models available in
the state of the art, as described in [31]. Given the time required to perform
migration and the computational resources involved in the process, also the
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Table 2: Repair Actions

VIRTUAL MACHINE LEVEL

ID Description Parameters

A1 VM Migration VM ID, Server ID

A2 VM Recon�guration - add VM ID, resource type

A3 VM Recon�guration - remove VM ID, resource type

A4 VM Duplication VM ID

A5 VM Removal VM ID

HOST LEVEL

ID Description Parameters

A6 Turn on Server server ID

A7 Turn o� Server server ID

A8 Data Migration none

A9 CPU Frequency Scaling - increase server ID

A10 CPU Frequency Scaling - decrease server ID

A11 Storage Mode Modi�cation - performance disk ID

A12 Storage Mode Modi�cation - energy saving disk ID

APPLICATION LEVEL

ID Description Parameters

A13 Process Work-�ow Modi�cation - skip activity ID

A14 Process Work-�ow Modi�cation - execute activity ID

GENERAL

A15 Do Nothing activity ID

COMPOSED ACTIONS

ID Description Parameters

AC1 Migrate and Turn O� server ID

AC2 Turn On and Migrate VM ID, server ID

cost in terms of energy has to be considered. To model the energy cost we
refer to the model proposed in [32].

VM Recon�guration - add/remove (A2, A3) This action enables
changing the amount of resources allocated to a VM according to the incom-
ing load. Parameters are the ID of the VM that has to be modi�ed and the
kind of resource that is involved (e.g. CPU and memory). Recon�guration
is executed using �xed steps that consist in the addition/removal of a core
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in case of CPU or of a �xed amount of memory otherwise. Precondition for
this action is that additional resources are available on the server or that
the minimal amount of resources is guaranteed for the VM (at least one core
and one block of memory). In this work we consider only hot-plugging, so re-
sources can be added without stopping the machine. This feature is available
in the most popular hypervisors (e.g., VirtualBox and VMware). According
to this, both execution time and energy cost of this action are limited.

At the host level, a set of actions can be de�ned which concern the physical
level of the system by managing the servers and their components.

Turn on/o� Server (A6, A7) This repair action turns on/o� a server.
It can be useful when there are not enough physical resources available for
deploying a new VM or when a server is not used. The only parameter is the
ID of the server. This action can require a signi�cant, even if limited, amount
of time to be executed. Also the energy consumption, due to the utilization
of resources while activating/deactivating the server, has to be taken into
account. In order to compute this cost, we refer again to the model proposed
in [32]. For turning o� a server, the precondition is that there are no VMs
deployed on it. To avoid delays, this action can be replaced by putting on
and o� stand-by mode, mitigating performance issues while still saving a
considerable amount of energy.

In some contexts, some actions are useless or even damaging if consid-
ered in isolation. As an example, the migration of a VM (action A1 (VM
migration) in Tab. 2) is expensive both in terms of energy and performance.
Applying this action by itself is not convenient. However, it is useful when
combined with other actions, such as A7 (Turn o� Server). For this reason,
it is useful to introduce the concept of composed action de�ned as follows:

De�nition 5. A composed action ACi consists of a set of simple actions

organized in a plan, de�ning the sequence in which these actions are executed:

ACi = 〈Ai → Aj → . . .→ Ak〉 (5)

where each action Ax belongs to the set of all the available actions A and the

symbol → indicates the order of execution of the actions in the plan.

Examples of composed actions are described in more details. For all the
actions described in this part, the execution time and the energy cost can be
obtained by summing up the costs of the simple actions composing them.
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Migrate and Turn O� (AC1) This action consists of migrating all the
VMs on a server and then turning o� the empty server. It is useful when
enough resources are available in other machines and turning o� a server
reduces signi�cantly the energy usage. It takes as parameter the identi�er
of the server to turn o� and can be applied only if the preconditions for the
two actions composing this complex action are both satis�ed.

Turn On and Migrate (AC2) This action turns on a server and migrates
a VM on it. It is useful when more resources are needed and a new server
can increase the performance of the system. The action takes as parameter
the identi�ers of a VM and of a server. As before, preconditions for both the
simple actions composing it have to be satis�ed.

5.2. Learning Action-Goal Relations

Actions can have a di�erent outcome on di�erent indicators. In fact, the
same action could positively a�ect the state of an indicator while negatively
a�ecting another one. A complete knowledge of the in�uence of the consid-
ered actions over the monitored indicators is important to avoid unexpected
side e�ects. A detailed mapping of action-indicator relations can be a dif-
�cult task even for a domain expert, especially in a dynamic environment
where the e�ect of an action can be in�uenced by the current context. In
order to overcome this issue, we propose the AAS approach as a methodology
for automatically learning the action-indicator relations from experience and
for suggesting the most likely successful repair action given a context. The
approach associates to each action a probability of success in the indicator
improvement, and keeps this probability up to date in time. In this way,
the proposed model is able to automatically adapt to modi�cations in the
dynamic environment. The algorithm implements the principal features of
the AOS algorithm described in [10] and [11], exploring several possibilities
and favoring to the ones that have a higher con�dence of being e�ective.

A general view of the approach is shown in Fig. 4. Given a context
and a set of repair actions, the aim of the AAS algorithm is to suggest the
most likely successful action and observe the outcome of this choice. The
evaluation consists of comparing the values of the indicators before and after
the action execution. Whenever an action is enacted, a quality value is
assigned for each indicator considering also past executions:

De�nition 6. The quality Q of an action Al over an indicator In is a

value representing the e�ectiveness of the action in increasing the value of

the indicator.

20



Figure 4: Adaptive Action Selection approach for adaptive applications

Quality is de�ned in the interval [−1, 1], where positive values represents
the ability of the action in increasing the value of the indicator, while neg-
ative values indicates the ability of the action in decreasing the indicator
value. Increasing or decreasing the value of an indicator can be desirable in
some contexts while damaging in others, and this context information will
be considered later in the procedure for selecting a repair strategy.

In order to use the model we need to learn the quality of each action over
all the indicators of the system and each of these values takes into account
both the most recent values and also historical values collected after the
application of the action. After some executions it is possible to derive in-
formation about the action-indicator relations contained in the goal-oriented
model shown in Fig. 1, associated with a con�dence value.

Quality computation starts from the application of an action and the ob-
servation of its e�ects. The impact I of the action can be evaluated observing
the system state after the execution time required by the action. The new
state is compared with the one before the application of the action. Impact
can be de�ned as follows:

De�nition 7. The impact I is the e�ect that the execution of an action

has over the indicators de�ned for monitoring the system.

An action has a di�erent impact over di�erent indicators, so a di�erent
value for each of them has to be used. The impact I of an action Al over the
indicator In is assigned considering the variation of the indicator after the
application of the action. We model I in the interval [−1, 1]. The impact
matrix is a two dimensional LxN matrix, where the value I(Al, In) represents
the ability of action Al to increase the value of indicator In:
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I1 I2 · · · IN
A1 I(A1, I1) I(A1, I2) · · · I(A1, IN)
A2 I(A2, I1) I(A2, I2) . . . I(A2, IN)
...

...
...

. . .
...

AL I(AL, I1) I(AL, I2) · · · I(AL, IN)

If the value of the indicator increases (decreases) signi�cantly, then the
assigned impact is the maximum (minimum) (I(Al, In) = 1(−1)). Otherwise,
if the increase (decrease) is limited, than the impact value assigned to the
action is 0.5 (-0.5). In order to assess if the modi�cation of the indicator
value is signi�cant or not, we used as a comparison the size of the warning
interval. When the modi�cation is bigger than the warning region, there is a
possibility for the indicator to move from a violation to the satisfaction zone.
Impact of action Al over indicator In is computed as follows:

• if (In,t+1 − In,t) > size(Warning(In))⇒ I(Al, In) = 1.0;

• if (In,t − In,t+1) > size(Warning(In))⇒ I(Al, In) = −1.0;

• if size(Warning(In))/3 < (In,t+1 − In,t) < size(Warning(In)) ⇒
I(Al, In) = 0.5;

• if size(Warning(In))/3 < (In,t − In,t+1) < size(Warning(In)) ⇒
I(Al, In) = −0.5;

Since the system is not isolated, it is possible that its state has been
in�uenced by external factors. That means that some noise can be introduced
in the impact evaluation. For this reason, past values of the impact evaluation
are kept and a window W of �xed size is used to compute a credit using an
aggregation of the historical values inside the window. The size of the window
W is chosen depending on the features of the system. If the system is stable,
a large value for the window size is recommended. Otherwise, small values
for W make the system more dynamically adaptable, enabling it to change
strategy more frequently. We can compute the credit C as:

Ct(Al, In) =
∑

s∈W Is(Al, In)
size(Wt)

(6)

As stated before, quality is the estimation of the ability of the action to
increase the value of an indicator. In our system, it is represented through
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a matrix Q of dimensions LxN where L is the number of available actions
and N is the number of indicators. The quality matrix is updated at each
iteration. While impact is computed instantly at each application, quality
depends also from past values. In general, quality Q can be expressed as:

Qt = f(Qt−1, Ct) (7)

According to Eq. 7, quality depends on two factors: (i) Credit : this value
depends exclusively on the last execution of the action; (ii) History : this
value summarizes the outcome of old executions of the action. Di�erent
methods for estimating quality by combining these two components are used
in di�erent algorithms. Here, we decided to use the Probability Matching
approach, proposed by Goldberg in 1990 [33]. In Probability Matching, the
probability of selecting an operator is proportional to its quality estimation.
Given the number of available operators K, for each operator the algorithm
keeps two values: the probability pk,t and the quality estimation qk,t. Quality
estimation for an action can be performed as follows:

Qt(Al, In) = (1− α)Qt−1(Al, In) + α · Ct(Al, In) (8)

where α is an adaptation rate, indicating the importance given to the memory
of past values. The de�nition of α can be problematic and a �xed value is
not the best solution. The importance of history in the quality computation
should be directly dependent on the a�ordability of the historical value. If
the action has not been applied for a long time, its historical value does
not re�ect the current situation, and more importance should be given to
the credit computed from the current application of the action. On the
contrary, if the action has been recently applied, the historical value re�ects
the current situation and it should have a higher importance. According to
this, the importance of history should depend on the elapsed time since the
last application of the action. We propose a value for α which is dependent
on the freshness and a�ordability of the historical information about quality:

α(Al) = 1− Lastop(Al)

Top
(9)

where Lastop(Al) is the timestamp of the last application of action Al, while
Top is the current timestamp. Let us consider the behavior of α under di�erent
situations. When the action Al is applied for the �rst time, history has no
value and all the importance is given to the credit (Lastop(Al) = 0⇒ α(Al) =

23



ALGORITHM 1: The Probability Matching algorithm for Adaptive Action Selection

Input: the values of the indicators I, the current quality matrix Q, the action list A
Output: an updated quality matrix Q
compute context C from I ;
compute wn for each indicator in I according to its context in C;
verify preconditions for each action Ai in A;
create the set of actions A′ which satisfy the preconditions;
verify if there are actions in A′ never tested and eventually remove all tested actions from A′;
select an action A∗l via a random selection scheme;
wait for tA∗

l
;

collect indicators values I′ from the monitoring system;
compute impact I: if ((I′n − In) > size(Alarm(In)));
then

I(A∗l , In) = 1.0;
end

else if ((In − I′n) > size(Alarm(In)));
then

I(A∗l , In) = −1.0;
end

else if ((I′n − In) > size(Alarm(In))/3);
then

I(A∗l , In) = 0.5;
end

else if ((In − I′n) > size(Alarm(In))/3);
then

I(Ak, In) = −0.5;
end

compute credit: Ct(Al, In) =
∑

s∈W Is(Al,In)

size(Wt)
;

compute α(A∗l ) = 1− Lastop(A
∗
l )

Top
;

update quality: Qt(A∗l , In) = (1− α)Qt−1(A∗l , In) + α · Ct(A∗l , In);
Lastop(A∗l ) = Top;
Top = Top + 1;
Return the updated quality matrix Q;

1− 0
Top

= 1, and 1− α = 0. Otherwise, if the action has been applied in the

last execution, than Lastop(Al) = Top − 1 ⇒ α(Al) = 1 − Top−1
Top

= 1
Top

and

1− α(Al) = 1− 1
Top

, giving to history a greater importance.

In order to allow the algorithm to quickly adapt in the initial phases,
where the e�ect of the action has still to be learned, it is important to give
the priority to actions never tested before, ensuring that each action is tried
at least once. Since not all the actions can be applied in every moment (due
to the preconditions introduced in Sect. 5.1), this condition has to be veri�ed
at each step. The algorithm for learning the action impact is shown in Alg. 1.
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6. Using the Model

The proposed approach can now be used to monitor and improve the state
of the data center. First of all, the state of the system is observed through
the de�ned metrics. Whenever one or more metrics are violated or near to
be violated, some repair actions are enacted to move the system towards the
desired state (where no violations occur).

Two phases can be identi�ed: in the �rst phase, the system suggests a
repair action using the action to goal relations learned in Sect. 5. The second
phase consists in exploiting the knowledge about indicators relations and
using again the model by considering also indicators which are not violated,
but which have an in�uence over violated ones. This second step can suggest
a di�erent action than the one suggested in the �rst phase, which can have
a better impact over the violated indicators.

6.1. Phase 1: Exploiting the Action to Goal Relations

In order to use the action to goal relations, we have to assign a probability
of success to each of the actions available given the current context C (see
Def. 3). The �rst step for computing probability given a context consists in
evaluating the quality matrix according to C. Quality is be positive if the
action increases the indicator value, negative otherwise. This information
has to be contextualized, since some indicators can be under their desired
values but others can be over it, as shown in Fig. 2. So, in this last case, we
should prefer actions able to reduce the indicator value. The contextualized
quality matrix Q′ can be computed as follows:

Q′t(Al, In) =

{
−Qt(Al, In) IF In > Imaxn

Qt(Al, In) otherwise
(10)

where Imaxn represents the maximum value that the indicator can take before
entering in the warning zone, as depicted in Fig. 2.

Probability p(Al|C) depends directly from Q′t and can be computed as:

p′(Al|C) = max

〈
0,

1

cAl

(∑
nwnQ′t(Al, In)∑

nwn
− 0.5

∑
nw
′
n|Q′t(Al, In)|∑

nw
′
n

)〉
(11)
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The �rst part of the equation expresses the ability of the action of improv-
ing the violated indicators. The term wn is a weight expressing the indicator
violation priority, used to give di�erent importance to the indicators in the
alarm and in the warning zone (wn = 1 if the violated indicator is in the
alarm zone, wn = 0.5 if it is in the warning zone, and wn = 0 if it is in
the normal zone). The probability of applying the action depends on the
contextualized quality of the action over the indicators that are violated or
that are near to be violated. The second part represents a penalty term,
which decreases the probability value if the action a�ects indicators that are
not violated. The term w′n is equal to 1 for each metric which is not in the
violation list (for which wn = 0). The penalty factor has less importance
than the other one since even if the action has an e�ect on other metrics,
this does not means that this e�ect will have a negative outcome. In fact,
the metrics could stay inside the constraints also after the execution. Finally,
the cost cAl

of the action enactment is considered (see Eq. 4).
In the Probability Matching approach, a minimum probability is assigned

to each action. Keeping the probability greater than 0 allows the system to
select the action, even if rarely, and to learn the new behavior if the system
changes. This approach is useful since the system is dynamic and the utility
of an action can change over time. Probability is de�ned as follows:

p(Al|C) = pmin + (1− L ∗ pmin)
p′(Al|C)∑

m∈L p
′(Am|C)

(12)

We assign a dynamic value to pmin which depends on the a�ordability
of the best action available in the considered context. It has also to be
proportional number of available actions L. We propose to compute the
value for pmin as:

pmin =
1−max(p′(A|C))

L ∗ 10
(13)

Once probabilities for all the actions are computed given the context, an
action can be selected using a wheel-like process. In Phase 2 indirect relations
are explored for re�ning the selection.

6.2. Phase 2: Exploiting the Goal to Goal Relations

The BN representing the relations among goals can be used to detect
actions which have an indirect impact on the violated indicators by detecting
which are the indicators having a strong relation with the violated ones.
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The AAS algorithm is executed again with a di�erent context information,
consisting of this new set of indicators. The algorithm to exploit the goal to
goal relations behaves as follows:

1. for each of the violated indicators, select the set of parents in the BN;

2. for each of these parents, use the CPT to detect which is the desired
state for this indicator which can improve the children and compare it
with the current state;

3. create a new context C′ where the value of the selected parents has to
be increased or decreased according to the CPT table and the context;

4. apply the AAS algorithm as described in Sect. 6.1 to C′;

5. compute the �nal probability by multiplying the obtained vector p(Al|C′)
with the value of the CPT table between the parent and the violated
indicators. In this way the probability is diminished according to the
strength of the relation existing between the indicators.

This second step allows the selection of a new repair action, indirectly
improving the violated indicators. Given the results of both Phase 1 and
Phase 2, it is possible to select the action with the highest likelihood of
success. Whenever a repair action is applied, its outcome is observed and
used to update the quality matrix as discussed in Sect. 5.2.

7. Evaluation of the Algorithm

In this section we show experimental results of the described approach.
First, we introduce the evaluation criteria used to evaluate the approach
(Sect. 7.1). Then, we apply the approach to two di�erent applications. In
Sect. 7.2, we discuss a systematic study of the behavior of the proposed
algorithm applied to an e-business application in a simulated environment.
This would not be possible in a real system where the variation of variables
cannot be induced in a controlled way. In Sect. 7.3, we illustrate experimental
results obtained for a CPU intensive application in a real data center. The
learning module has been implemented in MATLAB [34]. For managing
BNs, we used the MATLAB Bayes Net Toolbox (BNET) [35], providing
instruments for learning and using BNs. The code of the structure learning
module is available at [36]. The AAS algorithm has also been implemented
in MATLAB and it is available at [37]. In Sect. 7.4 results are discussed.
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7.1. Evaluation Criteria

In order to evaluate the results, �rst we de�ne a distance function D:

De�nition 8. The distance D of a context C is de�ned as the sum of the dis-

tances of the state of each indicator from the optimal state. More in details,

an indicator in the normal zone has distance value d(In) = 0, an indicator

in the warning zone has distance value d(In) = 1, and an indicator in the

alarm zone has distance value d(In) = 2. The total distance is computed as:

D(C) =
∑
n

d(In|C) (14)

This value is used to measure the ability of the algorithm to improve the
state of the system given a context, comparing the state of the system before
and after the execution of a repair action.

7.2. Testing the Algorithm with Simulated Data

In this section we describe the results obtained using an e-business appli-
cation composed of three activities deployed on dedicated VMs having dif-
ferent features about response time and average processing time. Requests
of users can be directed independently to each of them. The application has
been tested using the simulation system described in [38], which allows us to
collect all the required information while having full control of the workload
of each of the activities involved in the application. In this test we consider
a small data center composed of two servers and three VMs, with VM1 and
VM3 deployed on S1 and VM2 deployed on S2, and studied its behavior
systematically as shown in the following.

The �rst step consists in learning relations among indicators. Considered
indicators are CPU Usage (U(x)), Response Time (R(x)), Performance per
Energy (PE(x)), and Energy (E(x)). Several workloads have been simulated
while collecting monitoring data for learning the model. Using the algorithm
described in Sect. 4, we have created the BN representing relations among
variables. The DAGs corresponding to the best score is drawn in Fig. 5.
Discovered relations re�ect the structure of the data center, isolating metrics
belonging to di�erent servers while associating metrics belonging to the same
servers and to the same VMs. In this way the help of an expert is not needed
to model the system, but the model is learned by the algorithm. To test
the ability of the network to predict the state of an indicator, we have used
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Figure 5: Highest scored directed BN obtained applying the Bayesian score

a test set di�erent from the training set used to acquire the network. We
have hidden the value of a variable in all the examples and for each example
we used the network to predict this value. Comparing the result with the
real value we obtained the success rate of the network prediction ability. We
have run the same procedure for all the variables in our system obtaining an
average success rate around 87.5%.

Once relations among variables are discovered, we can use the algorithm
described in Sect. 5 to learn the e�ect of actions over indicators. The set
of actions considered is a subset of the ones analyzed in Sect. 5.1. The
resulting quality matrix is shown in Fig. 6. As it can be observed, migrating
a VM in a server (A2) is likely to increase the server usage while decreasing
the usage of the previous server. The same e�ect can be observed on the
energy consumption of the servers. Action A2 is likely to decrease the value
of CPU usage and response time for the VM, while the energy consumption
has a slight probability of being increased. The same considerations are
symmetrically valid for action A3. Using action AC1, which migrates all the
VMs on a server and then turn this server o�, the usage of the server to
be turned o� is reduced, while the usage of the other server is increased
since new machines are migrated on it. This behavior is re�ected also on
the energy usage. Action AC1 a�ects also the Performance per Energy since,
in our speci�c con�guration, migrating VMs from server S1 increases their
performance because S2 is more e�cient than S1. The same is valid for the
energy of the VMs. Action AC2 behaves similarly to migration, a�ecting the
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Figure 6: Quality matrix with complex actions

usage of both servers, their energy, and the e�ciency and energy of the VMs.
Once the model is learned, we can evaluate its ability to recommend a

good repair strategy using the distance function D introduced in Eq. 14.
In order to evaluate the algorithm, we run it using an incremental load.
For each load, the algorithm has been executed 50 times, and the average
distance value for each run has been computed to have a more reliable result.
We consider a test terminated when the system enters into a static condition
in which the �Do Nothing� action is always selected.

Results are shown in Fig. 7(a). Here we can see that the algorithm is
able to improve the system state by reducing the distance from the optimal
con�guration. Fig. 7(a) also shows the average number of times each action
is applied. An improvement can be observed for low load rates: for load
L < 3 action AC1 is selected, consolidating all the VMs on a single server,
signi�cantly improving the distance function when spare resources are avail-
able. Action AC2 is never applied, since there are no other servers available
in the system. In another test we have used a di�erent initial con�guration,
with only two VMs, both deployed in the same server, and another server
available but inactive. Results are shown in Fig. 7(b). In the �rst steps, the
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(a) Con�guration with 2 servers and 3 VMs (b) Con�guration with 2 servers and 2 VMs

Figure 7: Results of the AAS algorithm at di�erent load rates

algorithm applies action A3 to increase the CPU usage indicator at the VM
level. For L = 4 and L = 5 no action is applied since the system is near to the
optimum and no action is able to improve the state. For L >= 6 the algo-
rithm starts selecting AC2 for execution. This action enables the availability
of more resources, allowing for migrations and for resources recon�guration.
In fact, increasing the load, all the VMs need a higher amount of CPU for
satisfying the related indicators. With L > 12 the load exceeds the capacity
of the system so no adaptation can be e�ective.

7.3. Testing the Algorithm on a Real Data

In this section we apply the model to learn relations among variables col-
lected in a real data center. We use the ECO2Clouds

4 architecture which is
developed as an extension of the BonFire platform5, providing monitoring
facilities for a federated data center located in di�erent countries in Eu-
rope. In particular, we run our tests at the data center provided by INRIA6.

4http://eco2clouds.eu/
5http://www.bon�re-project.eu/
6http://www.inria.fr/
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ECO2Clouds extends Zabbix to monitor its running environment from the
infrastructure to the application layer, with a focus on EE and CO2 emis-
sions. Physical hosts are equipped with a power distribution unit (PDU),
collecting information about the power consumption of a single server. En-
ergy consumption at the virtual level is also computed using models available
in the state of the art. Zabbix can be easily extended to include new metrics
de�ned at the application level. In our experiment, monitored data were
retrieved every 30 seconds.

To perform experiments on ECO2Clouds, we istantiated three VMs run-
ning on two di�erent physical hosts provided with 24 6-Core Intel R© Xeon R©

Processor E5-2620 @ 2.00GHz and with 63,7 GB RAM. Each VM is provided
with 1 CPU and 4096 MB RAM. The application deployed on the VMs is
a CPU intensive application simulating and predicting the movement of eels
in the ocean [39], in which CPU is always used at its maximum capacity.

In the experiment we run several requests, distributing the load on a
single VM or on several VMs in parallel. In the tests, virtual machines V1
and V3 are deployed on the same server (indicated as S1 which correspond
to the server named bon�re-1), while VM V2 is deployed on server bon�re-2,
indicated as S2. We selected as indicators resources usage on each VM and
on the server (CPU - U(x), memory - M(x), I/O transactions - IO(x)), energy
both at the VM and at the server level (E(x)), and throughput of each activity
and of the whole application (TH(x)). Relations among indicators have been
discovered using the procedure described in Sect. 4.2 and are shown in Fig. 8.
As in the previous example, the algorithm is able to �nd consistent relations
among variables, properly distinguishing among variables on di�erent VMs.
Variables related to servers are not connected to any other variable in the
system. This is due to the fact that the considered servers are only partially
used in the experiment and their resources are shared with other applications
which are not considered in the learning process. The predominance of CPU
variation (which is either 100% or 0%) makes this variable the one from
which any other variable depends, because it allows distinguishing between
time periods when the application is running and time periods when nothing
is running. Each edge in the graph expresses dependencies among the state
of the involved variables. As an example we can analyze the CPT associated
to the relations between U(V3) and E(V3), depicted in Fig. 8. Since in all
the examples in the training set the state of U(V3) is either 1 or 5, for these
two states the network is able to predict the consequent state for E(V3),
while for the other states all the outcomes have the same probability. The
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Figure 8: Relations among variable for a real application: the discovered Bayesian Network

discovered knowledge can be exploited in the adaptation phase.
The Eco2Clouds platform does not provide a way to perform adaptation

actions such as live migration of VMs on the system, so the learning phase for
action-goal relations has been performed using the simulation environment
described in Sect. 7.2. The aim is to verify the ability of the algorithm in
improving the e�ciency of the system using di�erent con�gurations. In the
test we start from a con�guration similar to the one described in Sect. 7.2,
in which we have again V1 and V3 running on server S1, and V2 running
on S2. From tests we observed that S1 is a more performing server, and the
time of execution of the same activity is lower on S1 than on S2. So, running
a request of execution for the eels case study takes 12 minutes on S1 and
20 minutes on S2 on average. Such a situation is detected by the learning
algorithm and included in the quality matrix. Results are similar to what
was depicted in Fig. 6 where migration of V3 from S1 to S2 (A1(V3,S2))
impacts response time increasing its value, while performing the migration
from S2 to S1 (A1(V3,S1)) decreases response time. In the initial con�gura-
tion, resources on both servers are underutilized and response time of V2 is
violated. The total energy consumed for the execution of the application is
equal to 63.76 Wh. The energy consumption of the application is computed
considering the energy consumed by each VM involved in the application and
a portion of the energy consumed in idle state by the server hosting the VM.
The AAS algorithm suggests to migrate VM2 on S1. Migration improves the
resource utilization on the servers and impact on response time of V2. In the
new con�guration, an execution of the application requires 25.52 Wh, 60%
less than the previous con�guration, and reduces the total response time of
40% since all the instances can be completed in 12 minutes instead of 20.

7.4. Analysis of the Results and Scalability

Whenever a new application is deployed on the data center, the BN re-
lated to its variables has to be created. Learning the BN used to represent
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Figure 9: Computation time of the learning module with an increasing number of variables

relations among goals is computationally expensive and the time increases
exponentially with the number of variables considered in the network. In
order to analyze this issue, several tests have been run changing two pa-
rameters: the number of variables and the size of the dataset. From the
tests, we observed that the size of the dataset does not signi�cantly a�ect
the computation time. On the contrary, the number of variables in�uences
the computation time exponentially (Fig. 9). Even if in the tests the compu-
tation time stays in a manageable range, this can become an issue for larger
sets of variables.

The main concern about this approach is related to scalability. How-
ever, some considerations can be done that mitigate this issue. The number
of variables to be considered is limited to the variables involved in the ap-
plication, while other applications running in the same data center will be
explored separately, using a di�erent set of indicators and adaptation strate-
gies. Even with this limitation, the number of variables to be considered can
be elevated. We have experimentally demonstrated that variables monitored
on a VM are independent from variables monitored on other VMs, but are
not independent from variables related to the server hosting the VM. Instead
of computing relations among all the variables in the system, we can consider
subsets of these variables for each VM. The monitoring system collects 6 vari-
ables for each VM plus 2 variables for the host. Dividing the problem into
sub-problems, we have to consider networks of only 8 variables each. This
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would take about 15 seconds for each network, multiplied by the number of
VMs involved in the application. In case of applications involving 100 VMs,
the computation time of the initial BN would be around 25 minutes. Using
parallel execution can further decrease this time. In addition, the computa-
tion of the complete network needs to be performed only once, during the
set up operations. Further modi�cations of the system (e.g., VM migrations
and recon�gurations) a�ect only parts of the BN as indicated above and will
trigger only the recalculation of the parts of the network involved.

Issues related to scalability also a�ect the action to goal relations learning.
De�ning the computation time of the quality matrix is not so trivial. The
quality matrix is continuously re�ned during the lifetime of the application
and its computation depends on the occurrence of violations. For the quality
matrix to be reliable, each action needs to be applied for all possible values
of the parameter at least 3 times. The computation time linearly depends on
the number of available actions and the number of parameters. To improve
the performance of the algorithm, relations can be learned o� line, using a
simulation system. This operation has to be performed only once, then the
values will be kept updated incrementally during the action selection phase.
An additional solution consists of performing a generalization of the relations
between actions and indicators. Observing the quality matrix obtained by
the application of the algorithm in the learning phase, it is possible to see
that the same action behaves similarly on similar indicators, depending on
the parameters used to execute the action. Adding some knowledge about
the meaning of each variable and describing similarities among variables, it is
possible to predict the e�ect of an action observed over a subset of variables
for similar indicators belonging to other VMs. This information can be useful
in the initial steps of the algorithm to suggest an e�ective adaptation action
even if no direct information is available. This initial prediction can be
re�ned by the actual enactment of the action in the VM. As an example, if
we observe that action A3 applied to VM1 increases the values of CPU usage
and response time of this VM while decreasing its energy consumption, we
can predict that applying the same action to VM2, it will have a similar
e�ect over the same set of indicators. This information can be used by the
algorithm to suggest this action when the CPU usage indicator of VM2 is
violated and the observed outcome of the action can be used to �ll in the
missing information in the matrix with real data. Generalizing the action
behavior can signi�cantly reduce the number of training steps needed for
obtaining a reliable initial knowledge of the e�ect of the actions over the
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indicators and to signi�cantly improve the performance of the algorithm in
this phase. This solution will be further investigated in future work.

8. Conclusions

In this work we proposed a goal-oriented model for driving adaptation
in applications having as primary goal EE and QoS constraints satisfaction.
Selecting a set of metrics able to describe the state of the system and learning
relations among them together with the e�ect of the application of repair
actions, we have been able to propose a dynamic model to improve the state
of the system. This model is able to automatically react to modi�cations
in the environment. Testing the application, we have automatically built
BNs able to predict future states of the indicators with a success rate of
the 85%, and to prescribe adaptation actions that can improve the system
state when violations occur. We have also demonstrated that the algorithm
for learning the relations among goals is scalable due to the independence
between variables belonging to di�erent VMs emerged from tests. Also the
scalability of the AAS algorithm can be improved with some modi�cations,
using an ontology describing similarities among indicators for generalizing
the e�ects of actions over di�erent VMs.

Future development of the approach are going to analyze this ontology
describing the monitored metrics and to evaluate how this can improve the
behavior of the AAS algorithm in the initial steps. Also, the approach will
be extended and tested in a cloud environment, in which the di�erences
between the available sites should be considered, especially when deploying
new VMs or when migrating one machine from one site to another, and
additional actions can be applied. Preliminary results in the application of
the approach to a cloud environment have been conducted in the framework
of the Eco2Clouds project. Here, the application of the approach together
with a scheduler able to select the best host to deploy a VM have proved
able to reduce energy consumption up to 50% if compared with a random
deployment where no adaptation is enacted.
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