
CRT-based Fully Homomorphic Encryption
over the Integers?

Jinsu Kim1, Moon Sung Lee1, Aaram Yun2 and Jung Hee Cheon1

1 Seoul National University (SNU), Republic of Korea
2 Ulsan National Institute of Science and Technology (UNIST), Republic of Korea

kjs2002@snu.ac.kr, moolee@snu.ac.kr, aaramyun@unist.ac.kr, jhcheon@snu.ac.kr

Abstract. In 1978, Rivest, Adleman and Dertouzos introduced the basic concept of privacy
homomorphism that allows computation on encrypted data without decryption. It was elegant
work that precedes the recent development of fully homomorphic encryption schemes although
there were found some security flaws, e.g., ring homomorphic schemes are broken by the known-
plaintext attacks.
In this paper, we revisit one of their proposals, in particular the third scheme which is based
on the Chinese Remainder Theorem and is ring homomorphic. The previous result is that only
a single pair of known plaintext/ciphertext can break this scheme. However, by exploiting the
standard technique to insert an error to a message before encryption, we can cope with this
problem. We present a secure modification of their proposal by showing that the proposed
scheme is fully homomorphic and secure against the chosen plaintext attacks under the decisional
approximate GCD assumption and the sparse subset sum assumption when the message space
is restricted to Zk2 .
Interestingly, the proposed scheme can be regarded as a generalization of the DGHV scheme with
larger plaintext. Our scheme has Õ(λ5) overhead while the DGHV has Õ(λ8) for the security
parameter λ. When restricted to the homomorphic encryption scheme with depth-O(log λ), the
overhead is reduced to Õ(λ). Our scheme can be used in applications requiring a large message
space ZQ for logQ = O(λ4) or SIMD style operations on ZkQ for logQ = O(λ), k = O(λ3), with

Õ(λ5) ciphertext size as in the DGHV.

Keywords: privacy homomorphism, Chinese remainder theorem, homomorphic encryption, ap-
proximate gcd, DGHV

1 Introduction

The concept of computation on encrypted data without decryption was firstly introduced
by Rivest, Adleman and Detourzos in 1978 [23]. They defined a privacy homomorphism
to be an encryption Enc : P → C which permits the computation Enc(m1 ∗ m2) from
Enc(m1),Enc(m2) without revealing m1 and m2 for a certain binary operation ∗ on P. They
presented the five privacy homomorphisms [23], but no ring homomorphic scheme is secure
under the known plaintext attacks [4].

One example of a privacy homomorphism given in [23] is as follows. Let p, q be large primes
and n = pq. The plaintext space is Zn and the ciphertext space is Zp×Zq. An encryption of a
messagem ∈ Zn is (m mod p,m mod q) and a decryption is done using the Chinese Remainder
Theorem (CRT). This cryptosystem is a privacy homomorphism under modular addition and
modular multiplication. Unfortunately, it is shown that this privacy homomorphism is broken
under the known plaintext attack [4]. In fact, p| gcd(m − c1, n) and q| gcd(m − c2, n) when
Enc(m) = (c1, c2). Later, Domingo-Ferrer proposed its variants using additional secret key

? An extended abstract [7] will appear at Eurocrypt 2013, merged with some independent but overlapping
work from Coron et al. [10]. A part of this paper was made public through [1].

2

rp ∈ Z∗p, rq ∈ Z∗q , but it is also broken under the known plaintext attacks [28, 8]. To avoid
the known plaintext attacks, we may consider hiding a message by substituting a part of a
message with a random error as in the recent fully homomorphic encryptions.

Basic Idea We denote by a mod p the unique integer in (−p
2 ,

p
2] that is congruent to a modulo

p, and by CRT(p0,...,pk)(m0, . . . ,mk) the unique integer in (−
∏
i pi
2 ,

∏
i pi
2] which is congruent

to mi modulo pi for all i. Our basic symmetric encryption scheme is as follows:

KeyGen(λ): Choose large pairwise coprime integers pi (i = 0, . . . , k) and relatively small
pairwise coprime integers Qi (i = 1, . . . , k). Let n =

∏k
i=0 pi. Output the secret key

sk = (p0, . . . , pk) and the public parameter pp = (n,Q1, . . . , Qk). The message space is
ZQ for Q =

∏k
i=1Qi.

Enc(sk,m): Output c = CRT(p0,...,pk)(e,m1+e1Q1, . . . ,mk+ekQk) where mi = m mod Qi
for all i, e is a random integer in (−p0/2, p0/2] and e1, · · · , ek are ρ-bit random integers.

Dec(sk, c): Output m = CRT(Q1,...,Qk)(d1, . . . , dk) where di = (c mod pi) mod Qi for all i.

Since the CRT is a ring isomorphism from
∏
i Zpi to Zn with respect to modular additions

and multiplications, Dec function is also ring homomorphic. However, to decrypt a ciphertext
correctly after operations of ciphertexts, the size of ei and Qi must be sufficiently smaller than
that of pi.

This scheme is a symmetric key encryption scheme which permits bounded number of
modular additions and multiplications. We can extend this scheme to a somewhat homomor-
phic public key encryption scheme by publishing many encryptions of zero and k elementary
elements Ei = CRT(p0,...,pk)(0, . . . , 0, 1, 0, . . . , 0).

We reduce the security of our Somewhat Homomorphic Encryption (SWHE) scheme to a
decisional version of Approximate GCD problem (DACD). Approximate GCD (ACD) problem
is to find p given many multiples of p with some errors (i.e. xi = pqi+ei). We remark that the
security of the DGHV scheme [13] is reduced to the ACD and that of its efficient variant [12]
to a decisional version of the ACD problem that is slightly different from ours for modulus
switching.

In fact, our scheme can be regarded as a generalization of the DGHV scheme, but with
larger plaintext space. Our scheme can be extended to a Fully Homomorphic Encryption
(FHE) through bootstrapping and squashing the decryption circuit as in [14, 13]. However,
this could be done only when Q1 = · · · = Qk = 2, and is not resolved for larger Qi cases.

Let λ be the security parameter. The ciphertext size of our SWHE scheme is Õ(λ5) as in
the DGHV scheme. While the plaintext size of the DGHV is O(λ), that of ours is O(λ4) for
O(λ)-bit Q1, . . . , Qk with k = O(λ3). Consequently, our scheme reduces the overheads (ratio
of ciphertext computation and plaintext computation) from Õ(λ4) to Õ(λ). For the fully
homomorphic schemes, the overhead is reduced from Õ(λ8) to Õ(λ5) with message space Zk2
for k = O(λ3).

Our scheme has an advantage in the applications requiring larger message space than [17].
When dealing with arithmetic on ZQ for logQ = O(λ4), our SWHE scheme can support O(λ)
multiplications with many additions. One of the important applications of homomorphic
encryption schemes is to securely evaluate a multivariate function over the integers. Our
scheme is the best choice when evaluating a function of degree O(λ) with inputs Ω(λ2). Also

3

our scheme can be used in the applications requiring SIMD style operations in k copies of ZQ
for logQ = λ, k = O(λ3). Detailed comparison is given in Section 5.

Related works In 2009, Gentry [14, 15] introduced the first fully homomorphic encryption
scheme based on ideal lattices which supports arbitrary many additions and multiplications
on encrypted bit. His breakthrough paper drew an explosive interest and leads numerous
researches in this area [13, 11, 12, 16, 26, 27, 24, 17, 3, 2]. Gentry’s scheme and its variants [14,
15, 26, 27] are based on hard problems on ideal lattices. Another class of schemes [13, 11, 12]
relies on the approximate GCD problem. The message space of the schemes is Z2 and so the
overhead is rather high due to the large ciphertext expansion ratio. Our scheme improves
their efficiency. Recent schemes based on the learning with error (LWE) or the ring-LWE are
more efficient and accomplish polylogarithmic overhead for wide enough arithmetic circuits
on Zp for p = poly(λ). For more related works, refer to [18].

Organization In Section 2, we define some notations and basic problems. Our main scheme
and the security proof are represented in Section 3 and Section 4, respectively. Applications
and comparison with other schemes are given in Section 5. We explain how to extend our
scheme to a fully homomorphic encryption in Section 6. Finally, further works are given in
Section 7.

2 Preliminaries

Notation. We use a← A to denote choosing an element a from a set A randomly. When D is
a distribution, we use a← D to denote choosing an element a according to the distribution D.
We use Zp := Z∩ (−p2 ,

p
2] and x mod p denotes a number in Z∩ (−p2 ,

p
2] which is equivalent to

x modulo p. We use notation (ai)
k for a vector (a1, . . . , ak). So Dρ(p1, . . . , pk;Q1, . . . , Qk; q0)

defined below can be denoted by Dρ
(
(pi)

k; (Qi)
k; q0

)
.

For pairwise coprime integers p1, . . . , pk, we define CRT(p1,...,pk)(m1, . . . ,mk) as a number

in Z∩ (−x02 , x02] which is equivalent to mi modulo pi for all i ∈ {1, . . . , k} where x0 =
∏k
i=1 pi.

That is,

CRT(p1,...,pk)(m1, . . . ,mk) ≡
k∑
i=1

mip̂i
(
p̂i
−1 mod pi

)
mod x0,

where p̂i = x0
pi

=
∏k
j=1 pj
pi

.
For η-bit primes p1, . . . , pk and `Q-bit integers Q1, . . . , Qk, we define the following distri-

butions:

Dγ,ρ(p) := {choose q ← Z ∩ [0,
2γ

p
), e← Z ∩ (−2ρ, 2ρ) : output x = pq + e},

Dρ(p1, . . . , pk; q0) :=
{

choose e0 ← Z ∩ [0, q0), ei ← Z ∩ (−2ρ, 2ρ) for ∀i ∈ {1, . . . , k}

: output x = CRT(q0,p1,...,pk)(e0, . . . , ek)
}
,

Dρ(p1, . . . , pk;Q1, . . . , Qk; q0) :=
{

choose e0 ← Z ∩ [0, q0), ei ← Z ∩ (−2ρ, 2ρ)

for ∀i ∈ {1, . . . , k} : output x = CRT(q0,p1,...,pk)(e0, e1Q1, . . . , ekQk)
}
.

4

Remark 1. When k = 1, Dρ(p1; q0) is identical to D := {choose q ← Z ∩ [0, q0), e ← Z ∩
(−2ρ, 2ρ) : output x = p1q + e mod p1q0}. For x← Dρ(p1; q0),

x = CRT(q0,p1)(e0, e1)

= e0p1(p
−1
1 mod q0) + e1q0(q

−1
0 mod p1) mod q0p1

= e0p1α+ e1(p1β + 1) mod q0p1 = (e0α+ e1β)p1 + e1 mod q0p1

for some α and β. If e0 is chosen from Z∩ [0, q0) uniformly, (e0α+ e1β) mod q0 is uniform in
Z ∩ [0, q0) when gcd(α, q0) = 1.

There are two versions of approximate GCD problem defined by Howgrave-Graham [19].
One is a general approximate GCD problem and the other is a partially approximate GCD
problem.

General Approximate GCD problem. The (ρ, η, γ)-computational general approximate
GCD problem is: for an η-bit prime p, given polynomially many samples from Dγ,ρ(p), find
p.

Partially Approximate GCD problem. The (ρ, η, γ)-computational partially approxi-
mate GCD problem is: for an η-bit prime p, given a γ-bit integer x0 = pq0 and polynomially
many samples from Dγ,ρ(p), find p.

In this paper, we use only partially approximate GCD problem, we omit the term ‘partially’
throughout the paper, and denote it by ACD. The ACD assumption is that ACD problem is
hard for any polynomial time attacker.

3 Our Somewhat Homomorphic Encryption Scheme

We propose a homomorphic encryption supporting large integer arithmetic or SIMD opera-
tions. The message space is

∏k
i=1 ZQi . If Q1, . . . , Qk are pairwise coprime integers, the message

space can be considered ZQ where Q =
∏k
i=1Qi. On the other hand, our scheme can support

SIMD operations when all Qi’s are the same.

3.1 Parameters

We give some descriptions about the parameters.

λ : the security parameter

ρ : the bit length of the error

η : the bit length of the secret primes

γ : the bit length of a ciphertext

τ : the number of encryptions of zero in public key

k : the number of distinct secret primes

`Q : the bit length of Qi for i = 1, . . . k

Roughly speaking, k determines the size of the message space. The parameter `Q can be
an integer from 2 to η/8 depending on the multiplicative depth of the scheme. The details of
analysis are given in Section 3.3. The concrete parameters of our scheme are as follows:

5

– γ = η2ω(log λ), to resist Cohn and Heninger’s attack [9] and the attack using Lagarias
algorithm [20] on the approximate GCD problem (in Appendix C.3).

– η = Ω̃(λ2 + ρ · λ), to resist the factoring attack using the elliptic curve method [21] (in
Section C.1) and to permit enough multiplicative depth (in Section 3.3).

– ρ = Õ(λ), to be secure against Chen-Nguyen’s attack [6] and Howgrave-Graham’s at-
tack [19] (in Appendix C.2).

– τ = γ+ω(log λ), in order to use left-over hash lemma in the security proof which is given
in Section 4.1.

We choose γ = Õ(λ5), η = Õ(λ2), ρ = 2λ, τ = γ+λ which is similar to the DGHV’s convenient
parameter setting [13].

3.2 The Construction

KeyGen(λ, ρ, η, γ, τ, `Q, k): Choose η-bit distinct primes p1, . . . , pk and q0 ← Z∩[0, 2γ∏k
i=1 pi

),

and set x0 := q0
∏k
i=1 pi. Choose `Q-bit integers Q1, . . . , Qk with gcd(Qi, x0) = 1 for

i = 1, . . . , k. Output the public key pk as follows:

pk =
(
x0 , {Qi}ki=1, X :=

{
xj = CRT(q0,p1,...,pk)(ej0, ej1Q1, . . . , ejkQk)

}τ
j=1

,

Y :=
{
y` = CRT(q0,p1,...,pk)(e

′
`0, e

′
`1Q1 + δ`1, . . . , e

′
`kQk + δ`k)

}k
`=1

)
,

where ej0, e
′
`0 ← Z∩ [0, q0), eji ← Z∩(−2ρ, 2ρ), e′`i ← Z∩(−2ρ, 2ρ) for i, ` ∈ [1, k], j ∈ [1, τ]

and δij is Kronecker delta. Output the secret key sk = (p1, . . . , pk).

Enc(pk,m): For any m = (m1, . . . ,mk) with mi ∈ ZQi , outputs c =
∑k

i=1miyi +∑
j∈S xj mod x0 where S is a random subset of {1, . . . τ}.

Dec(sk, c): Output (m1, . . . ,mk) = ((c mod p1) mod Q1, . . . , (c mod pk) mod Qk).

Eval(pk, C, c = (c1, . . . , ct)): Take as input public key pk, permitted circuit C with t inputs
defined in Section 3.3 and a t-tuple of ciphertexts c. Output C(c1, . . . , ct) using Add and
Mul given below.

Add(pk, c1, c2): Output c1 + c2 mod x0.

Mul(pk, c1, c2): Output c1 × c2 mod x0.

Remark 2. X = {xj}τj=1 is a set of encryptions of the zero vector, and y` is a encryption of
the `-th elementary vector E` in pk.

Remark 3. There are (τ + k) integers of γ-bit and k integers of `Q-bit in the public key. The
public key size is Õ((τ + k)γ + k`Q) = Õ(λ10) under the parameter setting in Section 3.1.

Remark 4. If k = 1, Q1 = 2, then our scheme is the same as a noise-free variant of the
DGHV [13].

6

A ciphertext c← Enc(pk,m) can be written in the form,

c =
k∑
`=1

m`y` +
∑
j∈S

xj mod x0

= CRT(q0,p1,...,pk)

((k∑
`=1

e′`0m`

)
,
(k∑
`=1

e′`1m`

)
Q1 +m1, . . . ,

(k∑
`=1

e′`km`

)
Qk +mk

)
+ CRT(q0,p1,...,pk)

((∑
j∈S

ej0
)
,
(∑
j∈S

ej1
)
Q1, . . . ,

(∑
j∈S

ejk
)
Qk
)

= CRT(q0,p1,...,pk)(e0, e1Q1 +m1, . . . , ekQk +mk)

for some e0 ∈ Z∩ [0, q0), e1, . . . , ek ∈ Z∩(−2ρ
′
, 2ρ

′
), where ρ′ = max{ρ+log k+`Q, 2ρ+log τ}.

3.3 Correctness

We use the integer circuits with Add and Mul gates applied to integers rather than a bit.
That is, boolean gates are replaced with integer operations. Now we show that the scheme is
correct for permitted circuit. At first, we define a permitted circuit similar to Gentry [15].

Definition 1 (Permitted Circuit). Let C be an integer circuit with t inputs. C is a per-
mitted circuit if an output of C has absolute value at most 2α(η−4) whenever the absolute
value of each t input is smaller than 2α(ρ

′+`Q) for any α ≥ 1.

We denote CE as the set of permitted circuits. Now we will show that our scheme is correct
for CE , that is

Dec(sk, C(c1, . . . , ct)) = C(m1, . . . ,mt)

where C ∈ CE , cj ← Enc(pk,mj) and mj = (mj1, . . . ,mjk) for j = 1, . . . , t.

Theorem 1 (Correctness). The scheme given in section 3.2 is correct for CE .

Proof. It is enough to show Lemma 6 and 7 that are in Appendix A for the proof of Theorem 1.
ut

Each noise of c1 + c2 is increased at most 1-bit. But the bit length of each noise for c1× c2
becomes about 2ρ′ + 2`Q which is two times larger than that of the original ciphertext. As
you see, the noise expansion through multiplication is more significant than addition, so we
focus on the multiplicative depth of permitted circuit.

Lemma 1. Let C be an integer circuit and f be the multivariate polynomial computed by C.

If |
−→
f | · (2ρ′+`Q)d < 2η−4, then C ∈ CE where |

−→
f | is the `1 norm of the coefficient vector of f

and d = deg f .

Proof. The proof is straightforward. ut

From the above condition, we have

d <
η − 4− log2 |

−→
f |

ρ′ + `Q

which is similar to the DGHV [13]. Since we want to support polynomial of degree λ, we

choose η ≥ ρ′ ·Θ(λ) if we assume log2 |
−→
f | is relatively small to η, ρ′.

7

4 Security

In this section, we prove the security of our scheme. The security of the DGHV scheme is
based on the ACD assumption defined in Section 2. On the contrary, the security of our
scheme is based on the modified DACD (Decisional Approximate GCD) assumption which
says that, for given a distribution D = Dρ(p; q0) and some integer z, it is hard to determine
whether z is chosen from D or not. In principle, DACD might be easier than ACD, but so
far the only way to solve DACD is to first solve ACD. Therefore, we select the parameters
of our scheme based on the attacks on the ACD problem [19, 9, 6]. The details are given in
Appendix C.

4.1 Reduction to the Approximate GCD problem

To prove the semantic security of our scheme, we introduce another decisional version of
approximate GCD problem.

Definition 2 (Decisional Approximate GCD Problem: DACD). The (ρ, η, γ)-decisional
approximate GCD problem is: for an η-bit prime p, given a γ-bit integer x0 = pq0 and poly-
nomially many samples from Dρ(p; q0), determine b ∈ {0, 1} from z = x+ r · b mod x0 where
x← Dρ(p; q0) and r ← Z ∩ [0, x0).

We assume that DACD problem is hard for any polynomial time distinguisher. In the follow-
ing, we introduce new problems that have a role bridging the gap between DACD problem
and our scheme. Overall, our scheme is semantically secure based on the DACD assumption.

Definition 3 (Decisional Approximate GCDQ Problem: DACDQ).
The (ρ, η, γ, lQ)-decisional approximate GCDQ problem is: for an η-bit prime p and a `Q-bit
integer Q, given a γ-bit integer x0 = pq0 with gcd(x0, Q) = 1, and polynomially many samples
from Dρ(p;Q; q0), determine b ∈ {0, 1} from z = x+ r · b mod x0 where x← Dρ(p;Q; q0) and
r ← Z ∩ [0, x0).

Definition 4 (k-Decisional Approximate GCDQ Problem: k-DACDQ).
The (ρ, η, γ, lQ)-k-decisional approximate GCDQ problem is : for η-bit distinct primes p1, . . . , pk
and `Q-bit integers Q1, . . . , Qk, given a γ-bit integer x0 := q0p1 · · · pk, with gcd(x0, Qi) = 1 for
i = 1, . . . , k, and polynomially many samples from D := Dρ

(
(pi)

k; (Qi)
k; q0

)
and a set Y :=

{y` = CRT(q0,p1,...,pk)(e`0, e`1Q1 + δ`1, . . . , e`kQk + δ`k)
∣∣e`0 ← Zq0 , e`i ← Z∩ (−2ρ, 2ρ) for `, i ∈

{1, . . . , k}}, determine b ∈ {0, 1} from z = x+ r · b mod x0 where x← D and r ← Z∩ [0, x0).

We say that the DACD assumption holds if no polynomial time distinguisher can solve the
DACD problem with non-negligible advantage. The k-DACDQ assumption is defined similarly.
Now we show that our somewhat homomorphic encryption scheme is semantically secure
under the DACD assumption. This is done by three steps. In the following, arrows indicate
polynomial time reductions.

Step 1: (ρ, η, γ)-DACD −→ (ρ, η, γ, lQ)-DACDQ (Lemma 2)

Step 2: (ρ, η, γ, lQ)-DACDQ −→ (ρ, η, γ + (k − 1)η, lQ)-k-DACDQ (Lemma 3)

Step 3: (ρ, η, γ + (k − 1)η, lQ)-k-DACDQ −→ our scheme (Theorem 2)

8

The first step is rather easily done by multiplying Q thanks to the knowledge of the exact
multiple of p. In the second step, DACDQ problem with x0 = q0p1 is converted to k-DACDQ

problem by choosing additional k − 1 primes p2, . . . , pk and computing necessary terms in-
cluding x′0 = q0

∏k
i=1 pi. In the proof, we use a hybrid argument and lose a factor of k in

the success probability. Finally, the last step is done by interpreting the input of k-DACDQ

problem as a public key of the scheme.

Lemma 2. The (ρ, η, γ)-DACD problem is reducible to the (ρ, η, γ, lQ)-DACDQ problem.

Proof. Suppose a polynomial time distinguisher B solves the (ρ, η, γ, lQ)-DACDQ problem
with an advantage ε. We construct a polynomial time distinguisher A that solves the (ρ, η, γ)-
DACD problem with the same advantage. Suppose A is given γ-bit integer x0 = pq0, z =
x + r · b, and polynomially many samples X = {xi | xi ← Dρ(p; q0) for i = 1, . . . , τ}. A
works as follows:

1. Choose a `Q-bit integer Q such that gcd(x0, Q) = 1.
2. Construct samples X ′ := {x ·Q mod x0 | x ∈ X} and z′ := z ·Q mod x0.
3. Give (x0, Q,X

′, z′) to B.
4. Output b′ where b′ is B’s answer.

We verify that the statistical distance of D′ = {x ← Dρ(p; q0) : Output y = x · Q mod x0}
and Dρ(p;Q; q0) is negligible when gcd(x0, Q) = 1. Consider a map φQ : Zq0 → Zq0 defined by
x 7→ x ·Q. Since gcd(x0, Q) = 1, φQ is a ring isomorphism and so ∆(D′,Dρ(p;Q; q0)) = 0. It
is easy to see that z′ is uniform in Z∩ [0, x0) when z is randomly chosen in Z∩ [0, x0). Hence
in this case, Pr[A(Dρ(p; q0), z) = 1] = Pr[B(D′, z′) = 1]. On the other hand, if z is randomly
chosen in Dρ(p; q0), then z′ is uniform in D′ and so Pr[A(Dρ(p; q0), z) = 1] = Pr[B(D′, z′) = 1].
Thus

Adv(A) = |Pr[A(Dρ(p; q0), z1) = 1]− Pr[A(Dρ(p; q0), z2) = 1]| = ε

by the definition of algorithm B and the fact ∆(D′,Dρ(p;Q; q0)) = 0 where z1 ← Dρ(p; q0)
and z2 ← Z ∩ [0, x0). ut

Lemma 3. Let p1, . . . , pk be distinct η-bit primes, x0 = q0p1 be γ1-bit integer, and x′0 =
q0
∏k
i=1 pi be γ-bit integer. Then, the (ρ, η, γ1, lQ)-DACDQ problem is reducible to the (ρ, η, γ, lQ)-

k-DACDQ problem with the advantage of the latter k times that of the former on average.

Proof. Suppose a polynomial time distinguisher B solves the (ρ, η, γ, lQ)-k-DACDQ problem.
We construct a polynomial time distinguisher A that solves the (ρ, η, γ1, lQ)-DACDQ problem.
We are assuming B’s advantage depends only on the parameter, not the specific value such
as pi.
For x0 = q0p1 and x′0 = q0

∏k
i=1 pi, we define Di := Dρ(p1, . . . , pi;Q1, . . . , Qi; q0

∏k
j=i+1 pj)

and D0 := Z ∩ [0, x′0). Note that the support1 of Di is included in the support of Di−1 for
i ∈ {1, . . . , k}. Suppose B can distinguish z between D0 and Dk with advantage ε. Then
by the standard hybrid argument, B should distinguish z between Di and Di−1 for some
i ∈ {1, . . . , k} with advantage at least ε/k. Let us denote this index as i0. Since B’s advantage
only depends on the parameters, this means B can distinguish between Di0 and Di0−1 for any
η-bit primes p1, . . . , pk.
For the time being, let us assume that i0 is known. Let the input of the distinguisher A be

1 The support of a distribution is a set of elements having non-zero probability in the distribution.

9

an integer x0 = q0p1, Q1, polynomially many samples xi from D and z = x+ r · b where D :=
Dρ(p1;Q1; q0), x ← D, r ← Z ∩ [0, x0) and b ∈ {0, 1}. We define a set I1 := (x0, Q1, {xi}τi=1).
Using input (I1, z), A constructs an input (I2, z′) which will be given to the distinguisher B
as follows:

1. Choose `Q-bit integers Q2, . . . , Qk, η-bit distinct primes p2, . . . , pk such that gcd(Qi, x0) =
gcd(pi, x0) = 1 for i ∈ {2, . . . , k}.

2. Let x′0 = x0 ·
∏k
i=2 pi = q0

∏k
i=1 pi.

3. For each sample xi from D, choose eij ← Z ∩ (−2ρ, 2ρ) for j ∈ {2, . . . , k}, and construct
a sample from the distribution D′ := Dρ(p1, . . . , pk;Q1, . . . , Qk; q0) by
x′i = CRT(x0,p2,...,pk)(xi, ei2Q2, . . . , eikQk).

4. To make a set Y , choose e′`j ← Z∩ (−2ρ, 2ρ), s` ← D for ` ∈ [1, k], j ∈ [2, k] and construct
y′` = CRT(x0,p2,...,pk)(s` + δ`1, e

′
`2Q2 + δ`2, . . . , e

′
`kQk + δ`k).

5. For z = x + r · b, let z′ = CRT(x0,p2,...,pk)(z, e
′
2Q2, . . . , e

′
i0
Qi0 , e

′
i0+1, . . . , e

′
k) where e′i ←

Z ∩ (−2ρ, 2ρ) for i ∈ {2, . . . , i0} and e′i ← Z ∩ [0, pi) for i ∈ {i0 + 1, . . . , k}.

In Step 3 and 4, since

x′i = CRT(x0,p2,...,pk)(xi, ei2Q2, . . . , eikQk)

= CRT(q0,p1,p2,...,pk)(ei0, ei1Q1, ei2Q2, . . . , eikQk)

y′` = CRT(x0,p2,...,pk)(s` + δ`1, e
′
`2Q2 + δ`2, . . . , e

′
`kQk + δ`k)

= CRT(q0,p1,p2,...,pk)(e
′
`0, e

′
`1Q1 + δ`1, e

′
`2Q2 + δ`2, . . . , e

′
`kQk + δ`k)

for some ei0, e
′
`0 ∈ Z ∩ [0, q0), ei1, e

′
`1 ∈ Z ∩ (−2ρ, 2ρ) for i ∈ [1, τ], ` ∈ [1, k], the set Y given

to B is suitable. The distinguisher A gives these input I2 = (x′0, {Qi}ki=1, {x′i}τi=1, {y′`}k`=1)
and z′ to B, and use B’s answer to its answer. Interchanging p1 and pi0 , we know that z is
sampled from Di0 or Di0−1. This can be distinguished by B with advantage ε/k, and thus
A’s advantage is at least ε/k. Since we do not know i0, we randomly choose i0 and get the
average advantage of ε/k.

ut

To complete the proof of the semantic security of our scheme, we need two more lemmas.
Lemma 4 shows that the distribution of fake public key is indistinguishable from that of the
correct public key. Lemma 5 implies that an encryption from A is correct form for the scheme.

Lemma 4. For the parameters (λ, ρ, η, γ, τ, lQ, k), let pk = (x0, {Qi}ki=1, {xj}τj=1, {yl}kl=1)
and sk = (p1, . . . , pk) be chosen as in the KeyGen of our scheme. And let us choose x′j
uniformly from Zx0 = Z ∩

(
−x0

2 ,
x0
2

]
for j = 1, . . . , τ . Then, pk and pk′ are computationally

indistinguishable if we define pk′ as (x0, {Qi}ki=1, {x′j}τj=1, {yl}kl=1), under the (ρ, η, γ, lQ)-k-
DACDQ assumption.

Lemma 5. For the parameters (λ, ρ, η, γ, τ, lQ, k), let pk = (x0, {Qi}ki=1, {xj}τj=1, {yl}kl=1)
and sk = (p1, . . . , pk) be chosen as in the KeyGen of our scheme. Let m = (m1, . . . ,mk)
where mi ∈ ZQi. For every z ∈ Dρ(p1, . . . , pk;Q1, . . . , Qk; q0), the following distribution

Cpk,z(m) =

S ⊂R {1, . . . , τ} : Output c′ ←
k∑
i=1

miyi +
∑
j∈S

xj + z mod x0



10

is computationally close to the distribution Enc(pk,m), under the (ρ, η, γ, lQ)-k-DACDQ as-
sumption.

Now we prove the semantic security of our scheme.

Theorem 2. The cryptosystem given in section 3 is semantically secure, if the (ρ, η, γ, lQ)-
k-DACDQ assumption holds.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of the scheme
with non-negligible advantage. We construct a polynomial time algorithm A that solves
the (ρ, η, γ, lQ)-k-DACDQ problem with non-negligible advantage. For η-bit distinct primes
p1, . . . , pk and `Q-bit integers Q1, . . . , Qk, the input of A is (x0, (Qi)

k,Dρ((pi)k; (Qi)
k; q0), Y, z)

where x0 = q0
∏k
i=1 pi is a γ-bit integer. The algorithm A works as follows:

1. A gives tuples (x0, (Qi)
k, X := {xj ← Dρ((pi)k; (Qi)

k; q0)}τj=1, Y := {y1, . . . , yk}) to B as
the public key.

2. B chooses {m0 = (m01, . . . ,m0k),m1 = (m11, . . . ,m1k)} and sends it to A.
3. A computes c′ =

∑k
`=1mbiy` +

∑
j∈J xj + z mod x0 for randomly chosen b ∈ {0, 1} where

J ⊂ {1, . . . , τ} is a random subset, and give c′ to B.
4. B outputs b′ ∈ {0, 1}.
5. If b = b′, then A outputs 0. Otherwise, outputs 1.

We see that the public key given to B is correctly formed and distributed. It is easy to see
that c′ is uniform in Zx0 when z is randomly chosen in Zx0 . Hence in this case, the advantage
of A is zero since c′ does not reveal any information of mb and B’s probability of correct
guessing is exactly 1/2. On the other hand, if z is randomly chosen in Dρ((pi)k; (Qi)

k; q0),
then c′ is computationally indistinguishable from the correct encryption of mb by Lemma 5
when we choose τ larger than γ+ω(log λ). Thus, in this case, the probability of correct answer
for B is at most negligibly different from that of B. This shows that the advantage of A is
non-negligible, violating the (ρ, η, γ, lQ)-k-DACDQ assumption. Therefore, the cryptosystem
given is section 3 is semantically secure. ut

5 Applications

In this section, we compare our somewhat homomorphic scheme with other homomorphic
schemes when used for integer arithmetic and vector arithmetic (SIMD operations).

5.1 Secure Large Integer Arithmetic

Secure integer arithmetic is one of the most important applications of homomorphic en-
cryption schemes. It includes frequently used statistical functions such as mean, standard
deviation, logistical regression, and secure evaluation of a multivariate function over the in-
tegers. Some applications may require very large integer inputs in the computation of these
functions. For the homomorphic computation of these functions, one may use FHEs. However,
the large ciphertext expansion and rather high cost of bootstrapping make this cumbersome
and inefficient. Also SWHE on small message space can not be efficient since it requires a
large depth for integer operations. In fact, even an addition of two λ-bit integers using bit
operations needs computing degree-O(λ) polynomial over Z2 due to carry computation. For

11

Message space (bit length) BV [3]
Ours

γ = Õ(λ4) γ = Õ(λ5)

λ λ3 λ3 λ4

λ2 λ3 λ2 λ3

λ3 λ3 λ λ2

λ4 λ3 - λ

Fig. 1. The comparison of overheads when allowing log λ multiplicative depth (Õ is omitted.)

this reason, it is very important to construct an efficient somewhat homomorphic scheme
supporting large integer arithmetic on encrypted data. In this subsection, we compare our
SWHE with other schemes.

There are several homomorphic encryptions based on various hard problems. Gentry’s
scheme and its optimized variants are still less efficient. FHEs based on the ACD are con-
ceptually simpler, but support only bit operations. More recent schemes based on (R)LWE
appear to be most efficient in various parameters. We compare our scheme with the BV
scheme in this category [3]. Large integer arithmetic with this scheme can be found in [22].

In the BV scheme [3], q > t > (` + 1)λ(22λ)λ and n must be larger than λ` to permit
depth-λ on `-bit integers where the ciphertext space is Zq[x]/(xn + 1) and the message space
is Zt[x]/(xn + 1). These constraints can be a disadvantage to encrypt large integers, since
the overhead is about Õ(n log q/`) ≈ Õ(λ3). To make encryption scheme supporting degree
λ on polynomial on large integers in our scheme, it is sufficient to choose O(λ)-bit pairwise
coprime integers Q1, . . . , Qk. The advantage of our scheme in the overhead stands out, as the
plaintext space gets larger.

We give a comparison between [3] and ours with respect to the bit length of the message
space in Fig. 1. If one accepts the lattice rule of thumb conjecture [27], one may need γ =
Õ(λ5) in our scheme. However, considering estimation of lattice reduction time in known
attacks, practical parameter for γ in [12] approximately matches to Õ(λ4) and this seems to
be sufficient for the security.

5.2 Secure Supporting SIMD Operations

For the parallel computations on encrypted data, homomorphic encryptions supporting SIMD
operations can be useful. Especially, when it supports integer arithmetic, it can be used to
securely evaluate a multivariate function simultaneously on many input vectors. There are
several homomorphic encryptions supporting SIMD operations including [25, 17] that use
CRT in certain polynomial ring Ap := Zp[x]/(F (x)) where F (x) is irreducible over Z but
factors into smaller degree polynomials over Zp . In contrast, we use CRT in Zn for a certain
composite n.

Smart and Vercauteren’s FHE in [25] supports SIMD operations on F2d . To evaluate depth-
log(λ) arithmetic circuit of average width Ω(λ) over F2, the overhead is Õ(N

√
N/λ) ≈ Õ(λ5)

where λ = 27, since one must choose N ≈ 227.
Gentry et al. [17] show that any t-gate, depth-L arithmetic circuit of average width Ω(λ)

over Fp can be evaluated homomorphically in time t · Õ(L) · polylog(λ) (Theorem 3 in [17])
with p = poly(λ). Thus, it cannot support large message space such as ZQ where Q ≈ 2λ.

12

In our scheme, the overhead is Õ(λ2) with SIMD operations on k copies of Z2 for k =
O(λ3). If we choose Q1 = · · · = Qk = Q ≈ 2λ, the overhead is reduced to Õ(λ) with SIMD
operations on k copies of ZQ. Thus, our scheme gets more attractive in dealing with SIMD
operations with larger integers.

6 Fully Homomorphic Encryption

Our homomorphic encryption can be converted to a fully homomorphic encryption via Gen-
try’s squashing technique as is done in DGHV [13] when all Qi’s are equal to two, based on the
sparse subset sum assumption. Note that message space is Zk2. Recall that the decryption of
message component mi is done by mi ← (c mod pi) mod Qi = (c mod pi) mod 2. Our sparse
subset consists of yj ’s such that

1

pi
≈

Θ∑
j=1

sij · yj ,

and the secret key sij ’s are included in the public key as an encrypted form Enc(pk, sj) where
sj = (s1j , s2j , . . . , skj) for j = 1, . . . , Θ. Using the same subset {yj}Θj=1 for every secret prime
pi, parallel computation is possible. By this way, we can lower the multiplicative depth of the
decryption to be computed homomorphically.

The remained question is whether this can be done when Qi is larger than two. Since
computing Qi-ary addition seems to need more complex carry computations than a binary
addition, the proof is not straightforward.

7 Further Works

In this paper, we proposed a secure ring homomorphic encryption scheme by modifying a
privacy homomorphism suggested by Rivest, Adleman and Dertouzos [23]. Our scheme can
be extended to a fully homormorphic encryption scheme under the decisional Approximate
GCD assumption and the sparse subset sum assumption. One strong point of our scheme is
the small overhead when using as a somewhat homomorphic encryption scheme of bounded
depth over the integers. Especially, when we are to securely evaluate a multivariate function
of degree O(λ) with input size Ω(λ2), our scheme has the smallest overhead.

Our scheme is analogous to the DGHV schemes [13] and the public key size is similar to
that of the DGHV. It would be interesting how to apply the public key compression technique
of [12] to our homomorphic scheme. Also, it is an open problem to design an efficient squashing
step for our scheme with Qi > 2, as well as the DGHV.

Acknowledgments We would like to thank Taekyoung Kwon and Hyung Tae Lee for
valuable comments. This work was supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MEST) (No. 2012-0001243).

References

1. Memoirs of the 6th Cryptology Paper Contest, arranged by a Korean government organization (2012)
2. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In

R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 868–886. Springer Berlin / Heidelberg, 2012.

13

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key
dependent messages. In P. Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
Lecture Notes in Computer Science, pages 505–524. Springer Berlin / Heidelberg, 2011.

4. E. Brickell and Y. Yacobi. On privacy homomorphisms (extended abstract). In D. Chaum and W. Price,
editors, Advances in Cryptology EUROCRYPT 87, volume 304 of Lecture Notes in Computer Science,
pages 117–125. Springer Berlin Heidelberg, 1988.

5. J. Buhler, J. Lenstra, H.W., and C. Pomerance. Factoring integers with the number field sieve. In
A. Lenstra and J. Lenstra, HendrikW., editors, The development of the number field sieve, volume 1554
of Lecture Notes in Mathematics, pages 50–94. Springer Berlin Heidelberg, 1993.

6. Y. Chen and P. Nguyen. Faster algorithms for approximate common divisors: Breaking fully-homomorphic-
encryption challenges over the integers. In D. Pointcheval and T. Johansson, editors, Advances in Cryp-
tology EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 502–519. Springer
Berlin Heidelberg, 2012.

7. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic
encryption over the integers. To Appear at Eurocrypt 2013.

8. J. H. Cheon, W.-H. Kim, and H. S. Nam. Known-plaintext cryptanalysis of the domingo-ferrer algebraic
privacy homomorphism scheme. Inf. Process. Lett., 97(3):118–123, 2006.

9. H. Cohn and N. Heninger. Approximate common divisors via lattices. IACR Cryptology ePrint Archive,
2011:437, 2011.

10. J.-S. Coron, T. Lepoint, and M. Tibouchi. Batch fully homomorphic encryption over the integers. Cryp-
tology ePrint Archive, Report 2013/036, 2013.

11. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic encryption over the integers
with shorter public keys. In P. Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 487–504. Springer Berlin / Heidelberg, 2011.

12. J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus switching for fully
homomorphic encryption over the integers. In D. Pointcheval and T. Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 446–464.
Springer Berlin / Heidelberg, 2012.

13. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers.
In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 24–43. Springer Berlin / Heidelberg, 2010.

14. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

15. C. Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In T. Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
116–137. Springer Berlin / Heidelberg, 2010.

16. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In K. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer Berlin / Heidelberg, 2011.

17. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 465–482. Springer Berlin / Heidelberg, 2012.

18. C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the aes circuit. In R. Safavi-Naini and
R. Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 850–867. Springer Berlin / Heidelberg, 2012.

19. N. Howgrave-Graham. Approximate integer common divisors. In CaLC, pages 51–66, 2001.
20. J. C. Lagarias. The computational complexity of simultaneous diophantine approximation problems. SIAM

J. Comput., 14(1):196–209, 1985.
21. J. Lenstra, H. W. Factoring integers with elliptic curves. The Annals of Mathematics, 126(3):pp. 649–673,

1987.
22. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In CCSW,

pages 113–124, 2011.
23. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphism. Foundations of

Secure Computation, pages 168–177, 1978.
24. P. Scholl and N. Smart. Improved key generation for gentry’s fully homomorphic encryption scheme.

In L. Chen, editor, Cryptography and Coding, volume 7089 of Lecture Notes in Computer Science, pages
10–22. Springer Berlin / Heidelberg, 2011.

14

25. N. Smart and F. Vercauteren. Fully homomorphic simd operations. To appear in Designs, Codes and
Cryptography.

26. N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext
sizes. In P. Nguyen and D. Pointcheval, editors, Public Key Cryptography – PKC 2010, volume 6056 of
Lecture Notes in Computer Science, pages 420–443. Springer Berlin / Heidelberg, 2010.

27. D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In M. Abe, editor, Advances in Cryptology
- ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 377–394. Springer Berlin
/ Heidelberg, 2010.

28. D. Wagner. Cryptanalysis of an algebraic privacy homomorphism. In ISC, pages 234–239, 2003.

A Correctness

Lemma 6. If c← Enc(pk,m) for m ∈
∏k
i=1 ZQi, then c = piai + biQi +mi for some ai, bi

with |biQi +mi| < 2(ρ
′+`Q) for all i = 1, . . . , k.

Proof. The proof is straightforward. If c← Enc(pk,m), then

c = CRT(q0,p1,...,pk)(e0, e1Q1 +m1, . . . , ekQk +mk) = piai + eiQi +mi

for some ai and |eiQi +mi| < 2ρ
′+`Q for all i = 1, . . . , k. ut

Lemma 7. Let C ∈ CE and cj ← Enc(pk,mj), where mj = (mj1, . . . ,mjk) for j = 1, . . . , t.
Let m′i ← C(m1i, . . . ,mti) and c ← Eval(pk,C, c1, . . . , ct). Then c = piai + biQi + m′i for
some ai, bi with |biQi +m′i| < pi/8 for all i = 1, . . . , k.

Proof. Let f be the multivariate polynomial computed by C. Then

c mod pi = f
(
c1, . . . , ct

)
mod pi

= f
(
c1 mod pi, . . . , ct mod pi

)
mod pi.

Since C ∈ CE and |cj mod pi| < 2ρ
′+`Q for all j = 1, . . . , t by Lemma 6,∣∣∣f(c1 mod pi, . . . , ct mod pi

)∣∣∣ < 2η−4 < pi/8

for all i = 1, . . . , k. Thus c mod pi = f
(
c1 mod pi, . . . , ct mod pi

)
. Also,

(c mod pi) mod Qi = f
(
c1 mod pi, . . . , ct mod pi

)
mod Qi

= f
((
c1 mod pi

)
mod Qi, . . . ,

(
ct mod pi

)
mod Qi

)
mod Qi

= f(m1i, . . . ,mti) mod Qi

= m′i mod Qi

for all i = 1, . . . , k. ut

B Proofs

Proof of Lemma 4. Suppose a polynomial time distinguisher B may distinguish pk from
pk′ with advantage ε. Using B, we construct a polynomial time distinguisher A that solves
the (ρ, η, γ, lQ)-k-DACDQ problem. Note that the distinguisher A has access to the oracle

15

D = Dρ((pi)k; (Qi)
k; q0). For r = 0, . . . , τ , define pk(r) = (x0, {Qi}ki=1, {x

(r)
j }τj=1, {yl}kl=1) by

setting

x
(r)
1 ← Zx0 ,

...

x(r)r ← Zx0 ,

x
(r)
r+1 ← D,

...

x(r)τ ← D.

We see that pk(0) has the same distribution as pk, and pk(τ) has the same distribution as
pk′. For r = 1, . . . , τ , we define

pr r := Pr[B(pk(r−1)) = 1]− Pr[B(pk(r)) = 1].

(Note that in the above formula we omitted other information B has: λ, ρ, η, γ, τ, lQ, k.)
Now we are ready to fully define the algorithm A. It has given a number z, which either

is from D, or is uniformly random on Zx0 .
The algorithm A first picks r randomly from {1, . . . , τ}, and selects x∗j (j = 1, . . . , τ) as

follows

x∗1 ← Zx0 ,
...

x∗r−1 ← Zx0 ,
x∗ := z,

x∗r+1 ← D,
...

x∗τ ← D.

Then A runs B with input pk∗ := (x0, {Qi}ki=1, {x∗j}τj=1, {yl}kl=1), and echoes the output
of B as its own answer. Clearly, if z is chosen from D, then pk∗ has the same distribution as
pk(r−1), and if z is chosen uniformly from Zx0 , then pk∗ has the same distribution as pk(r).
Now, if z is from D, we have

Pr[A(z) = 1] =
1

τ

τ∑
r=1

Pr[B(pk(r−1)) = 1],

and if z is from Zx0 , then

Pr[A(z) = 1] =
1

τ

τ∑
r=1

Pr[B(pk(r)) = 1].

(Again we omit from the notation other information A has other than z.)

16

The difference between the two probabilities is equal to

1

τ

τ∑
r=1

Pr[B(pk(r−1)) = 1]− 1

τ

τ∑
r=1

Pr[B(pk(r)) = 1]

=
1

τ

(
Pr[B(pk(0)) = 1]− Pr[B(pk(τ)) = 1]

)
=

1

τ

(
Pr[B(pk) = 1]− Pr[B(pk′) = 1]

)
= ε/τ.

Therefore, in this case A is a distinguisher which solves the (ρ, η, γ, lQ)-k-DACDQ problem
with advantage ε/τ . Under the (ρ, η, γ, lQ)-k-DACDQ assumption, we conclude that the dis-
tinguisher B cannot exist. ut

Proof of Lemma 5. Since we are making (ρ, η, γ, lQ)-k-DACDQ assumption, according to
Lemma 4, instead of normally chosen public key pk = (x0, {Qi}ki=1, {xj}τj=1, {yl}kl=1), we may

use pk′ = (x0, {Qi}ki=1, {x′j}τj=1, {yl}kl=1) with x′j chosen uniform randomly from Zx0 , since
both are computationally indistinguishable from each other.

Hence, we need only to compare Cpk,z(m) and Enc(pk,m) under the ‘false’ public key pk′.

The output of Cpk,z(m) is c′ =
∑k

i=1miyi+
∑

j∈S x
′
j+z mod x0, and the output of Enc(pk,m)

is c =
∑k

i=1miyi +
∑

j∈S x
′
j mod x0. But since x′j are uniformly chosen modulo x0, we may

use the Leftover Hash Lemma, more specifically Lemma 1 from [13], to conclude that the
distribution of

∑
j∈S x

′
j is statistically indistinguishable from uniform random distribution on

Zx0 , hence both distributions, c′ and c, are uniform random on Zx0 . Switched to the correct
public key, this implies that two distributions are computationally indistinguishable. ut

C Known Attacks on the ACD Problem

In [13], many attacks on the ACD problem are described. Including those attacks, we analyze
additional attacks on ACD problem. We present the attacks depending on the number of
approximate multiple of p. Suppose that we are given approximate multiples of p which
are x0, x1, . . . , xm where only x0 is an exact multiple. If m = 0, we can only use factoring
algorithm such as elliptic curve method [21] or number field sieve [5]. If m = 1, Howgrave-
Graham [19] and Chen-Nguyen [6] can be applied. In the case of m ≥ 2, the Lagarias algorithm
for simultaneous Diophantine approximation [20] or Cohn and Heninger’s attack [9] can be
considered.

C.1 The Factoring Attacks

Given x0 = pq0, a exact multiple of p, one can recover p by using factoring algorithm such
as elliptic curve method or number field sieve. Lenstra’s elliptic curve method for factoring
algorithm [21] runs in time exp(O(η1/2)) where log p = η. To avoid this attack, we have to
choose η ≥ O(λ2). The time needed by the general number field sieve [5] to factor γ-bit integer
x0 is exp(O(γ1/3)). Thus we choose γ ≥ O(λ3).

17

C.2 The Approximate GCD Problem of Two Numbers

Chen-Nguyen [6] Only one sample from Dγ,ρ(p) is used for solving ACD problem in Chen-
Nguyen’s paper [6] which considers e is in [0, 2ρ) rather than (−2ρ, 2ρ). Given x0 = pq0 and
x1 = pq1 + e1, they start with the following observation:

p = gcd
(
x0,

2ρ−1∏
i=0

(x1 − i)(mod x0)
)
,

which holds with overwhelming probability. And then construct polynomial fj(x) defined as

fj(x) =

j−1∏
i=0

(x1 − (x+ i))(mod x0).

They notice that

2ρ−1∏
i=0

(x1 − i)(mod x0) =

2ρ
′+(ρmod2)−1∏

k=0

f2ρ′ (2
ρ′k)(mod x0)

where ρ′ = bρ/2c. Using FFT and multi-point evaluation, it can recover p in Õ(2ρ/2) com-
plexity rather than Õ(2ρ) of the brute force attack. So we choose parameter ρ such that
ρ > O(λ).

Howgrave-Graham [19] It suggests two approaches for solving ACD problem, one is the
continued fraction method and the other is Coppersmith’s method. We describe Copper-
smith’s method, since it has better results than the continued fraction with respect to a
bit-length of noise e. Given x0 = pq0, x1 = pq1 + e1, it defines q0(x) := x0, q1(x) := x1 +x and
constructs lattice L with the coefficient vector of pi(x) = q0(x)u−iq1(x)i for some fixed integer
u and i = 0, . . . , u. When e is the correct noise of x1, pi(−e) = 0 mod pu for i = 0, . . . , u.
If the length of the b1 which is the first vector of LLL output is smaller than pu, then we
find all roots of b1 over the integers not in Zpu and one of the roots is the correct noise e.

The result of this algorithm is that it outputs all integer p ≥ xβ0 such that there exists an e

with e ≤ xβ
2

0 , and p divides both x0 and x1 − e by using LLL algorithm. Thus we choose the
parameter γ > η2/ρ to resist this attack.

C.3 The Approximate GCD Problem of Many Numbers

Cohn and Heninger [9] They generalize Howgrave-Graham’s approach to the case one is
given many samples from Dγ,ρ(p). Given x0 = pq0 and x1, . . . , xm ← Dγ,ρ(p), their approach
is as follows:

1. Construct m-variate polynomial Qi(y1, . . . , ym) with small coefficients satisfying

Qi(e1, . . . , em) ≡ 0 mod pk

whenever xi ≡ ei mod p for i = 1, . . . ,m and for some k > 0.

18

2. Construct a lattice L generated by the coefficient vector of Qi’s.
3. Apply LLL algorithm and get m shortest vector v1, . . . , vm satisfying

|v1| ≤ · · · ≤ |vm| ≤ 2(dimL)/4(detL)1/(dimL+1−m).

4. If 2(dimL)/4(detL)1/(dimL+1−m) < pk, then Vi(e1, . . . , em) = 0 over the integers where Vi
is corresponding polynomial of the vector vi for i = 1, . . . ,m.

5. By solving multivariate equation V1, . . . , Vm, it can recover e1, . . . , em.

In step 5, it needs heuristic assumption such that equation V1, . . . , Vm is algebraically inde-
pendent. The result is as follows: By using multivariate version of Coppersmith’s attack, the

size of noise can be extended to xβ
m+1
m

0 from xβ
2

0 where m is the number of samples from
Dγ,ρ(p). If m = 1, the result is the same as that of Howgrave-Graham. However Cohn and
Heninger’s approach has one constraint such that β2 log x0 � 1. We do not know that how
much β2 log x0 is lager than 1, since the analysis in [9] is given only asymptotically. So we
have to analyze more concretely to get practical parameters.

Simultaneous Diophantine Approximation (SDA) [20] This attacker is considered in
[13]. Given x0 = pq0 and xi = pqi + ei ← Dγ,ρ(p) for i = 1, . . . ,m, note that the rational
numbers yi = xi/x0 are the instances of the simultaneous diophantine approximation problem.
Consider

yi =
xi
x0

=
pqi + ei
pq0

=
qi
q0

+
si
q0

(1)

where si = ei/p ≈ 2ρ−η. We now try to use Lagarias’s algorithm to solve this problem.
Consider the lattice spanned by row vectors of following matrix:

L =


2ρ x1 x2 · · · xm
0 −x0 0 · · · 0
0 0 −x0 · · · 0

0 0 0
. . . 0

0 0 0 · · · −x0

 .

Suppose that v be the target vector of lattice L, that is v = (q0, . . . , qt) · L. Then ‖v‖ ≈
2γ−η+ρ

√
m+ 1, since

v = (q0, . . . , qm) · L = (q0 · 2ρ, q0x1 − x0q1, . . . , q0xm − x0qm).

with |q02ρ| ≈ 2γ−η+ρ and |q0xi−x0qi| = |x0q0(xix0 −
qi
q0

)| = |x0si| ≈ 2γ−η+ρ. Since Minkowski’s

bound is (detL)1/ dimL
√
m+ 1 ≈ 2

γm+ρ
m+1
√
m+ 1 = 2γ−

γ−ρ
m+1
√
m+ 1, only if m+ 1 > γ−ρ

η−ρ , the
target vector v can be the shortest vector in L. Actually, there are exponentially many vector
of length smaller than 2γ

√
m+ 1, which is longer than 2η−ρ. As a rule of thumb, it requires

time roughly 2m/k to output a 2k approximation of the shortest vector. So it can be found
2η−ρ approximation of the shortest vector in 2m/(η−ρ) > 2(γ−ρ)/(η−ρ)

2
. Thus one must choose

parameters γ, η such that γ/η2 = ω(log λ) to avoid the attack on the ACD problem using
Lagarias algorithm.

