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is used in the exploitation phase of a classical group decision making problem, is
generalized to the twofold case.
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1 Introduction

In a classical group decision making problem ([6,10]), some information pro-
vided by several experts is considered in order to choose the alternative which
is most accepted by these specialists.

However, the experts are not always available to have their experience in dif-
ferent �elds. As taking into account at the same time several experts and
criteria is very usual, it is a long-standing problem in group decision making.
There are several approaches to this problem. Most of them are centred on the
concept of hesitant fuzzy sets ([9,21,23,25]) and the aggregation of this kind
of sets ([2,26,27]). Other authors have proposed using fuzzy preference rela-
tions ([14,17,22]), Atanassov's intuitionistic interval fuzzy information ([24]),
trapezoidal valued hesitant fuzzy sets ([20]) or hesitant fuzzy linguistic terms
([15]). In all these proposals, several experts are asked for their preference on a
set of alternatives considering several criteria. Nevertheless, most of the times,
preferences of the same expert in di�erent criteria are treated as preference of
di�erent experts in a single-criterion problem. However, in this twofold group
decision making problem, preferences of experts in the same criteria are mixed
and then this consensus preference is compared with other preferences in dif-
ferent criteria. This consideration is due to the intuitive notion that experts
in a same criterion have a similar behaviour. Nevertheless, this method makes
sense even though experts in a same criterion actually have di�erent prefer-
ences. Moreover, the imprecision and uncertainty caused by the subjectivity in
the information provided by the experts could be modelled with this proposal.

In the twofold group decision making problem, �nitely generated sets, which
are �nite unions of closed intervals ([19]), play a fundamental role. This kind
of sets allows to construct �nite interval-valued hesitant fuzzy preference re-
lations ([19]), which are the measure considered in the twofold case of how
much an alternative is preferred to another. However, there are not arithmetic
operations or aggregation operators de�ned between �nitely generated sets in
the literature. Therefore, a whole section of this paper is devoted to them.

On the other hand, weighted voting method ([3,11�13]) is a common method
used to classify the alternatives given a fuzzy preference relation. In [18], we
have improved this method in order to construct a family of weighted vot-
ing methods depending on a parameter α measuring what is more important:
being the �most dominating� or the �least dominated� alternative. This im-
provement has been called Extended Weighted Voting Method (EWVM for
short). However, this proposal can only consider fuzzy preference relations.
Therefore, in this paper, this method has been adapted to �nite interval-
valued hesitant fuzzy preferences. The resulting method will be henceforth
called Twofold Extended Weighted Voting Method (T-EWVM for short).
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The structure of this paper is as follows. First of all a few preliminary def-
initions are shown in Section 2 in order to �x notations and review several
notions in �nitely generated sets and �nite interval-valued hesitant fuzzy pref-
erence relations. Then, some arithmetic operations between �nitely generated
sets are seen in Section 3 in order to introduce the twofold group decision mak-
ing problem in Section 4. Then, an illustrative example of the twofold group
decision making problem in a practical case is shown in Section 5. Finally, we
conclude with some conclusions and open problems.

2 Preliminary de�nitions

This section is devoted to brie�y introduce several well-known basic concepts
and to �x the notations used in this paper. The study of �nitely generated
sets, which were �rstly considered by Chen et al. [5] and de�ned in detail by
Pérez-Fernández et al. [19], is shortly reviewed right after. Let us start with
some notations.

De�nition 1 [19] The class of n-�nitely generated sets in the interval [0, 1]
is:

FGn([0, 1]) = {J ⊆ [0, 1]|J = I1∪. . .∪In for some disjoint I1, . . . , In ∈ L([0, 1])},

where L([0, 1]) is the set of all closed subintervals in [0, 1].

De�nition 2 [19] The class of �nitely generated sets in the interval [0, 1] is:

FG([0, 1]) =
+∞⋃
n=1

FGn([0, 1]).

Remark 3 Finitely generated sets can also be de�ned on any other inter-
val, but in this paper we are mostly working with membership functions and,
therefore, we can reduce to [0, 1].

Once these sets have been introduced, the following proposition is straightfor-
ward.

Proposition 4 [19] Let I ⊆ [0, 1]. Then, the following statements are equiv-
alent:

• I ∈ FG([0, 1]).
• There exists a unique value n ≥ 1 such that I ∈ FGn([0, 1]).

Thus, for any I ∈ FG([0, 1]), the unique value n ≥ 1 such that I ∈ FGn([0, 1])
is denoted by nI .
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In [19], Pérez-Fernández et al. go in depth on the analysis of this kind of sets.
The most important de�nitions and results on this paper are reviewed right
after. There, the concept of αsg of a �nitely generated set was introduced, as
a generalization of the α-point of an interval. For that, an order under the
set [0, 1]{−,+}, which is in fact the set [0, 1]× {−,+}, was de�ned. After that,
the map Υ was introduced, as a way to determine the selected interval of the
�nitely generated set where the αsg-point will be considered. Let us recall this
de�nition.

De�nition 5 [19] Let αsg be an element in [0, 1]{−,+}. The function Υ :
[0, 1]{−,+} × N→ N is de�ned in the following way:

Υ(0−, n) = Υ(0+, n) = 1,

Υ( i
n

−
, n) = i ∀i ∈ {1, . . . , n− 1},

Υ( i
n

+
, n) = i+ 1 ∀i ∈ {1, . . . , n− 1},

Υ(1−, n) = Υ(1+, n) = n,

Υ(αsg, n) = i ∀α satisfying i−1
n
< α < i

n
when i ∈ {1, . . . , n}.

After that, the concept of αsg-point of the �nitely generated set was de�ned
as follows.

De�nition 6 [19] Let A =
nA⋃
i=1

Ii be a nA-�nitely generated set and αsg ∈

[0, 1]{−,+}. The αsg-point of the �nitely generated set A is de�ned as

Kαsg(A) = inf(IΥ(αsg ,nA)) + α′
(
sup(IΥ(αsg ,nA))− inf(IΥ(αsg ,nA))

)
,

with α′ = nA · α−Υ(αsg, nA) + 1 ∈ [0, 1].

How to obtain an αsg-point by rescaling other two αsg-points in the same
interval is shown in the following proposition, where the order between the
elements in [0, 1]{−,+} was given by αsg1 < βsg2 i� α < β or α = β and
(sg1, sg2) = (−,+) (see [19]).

Proposition 7 [19] Let A ∈ FG([0, 1]) and let IA be some of the disjoint
intervals which compose A. Let αsg1, βsg2, γsg3 be three elements in [0, 1]{−,+}

such that αsg1 < βsg2 < γsg3 and Kαsg1(A), Kβsg2(A), Kγsg3(A) ∈ IA. Then,

Kβsg2(A) = Kαsg1(A) +
β − α
γ − α

(Kγsg3(A)−Kαsg1(A)).
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It is well known that every interval is determined unequivocally by its two
ends. Furthermore, �nitely generated sets can be characterized by certain αsg-
points: the grid points.

De�nition 8 Let n ∈ N. A n-grid is de�ned as:

G(n) =

{
i− 1

n

+

| i = 1, . . . , n

}⋃{
i

n

−
| i = 1, . . . , n

}
.

n-grids are fundamental in the analysis of �nitely generated sets. In the fol-
lowing de�nitions a characterization of a �nitely generated set using a certain
n-grid is proposed.

De�nition 9 Let A be a �nitely generated set and n a natural number. The
set of n-grid points of A is de�ned as the set of all the αsg-points of A for any
αsg ∈ G(n) and it is denoted by Kn(A). Thus,

Kn(A) = {Kαsg(A) | αsg ∈ G(n)}.

De�nition 10 Let A be a nA-�nitely generated set. The nA-grid points, K
nA(A),

are called fundamental points of A. Note that the fundamental points of any
set A determine unequivocally a nA-�nitely generated set.

Operating with intervals is possible just considering the two bounds of each
interval. In the �nitely generated set case, basic arithmetic operations can be
made considering the union of two speci�c n-grids.

De�nition 11 Let n,m ∈ N. The n,m-grid is de�ned as:

G(n,m) = G(n) ∪G(m).

Proposition 12 [19] Let n1, n2, n ∈ N, then

G(n1, n2) = G(n) ⇔ min(n1, n2)|max(n1, n2) and max(n1, n2) = n.

In addition, a weak order between �nitely generated sets based on the concept
of αsg-point was introduced.

De�nition 13 [19] Let A,B ∈ FG([0, 1]) and a �xed αsg ∈ [0, 1]{−,+}. Then,
a weak order on FG([0, 1]) is de�ned as:

A ≤αsg B ⇔ Kαsg(A) ≤ Kαsg(B).

We can generalise this proposal for ordering FG([0, 1]) by means of the lattice
order

A ≤lo B ⇔ Kαsg(A) ≤ Kαsg(B), ∀αsg ∈ [0, 1]{−,+}
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which was proven in [19] to be an order on FG([0, 1]).

Finally, the de�nition of fuzzy preference relation and �nite interval-valued
hesitant fuzzy preference relation must be reviewed.

De�nition 14 [8] Given a �nite set of alternatives A, a fuzzy preference
relation R is a mapping R : A×A → [0, 1] such that R(A,B) +R(B,A) = 1
for any pair of alternatives A and B in A.

This kind of relations are also known in the literature as probabilistic, re-
ciprocal or ipsodual relations, depending on the environment we are working
([1]).

De�nition 15 [19] Given a �nite set of alternatives A, a �nite interval-
valued hesitant fuzzy preference relation R is a mapping R : A × A →
FG([0, 1]) such that R(A,B) is symmetric to R(B,A) in relation to the point
0.5 for any pair of alternatives A and B in A.

Remark 16 Note that R(A,B) and R(B,A) are �nitely generated sets. There-
fore, being symmetric in relation to the point 0.5 would be that:

Kαsg(R(A,B)) +K(1−α)sgc (R(B,A)) = 1 ∀αsg ∈ [0, 1]{−,+}.

For instance, let A = [0, 0.2] ∪ [0.4, 0.7] ∈ FG([0, 1]). Then, we obtain B, the
symmetric of A in relation to the point 0.5, in the following way:

Firstly, we know that B ∈ FG2([0, 1]) as A ∈ FG2([0, 1]). Therefore, it is

enough to obtain Kαsg(B) for αsg ∈ G(2) = {0, 1
2

−
, 1

2

+
, 1}.

K0(B) = 1−K1(A) = 1− 0.7 = 0.3,

K 1
2

−(B) = 1−K 1
2

+(A) = 1− 0.4 = 0.6,

K 1
2

+(B) = 1−K 1
2

−(A) = 1− 0.2 = 0.8,

K1(B) = 1−K0(A) = 1− 0 = 1.

Finally,
B = [0.3, 0.6] ∪ [0.8, 1].

3 Finitely generated sets arithmetic

The main goal of this paper is introducing a new kind of group decision making
problem. In this problem, �nitely generated sets are considered. Furthermore,
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aggregation operators between them are also used. Unfortunately, these op-
erators are not previously de�ned and, therefore, we need to address their
introduction in this section.

3.1 Basic operations between �nitely generated sets

In order to de�ne aggregation operators, some arithmetic operations between
positive �nitely generated sets must be previously introduced. All these oper-
ations would be made αsg-point to αsg-point.

De�nition 17 Let A,B ∈ FG([0, 1]). Addition and multiplication between
positive �nitely generated sets, which will be denoted by + and · respectively,
are de�ned in the following way:

A+B =
⋃

αsg∈[0,1]{−,+}

(Kαsg(A) +Kαsg(B)).

A ·B =
⋃

αsg∈[0,1]{−,+}

(Kαsg(A) ·Kαsg(B)).

In the previous de�nition, we have considered the same notation for the ad-
dition of two �nitely generated sets, the sum of two real numbers and the
symbol of one direction. This is an abuse of notation, but we think it is not
necessary to consider di�erent symbols, which could di�cult the understood
of the results, since it is clear the meaning of any of them, depending on the
context.

De�nition 18 Multiplication by positive scalars can be seen as a multiplica-
tion of a �nitely generated set A by a degenerated �nitely generated set (a
scalar) k ≥ 0, i.e.:

k · A =
⋃

αsg∈[0,1]{−,+}

(Kαsg(k) ·Kαsg(A)) =
⋃

αsg∈[0,1]{−,+}

(k ·Kαsg(A)).

When this multiplication by scalars is extended to R, we have that if k < 0
then:

k ·Kαsg(A) = k ·K(1−α)sgc (A) ∀αsg ∈ [0, 1]{−,+}.

Furthermore, after introducing addition and product, subtraction is the next
arithmetic operation to be introduced.

De�nition 19 Let A,B ∈ FG([0, 1]). Subtraction between positive �nitely
generated sets is de�ned in the following way:

A−B = A+ (−1) ·B.
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Finally, multiplicative inverse and division should be introduced:

De�nition 20 Let A,B ∈ FG([0, 1]). Multiplicative inverse and division be-
tween positive �nitely generated sets, which will be denoted by −1 and / respec-
tively, are de�ned in the following way:

B−1 =
⋃

αsg∈[0,1]{−,+}

(1/K(1−α)sgc (B)),

A/B = A ·B−1.

Remark 21 It must be remarked that / is not de�ned when 0 ∈ B, since in
that case K(1−α)sgc (B) is equal to 0 for some value of αsg ∈ [0, 1]{−,+}.

Remark 22 The arithmetic operations + and − can be immediately extended
to A,B ∈ FG([a, b]) with a, b ∈ R. However, the same extension of · and /
does not keep the properties that we are going to introduce right after when
a < 0.

These operations extended to FG([a, b]) with a, b ∈ R are going to be used in
the following sections when de�ning aggregation operators. However, this does
not constitute a problem as we are only changing the domain of de�nition.

Remark 23 These operations are not internal in FG([0, 1]), but they remain
being �nitely generated sets. It does not suppose any issue.

Next proposition states some properties of these recently de�ned operations.

Proposition 24 Let FG([0, 1]) be the class of �nitely generated sets in the
interval [0, 1]. Then, the following properties are satis�ed:

• Addition and multiplication are commutative.
• Addition and multiplication are associative.
• Multiplication distributes over addition.
• [0, 0] and [1, 1] are, respectively, identity elements of addition and multipli-
cation.

Proof. It is straightforward as every αsg-point is a real number and both +
and · are de�ned from their respective αsg-points. �

By de�nition, the following property is straightforward.

Proposition 25 Let A ∈ FG([0, 1]). Then, for any αsg ∈ [0, 1]{−,+}, the
following statements are true:

• Kαsg(−A) = −K(1−α)sgc (A).

• Kαsg(A−1) =
(
K(1−α)sgc (A)

)−1
, if 0 /∈ A.
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An interesting question may arise at this moment. Are the αsg-points preserved
when working with these operations? The answer is not positive, as we can
see in the following counterexample.

Example 26 Let A,B ∈ FG([0, 1]) de�ned by A = [0, 1
3
] ∪ [2

3
, 1] and B =

[1
6
, 1

3
] ∪ [1

2
, 2

3
] ∪ [5

6
, 1]. Then,

A+B = [1
6
, 5

9
] ∪ [13

18
, 11

12
] ∪ [5

4
, 13

9
] ∪ [29

18
, 2],

A−B = [−1,−11
18

] ∪ [−4
9
,−1

4
] ∪ [ 1

12
, 5

18
] ∪ [4

9
, 5

6
],

A ·B = [0, 2
27

] ∪ [1
9
, 7

36
] ∪ [ 7

18
, 14

27
] ∪ [35

54
, 1] and

A/B = [0, 4
15

] ∪ [1
3
, 7

12
] ∪ [7

6
, 14

9
] ∪ [7

3
, 6].

However, using αsg = 1
3

−
, we have that

Kαsg(A) +Kαsg(B) = 2
9

+ 1
3

= 5
9
6= 85

108
= Kαsg(A+B),

Kαsg(A)−Kαsg(B) = 2
9
− 1

3
= −1

9
6= − 41

108
= Kαsg(A−B),

Kαsg(A) ·Kαsg(B) = 2
9
· 1

3
= 2

27
6= 5

36
= Kαsg(A ·B),

Kαsg(A)/Kαsg(B) = 2
9
/1

3
= 2

3
6= 5

12
= Kαsg(A/B).

Thus, it is clear that the following statements are not true in general:

• Kαsg(A) +Kαsg(B) = Kαsg(A+B) ∀αsg ∈ [0, 1]{−,+}.
• Kαsg(A)−K(1−α)sgc (B) = Kαsg(A−B) ∀αsg ∈ [0, 1]{−,+}.

• Kαsg(A) ·Kαsg(B) = Kαsg(A ·B) ∀αsg ∈ [0, 1]{−,+}.
• Kαsg(A)/K(1−α)sgc (B) = Kαsg(A/B) ∀αsg ∈ [0, 1]{−,+}.

We have seen that the αsg-points are not preserved when working with these
four basic arithmetic operations between �nitely generated sets. However, the
behaviour of αsg-points is not catastrophic and we can de�ne an automorphism
Ψ to recover the αsg-point only depending of the number of intervals of both
�nitely generated sets.

Theorem 27 Let A,B ∈ FG([0, 1]). Then, there exists a unique increasing
injective function ΨnA,nB

: G(nA, nB)→ G(nA+nB−g.c.d.(nA, nB)) satisfying
for any αsg ∈ G(nA, nB) that

Kαsg(A) +Kαsg(B) = KΨnA,nB
(αsg)(A+B).

Proof. Let A,B ∈ FG([0, 1]). We de�ne:

ΨnA,nB
(0+) = 0+,
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ΨnA,nB
(1−) = 1− and

ΨnA,nB
(αsg[i]) = i

nA+nB−g.c.d.(nA,nB)

sg ∀i = 1, . . . , nA + nB − g.c.d.(nA, nB)− 1,

where αsg[i] is the ith lowest value of αsg among all the αsg ∈ G(nA, nB)\{0, 1}.

It is straightforward to see that Ψ is increasing and injective. Let us proof that

Kαsg(A) +Kαsg(B) = KΨnA,nB
(αsg)(A+B).

Let αsg ∈ G(nA, nB)\{0, 1}. As αsg ∈ G(nA, nB), at least one of Kαsg(A) and
Kαsg(B) is an end (left end if sg = − or right end if sg = +) of the intervals
forming A and B respectively. This means that there is a discontinuity between
Kα−(A) +Kα−(B) and Kα+(A) +Kα+(B).

As αsg is a generic element of G(nA, nB)\{0, 1}, we can observe that we
have a number of discontinuities equal to a half of the number of elements
in G(nA, nB)\{0, 1}. Due to the continuity in [0, 1]sg\G(nA, nB) and the in-
creasing monotonicity of the operator �+� with respect to its two components,
it follows that the number of discontinuities plus 1 is the number of intervals
in A+ B and that every end of interval in A+ B is obtained as the addition
of Kαsg(A) and Kαsg(B) with αsg ∈ G(nA, nB).

Finally, let us consider αsg[i] ∈ G(nA, nB)\{0, 1} the i-th lowest value of αsg

among all the αsg ∈ G(nA, nB)\{0, 1}. We can see that Kαsg(A+B) may not
coincide with the corresponding to Kαsg(A) and Kαsg(B) because nA+B may
not coincide with nA and nB. This point is associated to i

nA+nB−g.c.d.(nA,nB)

sg
.

On the other hand, uniqueness is straightforward due to the increasing mono-
tonicity of Ψ and of the αsg-point operator, i.e. we are looking for a bijection
between G(nA, nB) and G(nA + nB − g.c.d.(nA, nB)) and as there is a linear
order between the elements in both sets and the function needs to be increas-
ing, we have Ψ as the unique possibility. Therefore, Ψ is the unique increasing
one-to-one function between G(nA, nB) and G(nA + nB − g.c.d.(nA, nB)). �

We have just stated that there exists a unique increasing function relating
the grid points of two sets and the result of operating them. In the following
proposition an extension to [0, 1]{−,+} of this function Ψ is proposed.

Proposition 28 This function ΨnA,nB
can be extended to [0, 1]sg satisfying

Kαsg(A) +Kαsg(B) = KΨnA,nB
(αsg)(A+B),

∀αsg ∈ [0, 1]sg ∀A,B ∈ FG([0, 1]).

Proof. Let Ψ be the function introduced in Theorem 27. We would like to
obtain ΨnA,nB

: [0, 1]{−,+}\G(nA, nB)→ [0, 1]{−,+}

10



Let i be the natural number satisfying αsg ∈ (βsgi−1, β
sg
i ), with βsgi−1, β

sg
i ∈

G(nA, nB) two consecutive elements of the nA, nB-grid. Then,

ΨnA,nB
(αsg) = ΨnA,nB

(βsgi−1) + α′(ΨnA,nB
(βsgi )−ΨnA,nB

(βsgi−1)),

where α′ =
α− βi−1

βi − βi−1

.

The proof of Kαsg(A) + Kαsg(B) = KΨnA,nB
(αsg)(A + B) is straightforward

considering Proposition 7 with βi−1, α and βi and assuming Theorem 27. �

Corollary 29 ΨnA,nB
extended to [0, 1]sg is an increasing bijective function.

Furthermore, ΨnA,nB
: [0, 1]sg → [0, 1]sg is an automorphism.

Finally, we conclude under which conditions the αsg-points are preserved in
the following theorem.

Theorem 30 Let A,B ∈ FG([0, 1]). Then, the following statements are equiv-
alent:

(1) nA|nB or nB|nA.
(2) ΨnA,nB

= Id.
(3a) Kαsg(A) +Kαsg(B) = Kαsg(A+B) ∀αsg ∈ [0, 1]{−,+}.
(3b) Kαsg(A) +Kαsg(B) = Kαsg(A+B) ∀G(nA, nB).
(4a) Kαsg(A)−K(1−α)sgc (B) = Kαsg(A−B) ∀αsg ∈ [0, 1]{−,+}.
(4b) Kαsg(A)−K(1−α)sgc (B) = Kαsg(A−B) ∀G(nA, nB).
(5) Kαsg(A) ·Kαsg(B) = Kαsg(A ·B) ∀G(nA, nB).
(6) Kαsg(A)/K(1−α)sg

c (B) = Kαsg(A/B) ∀G(nA, nB).

Proof. (1)⇒ (2): Let us consider, without loss of generality, nA|nB. Then,
g.c.d.(nA, nB) = nA and therefore G(nA, nB) = G(nB), i.e. every element of
G(nA, nB) can be represented as 1

nB

sg
.

Let αsg[i] be the ith lowest value of αsg among all the αsg ∈ G(nA, nB)\{0, 1}.

ΨnA,nB
(αsg[i]) = i

nA+nB−g.c.d.(nA,nB)

sg
= i

nB

sg
= αsg[i] .

(2)⇒ (3a): By Theorem 27 we have

Kαsg(A) +Kαsg(B) = KΨnA,nB
(αsg)(A+B) ∀αsg ∈ G(nA, nB).

Finally, we can use Proposition 28 to extend the previous result to [0, 1]sg and
apply that ΨnA,nB

= Id to obtain

Kαsg(A) +Kαsg(B) = Kαsg(A+B) ∀αsg ∈ [0, 1]{−,+}.

(3a)⇒ (3b): Direct.
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(3b)⇒ (4b): If Kαsg(A)+Kαsg(B) = Kαsg(A+B) ∀G(nA, nB) then a correc-
tion Ψ of the αsg-points is not needed and, by Theorem 27, Ψ = Id. Finally,
as Ψ only depends on nA and nB (and nB = n−B), we have that Kαsg(A) +
Kαsg(−B) = Kαsg(A + (−B)) ∀G(nA, nB), i.e. Kαsg(A) − K(1−α)sgc (B) =
Kαsg(A−B) ∀G(nA, nB).

(4b)⇒ (4a): Let β+
i−1, β

−
i ∈ G(nA, nB) two consecutive elements of the nA, nB-

grid. Let αsg ∈ [0, 1]{−,+} such that β+
i−1 < αsg < β−i . We can apply Proposition

7 to A, −B and A+ (−B) and considering (4b) with β+
i−1 and β−i , we obtain

that:

Kαsg(A)−K(1−α)sgc (B) = Kαsg(A−B) ∀αsg ∈ [0, 1]{−,+}.

(4a)⇒ (5):

First of all we are going to prove that, in this case, ΨnA,nB
= Id.

Kαsg(A) − K(1−α)sgc (B) = Kαsg(A − B) ∀αsg ∈ [0, 1]{−,+} is equivalent to

Kαsg(A) + Kαsg(−B) = Kαsg(A − B) ∀αsg ∈ [0, 1]{−,+}. Therefore a correc-
tion ΨnA,nB

of the αsg-points is not needed and, by the uniqueness proved in
Theorem 27, ΨnA,nB

= Id.

On the other hand, an analogous reasoning to the one used in the proof of
Theorem 27 may derive on:

Kαsg(A) ·Kαsg(B) = KΨnA,nB
(αsg)(A ·B) ∀αsg ∈ G(nA, nB).

Finally, we apply that ΨnA,nB
= Id to obtain

Kαsg(A) ·Kαsg(B) = Kαsg(A ·B) ∀G(nA, nB).

(5)⇒ (6): Direct. It is enough to remind that A/B = A·B−1 andKαsg(B−1) =
(K(1−α)sgc (B))−1.

(6) ⇒ (1): Kαsg(A)/K(1−α)sg
c (B) = Kαsg(A/B) ∀G(nA, nB) is equivalent

to Kαsg(A) ·Kαsg(B−1) = Kαsg(A/B) ∀G(nA, nB). Therefore, repeating the
analogous reasoning of (4a)⇒ (5), the function ΨnA,nB

needs to be the iden-
tity.

On the other hand, if ΨnA,nB
= Id, then αsg[i] = i

nA+nB−g.c.d.(nA,nB)

sg ∀i =

1, . . . , nA + nB − g.c.d.(nA, nB)− 1,

where αsg[i] is the ith lowest value of αsg among all the αsg ∈ G(nA, nB)\{0, 1}.

This means that G(nA, nB) = G(nA +nB− g.c.d.(nA, nB)). Finally, by Propo-
sition 12, a grid generated by two elements is only equal to a grid generated by
one element if there is a divisor relation between the two elements generating
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the �rst grid. Therefore, nA|nB or nB|nA. �

Remark 31 It must be remarked that, besides it is true for elements in G(nA, nB),
product and division do not ful�l Theorem 30 for elements in [0, 1]sg\G(nA, nB),
as it proves the following example.

Example 32 Let A = [0.1, 0.2] and B = [0.8, 1]. Therefore, we can see that
nA = 1 = nB (nA|nB and nB|nA).

However we can see that for αsg = 0.5+ /∈ G(nA, nB),

Kαsg(A) ·Kαsg(B) 6= Kαsg(A ·B),

Kαsg(A)/K(1−α)sgc (B) 6= Kαsg(A/B).

K0.5+(A) = 0.15 and K0.5+(B) = K0.5+(B) = 0.9

A ·B = [0.08, 0.2] and A/B = [0.1, 0.25].

K0.5+(A ·B) = 0.14 6= 0.135 = 0.15 · 0.9 = K0.5+(A) ·K0.5+(A),

K0.5+(A/B) = 0.175 6= 0.16667 = 0.15/0.9 = K0.5+(A)/K0.5−(A).

3.2 Aggregation operators

Aggregation of several input values into a single output value is an indis-
pensable tool in several branches of Applied Mathematics, especially in group
decision making. A good review about aggregation operators can be found in
[4]. In the usual case, the domain of the operator is based on a closed interval
of the real line. However, in our context, we need to extend this de�nition
for the case where we are dealing with �nitely generated sets. Aggregation
operators between �nitely generated sets can be de�ned as follows:

De�nition 33 An n-ary aggregation operator (or n-ary aggregation function)
for �nitely generated sets is a function Agg(n) which assigns a �nitely generated
set to any n �nitely generated sets x1, x2, . . . , xn, that is,

Agg(n) : FG([0, 1])n −→ FG([0, 1])

(x1, x2, . . . , xn) −→ Agg(n)(x1, x2, . . . , xn)
,

such that it ful�ls two conditions:

• Increasing: if xi ≤lo yi for each i ∈ {1, 2, . . . , n}, then:

Agg(n)(x1, x2, . . . , xn) ≤lo Agg(n)(y1, y2, . . . , yn).
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• Boundary conditions:

inf
x∈FG([0,1])n

Agg(n)(x) = [0, 0] and sup
x∈FG([0,1])

Agg(n)(x) = [1, 1].

De�nition 34 An aggregation operator (or extended aggregation function)
for �nitely generated sets is a function Agg :

⋃
n∈N

FG([0, 1])n −→ FG([0, 1])

such that for all n > 1, Agg(n)|FG([0,1])n is an n-ary aggregation function and
Agg(1) is the identity on [0, 1].

Despite more aggregation operators could be de�ned, introducing arithmetic
mean is enough in order to analyse the aim of this paper: a twofold group
decision making problem. This will be the aggregation operator considered in
the case study of Section 5.

De�nition 35 Let n ∈ N and x = (x1, . . . , xn) ∈ FG([0, 1])n. Therefore, the
aggregation operator AM , de�ned via

AM(x) =

(
n∑
i=1

xi

)/
n,

is called arithmetic mean.

Proposition 36 AM is an aggregation operator.

Proof.

Let n ∈ N and x = (x1, . . . , xn) ∈ FG([0, 1])n. Therefore,

AM(x) =
⋃

αsg∈[0,1]{−,+}

(
n∑
i=1

Kαsg(xi)

)/
n.

As the sum of �nitely generated sets is still a �nitely generated set and we
can divide by scalars and remain in FGs, we have that AM(x) is still a FG.
Let us check if increasing and boundary conditions are satis�ed.

Increasing:

Let y = (y1, . . . , yn) ∈ FG([0, 1])n such that xi ≤lo yi ∀i ∈ {1, 2, . . . , n}. By
de�nition of ≤lo, Kαsg(xi) ≤ Kαsg(yi), ∀αsg ∈ [0, 1]{−,+} and ∀i ∈ {1, 2, . . . , n}.

Therefore,

AM(x) =
⋃

αsg∈[0,1]{−,+}

(
n∑
i=1

Kαsg(xi)

)/
n ≤

⋃
αsg∈[0,1]{−,+}

(
n∑
i=1

Kαsg(yi)

)/
n = AM(y).

Boundary conditions:
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Let z = [0, 0]n. Hence, as inf(FG([0, 1])) = [0, 0], AM(z) = [0, 0] and AM is
increasing, we have that

inf
x∈FG([0,1])n

AM(x) = [0, 0].

Analogously, let z = [1, 1]n. Hence, as sup(FG([0, 1])) = [1, 1], AM(z) = [1, 1]
and AM is proved increasing, we have that

sup
x∈FG([0,1])n

AM(x) = [1, 1]. �

4 Twofold group decision making

In a classical group decision making problem, we have a set of na alternatives
X = {x1, . . . , xna}, (na ≥ 2) and a set of n experts E = {e1, . . . , en}, (n ≥ 2).
Each expert provides his preferences on the set of alternatives and the goal
of the group decision making problem is to look for the alternative (or set of
alternatives) which is (are) most accepted by the experts.

The resolution of a classical group decision making problem, according with
the principles established in [6], is developed in the following two steps:

(1) Making the information uniform. Each preference ordering of each
expert is transformed into a fuzzy preference relation form.

(2) Application of a selection process. The most accepted alternative by
our experts must be selected.
In addition, the selection process is also applied in two steps:

(2a) Aggregation phase. A consensus fuzzy preference relation is obtained
using an aggregation operator.

(2b) Exploitation phase. The most accepted alternative from the consen-
sus fuzzy preference relation is selected.

However, the aim of this paper is to improve this classical group decision mak-
ing problem, generalizing it using �nite interval-valued hesitant fuzzy prefer-
ence relations. This improvement allows us to consider at the same time several
criteria and experts and to model the uncertainty derived from the inaccurate
information we are working with.

In the twofold case, we have a set of na alternatives X = {x1, . . . , xna}, (na ≥
2), a set of n criteria C = {c1, . . . , cn}, (n ≥ 2) and a set of nci experts in
each criteria Ei = {ei1, . . . , einci}, (nci ≥ 1), ∀i ∈ {1, . . . , n}.

The goal of the twofold group decision making problem is to look for the
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alternative (or set of alternatives) which is (are) most accepted by the experts,
according to the di�erent criteria. The steps to model these problems are the
following:

(1) Making the information uniform. Each preference ordering of each
criteria is transformed into a �nite interval-valued hesitant fuzzy prefer-
ence relation form.

(1a) Joint phase. A consensus between the experts in each criteria is hold.
(1b) Preference phase. Joined information is transformed into a �nite

interval-valued hesitant fuzzy preference relation form.
(2) Application of a selection process. The most accepted alternative by

our experts must be selected.
(2a) Aggregation phase. A consensus �nite interval-valued hesitant fuzzy

preference relation is obtained using an aggregation operator.
(2b) Exploitation phase. The most accepted alternative from the consen-

sus �nite interval-valued hesitant fuzzy preference relation is selected.

Let us deeply analysed each phase in the following subsections.

4.1 Making the information uniform: Joint phase

In the twofold problem we will initially have some information provided by sev-
eral experts in di�erent criteria. Then, we will construct a �nite interval-valued
hesitant fuzzy preference relation for each criteria joining the considerations
of the experts in the same criteria. As we know, a �nite interval-valued hes-
itant fuzzy preference relation is given (when na alternatives) in the form of
an na × na matrix where the element pkij of the i-th row and j-th column is
a �nitely generated set representing the �nite interval-valued hesitant fuzzy
preference of the alternative xi over the alternative xj according to the criteria
ck. However, this step is the most �exible one due to the nature of the initial
data, where our information could be expressed in several ways.

The most common way in which each expert gives information is as an inter-
val of utility values. Note that the smallest the length of the interval is the
most accurate is the given information. As it was introduced, the goal of this
subsection would be to join the information of all the experts in the same
criteria.

Therefore, the joint of the information is made using the ∪ operator in order
to obtain a �nitely generated set formed by the union of every interval utility
value given by the experts.

Let vki,j be the interval utility value provided by the j-th expert in the criteria
ck to the i-th object.
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Then, vki =
nck⋃
i=1

vki,j would be the �nitely generated set utility value provided

by the experts in the criteria ck to the i-th object.

4.2 Making the information uniform: Preference phase

Once we have joint the information given by the experts in the same criteria,
n �nite interval-valued hesitant fuzzy preference relations (one corresponding
to each criteria) are going to be constructed. This is going to be done using a
fuzzy preference relation.

In [19], Pérez et al. proved that a parametrically continuous fuzzy prefer-
ence relation could generate a �nite interval-valued hesitant fuzzy preference
relation under certain boundary conditions. In our case, these boundary con-
ditions are reduced to have a �nite number of experts in each criteria. This
generated �nite interval-valued hesitant fuzzy preference relation σ(R), when
de�ned over �nitely generated set, is characterized as follows:

σ(R)(A,B) =
⋃
αsg

R (Kαsg(A), Kαsg(B)) .

Therefore, choosing a parametrically continuous fuzzy preference relation R,
σ(R) will be used to construct n �nite interval-valued hesitant preference
relations P i(where n is the number of criteria) using the interval utility values
obtained in the joint phase. Reader may refer to [7,16,28] to obtain some
examples of fuzzy preference relations.

Once the information has been made uniform, the real initial point of a group
decision making problem has been achieved and the selection process can be
tackled.

4.3 Application of a selection process: Aggregation phase

In this phase our goal is to select the right aggregation operator. Once we have
�xed the aggregation operator A that we are going to consider, this phase is
reduced to apply this aggregation operator in order to obtain a consensus
�nite interval-valued hesitant fuzzy preference relation, de�ned via:

pij = A(p1
ij, . . . , p

n
ij) ∀i, j = 1, . . . , na,

where P k is the �nite interval-valued hesitant fuzzy preference relation ac-
cording to the kth criterion, and pkij is the element in the i-th row and j-th
column of the matrix P k.
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4.4 Application of a selection process: Exploitation phase

Finally, we have a �nite interval-valued hesitant fuzzy preference relation in
its matrix form. We are going to use the Extended Weighted Voting Method
introduced in [18]. The purpose of this extended method is to use a parameter
α allowing us to model the importance of �being desirable� over the other
alternatives and of �not being preferred� by the other alternatives. However,
this method must be retouched in order to operate with �nite interval-valued
hesitant fuzzy preference relations.

Algorithm 1 Twofold ExtendedWeighted Voting Method (T-EWVM)

• Input:

· A �nite interval-valued hesitant fuzzy preference relation P over a set of
alternatives A = {a1, . . . , an}
· Fix the parameter α
· Choose an aggregation operator A between �nitely generated sets
· Choose an order ≤∗ between �nitely generated sets
• Output: A family of non-empty sets Ki
1. Normalize (if not) our �nite interval-valued hesitant fuzzy preference rela-

tion
2. Separate positive preference (P+) and negative preference (P−) via

p+
ij =

 ∅ if max(pij) < 0.5

Ipij≥0.5 − [0.5, 0.5] if max(pij) ≥ 0.5

p+
ij =

∅ if max(pij) < 0.5

Ipij≥0.5 − [0.5, 0.5] if max(pij) ≥ 0.5

where IARx =
⋃

αsg∈[0,1]{−,+}

{Kαsg(A) | Kαsg(A)Rx}

with A ∈ FG([0, 1]), R ∈ {<,≤, >,≥} and x ∈ R.
3. Pα = α · P+ ∪ (1− α) · P−
4. B0 = A and k = 0
5. While Bk 6= ∅

For each ai ∈ Bk
Mi = {l ∈ {1, . . . , n} / al ∈ Bk and l 6= i}
I(ai) = Agg

(
pαiMi

)
Kk+1 = aargmaxi{I(ai)} (w.r.t. ≤∗)
Bk+1 = Bk\Kk+1

k = k + 1
end

Proposition 37 This algorithm reduced to fuzzy preference relations returns
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the original EWVM seen in [18].

Proof. There are only two di�erences between Algorithm 1 and the algorithm
seen in [18].

The �rst one is the way we de�ne P+ and P−. Note that, if reduced to single-
tons, p+

ij = ∅ or p−ij = ∅ or p+
ij = p−ij = 0. Thus, the value of pαij (calculated as

the union of αp+
ij and (1− α)p−ij) is a singleton.

On the other hand, the original algorithm would return p+
ij = 0 or p−ij = 0

or p+
ij = p−ij = 0. Thus, the value of pαij (calculated as the sum of αp+

ij and
(1− α)p−ij) coincides with the value obtained with the new algorithm.

The second di�erence is that in the �nite interval-valued hesitant fuzzy ver-
sion of the algorithm indexes I(ai) are �nitely generated sets. However, when
reduced to singletons, every order between �nitely generated sets ≤∗ respects
the usual order between real numbers. �

In [18], it is shown how a total order can be constructed using the family of
non-empty sets Ki that Algorithm 1 outputs.

Remark 38 The behaviour of this method depending on the parameter α ∈
[0, 1] is the same for �nite interval-valued hesitant fuzzy preference relations
that the one we had for fuzzy preference relations ([18]):

If α = 0.5, we have exactly the weighted voting method.

If α < 0.5, we give preference to the least dominated alternative.

If α > 0.5, we give preference to the most dominating alternative.

5 Case study

The aim of this section is to illustrate the right use of a resolution of a twofold
group decision making problem with an easy practical example. Let us analyse
a problem where we want to study the desirability of 4 objects (O1, O2, O3 and
O4) according to the good quality-to-price ratio with the help of 5 experts.
Among our 5 experts, 3 are experts in the quality area (e1

1, e
1
2 and e

1
3) and the

other 2 are experienced in the economical area (e2
1 and e2

2). Each expert has
to evaluate each object with an utility value in a 1− 10 scale. As there exists
a reasonable quantity of uncertainty, the experts are allowed to use utility
intervals instead of utility values.

Let us identify each element of our twofold group decision making problem:
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• The set of na = 4 alternatives are the objects to studyX = {O1, O2, O3, O4}.
• The set of n = 2 criteria C = {c1 = Quality, c2 = Economy}.
• The set of nc1 = 3 experts in the �rst criteria is E1 = {e1

1, e
1
2, e

1
3}.

• The set of nc2 = 2 experts in the second criteria is E2 = {e2
1, e

2
2}.

In Table 1 we can see the results of the analysis made by the experts with its
respective evaluations of each object.

Table 1
Analysis of the experts.

Experts

Quality Economy

O1 8 [8, 9] 10 [1, 2] [1, 3]

O2 5 [3, 5] [7, 8] [3, 4] 5

O3 [4, 5] [3, 4] 4 [5, 6] [5, 6]

O4 [9, 10] [6, 7] [5, 8] [7, 8] 9

Once we have tested the preliminary data, we must begin with the �rst step of
the study of a twofold group decision making problem: making the information
uniform. This part, as we have already said, is the most �exible one due to
the nature of the initial data. In our case we have utility intervals and we are
looking for a �nite interval-valued hesitant fuzzy preference relation for each
criteria.

In the Joint phase, the ∪ operator is selected in order to join the information
provided by the experts in the same criteria. The obtained results are shown
in Table 2. We can see, for example, how to obtain the �rst element.

vQ1 =
nQ⋃
i=1

vQ1,i = {8} ∪ [8, 9] ∪ {10} = [8, 9] ∪ {10}.

In the Preference phase, considering the analysis of Table 2, we can obtain a

Table 2
Reduced analysis of the experts.

Experts

Quality Economy

O1 [8, 9] ∪ {10} [1, 3]

O2 [3, 5] ∪ [7, 8] [3, 4] ∪ {5}

O3 [3, 5] [5, 6]

O4 [5, 8] ∪ [9, 10] [7, 8] ∪ {9}

�nite interval-valued hesitant fuzzy preference relation for each criterion using
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a parametrically continuous fuzzy preference relation. In this practical case, we
are going to use one of the easiest parametrically continuous fuzzy preference
relation which is de�ned via:

pij =
ui

ui + uj
∀i, j = 1, . . . , n,

where ui and uj are the utility values (supposed singletons) of alternatives ai
and aj respectively.

Remember that the generated �nite interval-valued hesitant fuzzy preference
relation is:

σ(p)kij =
⋃

αsg∈[0,1]{−,+}

Kαsg(vki )

Kαsg(vki ) +Kαsg(vkj )
∀i, j = 1, . . . , n,

where vki and vkj are the utility values (�nitely generated sets of Table 2) of
objects Oi and Oj respectively with relation to the criterion ck.

σ(p)Q =

 [0.500, 0.500] [0.556, 0.588] ∪ [0.643, 0.727] [0.667, 0.727] [0.500, 0.526] ∪ [0.529, 0.615]

[0.273, 0.357] ∪ [0.412, 0.444] [0.500, 0.500] [0.500, 0.556] ∪ [0.615, 0.636] [0.375, 0.385] ∪ [0.438, 0.444]

[0.273, 0.333] [0.364, 0.385] ∪ [0.444, 0.500] [0.500, 0.500] [0.308, 0.375]

[0.385, 0.471] ∪ [0.474, 0.500] [0.556, 0.563] ∪ [0.615, 0.625] [0.625, 0.692] [0.500, 0.500]



σ(p)E =

[0.500, 0.500] [0.250, 0.375] [0.167, 0.333] [0.125, 0.250]

[0.625, 0.750] [0.500, 0.500] [0.375, 0.421] ∪ [0.455, 0.476] [0.300, 0.333] ∪ [0.357, 0.357]

[0.667, 0.833] [0.524, 0.546] ∪ [0.579, 0.625] [0.500, 0.500] [0.379, 0.400] ∪ [0.407, 0.417]

[0.750, 0.875] [0.643, 0.643] ∪ [0.667, 0.700] [0.583, 0.593] ∪ [0.600, 0.621] [0.500, 0.500]


At this moment we have �nished the �rst step: making the information uni-
form, and it is time to start with the Selection process, more precisely with the
Aggregation phase. First of all, an aggregation operator Agg must be selected.
In this paper, in order to do not complicate the process, the arithmetic mean
is chosen.

M = A(σ(p)Q, σ(p)E) =

=

 [0.500, 0.500] [0.403, 0.450] ∪ [0.478, 0.551] [0.417, 0.530] [0.313, 0.357] ∪ [0.359, 0.433]

[0.449, 0.522] ∪ [0.550, 0.597] [0.500, 0.500] [0.438, 0.488] ∪ [0.535, 0.556] [0.338, 0.359] ∪ [0.397, 0.401]

[0.470, 0.583] [0.444, 0.465] ∪ [0.512, 0.563] [0.500, 0.500] [0.343, 0.371] ∪ [0.374, 0.396]

[0.567, 0.642] ∪ [0.643, 0.688] [0.599, 0.603] ∪ [0.641, 0.663] [0.604, 0.626] ∪ [0.629, 0.656] [0.500, 0.500]


Finally, we have arrived to the last phase: Exploitation phase, where T-EWVM
is applied. Before applying the algorithm some input values must be estab-
lished: aggregation operator between �nitely generated sets Agg, order on
�nitely generated sets ≤∗ and optimism parameter α.

In order to facilitate the comprehension of the method the easiest aggregation
operator between �nitely generated sets is chosen, that is,Agg is the arithmetic
Mean. Furthermore, an αsg-point order≤∗=≤0.50 is selected and the parameter
is �xed in a quite pessimistic point of view α = 0.25.
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As our matrix M is already normalized the �rst step of T-EWVM is unneces-
sary and we can continue to the second step, where positive preference (P+)
and negative preference are calculated:

P+ =

 [0, 0] [0, 0.051] [0, 0.030] ∅

[0, 0.022] ∪ [0.050, 0.097] [0, 0] [0.035, 0.056] ∅

[0, 0.083] [0.012, 0.063] [0, 0] ∅

[0.067, 0.142] ∪ [0.143, 0.188] [0.099, 0.103] ∪ [0.141, 0.163] [0.104, 0.126] ∪ [0.129, 0.156] [0, 0]



P− =

 [0, 0] [−0.097,−0.050] ∪ [−0.022, 0] [−0.083, 0] [−0.187,−0.143] ∪ [−0.141,−0.067]

[−0.051, 0] [0, 0] [−0.062,−0.012] [−0.162,−0.141] ∪ [−0.103,−0.099]

[−0.030, 0] [−0.056,−0.035] [0, 0] [−0.157,−0.129] ∪ [−0.126,−0.104]

∅ ∅ ∅ [0, 0]


Then, we can calculate P 0.25 = 0.25 · P+ ∪ 0.75 · P−:

P 0.25 =

 [0, 0] [−0.073,−0.037] ∪ [−0.017, 0.013] [−0.062, 0.008] [−0.140,−0.107] ∪ [−0.106,−0.050]

[−0.038, 0.006] ∪ [0.012, 0.024] [0, 0] [−0.046,−0.009] ∪ [0.009, 0.014] [−0.121,−0.105] ∪ [−0.077,−0.074]

[−0.022, 0.021] [−0.042,−0.026] ∪ [0.003, 0.016] [0, 0] [−0.117,−0.097] ∪ [−0.094,−0.078]

[0.017, 0.035] ∪ [0.036, 0.047] [0.025, 0.026] ∪ [0.035, 0.041] [0.026, 0.031] ∪ [0.032, 0.039] [0, 0]



Finally, we proceed with the assessment of Ki. In the �rst loop these are the
obtained indexes:

I(O1) = [−0.092,−0.057] ∪ [−0.050,−0.010],

I(O2) = [−0.069,−0.036] ∪ [−0.018,−0.012],

I(O3) = [−0.061,−0.041] ∪ [−0.031,−0.014],

I(O4) = [0.023, 0.031] ∪ [0.035, 0.042].

The greatest �nitely generated set in relation to ≤0.50 is I(O4) due to 0.031 is
the greatest 0.50-point. Since this moment, we do not consider the elements
of P 0.25 related with O4:

P 0.25 =


[0, 0] [−0.073,−0.037] ∪ [−0.017, 0.013] [−0.062, 0.008]

((((
((((

((((
[−0.140,−0.107] ∪ [−0.106,−0.050]

[−0.038, 0.006] ∪ [0.012, 0.024] [0, 0] [−0.046,−0.009] ∪ [0.009, 0.014]

((((
((((

((((
[−0.121,−0.105] ∪ [−0.077,−0.074]

[−0.022, 0.021] [−0.042,−0.026] ∪ [0.003, 0.016] [0, 0]

(((
((((

(((
((

[−0.117,−0.097] ∪ [−0.094,−0.078]

((((
(((

(((
[0.017, 0.035] ∪ [0.036, 0.047]

((((
(((

(((
[0.025, 0.026] ∪ [0.035, 0.041]

((((
(((

(((
[0.026, 0.031] ∪ [0.032, 0.039] ��[0, 0]

.

Then, in the second loop these are the obtained indexes:

I(O1) = [−0.068,−0.032] ∪ [−0.022, 0.010],

I(O2) = [−0.043,−0.002] ∪ [0.011, 0.019],

I(O3) = [−0.033,−0.014] ∪ [0.001, 0.018].

The greatest �nitely generated set in relation to ≤0.50 is now I(O2) due to
−0.002 is the greatest 0.50-point. Since this moment, we do not consider the
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elements of P 0.25 related with O2 and O4:

P 0.25 =


[0, 0]

(((
((((

(((
((

[−0.073,−0.037] ∪ [−0.017, 0.013] [−0.062, 0.008]

((((
(((

((((
(

[−0.140,−0.107] ∪ [−0.106,−0.050]

(((
((((

(((
[−0.038, 0.006] ∪ [0.012, 0.024] ��[0, 0]

((((
(((

((((
[−0.046,−0.009] ∪ [0.009, 0.014]

((((
((((

((((
[−0.121,−0.105] ∪ [−0.077,−0.074]

[−0.022, 0.021]
((((

((((
(((

[−0.042,−0.026] ∪ [0.003, 0.016] [0, 0]

(((
((((

(((
((

[−0.117,−0.097] ∪ [−0.094,−0.078]

(((
((((

(((
[0.017, 0.035] ∪ [0.036, 0.047]

(((
((((

(((
[0.025, 0.026] ∪ [0.035, 0.041]

((((
(((

(((
[0.026, 0.031] ∪ [0.032, 0.039] ��[0, 0]

.

Conclusively, in the third loop these are the obtained indexes:

I(O1) = [−0.063, 0.008],

I(O3) = [−0.023, 0.021].

Finally, the greatest �nitely generated set in relation to ≤0.50 is now I(O3)
due to −0.001 is the greatest 0.50-point. Thus, the result of our group decision
making problem is:

O4 > O2 > O3 > O1.

6 Conclusions and future research

In this paper, the twofold group decision making problem was introduced.
This approach to the group decision making problem allows to model at the
same time in�uence of di�erent experts and criteria.

In order to study this Twofold group decision making problem, several op-
erations between non-negative �nitely generated sets were de�ned. It is also
shown an important theorem characterizing these operations in relation to cer-
tain αsg-points of the original sets. In addition, aggregation operators between
�nitely generated sets were introduced.

On the other hand, the steps required to resolve this new problem are estab-
lished. Furthermore, in the Exploitation phase, EWVM is improved in order
to work with this �nite interval-valued hesitant fuzzy preference relations in-
stead of common fuzzy preference relations. This improved version received
the name of Twofold Extended Weighted Voting Method (T-EWVM). Finally,
to illustrate how this twofold group decision making problem is resolved, a
pedagogical example is shown.

In the future we will intend to improve the �rst step of a twofold group decision
making problem. Some methods described in the joint phase could be improved
in order to cope with outliers. Therefore, an improvement of this joint could
be studied, for example using fuzzy sets instead of �nitely generated sets or
weighting the importance of the majority of the experts using some kind of
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penalty functions. However, a further study of these improvements is kept for
future analysis.
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