

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.ins.2015.07.040

http://hdl.handle.net/10251/78868

Elsevier

Xiaoping Li; Tianze Jiang; Ruiz García, R. (2016). Heuristics for periodical batch job
scheduling in a MapReduce computing framework. Information Sciences. 326:119-133.
doi:10.1016/j.ins.2015.07.040.

Heuristics for Periodical Batch Job Scheduling in a1

MapReduce Computing Framework2

Xiaoping Lia,b,∗, Tianze Jianga,b, Rubén Ruizc
3

aSchool of Computer Science and Engineering, Southeast University, Nanjing 211189,4

China5
bKey Laboratory of Computer Network and Information Integration, Ministry of Education,6

Nanjing, 211189, China7
cGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,8

Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de9

València, Camino de Vera s/n, 46021, València, Spain.10

Abstract11

Task scheduling has a significant impact on the performance of the MapRe-12

duce computing framework. In this paper, a scheduling problem of periodical13

batch jobs with makespan minimization is considered. The problem is modeled14

as a general two-stage hybrid flow shop scheduling problem with schedule-15

dependent setup times. The new model incorporates the data locality of16

tasks and is formulated as an integer program. Three heuristics are developed17

to solve the problem and an improvement policy based on data locality is18

presented to enhance the methods. A lower bound of the makespan is derived.19

150 instances are randomly generated from data distributions drawn from a20

real cluster. The parameters involved in the methods are set according to21

different cluster setups. The proposed heuristics are compared over different22

numbers of jobs and cluster setups. Computational results show that the23

performance of the methods is highly dependent on both the number of jobs24

and the cluster setups. The proposed improvement policy is effective and the25

impact of the input data distribution on the policy is analyzed and tested.26

Keywords: MapReduce, Periodical job, Schedule-dependent setup times,27

Heuristics, Makespan28

∗Corresponding author: Dr. Xiaoping Li, Professor with the School of Computer Science
and Engineering, Southeast University, Nanjing 211189, China. Tel.& Fax: 86-25-52090916.

Email addresses: xpli@seu.edu.cn (Xiaoping Li), rruiz@eio.upv.es (Rubén Ruiz)

Preprint submitted to Elsevier June 16, 2015

1. Introduction29

Huge attention has been paid on Big Data from researchers in information30

sciences, policy and decision makers in governments and enterprises [24, 27, 8].31

MapReduce [9] is a programming and implementation framework model for32

processing large data sets (in the order of petabytes in size) with parallel33

and distributed algorithms that run on clusters. It has emerged as a leading34

distributed computing framework for large-scale data processing including:35

web crawling, data mining, recommendation systems and log analysis among36

others. Apache Hadoop [40] is a popular open-source implementation of37

the MapReduce framework provided by the Apache Software Foundation.38

The MapReduce model consists of the Map() procedure, which carries out39

a selection, filtering or sorting of the data and the Reduce() method which40

processes and summarizes the information. The whole framework is in charge41

of the processing by providing marshalling of the distributed computers, paral-42

lelizing the tasks, managing communications between nodes and dealing with43

redundancy and tolerance to faults. As such, MapReduce implementations are44

the backbone of many existing Big Data and Cloud efforts by large companies.45

Designers and users pay close attention to the performance of MapReduce46

since they ordinarily have diverse performance metrics and requirements47

such as job response time, throughput, and sharing of cluster and resource48

utilization that are highly dependent on task scheduling. However, different49

scenarios need appropriate task scheduling policies so that various performance50

metrics are optimized. In general, MapReduce task scheduling can be on-line51

and off-line.52

On-line task scheduling mainly focuses on job performance and resource53

utilization. As regards proposals of models for job performance measures54

and dynamic scheduling, Polo et al. [26] proposed an estimator to predict55

job completion times according to the job progress. The scheduler relies56

on estimates of individual job completion times given a particular resource57

allocation, and uses these estimates to maximize each job’s chances of meeting58

its performance goal. Verma et al. [37] offered a new resource sizing and59

provisioning service in MapReduce providing a set of provisioning options60

according to past job executions and the user’s performance goal. The Fair61

Scheduler [42] considers two problems concerning MapReduce jobs: data62

locality and Map/Reduce interdependency. Delay scheduling as well as the63

copy-compute splitting policy is developed to address the problems. Later,64

Zaharia et al. [43] observed the conflict between fairness and data locality, for65

2

which a simple algorithm called delay was proposed. FLEX [41] is an extension66

of the Fair Scheduler which considers a variety of metrics such as the response67

time and makespan. Berlińska and Drozdowski [3] analyzed MapReduce68

distributed computations as a divisible load scheduling problem. A divisible69

load model of the computation and two load partitioning algorithms were70

proposed. Regarding the adjustment of resource allocation considering job71

profiling and node performance checking to optimize resource utilization, Tian72

et al. [35] classified the MapReduce workloads into three categories based on73

their CPU and I/O usage, with which a three-queue scheduler was proposed74

to improve both CPU and I/O utilization. Asahara et al. [1] presented a75

locality and an I/O load-aware task scheduler to mitigate the I/O bottlenecks76

of a cluster with locality and an I/O load-aware map task assignment and77

storage selection. Lu et al. [19] designed the Workload Characteristic Oriented78

Scheduler which strives to co-locating tasks of possibly different MapReduce79

jobs with complementary resource usage characteristics. Shih et al. [33]80

proposed a dynamic slot-based task scheduling scheme by considering the81

physical workload on each node so as to prevent resource underutilization.82

Zaharia et al. [44] showed that traditional task schedulers cause performance83

degradation in heterogeneous environments and proposed LATE scheduling84

algorithms, robust to heterogeneity and to improve response times. Chen85

et al. [6] proposed a self-adaptive MapReduce scheduling algorithm which86

calculates the progress of tasks dynamically, and automatically adapts to the87

continuously varying environment.88

As for off-line scheduling, state-of-the-art works consider modeling MapRe-89

duce task scheduling as a classic scheduling problem. Chang et al. [5] first90

presented a simplified abstraction of the MapReduce scheduling problem, and91

then formulated the problem as a linear program. Various on-line and off-line92

algorithms were developed to minimize the overall job completion times. Phan93

et al. [23] formulated the off-line scheduling of real time MapReduce jobs on94

a heterogeneous Hadoop architecture as a constraint satisfaction problem and95

introduced various search strategies for it. Fischer et al. [10] proposed an96

idealized Hadoop model to investigate the Hadoop task assignment problem.97

A round-robin method and a flow-based algorithm were presented to compute98

the assignments. Moseley et al. [21] formulated job scheduling in MapReduce99

as a generalization of the two-stage classical flexible flow shop problem min-100

imizing total flowtime. In addition various approximation algorithms were101

investigated for both off-line and on-line scheduling.102

In MapReduce production clusters, some independent batch jobs are103

3

periodically executed [34] on new data, of which the properties can be obtained104

by analyzing a job’s historical information. With these properties, the schedule105

of a set of jobs is generated optimizing a given performance goal, for example,106

minimizing the makespan. With the knowledge of the execution period, the107

release times of jobs are determined and therefore this scenario is also off-108

line. Verma et al. [38] considered the above problem as a classical two-stage109

flow shop problem minimizing the makespan. They began with Johnson’s110

algorithm [14] to solve the problem. Then a balanced pool heuristic method111

was proposed considering the defects of the classical model. The heuristic relies112

on a MapReduce simulator [36]. Recently, Wang & Shi [39] proposed task-level113

scheduling algorithms with respect to budget and deadline constraints for a114

batch of MapReduce jobs on a set of provisioned heterogeneous machines in115

cloud platforms. The batch of jobs were organized as a k-stage workflow and116

two related optimization problems were considered.117

In this paper, we consider the scheduling problem of periodical batch jobs118

in MapReduce which is rarely studied with the exception of [38]. Data locality119

is an important factor that affects task scheduling but is seldom considered120

in the model. We measure data locality by the time that tasks spend on121

inputting data. Since a task’s setup time depends not only on the data size122

and data locality but also on the schedule of other tasks, it could be regarded123

as a schedule-dependent setup time. Furthermore, the feature of parallel124

multi-tasks in each phase is fully taken into account as well as the pipelined125

fashion of the map and reduce phase. We model the problem as a general126

hybrid flow shop, which is more practical than that considered in [21]. The127

problem is thus converted to a general two-stage hybrid flow shop scheduling128

problem with schedule-dependent setup times and is formulated using integer129

programming. To the best of our knowledge the problem has never been130

considered with these extensions, which results in a much more practical131

and close to real life model. The objective is to minimize the makespan and132

some heuristics are proposed for the considered problem. We present some133

tight lower bounds that are used to test the effectiveness of the presented134

heuristics.135

The rest of the paper is organized as follows. Section 2 contains a detailed136

description of the problem considered and formulates it as an integer program.137

A lower bound of the makespan is described in Section 3. Section 4 describes138

the proposed heuristic methods. Experimental results are presented in Section139

5. Section 6 concludes the paper and gives further research directions.140

4

2. Problem description141

The notations employed in the following are detailed in Table 1.142

Table 1: Notation employed in the paper.
Q a MapReduce cluster
Qm the set of all map slots in Q with size Mm

Qr the set of all reduce slots in Q with size Mr

J the set of MapReduce jobs J = {J1, J2, . . . , Jn}
a a ∈ {m, r} denotes either the map phase or the reduce phase
V a

i the task set of job Ji in phase a
va

i,j the task j in V a
i

Ta the set of all tasks of the jobs in J in phase a, Ta =
n⋃

i=1
V a

i

pa
i,j the processing time of task va

i,j executed by slot of Qa

sa
i,j the setup time before pa

i,j for input data
sa

i,j,k the setup time of task va
i,j processed on slot k

ba
i,j the start time of task va

i,j

ca
i,j the completion time of task va

i,j

Usually, there are five phases in MapReduce: Preparation (input involved143

data), Map (filtering and sorting the data), Shuffle (redistribute the mapped144

data), Reduce (process each group of the redistributed data), and Output145

(collect all the Reduce output). Because input data is usually large, in the146

order of petabytes, it is processed on MapReduce clusters. Generally, a147

MapReduce cluster Q contains many nodes. There is one or more slot(s) in148

each node (a physical or virtual machine). Qm is the set of all map slots149

in Q with size Mm; Qr is the set of all reduce slots with size Mr. Each150

slot type can be regarded as a group of identical machines. For a set of n151

MapReduce jobs J = {J1, J2, . . . , Jn}, each job in J is submitted to Q for152

processing successively in map and reduce phases. a ∈ {m, r} denotes a phase.153

m represents the map phase and r the reduce phase. The task set of job Ji154

in phase a is V a
i , in which task j is denoted as va

i,j. Let Ta be the set of all155

tasks of the jobs in J in phase a, i.e., Ta =
n⋃

i=1
V a

i . The following assumptions156

and constraints are considered for clustering and task execution:157

(i) A MapReduce cluster is homogeneous and the number of slots in each158

node is configured as the CPU core number. There is no node or task159

failure during execution.160

5

(ii) Task processing times are known in advance and are obtained from161

historical executions. The distribution and size of input data for the162

map task is also of prior knowledge. For each reduce task, the size of163

data read from each map task is equal.164

(iii) There is no overlapping between the map and reduce phase for each165

job, implying that the reduce phase cannot start until the map phase166

has completed. The release times of all map tasks are set to 0 and the167

release time of a reduce task is the latest completion time of all map168

tasks from the same job.169

(iv) No slot can process more than one task at any time; no task can be170

processed by more than one slot at the same time. Each slot starts171

processing the next task without waiting once the current task is finished.172

Task va
i,j can be executed by any slot of Qa with the processing time173

pa
i,j, requiring the setup time sa

i,j for input data. Generally, sa
i,j is affected174

by three factors: the data size, data locations and communication rates175

among nodes. Setup times are schedule-dependent [20] since they depend176

on slot selection in each phase, i.e., they vary with the processing slots. Let177

sa
i,j,k be the setup time of task va

i,j processed on slot k. For a given slot k,178

parameters of the three factors are determined which imply that sa
i,j = sa

i,j,k.179

Let ba
i,j and ca

i,j be the start and completion time of task va
i,j. It follows that180

ca
i,j = ba

i,j + sa
i,j + pa

i,j . Each slot obtains a sequence with tasks to process after181

a schedule is generated. A feasible schedule π is determined by the start time182

of each task while meeting the constraints and assumptions above. For J183

and cluster Q, the target of the considered problem is to generate a feasible184

schedule π minimizing makespan Cmax = max
i∈{1,2,...,n}

j∈{1,2,...,|V r
i |}

cr
i,j.185

The two-stage hybrid flow shop problem (HFSP) is a typical scheduling186

problem: a number of jobs are processed on two stages, each job is processed187

first on stage I and then stage II. There are more than one identical machines188

in every stage. Jobs have to be assigned to exactly one machine at stage. The189

sequences of jobs at each machine at both stages have to be optimized. The190

problem considered is more general than a traditional HFSP because each191

job is divided into several tasks in each phase which indicates that each job is192

processed by a number of slots rather than only one slot (machine) in a HFSP.193

If each job has a single task in each phase, the problem considered resembles a194

hybrid flow shop. In any case, we are also considering the schedule-dependent195

6

setup times so the scheduling setting considered in this paper is original as196

far as the scheduling literature is concerned and to the best of our knowledge.197

A careful examination of the two recent reviews on the state-of-the-art of the198

hybrid flow shop literature by [30] and [32] and the references therein confirm199

this conclusion. Figure 1 shows an example Gantt chart for MapReduce task200

scheduling. The shadowed parts denote setup times.201

Makespan

1,1
mv

2,1
rv

1,1
rv

3,3
mv

3,2
mv

3,1
mv2,1

mv

1,2
mv

2,2
mv

3,1
rv

Slot 1

Slot 2

Slot 1

Slot 2

Slot 3

Map

Reduce

ms1,1

ms 21,

ms 12,

ms 22,
ms 2，3

ms 3，3

ms 3，3

rs 1，3
rs 1，1

rs 1，2

Figure 1: Gantt chart for MapReduce task scheduling.

We construct an integer program for the considered problem. To make202

sure that each task in a slot’s task sequence has a predecessor and a successor,203

we place two dummy tasks vh and vt before the first task and after the last204

task in each slot, respectively. The setup times and processing times of these205

two dummy tasks are 0. The decision variables needed are defined as:206

uk
v,v′ =


1 if task v is the immediate predecessor of task v′

in slot k’s
0 otherwise

The problem is formulated as follows:207

min Cmax = max
i∈{1,2,...,n}

j∈{1,2,...,|V r
i |}

cr
i,j (1)

s.t.

cm
i,j ≥ sm

i,j + pm
i,j, ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , |V m

i |} (2)

7

cr
i,j ≥ sr

i,j + pr
i,j + cm

i,l, ∀i ∈ {1, 2, . . . , n}, l ∈ {1, 2, . . . , (3)
|V m

i |}, j ∈ {1, 2, . . . , |V r
i |}

sa
i,j = ∑

k∈Qa

∑
v∈Ta

⋃
{vt} s

a
i,j,ku

k
va

i,j ,v, ∀a ∈ {m, r}, (4)

i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , |V a
i |}

ca
i,j − ca

i′,j′ ≥ sa
i,j + pa

i,j +M(∑k∈Qa
uk

va
i′,j′ ,v

a
i,j
− 1), (5)

i, i′ ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , |V a
i |}, j′ ∈ {1, 2, . . . , |V a

i′ |}∑
k∈Qa

∑
v∈Ta

⋃
{vh} u

k
v,v′ = 1, ∀v′ ∈ Ta (6)∑

k∈Qa

∑
v′∈Ta

⋃
{vt} u

k
v,v′ = 1, ∀v ∈ Ta (7)∑

v′∈Ta

⋃
{vt} u

k
vh,v′ = 1, ∀k ∈ Qa (8)∑

v∈Ta

⋃
{vh} u

k
v,vt

= 1, ∀k ∈ Qa (9)∑
v∈Ta

⋃
{vh} u

k
v,v′ = ∑

v∈Ta

⋃
{vt} u

k
v′,v, ∀k ∈ Qa, v

′ ∈ Ta (10)
uk

v,v = 0, ∀v ∈ Ta, k ∈ Qa (11)
uk

v,v′ ∈ {0, 1}, ∀v, v′ ∈ Ta
⋃{vh, vt}, k ∈ Qa (12)

Equations (2)-(3) provide extra constraints for task completion times.208

Constraint (2) ensures that the completion time of any map task is no less209

than the sum of its setup time and processing time. Constraint (3) assures210

that the completion time of any reduce task is no less than the sum of its setup211

time, processing time and the maximum completion time of map tasks from212

the same job as the reduce phase cannot start before the map phase completes.213

Constraint (4) calculates the real setup time for each task. Constraint (5)214

states that for phase a, if task va
i,j and va

i′,j′ are scheduled in the same slot215

and va
i′,j′ is the immediate predecessor of va

i,j in the slot’s task sequence, va
i,j216

cannot start processing until va
i′,j′ is finished, which implies that each slot is217

prohibited from processing more than one task simultaneously. M is set to218

a very large constant, greater than the sum of all job processing times and219

setup times. Constraints (6)-(7) ensure that there is one and only one task220

scheduled in each position in a slot’s task sequence. Each task has one and221

only one immediate predecessor and one immediate successor. Constraints222

(8)-(9) ensure that only one task is assigned to the first and last positions in223

each slot. Constraint (10) states that if a task has an immediate predecessor224

task in a sequence, it must have an immediate successor task and vice-versa.225

Constraint (11) assures that a task cannot be its own predecessor or successor.226

Constraint (12) specifies the nature of the decision variables. Note that227

8

according to the papers reviewed in [30] and [32] regarding mathematical228

models proposed for related hybrid flow shop problems, there is very little229

hope of solving the previous model to optimality even for small instance sizes.230

Since typical workloads of MapReduce clusters involve hundreds of tasks,231

such a model would result in tens of thousands of binary variables, motivating232

the need for heuristic methods.233

3. Lower bounds234

The two-stage hybrid flow shop problem (HFSP) is NP-hard even if the235

number of machines at one of the two stages is one [11]. The problem236

considered is also NP-hard because of the complexity over HFSP in that237

each job contains multiple tasks at each phase and each task has a schedule-238

dependent setup time. It is fairly difficult to find an optimal solution in an239

acceptable time for large problems. Instead, we present a tight lower bound240

that, similar to [12, 18, 29], is used to evaluate the relative performance of241

the proposed heuristic methods. The lower bound of the makespan for a242

two-stage hybrid flow shop problem is loosely based on that of Haouari and243

M’Hallah [12]. We propose two lower bounds as follows.244

Let min[k] denote the kth minimal value (so min[1] is the minimum value)245

in a non-increasing sequence.246

Definition 1 For task va
i,j, the artificial processing time La

i,j is the sum of247

processing time and the minimum possible setup time, i.e., La
i,j = pa

i,j +248

mink∈Qa{sa
i,j,k}. Function ha(x) returns the sum of the last x artificial249

tasks with processing times La
i,j at phase a, i.e., ha(x) =

x∑
k=1

min[k] L
a
i,j250

(i ∈ {1, 2, . . . , n}, j ∈ V a
i , a ∈ {m, r}).251

Theorem 1 LB1 = max
{

hm(Mr)
Mr

+
∑n

i=1

∑|V r
i

|
j=1 Lr

i,j

Mr
,252

hr(Mm)
Mm

+
∑n

i=1

∑|V m
i

|
j=1 Lm

i,j

Mm

}
is a lower bound of makespan of any feasible solution.253

Proof An intuitive lower bound LB′ of Cmax is the average of the total254

available time Ir and the total processing time Pr on all reduce slots at the255

reduce phase, i.e.,256

LB′ = 1
Mr

(Ir + Pr) ≤ Cmax (13)

9

An earlier finish at the map phase means an earlier start at the reduce257

phase. A lower bound of the total available time of the reduce slots is the258

total completion time of the only Mr map tasks with the minimal Lm
i,j values,259

of which the minimum can be obtained by the Shortest Processing Time first260

(SPT) rule [4]. In fact, task va
i,j spends La

i,j on the slot allocated to it. So261

when setup times take the minimum, the sum of Lr
i,j of all reduce tasks is a262

lower bound of total processing time of reduce slots. We obtain:263

hm(Mr) +∑n
i=1

∑|V r
i |

j=1 L
r
i,j

Mr

≤ Ir + Pr

Mr

≤ Cmax

For the symmetry consideration on a two-stage hybrid flow shop problem264

[12], the reduce phase is supposed to process before the map phase. By taking265

into account the available time Im and the processing time Pm of the map266

phase, we have:267

hr(Mm) +∑n
i=1

∑|V m
i |

j=1 Lm
i,j

Mm

≤ Im + Pm

Mm

≤ Cmax

Therefore,268

LB1 = max
{

hm(Mr)
Mr

+
∑n

i=1

∑|V r
i

|
j=1 Lr

i,j

Mr
, hr(Mm)

Mm
+269 ∑n

i=1

∑|V m
i

|
j=1 Lm

i,j

Mm

}
≤ Cmax �270

We propose another lower bound LB2 considering the precedence relation271

between the two phases (map and reduce).272

Definition 2 Za
i is the maximum La

i,j of all tasks of job Ji at phase a, i.e.,273

Za
i = max

j∈V a
i

{La
i,j}. Za is minimum Za

i of all jobs, i.e., Za = min
i∈{1,2,...,n}

{Za
i },274

a ∈ {m, r}.275

Theorem 2 LB2 = max
{
Zm +

∑n

i=1

∑|V r
i

|
j=1 Lr

i,j

Mr
, Zr +

∑n

i=1

∑|V m
i

|
j=1 Lm

i,j

Mm

}
is a276

lower bound of the makespan on any feasible solution.277

Proof The reduce phase of a job cannot start until all of its map tasks278

have been finished. Ideally, there are enough slots for all map tasks to279

start simultaneously. Then the reduce phase could start only after the map280

task with the longest processing time is finished, which would lead to the281

least available time in each reduce slot being Zm. Therefore, the available282

setup time of all reduce slots is also at least Zm. From equation (13),283

10

Zm +
∑n

i=1

∑|V r
i

|
j=1 Lr

i,j

Mr
≤ Cmax. The symmetry property of the two-stage hybrid284

flow shop problem is Zr +
∑n

i=1

∑|V m
i

|
j=1 Lm

i,j

Mm
≤ Cmax. Therefore,285

LB2 = max
{
Zm +

∑n

i=1

∑|V r
i

|
j=1 Lr

i,j

Mr
, Zr +

∑n

i=1

∑|V m
i

|
j=1 Lm

i,j

Mm

}
≤ Cmax �286

2

3

2 3

1

1 4

4

Makespan

Slot 1

Slot 2

Slot 1

Slot 2

Slot 3

Map

Reduce

Figure 2: A case for LB2 < LB1.

LB2 > LB1 for most cases. However, there are exceptions like the case287

shown in Figure 2. The cluster has 3 map slots and 2 reduce slots. Four288

MapReduce jobs need to be processed, each of which has only one map task289

and one reduce task. According to LB1, the mean available time of the reduce290

slots is the average of the processing times of job 1 and job 2 while it is job291

1’s processing time in terms of LB2. Obviously, LB1 > LB2. Therefore, a292

lower bound of Cmax on any feasible solution is LB = max{LB1, LB2}.293

4. Heuristics294

Three heuristics are proposed for the considered problem in this paper.295

Generally, heuristics are adopted from those proposed in hybrid flow shop296

problems, in which jobs are sorted by a sequencing rule at each phase and297

they are assigned to machines using another rule. The considered problem is298

unique in that each job consists of multiple tasks, which are the basic units299

of scheduling. Therefore, three sub-problems should be solved to generate a300

schedule.301

(i) The scheduling sequence of the jobs.302

11

(ii) The task scheduling sequence of each job.303

(iii) The task assignment at each phase.304

There are many options for sequencing rules and task assignment policies.305

A heuristic is called job-based if the job sequence is generated priori to the306

task sequencing for each job. On the contrary, a heuristic is task-based if the307

job sequence is generated according to the obtained task sequences. In this308

section, two job-based heuristics and a task-based heuristic are presented.309

4.1. Fundamental rules for the three sub-problems310

4.1.1. Job sequencing rule311

Johnson’s algorithm [14] can be used as a job sequencing rule which obtains312

the optimum of a two-stage flow shop problem minimizing the makespan.313

Variants of Johnson’s algorithm have been applied to many kinds of flow shop314

problems [38, 17, 13, 22]. However, it is necessary to estimate the duration315

of each phase before using Johnson’s algorithm when there is more than one316

parallel machine in each phase. Therefore, we need to determine the durations317

of the map and reduce phases by analyzing processing and setup times of318

tasks for the problem considered in this paper. Verma et al. [38] calculated319

the lower bound (Equation(14)) and upper bound (Euqation(15)) of some320

phase durations for job Ji using the makespan theorem [37]:321

T a,low
i =

∑|V a
i |

j=1 p
a
i,j

Sa
i

(14)

T a,up
i =

(| V a
i | −1) ·∑|V a

i |
j=1 p

a
i,j

Sa
i · | V a

i |
+ max

j∈V a
i

pa
i,j (15)

322 in which Si
a is the number of slots allocated to process the tasks of job Ji.323

We calculate the estimated duration of job Ji at phase a as the weighted324

sum of the lower bound and upper bound above with weights ω and 1− ω,325

respectively (Equation (16)). La
i,j, the sum of processing and setup times, is326

regarded as the artificial processing time of task va
i,j. Since the setup time is327

unknown until the processing slot is determined, we regard the time to read328

local input data as the setup time.329

T a
i = ωT a,low

i + (1− ω)T a,up
i , ω ∈ (0, 1) (16)

With the estimated durations, we use Johnson’s algorithm to sort the330

jobs. The sequencing rule just described is abbreviated to JR1 which will331

12

be used to sort jobs in the map phase in the proposed methods. In order to332

start the reduce phase as soon as possible, the jobs at the reduce phase are333

sorted in a non-decreasing order of their completion times at the map phase.334

4.1.2. Task sequencing rule335

Each stage of the considered hybrid flow shop can be viewed as a parallel336

machines problem with identical processors (P ||Cmax). The Longest Process-337

ing Time first (LPT) rule can obtain a near-optimal solution for problem338

P ||Cmax [25]. Therefore, we adopt the LPT rule to sort the tasks of each job339

at both phases in terms of the artificial processing time La
i,j of task va

i,j.340

4.1.3. Task assignment policies341

The most commonly used job-machine assignment policies for traditional342

hybrid flow shop problems are Earliest Available First (EAF) [25, 15] and343

Earliest Finishing First (EFF) [17, 13]. EAF results in the least waiting time344

for jobs while EFF leads jobs to finish as soon as possible. The Latest Available345

First (LAF) [11] policy is sometimes also adopted. In the MapReduce task346

scheduling, it is necessary to take into account other factors, such as the load347

balancing of slots, the data locality of tasks and the precedence constraint348

between the map and the reduce phases. Since the data locality greatly affects349

the setup times of tasks, an improvement policy is developed in this paper350

and discussed in section 4.4.351

4.2. Job-based heuristics352

This section introduces two job-based scheduling heuristics, EASS (Earliest353

Available Slot Scheduling) and EFSS (Earliest Finishing Slot Scheduling).354

EASS is based on the EAF task assignment policy. As shown in Algorithm355

1, EASS first sorts jobs using the JR1 rule at the map phase and sequences356

the tasks by the LPT rule. The next available moment for slot k is defined357

as λk, which is initialized as 0. θa
i denotes the completion time of phase a of358

job Ji. At the map phase, the current task is always assigned to the earliest359

available slot, i.e., the slot k′ = arg min
k∈Qm

λk is selected, which is implemented360

by the Task Assignment Procedure (TAP) as shown in Algorithm 2. The361

completion time of the map phase and the next available moment for slot k′362

are updated after each assignment. At the reduce phase, the jobs are sorted363

in non-decreasing order of the completion times at the map phase. Tasks364

are assigned in the same way at the map phase. To ensure the reduce tasks365

cannot start until all map tasks complete, the start time of any reduce task is366

13

set as no less than the latest completion time of the corresponding job at the367

map phase (as described by the statement 6 in Algorithm 2). The makespan368

is the maximum completion time of all jobs at the reduce phase.369

Algorithm 1: EASS Heuristic
Input: Job set J, MapReduce cluster Q, processing time pa

i,j of task
va

i,j, setup time sa
i,j,k of task va

i,j processed by slot k.
Output: Makespan of J, Cmax.

1 begin
2 Sort jobs in J using JR1 rule /* Map phase */
3 foreach k ∈ Q do
4 λk ← 0
5 foreach Ji ∈ J do
6 Sort the tasks in V m

i and V r
i respectively using LPT rule

7 θm
i ← 0

8 foreach vm
i,j ∈ V m

i do
9 k′ ← arg min

k∈Qm

λk

10 Call TAP (Ji, v
m
i,j, θ

m
i , λk′ ,m)

11 Sort jobs in J in non-decreasing order of θm
i /* Reduce phase */

12 foreach Ji ∈ J do
13 θr

i ← θm
i

14 foreach vr
i,j ∈ V r

i do
15 k′ ← arg min

k∈Qr

λk

16 Call TAP (Ji, v
r
i,j, θ

r
i , λk′ , r)

17 return max
i∈{1,2,...,n}

θr
i

EFSS operates in a greedy manner using EFF as the task assignment370

policy. For each task va
i,j, the slot k′ = arg min

k∈Qa

{λk + sa
i,j,k + pa

i,j} is selected.371

The procedure of task assignment is also completed by TAP. Jobs and tasks372

are arranged in the same way as in EASS. EFSS can be obtained from EASS373

by just changing statement 9 in EASS to k′ = arg min
k∈Qm

{λk + sm
i,j,k + pm

i,j} and374

the statement 15 to k′ = arg min
k∈Qr

{λk + sr
i,j,k + pr

i,j}.375

14

Algorithm 2: TAP (Ji, va
i,j, θa

i , λk′ , a)
1 begin
2 sa

i,j ← sa
i,j,k′

3 if a = m then
4 ca

i,j ← λk′ + sa
i,j + pa

i,j

5 else
6 ca

i,j ← max{λk′ , θm
i }+ sa

i,j + pa
i,j

7 if ca
i,j > θa

i then
8 θa

i ← ca
i,j

9 λk′ ← ca
i,j

10 return

4.3. Task-based heuristic376

The proposed job-based methods use the LPT rule to sort tasks only377

for each job, which could result in non-high quality solutions. A task-based378

heuristic method, Task-based Scheduling (TBS), is proposed as shown in379

Algorithm 3. At the map phase, all map tasks are sorted using the LPT rule380

regardless of the jobs to which they belong. The EFF policy is adopted to381

assign the tasks to slots. Tasks assigned to each slot are adjusted to make382

the tasks from the same job adjacent, which ensures that the reduce phase383

can start as soon as possible once the map phase is finished. Jobs in each384

slot follow the same order obtained by JR1 during the adjustment. Since385

each task stays in the same slot, its setup time remains unchanged before and386

after the adjustment. The completion time of each task and that of its job at387

the map phase are updated. Task scheduling in TBS at the reduce phase is388

similar to that in the EFSS method.389

4.4. Improvement policy based on data locality390

For each map task, the input data is replicated on different nodes. gk
i,j391

denotes the input data size of map task vm
i,j on the node to which map slot k392

belongs and dk
i,j is the size of data read by reduce task vr

i,j from the output data393

of map task vm
i,k. Data transfer time in cluster contains the communication394

time and the disk I/O operation time. For simplicity, we assume there are395

three kinds of communication rates among nodes in cluster: non-local rate396

fn (network I/O rate among nodes from different rack), rack-local rate fr397

15

Algorithm 3: TBS Heursitic
Input: Job set J, MapReduce cluster Q, processing time pa

i,j of task
va

i,j, setup time sa
i,j,k of task va

i,j processed by slot k
Output: Makespan of J, Cmax

1 begin
2 Sort tasks in Tm using LPT rule /* Map phase */
3 foreach k ∈ Q do
4 λk ← 0
5 foreach Ji ∈ J do
6 θm

i ← 0
7 foreach vm

i,j ∈ Tm do
8 k′ ← arg min

k∈Qm

{λk + sm
i,j,k + pm

i,j}

9 Call TAP (Ji, v
m
i,j, θ

m
i , λk′ ,m)

/* task moving */
10 foreach Map slot k ∈ Qm do
11 Sort the tasks on slot k in the same order of corresponding jobs

obtained by JR1
12 Update the completion time of each task and that of its job
13 Sort jobs in J in non-decreasing order of θm

i /* Reduce phase */
14 foreach Ji ∈ J do
15 Sort the tasks in V r

i using LPT rule
16 θr

i ← θm
i

17 foreach vr
i,j ∈ V r

i do
18 k′ ← arg min

k∈Qr

{λk + sr
i,j,k + pr

i,j}

19 Call TAP (Ji, v
r
i,j, θ

r
i , λk′ , r)

20 return max
i∈{1,2,...,n}

θr
i

(network I/O rate among nodes from the same rack) and node-local rate fd398

(disk I/O rate of a local node). The setup time of map task vm
i,j depends on399

both gk
i,j and the communication rates while that of vr

i,j is determined by dk
i,j400

and the communication rates.401

The schedule-dependent setup times exert a great influence on the schedul-402

ing effectiveness. Since the communication rate is one of the crucial factors for403

16

setup times, data locality is important in reducing setup times. Actually, three404

aspects are involved in makespan minimization at the map phase: (i) Assign405

the map tasks to the nodes with replicas of their input data. (ii) Centralize406

map tasks of the same job to save communication time. (iii) Decentralize map407

tasks of different jobs to balance workloads in slots. Relating to the three408

aspects, we introduce an improvement policy. All replicas of input data are409

assigned to the nodes using the round-robin way, which balances workloads410

on the slots, i.e., map tasks of different jobs are decentralized to distinct411

slots. At the map phase, an attempt to allocate the earliest available slot on412

the same node to the next task of the current job is made. Although this413

policy does not lead to the earliest completion of the task, better solution414

can be obtained because it reserves slots for the successive tasks with local415

executions. Additionally, the input data placement increases the possibility416

of the tasks of a job being processed by the same rack.417

The improvement policy is applied to EFSS and TBS, the obtained418

heuristics are called EFSS-L and TBS-L, respectively. Since EASS is based419

on the EAF task assignment policy, which is the same for the improvement420

policy, it is unnecessary to construct EASS-L.421

4.5. Time complexity of the proposals422

In EASS, the time complexity of Step 2 is O(n log n), that of Step 6 is423

O(∑n
i=1(|V m

i | log |V m
i | + |V r

i | log |V r
i |)), that of the TAP procedure is O(1)424

while that of Step 9 is O(∑n
i=1 |V m

i |Mm). So the time complexity of the map425

phase is O(n log n+∑n
i=1(|V m

i | log |V m
i |+ |V r

i | log |V r
i |) +∑n

i=1 |V m
i |Mm) and426

that of the reduce phase is O(n log n + ∑n
i=1 |V r

i |Mr). Therefore, the time427

complexity of EASS is O(n log n+∑n
i=1[|V m

i |(log |V m
i |+Mm)+ |V r

i |(log |V r
i |+428

Mr)]).429

Since the time complexity of the distinct steps between EASS and EFSS is430

identical, the time complexity of EFSS is also O(n log n+∑n
i=1[|V m

i |(log |V m
i |+431

Mm) + |V r
i |(log |V r

i |+Mr)]).432

In TBS, the time complexity of the map phase is O(|Tm| log |Tm|), that433

is the task moving phase is O(|Tm| log |Tm|), and that of the reduce phase434

is O(n log n+∑n
i=1[|V r

i |(log |V r
i |+Mr)]). Therefore, the time complexity of435

TBS is O(n log n+∑n
i=1[|V r

i |(log |V r
i |+Mr)] + |Tm| log |Tm|).436

17

5. Experimental results437

This section evaluates the proposed heuristics and improvement policy438

using realistic workloads derived from the Yahoo! M45 [16] cluster. Job439

information was randomly generated from data distributions drawn from log440

files of 10 months. The heuristics were encoded in Java, compiled with Eclipse441

Helios Release JDK 1.6 and run on a PC with an Intel Core i5-3479 3.7GHz442

processor with 4GB of RAM.443

5.1. Data generation444

Jobs and tasks information is based on the analysis performed on a445

Yahoo! M45 production cluster and was generated as follows [38]: (1) The446

number of map and reduce tasks for each job was drawn from the normal447

distributions N(154, 558) and N(19, 145), respectively. (2) Map and reduce448

task processing times were generated from the normal distributions N(50, 200)449

and N(100, 300), respectively. (3) A bimodal workload was adopted in450

order to avoid similar job data sets since they were drawn from the same451

distributions. The data of 80% of the jobs was multiplied by a scale factor452

uniformly distributed between [1,2] while the rest of the data was scaled using453

a factor drawn uniformly from [8,10]. After scaling, all data was rounded to454

the nearest integers.455

For cluster setups, the network architecture has a two-level topology456

in which the rack number is set to 3; the number of nodes takes values457

from m ∈ {10, 15, 20, 25, 30}; considering various slot configurations, the458

number of map slots on each node ms ∈ {2, 4, 6, 8} and that of reduce459

slots on each node rs is set to 2. Therefore, we obtain four slot ratios:460

R1 = 2 : 2, R2 = 4 : 2, R3 = 6 : 2, R4 = 8 : 2. At present, the rate of disk461

I/O can reach 150 megabytes per second (MB/s). We set fd to 100 MB/s in462

view of an average sense of I/O performance. Gigabit Ethernet is a common463

option for Hadoop clusters with a maximum communication rate exceeding464

100 MB/s. Moreover, the aggregate bandwidth between nodes on the same465

rack is much greater than that between nodes on different racks [40]. With466

these factors, we set fr = 50 MB/s and fn = 30 MB/s, respectively.467

The input data size of each map task is drawn from {128, 192, 256, 320}468

with the unit being MB. As a result, the setup time of the map task is469

approximately between 1 and 11 seconds. For the map task, the ratio of the470

time for reading input data to the processing time is about 1:10 [3]. According471

to the data distribution of the processing time, it is reasonable to set the472

18

average setup time of the map task as 5 seconds. The replica number of data473

blocks on HDFS (Hadoop Distributed File System) is 4 and the replicas of474

each task are placed on 4 consecutive nodes in a round-robin way. Each map475

task is assumed to have only one block of input data. For simplicity, the476

amount of input data Din is linear to that of the output data Dout at the map477

phase, i.e., Dout = σDin. In a MapReduce production cluster, most jobs are478

data-aggregate or data-transform with a σ ≤ 1 [7]. σ was randomly generated479

from {0.2, 0.4, 0.6, 0.8, 1.0} to reflect different types of jobs. 30 instances are480

randomly generated for each job number n ∈ {50, 100, 150, 200, 250}, i.e.,481

there are 5× 30 = 150 instances in total. Parameters of each instance contain482

the number of map tasks, the number of reduce tasks, σ and processing times483

of its tasks.484

The lower bound proposed in section 3 is used to evaluate the methods.485

Relative Error (RE) [13] is defined as:486

RE = Cmax − LB
LB

× 100% (17)

Smaller RE values suggest better solutions as the obtained makespan is487

closer to the lower bound.488

5.2. Results489

5.2.1. Parameter calibration490

Equation (16) implies that the parameter ω determines the final estimated491

durations of the jobs based on the estimated phase (map/reduce) length.492

Different job sequences could be generated by the same methods for distinct493

ω, i.e., ω is crucial for the performance of the methods. Furthermore, the494

estimated phase durations depend on the number of slots at the map/reduce495

phase. Therefore, we need to set a good ω value for the proposed heuristics.496

To determine the appropriate value of ω, we tested EASS, EFSS and TBS over497

different values of ω (0.1, 0.3, 0.5, 0.7, 0.9). Four slot ratios (R1, R2, R3, R4,498

the number of map slots to that of reduce slots) are tested. For each ratio and499

ω, we also test 5 values for the number of nodes (10, 15, 20, 25, 30). All these500

factors are controlled in an experimental design so there are 3×5×4×5 = 300501

treatments. We also control the number of jobs n as an instance factor, with502

the aforementioned 5 levels, which increases the number of treatments to503

1500. The 30 random instances for each level of n are tested so the total504

number of results in the calibration experiment is 45000. All this data is fed505

to the Analysis of Variance technique (ANOVA). The response variable in506

19

the experiment is the RE for each algorithm in each instance. ANOVA is a507

very robust parametric procedure and there are a number of hypotheses that508

should be ideally met by the experimental data. Among these, the main three509

are (in order of importance): independence of the residuals, homoscedasticity510

or homogeneity of the factor’s levels variance and normality in the residuals of511

the model. Apart from a slight non-normality in the residuals, we can accept512

all hypotheses easily. Note that despite being a parametric test, ANOVA has513

been demonstrated to be really robust. For example [28] applied ANOVA514

to data that severely violated normality and tested it together with other515

non-parametric tools. The conclusions were that ANOVA is largely unaffected516

by this lack of normality and due to its additional statistical power, it is517

a much more preferable technique. Additionally, as explained in [2] and in518

greater detail in [31], computer experimentation is a controllable environment519

where few things can go wrong as regards the ANOVA.520

All studied factors in the ANOVA resulted in being statistically significant521

with p-values very close to zero. The most insightful result of the ANOVA is522

a means plot with an additional statistical test to check which averages of523

the levels and variants of the factors that have been proved to be statistically524

significant are indeed different from each other. The means plot with 95%525

confidence level Tukey’s Honest Significance Differences (HSD) intervals for the526

interaction between ω and algorithms is shown in Figure 3. Non-overlapping527

confidence intervals between any two pairs of plotted averages imply that528

the observed differences in such averages are statistically significant at the529

indicated confidence level.530

From the result of the calibration experiment, it is clear that different ω531

values have an effect on all three algorithms. All other controlled factors also532

influence the RE response variable, especially the slot ratios but they do not533

strongly interact with ω meaning that this factor is robust and the best level534

is 0.7 for all algorithms and slot ratios. Of course, we could dig deeper and535

set specific values of ω for all combinations of instance factors but this would536

result in an overcalibration. It is simpler and fairer to set the same ω value537

for all instances. It has to be noted that in most cases the value of RE is538

low, especially when the number of jobs is large and for ratios R1 and R2.539

This is a very good result since at the same time it empirically demonstrates540

the tightness of the proposed bounds and the effectiveness of the presented541

heuristics. However, when the number of jobs is equal to 20 and particularly542

for ratios R3 and R4, the RE values surpass 15% in some cases. This could543

be due to the bound not being so tight and/or the proposed methods not544

20

ω

2.8

3.6

4.4

5.2

6

6.8

R
el

at
iv

e
E

rr
or

 (
R

E
)

0.1 0.3 0.5 0.7 0.9

Algorithm
EASS
EFSS
TBS

Figure 3: Means plot of the Relative Error (ER) and 95% confidence level Tukey’s HSD
intervals for the interaction between the factor ω and the type of algorithm.

giving such good solutions.545

5.2.2. Comparison results546

We now test the three proposed heuristics (EASS, EFSS, TBS) and the547

two with the improvement policy (EFSS-L, TBS-L). We test all these 5548

algorithms again with the previous 150 instances (30 replicates for each job549

number n). Also, the previous four slot ratios and five number of nodes are550

tested. The total number of results this time is 5 × 4 × 5 × 150 = 15000.551

Note that to avoid bias in the result, we have not taken the results from the552

previous calibration experiment but rather we have run all methods again.553

Recall that from the result of the calibration, ω is set to 0.7 in all final554

experiments. Several of the tested factors have an effect on the performance555

of the methods. Therefore, we compare the heuristics in different scenarios.556

First we report the average RE results of each algorithm as a function of557

the slot ratio, number of nodes and job number n in Table 2. Later we will558

analyze the statistical significance of the differences in the observed averages.559

The CPU times employed by the proposed algorithms depend mainly on the560

number of jobs n. This information, together with the global average RE561

values is synthesized in Table 3.562

21

Table 2: Average Relative Error (RE) for the proposed heuristics as a function of the slot ratio, node number and number of
jobs n. Each cell inside the table is the average RE for the 30 tested instances.

Slot ratio

R1 R2 R3 R4

Node number Node number Node number Node number

Algorithm n 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

EASS 50 1.30 2.02 2.64 2.78 3.11 1.52 1.89 2.18 2.60 3.12 2.17 2.68 3.53 5.50 10.39 7.50 8.45 10.79 14.60 19.87
100 1.20 1.89 2.46 2.51 2.75 1.31 1.65 1.85 2.09 2.48 1.65 2.02 2.29 2.41 2.80 6.74 7.19 7.67 8.71 10.86
150 1.17 1.85 2.41 2.49 2.73 1.22 1.49 1.66 1.94 2.33 1.34 1.66 1.84 2.01 2.17 7.03 7.31 7.68 8.31 9.55
200 1.12 1.79 2.34 2.41 2.63 1.15 1.41 1.57 1.84 2.19 1.23 1.51 1.71 1.82 1.93 6.69 6.95 7.08 7.55 8.40
250 1.13 1.80 2.35 2.42 2.64 1.14 1.41 1.56 1.83 2.18 1.21 1.50 1.67 1.81 1.91 6.83 7.06 7.20 7.44 7.88

Average 1.18 1.87 2.44 2.52 2.77 1.27 1.57 1.76 2.06 2.46 1.52 1.87 2.21 2.71 3.84 6.96 7.39 8.08 9.32 11.31

EFSS 50 0.58 0.81 1.10 1.18 1.35 0.71 0.93 1.15 1.33 1.59 1.32 1.59 2.16 3.49 6.68 7.21 8.28 11.78 15.12 20.37
100 0.51 0.73 0.99 1.00 1.11 0.57 0.77 0.94 0.97 1.13 0.89 1.12 1.38 1.43 1.65 6.64 7.15 7.76 10.02 12.43
150 0.47 0.67 0.92 0.94 1.08 0.47 0.63 0.78 0.86 1.00 0.56 0.74 0.93 1.01 1.14 6.95 7.26 7.68 8.63 10.73
200 0.45 0.66 0.90 0.92 1.02 0.43 0.58 0.73 0.80 0.91 0.46 0.61 0.82 0.87 0.96 6.63 6.90 7.02 7.71 9.17
250 0.45 0.66 0.91 0.91 1.02 0.43 0.58 0.73 0.79 0.90 0.44 0.60 0.79 0.86 0.93 6.79 7.02 7.17 7.42 8.17

Average 0.49 0.71 0.96 0.99 1.12 0.52 0.70 0.87 0.95 1.10 0.73 0.93 1.22 1.53 2.27 6.84 7.32 8.28 9.78 12.17

EFSS-L 50 0.19 0.24 1.82 0.38 0.47 0.40 0.50 2.13 0.80 0.98 1.07 1.29 2.97 3.25 7.51 7.21 8.42 11.52 16.17 20.55
100 0.12 0.15 1.85 0.19 0.21 0.24 0.33 2.05 0.40 0.47 0.63 0.77 2.41 0.98 1.27 6.64 7.15 7.76 10.15 12.55
150 0.07 0.08 1.43 0.11 0.14 0.14 0.18 1.53 0.25 0.32 0.28 0.36 1.69 0.50 0.59 6.96 7.27 7.71 8.72 10.70
200 0.05 0.07 1.51 0.10 0.10 0.11 0.13 1.59 0.20 0.22 0.17 0.22 1.70 0.33 0.38 6.63 6.91 7.05 7.73 9.15
250 0.05 0.06 1.40 0.08 0.09 0.10 0.13 1.47 0.18 0.21 0.15 0.20 1.56 0.31 0.35 6.79 7.03 7.17 7.43 8.22

Average 0.10 0.12 1.60 0.17 0.20 0.20 0.26 1.75 0.37 0.44 0.46 0.57 2.06 1.07 2.02 6.85 7.35 8.24 10.04 12.23

TBS 50 0.76 1.02 1.31 1.34 1.48 0.90 1.26 1.64 2.02 2.41 4.62 8.93 13.54 18.63 23.94 11.35 15.86 21.96 29.35 35.68
100 0.73 1.01 1.23 1.20 1.32 0.71 0.96 1.15 1.20 1.43 1.40 2.30 3.84 5.90 9.51 7.41 8.83 10.89 15.60 19.12
150 0.73 1.02 1.24 1.22 1.31 0.62 0.82 0.95 1.01 1.13 0.75 1.11 1.51 2.44 4.09 7.55 8.18 9.04 10.75 13.06
200 0.73 1.02 1.25 1.22 1.30 0.58 0.75 0.87 0.91 1.00 0.58 0.80 1.04 1.38 1.99 7.02 7.52 7.80 8.79 10.57
250 0.76 1.05 1.28 1.27 1.35 0.59 0.73 0.84 0.90 0.97 0.54 0.73 0.91 1.07 1.29 7.13 7.55 7.90 8.36 9.31

Average 0.74 1.02 1.26 1.25 1.35 0.68 0.90 1.09 1.21 1.39 1.58 2.77 4.17 5.88 8.16 8.10 9.59 11.52 14.57 17.55

TBS-L 50 0.17 0.25 1.84 0.40 0.54 0.54 0.80 2.54 1.57 1.99 4.01 8.37 13.09 17.68 23.22 11.02 15.19 21.99 28.06 35.68
100 0.11 0.16 1.87 0.22 0.29 0.30 0.45 2.16 0.69 0.84 1.26 2.14 4.36 5.50 8.55 7.59 8.95 11.20 15.11 18.51
150 0.06 0.09 1.44 0.15 0.18 0.19 0.28 1.65 0.43 0.48 0.42 0.63 2.21 1.96 4.03 7.51 8.21 9.06 10.39 13.30
200 0.05 0.06 1.51 0.10 0.14 0.12 0.20 1.65 0.31 0.38 0.24 0.41 1.83 0.92 1.58 7.05 7.48 7.83 8.52 10.20
250 0.04 0.06 1.39 0.09 0.12 0.10 0.15 1.52 0.27 0.30 0.19 0.30 1.64 0.53 0.99 7.12 7.50 7.81 8.31 9.15

Average 0.09 0.12 1.61 0.19 0.25 0.25 0.38 1.90 0.65 0.80 1.22 2.37 4.63 5.32 7.67 8.06 9.47 11.58 14.08 17.37

Average 0.52 0.77 1.57 1.03 1.14 0.58 0.76 1.48 1.05 1.24 1.10 1.70 2.86 3.30 4.79 7.36 8.22 9.54 11.56 14.13

22

Table 3: Average RE and CPU times (in milliseconds) for the proposed heuristics as a
function of the number of jobs n.

EASS EFSS EFSS-L TBS TBS-L

n RE Time RE Time RE Time RE Time RE Time

50 5.43 23.12 4.44 634.90 4.39 597.80 9.90 606.08 9.45 602.06
100 3.63 47.82 2.96 1232.31 2.82 1183.88 4.79 1200.36 4.51 1189.97
150 3.41 71.93 2.67 1858.74 2.45 1793.58 3.43 1818.60 3.13 1808.93
200 3.17 104.56 2.43 2462.68 2.22 2335.66 2.86 2418.81 2.53 2393.35
250 3.15 124.62 2.38 3034.95 2.15 2928.35 2.73 3003.98 2.38 2961.86

Average 3.76 74.41 2.97 1844.72 2.81 1767.85 4.74 1809.57 4.40 1791.23

We comment on the main findings below.563

(i) Slot ratios. For the slot ratio R1 = 2 : 2, EFSS-L and TBS-L outperform564

the other methods; when the ratio becomes R2 = 4 : 2, EFSS-L is the565

best method but differences are small between EFSS and TBS-L. For566

R3 = 6 : 2 EFSS and EFSS-L are the best. Lastly, for R4 = 8 : 2 all567

methods except TBS and TBS-L show comparable performance. The568

methods adopting the improvement policy perform, on average, better569

than those without the policy.570

(ii) Slot ratio and the number of jobs n. The average RE for each job571

size increases with the slot ratio. Additionally, for each slot ratio, the572

average RE shows a decreasing trend as n increases. The trend is much573

more notable when n changes from 50 to 100 and not so obvious after n574

reaches 200. We can argue that all methods perform better for larger575

job sizes which are independent from the slot ratio.576

(iii) Job size n. EFSS-L outperforms the other methods for all job sizes. The577

performance of TBS and TBS-L is much worse than the other methods578

when job sizes are no more than 100. However, they perform much579

better as the job size increases which indicates that these methods are580

effective for a large number of jobs. We can conclude that EFSS-L is581

good for different cluster setups and job sizes. Similarly, the CPU times582

of the compared methods except EASS are similar for each n. Though583

there are significant differences between the CPU times of EASS and584

those of EFSS, their time complexities are identical. In fact, the ratio585

of the CPU time of EFSS to that of EASS is almost a constant, about586

22 for each n, which implies the same time complexity.587

23

(iv) Node size. We focus on the case when the map/reduce slot ratio is588

R2 = 4 : 2. We can see from Table 3 that EFSS-L achieves the least589

average RE for almost all combinations of job and node sizes except the590

casem = 20. EFSS-L and TBS-L outperform EFSS and TBS, supporting591

the effectiveness of the proposed improvement policy. Moreover, all592

methods show a trend of worse performance as the node size increases593

except when m = 20 with a fixed job size. For any node size, all methods594

tend to perform better with more jobs. We can argue that in most595

cases, the proposed methods are appropriate for resource-constrained596

(fewer nodes but more jobs) environments. For the case when the node597

number is 20, we analyze and propose possible causes. As for the results598

of the rest of the slot ratios, it is observed that similar patterns exist599

for the differences in performance with more jobs and nodes, which are600

not shown due to space limitations.601

(v) Input data distribution. The performance of the different methods shows602

that the improvement policy is far less effective when the node size is603

20. A possible reason is that data locality for tasks selecting slots would604

lead to unbalanced workload in the slots if the input data is distributed605

unevenly, which would result in worse makespans. In normal cases, there606

is some common input data among the set of nodes holding the replicas607

of input data of different tasks which balance the workload of each slot.608

However, a special case is that the overlapping becomes less important609

when the node size is a multiple of the replica number if all the replicas610

are placed on HDFS in a round-robin way. For example, the node611

number 20 is a multiple of the replica number 4, the improvement policy612

fails in this special case. The above analysis is verified by experiments613

with the configured parameters except the node size m, which takes614

values from {12, 16, 20, 24, 28}. The experimental results show that615

EFSS achieves the best performance, EFSS-L and TBS-L get worse616

RE than EFSS and TBS in almost all cases. The two methods with617

the improvement policy are even outperformed by EASS in the worst618

case. This result supports the earlier analysis and indicates that the619

distribution of input data may greatly affect the proposed improvement620

policy. Therefore, it is necessary to fully take into account the specific621

configurations of a cluster when selecting methods for scheduling.622

Now we proceed to the statistical analysis of the experimental results623

given in Table 2. While there are large differences in the observed averages,624

24

we still need to check if these differences are indeed statistically significant.625

We use the same ANOVA tool as before, with the same factors and response626

variables as used in the experiment.627

0

0.5

1

1.5

2

2.5

R
el

at
iv

e
E

rr
or

 (
E

R
)

Algorithm
EASS
EFSS
EFSS-L
TBS
TBS-L

0

3

6

9

12

15

18

21

24

n
50 100 150 200 250

n
50 100 150 200 250

n
50 100 150 200 250

n
50 100 150 200 250

R1 R2 R3 R4

Figure 4: Means plot of the Relative Error (ER) and 95% confidence level Tukey’s HSD
intervals for the interaction between slot ratio, the number of jobs n and the type of
algorithm.

0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
E

rr
or

 (
E

R
)

0

3

6

9

12

15

18

Number of nodes
10 15 20 25 30

Number of nodes
10 15 20 25 30

Number of nodes
10 15 20 25 30

Number of nodes
10 15 20 25 30

Algorithm
EASS
EFSS
EFSS-L
TBS
TBS-L

R1 R2 R3 R4

Figure 5: Means plot of the Relative Error (ER) and 95% confidence level Tukey’s HSD
intervals for the interaction between slot ratio, the number of nodes and the type of
algorithm.

As can be seen, the performance of the proposed methods is largely628

affected, in a sound and statistical way, by the slot ratios. Additionally,629

the number of jobs n and the number of nodes also affect algorithms in a630

significant manner. Overall, when differences between the averages reported631

in Table 2 are small between any algorithm and considered factor, they end632

up not being statistically significant. Only large differences can be generalized633

25

over other workloads (inference to the universe of potential instances). In634

summary, all tables and figures support the idea that the effectiveness of the635

proposed methods decreases with the job size n. Bigger job sizes n imply636

lower RE values, i.e., a greater number of jobs involved in the MapReduce637

computing framework leads to the makespan being closer to the lower bound.638

Therefore, the proposed methods are suitable for large-scale data processing639

systems. Another plausible explanation is that the proposed bounds are640

weaker for smaller job sizes and therefore the calculated RE values are641

affected. Considering the difficulty of the proposed model, it is not possible642

to solve even the smallest considered instances of 50 jobs optimally so it is643

not possible to check the tightness of the bound.644

6. Conclusions and future research645

In this paper, the scheduling problem of periodical batch jobs in MapRe-646

duce clusters with makespan minimization is considered. The problem is647

modeled as a general two-stage hybrid flow shop scheduling problem with648

schedule-dependent setup times and multiple tasks per job at each stage. A649

tight lower bound of the makespan is derived. Three heuristics EASS, EFSS650

and TBS are developed to solve the problem and an improvement policy based651

on data locality is presented to enhance the methods. Computational results652

have shown that the performance of the different methods highly depends on653

the number of jobs and cluster setups (map/reduce slot number ratio and654

node size). The effectiveness of the improvement policy is carefully tested655

indicating that EFSS-L is the best method in most cases. Finally, we have656

analyzed the special case when the improvement policy fails, for which an657

additional experiment is conducted to examine the analysis. In other words,658

the distribution of input data may affect the effectiveness of methods.659

Future research directions involve the impact of more cluster setups on660

method performance such as the number of racks, number of data replicas,661

network topology and more extensive map/reduce slot number ratios, etc.662

Other promising research avenues involve more practical modeling of the663

scheduling problem considered. For example, the reduce phase can start as664

soon as one of the map tasks is completed in real MapReduce implementations665

rather than after the whole map phase. The time when the reduce phase is666

allowed to start is configurable and thus able to be incorporated in the model.667

26

Acknowledgments668

This work is supported by the National Natural Science Foundation of669

China (No. 61272377) and the Specialized Research Fund for the Doctoral670

Program of Higher Education (No. 20120092110027). Rubén Ruiz is partially671

supported by the Spanish Ministry of Economy and Competitiveness, under672

the project “RESULT - Realistic Extended Scheduling Using Light Techniques”673

(No. DPI2012-36243-C02-01) partially financed with FEDER funds.674

References675

[1] Asahara, M., Nakadai, S., Araki, T., 2012. LoadAtomizer: A locality and I/O676

load aware task scheduler for mapreduce. In: Cloud Computing Technology677

and Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE,678

pp. 317–324.679

[2] Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (Eds.), 2010.680

Experimental Methods for the Analysis of Optimization Algorithms. Springer,681

New York.682

[3] Berlińska, J., Drozdowski, M., 2011. Scheduling divisible MapReduce compu-683

tations. Journal of Parallel and Distributed Computing 71 (3), 450–459.684

[4] Brucker, P., 2007. Scheduling algorithms, 5th Edition. Vol. 3. Springer.685

[5] Chang, H., Kodialam, M., Kompella, R. R., Lakshman, T., Lee, M., Mukherjee,686

S., 2011. Scheduling in MapReduce-like systems for fast completion time. In:687

INFOCOM, 2011 Proceedings IEEE. IEEE, pp. 3074–3082.688

[6] Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S., 2010. SAMR: A self-adaptive689

MapReduce scheduling algorithm in heterogeneous environment. In: Computer690

and Information Technology (CIT), 2010 IEEE 10th International Conference691

on. IEEE, pp. 2736–2743.692

[7] Chen, Y., Ganapathi, A., Griffith, R., Katz, R., 2011. The case for evaluat-693

ing MapReduce performance using workload suites. In: Modeling, Analysis &694

Simulation of Computer and Telecommunication Systems (MASCOTS), 2011695

IEEE 19th International Symposium on. IEEE, pp. 390–399.696

[8] Czyżewski, A., Bratoszewski, P., Ciarkowski, A., Cichowski, J., Lisowski, K.,697

Szczodrak, M., Szwoch, G., Krawczyk, H., 2015. Massive surveillance data698

processing with supercomputing cluster. Information Sciences 296, 322–344.699

[9] Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large700

clusters. Communications of the ACM 51 (1), 107–113.701

27

[10] Fischer, M. J., Su, X., Yin, Y., 2010. Assigning tasks for efficiency in Hadoop.702

In: Proceedings of the 22nd ACM symposium on Parallelism in algorithms and703

architectures. ACM, pp. 30–39.704

[11] Gupta, J. N. D., 1988. Two-stage, hybrid flowshop scheduling problem. Journal705

of the Operational Research Society 39 (4), 359–364.706

[12] Haouari, M., M’Hallah, R., 1997. Heuristic algorithms for the two-stage hybrid707

flowshop problem. Operations Research Letters 21 (1), 43–53.708

[13] Huang, W., Li, S., 1998. A two-stage hybrid flowshop with uniform machines709

and setup times. Mathematical and Computer Modelling 27 (2), 27–45.710

[14] Johnson, S. M., 1954. Optimal two-and three-stage production schedules with711

setup times included. Naval Research Logistics Quarterly 1 (1), 61–68.712

[15] Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F., 2008. Al-713

gorithms for flexible flow shop problems with unrelated parallel machines, setup714

times, and dual criteria. The International Journal of Advanced Manufacturing715

Technology 37 (3-4), 354–370.716

[16] Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P., 2010. An analysis of traces717

from a production MapReduce cluster. In: Cluster, Cloud and Grid Computing718

(CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, pp. 94–719

103.720

[17] Kurz, M. E., Askin, R. G., 2004. Scheduling flexible flow lines with sequence-721

dependent setup times. European Journal of Operational Research 159 (1),722

66–82.723

[18] Lee, C.-Y., Vairaktarakis, G. L., 1994. Minimizing makespan in hybrid flow-724

shops. Operations Research Letters 16 (3), 149–158.725

[19] Lu, P., Lee, Y. C., Wang, C., Zhou, B. B., Chen, J., Zomaya, A. Y., 2012.726

Workload characteristic oriented scheduler for MapReduce. In: Proceedings727

of the 2012 IEEE 18th International Conference on Parallel and Distributed728

Systems. IEEE Computer Society, pp. 156–163.729

[20] Mika, M., Waligóra, G., Wȩglarz, J., 2008. Tabu search for multi-mode730

resource-constrained project scheduling with schedule-dependent setup times.731

European Journal of Operational Research 187 (3), 1238–1250.732

[21] Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T., 2011. On scheduling in733

Map-Reduce and flow-shops. In: Proceedings of the 23rd ACM symposium on734

Parallelism in algorithms and architectures. ACM, pp. 289–298.735

28

[22] Oğuz, C., Fikret Ercan, M., Edwin Cheng, T. C., Fung, Y.-F., 2003. Heuristic736

algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop.737

European Journal of Operational Research 149 (2), 390–403.738

[23] Phan, L. T., Zhang, Z., Loo, B. T., Lee, I., 2010. Real-time MapReduce schedul-739

ing. Tech. Report, UPenn.740

[24] Philip Chen, C., Zhang, C.-Y., 2014. Data-intensive applications, challenges,741

techniques and technologies: A survey on big data. Information Sciences 275,742

314–347.743

[25] Pinedo, M., 2012. Scheduling: theory, algorithms, and systems, 4th Edition.744

Springer.745

[26] Polo, J., Carrera, D., Becerra, Y., Torres, J., Ayguadé, E., Steinder, M., Whal-746

ley, I., 2010. Performance-driven task co-scheduling for MapReduce environ-747

ments. In: Network Operations and Management Symposium (NOMS), 2010748

IEEE. IEEE, pp. 373–380.749

[27] Radenski, A., Ehwerhemuepha, L., 2014. Speeding-up codon analysis on the750

cloud with local mapreduce aggregation. Information Sciences 263, 175–185.751

[28] Rasch, D., Guiard, V., 2004. The robustness of parametric statistical methods.752

Psychology Science 46 (2), 175–208.753

[29] Riane, F., Artiba, A., E. Elmaghraby, S., 1998. A hybrid three-stage flowshop754

problem: efficient heuristics to minimize makespan. European Journal of Op-755

erational Research 109 (2), 321–329.756

[30] Ribas, I., Leisten, R., Framinan, J. M., 2010. Review and classification of757

hybrid flow shop scheduling problems from a production system and a solutions758

procedure perspective. Computers & Operations Research 37 (8), 1439–1454.759

[31] Ridge, E., Kudenko, D., 2010. Tuning an algorithm using design of experiments.760

In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (Eds.), Ex-761

perimental Methods for the Analysis of Optimization Algorithms. Springer,762

New York, Ch. 11, pp. 265–286.763

[32] Ruiz, R., Vázquez-Rodríguez, J. A., 2010. The hybrid flow shop scheduling764

problem. European Journal of Operational Research 205 (1), 1–18.765

[33] Shih, H.-Y., Huang, J.-J., Leu, J.-S., 2012. Dynamic slot-based task schedul-766

ing based on node workload in a MapReducecomputation model. In: Anti-767

Counterfeiting, Security and Identification (ASID), 2012 International Confer-768

ence on. IEEE, pp. 1–5.769

29

[34] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J.,770

Murthy, R., Liu, H., 2010. Data warehousing and analytics infrastructure at771

facebook. In: Proceedings of the 2010 ACM SIGMOD International Conference772

on Management of data. ACM, pp. 1013–1020.773

[35] Tian, C., Zhou, H., He, Y., Zha, L., 2009. A dynamic MapReduce scheduler for774

heterogeneous workloads. In: Grid and Cooperative Computing, 2009. GCC’09.775

Eighth International Conference on. IEEE, pp. 218–224.776

[36] Verma, A., Cherkasova, L., Campbell, R. H., 2011. Play it again, SimMR!777

In: Cluster Computing (CLUSTER), 2011 IEEE International Conference on.778

IEEE, pp. 253–261.779

[37] Verma, A., Cherkasova, L., Campbell, R. H., 2011. Resource provisioning frame-780

work for MapReduce jobs with performance goals. In: Kon, F., Kermarrec,781

A.-M. (Eds.), Lecture Notes in Computer Science. Vol. 7049. Springer, pp.782

165–186.783

[38] Verma, A., Cherkasova, L., Campbell, R. H., 2013. Orchestrating an ensem-784

ble of MapReduce jobs for minimizing their makespan. IEEE Transactions on785

Dependable and Secure Computing 10 (5), 314–327.786

[39] Wang, Y., Shi, W., 2014. Budget-driven scheduling algorithms for batches of787

mapreduce jobs in heterogeneous clouds. IEEE Transactions on Cloud Com-788

puting 2 (3), 306–319.789

[40] White, T., 2009. Hadoop: The Definitive Guide. O’Reilly Media.790

[41] Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S.,791

Wu, K.-L., Balmin, A., 2010. FLEX: A slot allocation scheduling optimizer for792

MapReduce workloads. In: Middleware 2010. Springer, pp. 1–20.793

[42] Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K., Shenker, S., Stoica,794

I., 2009. Job scheduling for multi-user MapReduce clusters. EECS Department,795

University of California, Berkeley, Tech. Rep. UCB/EECS-2009-55.796

[43] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica,797

I., 2010. Delay scheduling: A simple technique for achieving locality and fair-798

ness in cluster scheduling. In: EuroSys’10 - Proceedings of the EuroSys 2010799

Conference. pp. 265–278.800

[44] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., Stoica, I., 2008. Im-801

proving MapReduce performance in heterogeneous environments. In: OSDI’08802

Proceedings of the 8th USENIX conference on Operating systems design and803

implementation. pp. 29–42.804

30

