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Abstract

We present a unique framework for connecting different topics: hypergraphs from one
side and Formal Concept Analysis and Rough Set Theory from the other. This is done
through the formal equivalence among Boolean information tables, formal contexts and
hypergraphs. Links with generic (i.e., not Boolean) information tables are established,
through so-called nominal scaling. The particular case of k-uniform complete hyper-
graphs will then be studied. In this framework, we are able to solve typical problems of
Rough Set Theory and Formal Concept Analysis using combinatorial techniques. More
in detail, we will give a formula to compute the degree of dependency and the partial
implication between two sets of attributes, compute the set of reducts and define the
structure of the partitions generated by all the definable indiscernibility relations.
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1. Introduction

Hypergraph theory, Formal Context Analysis and Rough Set Theory are three well-
developed fields of study.

Hypergraph theory is a generalization of graph theory (see [4, 5]) where edges, called
hyperedges, can have an arbitrary number of vertices. Classically, the typical problems
studied in hypergraph theory concern combinatorial questions (see [5, 8]) and optimiza-
tion questions (see [20]).

Formal Context Analysis (briefly FCA) deals with structures called Formal Contexts
[17], that describe objects in terms of the properties they possess. A formal concept
is an objects-properties pair (O, P) such that the objects in O are all and the only to
satisfy all the properties in P. Starting then from the definition of formal concept, the
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FCA theory developed as a very powerful theoretical methodology useful to approach
problems in data mining, machine learning and related fields (see [21]).

Finally, an Information System (or information table) collects the values that a set of
objects have on some attributes. Objects are then partitioned according to an equivalence
relation in classes of objects with equal values for all attributes. The pair (U, R) made
of the objects and the equivalence relation is called approzimation space, and it can be
analyzed by using the methods derived from Rough Set Theory (RST) (see [26, 27]).

In particular, an Information System is called Boolean if we fix the set of attribute
values equal to {0, 1} and it is easily proved to be equivalent to a formal context. See for
instance [36], [37] and [38], where a unifying approach between FCA theory and Boolean
Information System theory has been outlined. Let us notice that several authors studied
the link between RST and FCA and mixed the two theories in several ways, see for
instance [18, 19, 25, 32, 33].

On the other hand, in several other papers (see [14], [15], [30], [31]) specific hyper-
graphs associated with some particular type of formal contexts and Boolean information
tables were constructed. For instance, Stell applies rough set and formal concept ideas to
hypergraphs: in [30] rough hypergraph theory is introduced and, similarly, in [31] FCA
are generalized using a relation on hypergraphs instead of sets. In [14] a hypergraph
is considered as a basic model for granular structures. Results in [15] directly put in
relation a formal context with a hypergraph but differently as we do (see Remark 3.9).

In this paper, we survey some results concerning the relationship among formal con-
texts, Boolean information tables and hypergraphs. Moreover, through a scaling pro-
cedure we see that information tables (not necessarily Boolean) are in relation with a
sub-class of hypergraphs. Several consequences are then derived from this unified frame-
work. First of all, in the next example we show how some questions concerning a typical
problem derived from an information table can be naturally interpreted as a combinato-
rial problem in hypergraph theory.

Example 1.1. Let us consider an information table with 100 distinct attributes Att =
{a1,...,a100} and suppose that we can uniquely characterize any object by exactly 7
attributes (not necessarily the same for all objects). For instance, the sequence of
attributes

410304015023071098

uniquely determine a specific object of our universe and, on the other hand, each object
of our universe is uniquely determined by a “code” of length 7 of distinct attributes
selected from aq,...,a100. In this case, we can represent such a situation as a new
Boolean Information System, where the attributes are Att := {aq,...,a100}, the objects
are all the 7-subsets u, v, ... of Att and the value of an object u on an attribute a is equal
to 1 if a € u and equal to 0 otherwise. We choose now a particular subset A of Att,
such that A has at most seven elements. For example A = {a1, as, asg, as1,a97}. Let us
suppose that a user wants to know the following information:

1. How many distinct equivalence classes of items with respect to attributes A are
there?

2. Which are the items having as part of their code the sub-string asasgagr, but none
of the symbols a1, as1?



The previous can be considered two very practical requests for a user, and they can be
understood more effectively after being framed in Information System theory, by using
combinatorial techniques (see Remark 4.5 and Proposition 4.6). Let us note that, in
terms of Information Systems, the request (2) is equivalent to determine all the objects
in our universe that are in a specific A-indiscernibility class, namely those with attributes
asasgagr equal to 1 and attributes ajas; equal to 0 in the original information table.

The previous example shows that it can be useful to define and to study some com-
binatorial properties of Information Systems where we have a fixed set of attributes
ai1,as, ... and where each object of the universe is uniquely determined by a choice of
distinct attributes. Hence, each object u can be identified with some subset of a1, as, .. .,
and this situation can be represented by a hypergraph, where attributes are the vertices
and objects are the hyperedges. Mathematical literature (see [4], [5], [8], [20]) provides
several examples of hypergraph families. A classical example of deeply studied hyper-
graph family are (n,k) uniform complete hypergraphs {(2) :n >k > 0}, where (Z) is the
set of all subsets with k elements of the n-set 7 := {1,...,n}. This family of hypergraphs
is exactly the one needed to answer questions (1) and (2) above.

Moreover, as another example of the possibility given by the connection among in-
formation tables, formal contexts and hypergraphs, we will study the notion of attribute
dependency with the help of k-uniform complete hypergraphs. In particular we will be
able to compute the RST-dependency degree of a set of attributes B with respect to a
set of attributes A and the FCA-precision of a partial implication [23].

The paper is organized as follows. In Section 2, we give the basic definitions of the
three involved theories: rough set theory (in particular, information tables, approxima-
tions and attribute dependence), formal context analysis, hypergraphs. The equivalence
of the three involved structures to represent data is then given in Section 3. In Section

n

4 we study in detail our “hypergraph model” ( k) and we apply on this specific model all
the general theoretical tools introduced in the previous sections. In Section 5 we define
the notion of granular partition lattice for a hypergraph and we determine this lattice
for the hypergraph (Z) Moreover, we establish an isomorphism between the granular
partition lattice and another lattice derived from pattern structures, as introduced in
[16]. Finally, in Section 6 we draw some conclusions and outline future works.

2. Basic Notions

In this section, the preliminary notions of Rough Set Theory, Formal Concept Analysis
and Hypergraphs are introduced.

2.1. Rough Set Theory

An Information System is a structure J = (U, Att,V, F), where U (called universe set)
is a non empty set of elements called objects, Att (called attribute set) is a non empty set
of elements called attributes, V' (called value set) such that V' = J,¢ 4,y Vo where V, is the
set of values that attribute a can assume and each V, is non empty and F : U x Att — V'
(called information map) is a mapping from the direct product U x Att into the value
set V.



From now on, we assume that both the object set U and the attribute set A are
finite and we also identify the attribute a € Att with the map f, : U — V, defined by
falw) := F(u,a).

Usually an Information System is represented by a matrix T[J], whose rows are in-
dexed with the objects ui,usg,... and whose columns are indexed with the attributes
ai,as, as, . ... By definition, the table T'[J] contains in the place (n, m) the value F(uy,, an,).
If Vv ={0,1} we say that J is a Boolean Information System.

If A C Att, it is usual to consider the binary relation I4 on the universe set U defined
as follows: if x,y € U then

xlay <= Va € A, fa(x) :fa(y)' (1)

The binary relation I4 is an equivalence relation on U and it is called indiscernibility
relation generated by A (briefly A-indiscernibility relation). If 2 € U, we denote by [z]4
the equivalence class generated by = with respect to 4 and we also set w4 (J) := {[z]a :
x € U} the partition of U induced by I4 (when J is clear from the context we write
simply 74 instead of m4(J)). Any set [x]4 is called an A-elementary set of U.

Definition 2.1. Let I = (U, Att, V, F) be an Information System and A C Att. A subset
E € U is called A-exact (or crisp) if and only if E is either the empty set or an A-
elementary set or the set-theoretic union of some A-elementary sets. We will denote by
COA(9) the set of all the A-exact subsets of the universe set U of the Information System
J.

If Y is a subset of the universe set U we recall the concepts of lower and upper
approximation of Y with respect to A C Att. The A-lower approximation of Y is the
following subset of the universe U:

14(Y):={zeU:[z]Ja CY}.
On the other hand, the A-upper approzimation of Y is defined as:
us(Y):={zeU:[zlanY #0}.
Let us note that
L(Y) = Hlzla: [2]a C Y}

and

wa(Y) = (J{lola : W]y #0}.

Therefore both 14(Y) and ua(Y) are A-exact subsets of U, for each subset Y C U.
Trivially, for any subset Y of U one has that 14(Y) CY Cuu(Y). As a consequence the
pair r4(Y) := (1a(Y),ua(Y)) is called the rough set of Y relatively to A. Moreover, it
is easy to see that for each Y C U, Y € CO4(J) if and only if 14(Y) = ua(Y).

Remark 2.2. It is well known that the A-exact set family CO4(J) has very nice proper-
ties. At first it defines an Alexandroff topology on the universe set U, where each open
set is also closed and vice versa (this justifies the name CQ, which stands for Closed
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and Open)?. Moreover, CQ4(J) is a field of sets on U which is complete, i.e., a family
of subsets of U which contains both the empty set and the total set U, and is closed
under set-theoretic intersections N and unions U and the set theoretic operation of com-
plementation ¢. Hence CO(J) gives rise to a Boolean sub-algebra of the Boolean algebra
(P(U),C,N,U,,0,U). More precisely, if ma(J) contains exactly s elements (i.e. equiv-
alence classes), then CQ4(J) is a Boolean algebra isomorphic to (P(8),C,N,U,°, 0, ),
where § :={1,2,...,s}.

If 3 = (U, Att,V, F) is an Information System and we fix a subset B C Att and a
subset Z C U, the rough membership function uZ : U — [0,1] is defined as follows (see
[26]):
lulp N Z

|[u] 5]

pz () = (2)

for all u e U.

Definition 2.3. Let J = (U, Att,V, F) and I = (U’ Att’, V', F') be two Information
Systems. We say that J and J' are isomorphic if there exist three bijective maps o : U —
U, B:Att — Att' and v : V — V' such that F'(a(u), B(a)) = v(F(u,a)) for allu € U
and a € Att. In this case we write J = 7.

Obviously, if J and J" are isomorphic, then V =V’ and T[J] = T[7'].

We recall now the notion of attribute dependency in rough set theory. Let J =
(U, Att,V, F) be an Information System and let A, B be two subsets of Att such that
m5(J) = {Q1,...,Qn}. The subset Posa(B) := vazl 14(Q;) is called A-positive region
of B. The A-degree dependency of B (see [26]) is the number

1a(B) = LB 3)

U
This number measures a type of A-degree exactness of the attribute subset B with respect
to the attribute subset A, that is, how many objects of the B equivalence classes can be
classified with certainty using attributes in A. Let us note that, since Q1,...,Qy are
pairwise-disjoint, we have |Poss(B)| = Zf\il [14(Q;)| and so the above (3) assumes the

form N
> izt 1a(@Qi)]

Finally, a reduct of J is an attribute subset that fully characterize the knowledge in J
and is minimal with respect to this property. In other terms, no attribute can be removed
from this subset without causing a loss of knowledge. Formally,

Definition 2.4. LetJ = (U, Att, Val, F) be an Information System. An attribute c € Att
is said indispensable if may # T\ (o). The subset of all indispensable attributes of Att
is called core of I and it is denoted by CORE(J). C is said a reduct of J if:

(1) Tawe = e ;

(ii) Tase # Tor{ey for all c € C.

We denote by RED(J) the family of all reducts of J.

2See [1, 2], and [10] for a discussion of this topology and its Tarski and Kuratowski weakening in the
context of rough set theory.
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The following result connects core and reducts of J.

Proposition 2.5. [26/] CORE(J) :=({C :C € RED(J)}.

2.2. Formal Concept Analysis

We recall now the notion of a formal context.

Definition 2.6. A Formal Context is a triple K = (G, M,R), where G and M are sets
and R C G x M is a binary relation. The elements of G and M are called objects and
attributes, respectively. We write gRm instead of (g,m) € R. If O C G and Q C M, we
set

O":={meM:(VgecO)gRm}C M

and

QY :={geG:(YmeQ)gRm} CQG.

In this way the following two mappings are defined: T : P(G) — P(M), O — OT and
FiP(M) = P(G), Q — QY.

Definition 2.7. A formal concept of the formal context K = (G, M,R) is a pair (O, Q),
where O C G, Q C M, O" =Q and Q* = O. If (O,Q) is a formal concept, O is called
the extent of (O, Q) and Q is called the intent of (O, Q). We denote by B(K) the set of
all the formal concepts of the formal context K.

By composition of the above maps we obtain the two operators * : P(G) — P(G), O —
O™ and ®: P(M) — P(M), Q — Q1.

Remark 2.8. These are both closure operators [6, Theorem 19, p.123]. Indeed, and
discussing the first case since the second can be developed in a similar way, the following
hold: (C1) YO € P(G), O C O* and (C2) O* = O**, finally (C3) VO1,02 € P(G),
O UO; C (01 UO2)*. In general ) C 0*, but if one introduces the new mapping
u: P(G) = P(G) defined for every subset O € P(G) \ {0} as u(0O) = O* and setting
w(@) = 0, then in this case we have a Tarski closure operator since: (C0) u(P) = 0,
(C1) YA € P(G), A C u(A) and (C2) u(A) = u(u(A)), finally (C3) VA1, Ay € P(G),
U(Al) @] u(Ag) - U(Al U Ag)

For any Tarski closure operation it is possible to introduce the corresponding family of
closed subsets C(G) :={C € P(Q) : C =u(C)} and (M) :={K € P(M) : K = w(K)},
if we denote with w the analogous of u in the case of M, which are both nonempty since
they contain the empty set and the whole space. Moreover, they are closed with respect to
arbitrary set-theoretic intersections, i.e., they are pre-topologies but not topologies since
equality in (T4) does not hold.

This should be compared with the rough set case as discussed in remark 2.2.

If (O1,Q1) and (O2,Q2) are two formal concepts in B(K), it is usual to consider the
relation (O1,Q1) C (O2,Q2) if and only if O; C Oy (which is equivalent to @1 2 Q2).

Then C is a partial order on B(K) and (B(K),C) is a complete lattice, called concept
lattice of the formal context K, whose meet and join operations on an arbitrary family



of formal concepts {(Oq4, Q) : @ € A} are the following:

/\ (OmQa) = ( m Oa ( U Qoz)o)

acA acA acA
\/ (OaaQa) = (( U Oa)*a ﬂ Qa)
acA acA acA

The following is straightforward.

Proposition 2.9. Let K = (G, M,R) be a formal context. Then

i) If (0,Q) is a formal concept from K, then O is a G-closed and Q a M-closed set.
Notice that the inverse in general does not hold.
ii) Let (O,07) be a pair of subsets from P(G) x P(M), then this pair is a formal concept
iff O is G-closed, i.e., O = O* = O™,
iii) Let (Q*, Q) be a pair of subsets from P(G) x P(M), then this pair is a formal concept
iff Q is M-closed, i.e., Q = Q° = Q7.

The dependency among attributes is studied in FCA under the name implication
[17]. An implication A — B between sets of attributes A and B holds if At C BY,
that is if all the objects sharing properties in A also have properties in B. Thus, an
implication in this sense implies an exact dependence in the rough set case, i.e., y4(B) =
1. General association rules [28] have been investigated in [23] under the name of Partial
implications.

Definition 2.10. A partial implication A =P B is a triple (A, B,p) where A,B C M
are sets of attributes and p := d(B) is the precision or confidence of the implication and
it is defined as

(AU B)|

da(B) = AT (4)

if AV # 0, and 64(B) = 1 otherwise.

2.83. On the Relationship between Formal Contexts and Information Tables

It is immediate to observe that any formal context can be uniquely associated to a
Boolean information table and vice versa. In fact, if K = (G, M,R) is a formal context,
in order to see K as a Boolean information table J = (U, Att, {0,1}, F) it is sufficient to
set U := G, Att :== M, and F(g,m) = 1 if gRm, F(g,m) = 0 otherwise. On the other
hand, if the Boolean information table J = (U, Att, {0, 1}, F) is given, we can identify J
with the formal context K := (G, M,R), where G := U, M := Att and gRm if and only
if F'(g,m)=1.

Moreover, many-valued contexts (for a formal definition see [17]) are an extension
of formal contexts such that an attribute can assume different values, not just {0,1}.
Clearly, many-valued contexts are the same as information tables.

In FCA an important topic is how to transform a many-valued context into a formal
context (otherwise said how to transform an information table into a Boolean information
table). This operation is named scaling and several ways to perform it are known [17].
For the scope of the present paper, we recall one of the elementary scaling techniques,

known as nominal scaling. Let us show how it works on an example.
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Patient | Headache Muscle-pain  Temperature Flu
D1 no yes high yes
D2 yes no high no
D3 yes yes very high yes
D4 no yes normal no
D5 yes no high no
D6 yes yes normal yes

Table 1: Example of information table.

Example 2.11. Let us consider the information table based on the universe U =
{p1,p2, D3, P4, D5, 6} of six patients described by the Table 1.

This information table can be represented as a formal context through a nominal
scaling. The idea is to consider as attributes of the associated formal context the set M :=
Uscanila, fa(u)) € Att x V, - u € U}, or equivalently, by setting M, := {(a, fo(u)) :
u € U} for every a € Att and M = (J,c 4y Mo. Hence, in the formal context K =
(U, Uaeart Ma, R) the binary relation R C U x |J,cay Mo is defined according to the
following definition:

Let x € U, m € M. Then (z,m) e R iff Ja € Att: m = (a, f,(z)) (5)

So, in our example, we obtain the formal context in Table 5.1, where M = {H-yes,
H-no, M-yes, M-no, T-n, T-h, T-vh, F-y, F-n}, where H is an abbreviation for Headache,
M for Muscle-pain and so on.

Patient || H-yes | H-no || M-yes | M-no || T-n | T-h | T-vh || F-y | F-n
D1 0 1 1 0 0 1 0 1 0
D2 1 0 0 1 0 1 0 0 1
D3 1 0 1 0 0 0 1 1 0
D4 0 1 1 0 1 0 0 0 1
D5 1 0 0 1 0 1 0 0 1
D6 1 0 1 0 1 0 0 1 0

Table 2: Formal context induced from Table 1.

Where in each row for any set of values M, and object = there is just one 1 in the
table, and so the number of 1s is the same for every row.

Clearly by the above procedure, starting from an information system J =< U, Att,V, F' >
one can construct the Information table T'[J], and then by means of nominal scaling we
obtain the formal context K = (U,{J,c ayy Ma, R). If we represent this formal context
K as the Boolean information table I =< U, U, c ¢y Ma, {0, 1}, F' >, we have that two
objects x,y € U are indiscernible in the original system J iff they are indiscernible in the
derived one J’. More precisely the following proposition holds.



Proposition 2.12. Let J = (U, Att,V, F) be an Information System with Information
Table T[J] and I = (U, Uyc ay Ma> 10,1}, F') the corresponding Boolean transformation
of J through nominal scaling with information table T[J']. Then,

1. Let A C Att and M4 = UaeA M. Let I4 CU x U be the indiscernibility relation
induced on U by the set of attributes A from the system J and let Iy, be the
indiscernibility relation induced on U by the set of attributes M 4 from the system
¥, then Va,y € U, zlay iff I}, y.

2. FEach row of TJ'] has exactly |Att| values equal to 1.

Proof. 1t easily follows from the scaling procedure. O

The second result of the above proposition will be very important in the following
since it will enable us to connect general (that is non necessarily Boolean) information
tables with hypergraphs. We also remark that despite the formal result that Boolean
information tables obtained by a scaling procedure are formal contexts, the two concepts
are conceptually different. Indeed, as outlined above, in the case of the information
table, each property represents a value with the consequence that properties are not
independent. This will reflect also in the equivalence results given in section 3 and
summarized in Figure 1.

2.4. Hypergraph Theory

Finally, let us define hypergraphs. If k is a non-negative integer and Y is a finite set
such that |Y'| > k, we denote by ()g) the family of all the k-subsets of Y (i.e. the subsets
of Y with exactly k elements).

Remark 2.13. In what follows we use the term family of subsets of a set X. In this
case we admit the possibility that such a family can contain two equal elements. This
terminology is frequently adopted in mathematical literature and it is useful to distinguish
the notions of family and set. Usually, the elements of a set (or a subset) are all distinct,
whereas the elements of a family can also be repeated. In this paper we will stick to this
terminological distinction.

Definition 2.14. A hypergraph is a pair H = (X,F), where X = {x1,...,z,} is
a finite set (called vertex set of H) and F = {Y1,...,Y,,} is a non-empty family of
subsets Y1,..., Yy, of X. The elements x1, ..., x, are called vertices of H and the subsets
Y1,..., Y of X are called hyperedges of H. An hypergraph on X is a hypergraph having
X as vertex set.

Particular classes of hypergraphs can be introduced as follows

o If all the hyperedges of H have the same cardinality k we say that H is a k-uniform
hypergraph.

e If H is a k-uniform hypergraph whose hyperedges are distinct, we say that H is a
simple k-uniform hypergraph.

e In particular, when X = n, 0 < k < n and F = (Z), we call the hypergraph
H = (n, (Z)) the complete (n, k) uniform hypergraph and (with abuse of notation)
we denote it simply by (Z)



Remark 2.15. In this definition, it is required that X and F are non-empty but not
that all vertices belong to a hyperedge, nor that all hyperedges must have elements. Some
authors give a more stringent definition by considering that there cannot exist isolated
vertices, that is |J;"Y; = X [5]. On the other hand, more general definitions are also
introduced, by permitting also that X or F can be empty [9]. In this last case the hyper-
graph with X = F = 0 is named empty and the one with X # () and F = () is named
trivial. Finally, let us note that if some Y; = {x} then the vertex x is not isolated.

Remark 2.16. Let us notice that a simple k-uniform hypergraph H = (X, F) can be
always identified with a sub-hypergraph of (Z) , where n = | X|. This is done by identifying
x; with i, fori=1,...,n.

3. Hypergraphs as Information Systems and Formal Contexts

In this section, we show that there exists a bijection between hypergraphs and for-
mal contexts/Boolean information systems. This bijection is constructively given in
Proposition 3.4, after having showed how to obtain a Boolean information table from
a hypergraph. It is also showed that (general) information tables can be put in rela-
tion with k-uniform hypergraphs. Then, we construct the concept lattice arising from a
hypergraph.

3.1. Equivalence results

Let us start by defining an information table from a hypergraph.

Definition 3.1. Let H be a hypergraph on a set X = {x1,...,x,}, with hyperedges
Yi,..., Y. We associate to H a Boolean Information System T'(H) defined as follows.
The attribute set of T'(H) is X and the object set of U'(H) is {Y1,...,Ym}. The value set
V(T) is {0,1} and the information map Fp is defined naturally as

1 if z;, €Y;
F }/7i7 i) = ! ’
(i, z;) {O otherwise.
Example 3.2. Let H be the hypergraph with vertex set X = {1, 2, 3,4} and hyperedges
Y1 =0,Y, = {1},Ys = {2,3}, Yy = {2,3},Ys = {1,2,4}. Then the information table
T[T'(H)] is the following:

0

{1}
{2,3}
{2,3}
(1,2,4}

=== OO N
Ol || ol w
o K=l K==] E==] Han] SN

[ Bl =l N Nl B

Definition 3.3. Let J = (U, Att,V, F) be an information system. We say that J is a
Hypergraphic Information System if there exists a hypergraph H such that J = T'(H).

10



In the next proposition we describe the indiscernibility relation in a hypergraphic
information system.

Proposition 3.4. Let H be a hypergraph on a set X = {x1,...,2,}, with hyperedge
family F ={Y1,..., Y} and T(H) =< F,X,{0,1}, Fg > the associated Boolean infor-
mation system. Let A C X. Then, if 14 is the A-indiscernibility relation in T'(H), we
have that
Yil,YV; <= Y,NA=Y;NA
foralli,je{l,...,m}.
Let us note that, by Proposition 3.4, if Y is a hyperedge of H then
Ya={;eF:,NnA=YnNA}L (6)

As simple corollaries of the above theorem, we have the following results on the
A-degree of dependency of a set of attributes and the precision of a partial implication.

Corollary 3.5. With the same notations of Proposition 3.4, if Y is a subfamily of F,

then
Y eY:vinA=YnNA}

MO = I eFvnA=vna) v

forallY € F.

Proof. The identity (7) follows directly from (6) and from the general definition of rough
membership function given in (2). O

Corollary 3.6. With the same notations of Proposition 3.4, if A, B C X we have that

Y,eF: (YeFAYNA=Y,NA) = YNB=Y,NB
) e Yin4) 0o

Proof. 1t is easy to verify that Posa(B) = {Y; € F: [Yi]a C [Yi]s}, therefore the thesis
follows directly by (6) and the general definition of A-degree dependence given in (3). O

The result established in the next proposition tell us that the notion of a Boolean
information table (and hence also of a formal context) is exactly equivalent to the notion
of hypergraphic information system.

Proposition 3.7. Let J = (U, Att,V, F) be an information system. Then J is hyper-
graphic if and only if J is Boolean.

Moreover, if 3 = (U, Att,{0,1}, F) is a Boolean information table, then the hypergraph
H such that T'(H) is isomorphic to J, has as vertex set the family X = Att and as hy-
peredges the family F = {Y,, : u € U} where each Y, = {a € Att : F(u,a) = 1}, under
the convention of assuming Y, # Yy for any arbitrary pair u # u'.

Proof. An easy consequence of the definitions. O

Example 3.8. Let us consider the formal context (or Boolean information system),
given in table 3.

It is equivalent to the hypergraph (X, ¥F) with X ={Furniture, Computers, Copy Ma-
chines, Specialized Machines} and F= {{F,C,Cm,Sm}, {F,C},{C,Cm,Sm},{C},{C,Cm,Sm}’}.
Let us remark that the objects Instruction and Contracts give rise to two equal hyper-
edges, which are however considered distinct: {C,Cm,Sm} and {C,Cm,Sm}’.
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Furniture | Computers | Copy Machines | Specialized Machines
Consulting 1 1 1 1
Planning 1 1 0 0
Instruction 0 1 1 1
Training 0 1 0 0
Contracts 0 1 1 0

Table 3: Concept table taken from page 25 of [17].

Remark 3.9. We notice that the construction of a hypergraph from a formal context
given in [15] is different. Indeed, in [15] the hyperedges are only the set of attributes
(mazimal with respect to set inclusion) corresponding to single objects: {{g}T C M : g €
G, {g}" is mazimal with respect to set inclusion}. In particular, in this way, a simple
hypergraph is always obtained.

Moreover, if the Boolean information table is the result of a nominal scaling, we have
the following result.

Corollary 3.10. If J is the Boolean information table corresponding to the mominal
scaling of a many-valued context (aka an Information System), then the hypergraph H
such that T'(H) is isomorphic to I is k-uniform, with k = | Att|.

Proof. A simple application of Proposition 2.12. O

Example 3.11. Let us consider the information system in Table 5.1. The vertex set of
the corresponding hypergraph is X = {H-yes, H-no, M-yes, M-no, T-n, T-h, T-vh, F-y,
F-n} and the hyperedges are ¥ = {{H-no, M-yes, T-h, F-y}, {H-yes, M-no, T-h, F-n},
{H-yes, M-yes, T-vh, F-y}, {H-no, M-yes, T-n, F-n}, {H-yes, M-no, T-h,F-n},{H-yes,
M-yes, T-n, F-y}}. As expected each hyperedge has four elements, one for each attribute
of the original information table.

In Section 4, we will study in detail the sub-class of complete k-uniform hypergraphs.
In terms of Boolean information tables, they correspond to the case where for any possible
combination of k 1s among the attributes, there exists one object that exactly has these
combinations. Thus, it is impossible that a Boolean information table generated through
nominal scaling is complete, since given an attribute just only one value can be set to
one. Of course with other scaling techniques, results could be different.

The results of this subsection are summarized in the schema of Figure 1 where “scaled
I.T.” indicates the class of hypergraphs obtainable by the nominal scaling of an informa-
tion table.

3.2. The Concept Lattice of Hypergraphs

As already shown in Section 2, Boolean information table and formal contexts are
two equivalent ways to represent data. So, by the previous Proposition 3.7, one deduces
that formal context and hypergraph are also equivalent. Therefore, a formal context
denoted by W(H) = (G, M,R) can be associated to a hypergraph H = (X,¥), where

12



Hypergraphs=Boolean I.T.

K-uniform o

Complet , N
omplete ( Scaled I.T. )

Figure 1: Relationship among hypergraphs and information tables.

G:=F={V",...,.Y,}, M :=X ={x1,...,2,} and the relation R C F x X is defined
naturally as
Y Rzj <=z, €Y;

The notion of formal concept can thus be interpreted in the case of the formal context
U(H) induced by an hypergraph H = (X,J) as follows. Let O C F and A C X be
respectively a subset of objects and a subset of attributes of U(H). We set O := ({Y :
YeOland A:={Y €F: ACY}. Then:

(i) O is the extent of some formal concept of U(H) if and only if O = {Y € F: O C Y}.
In this case, O is the extent of the formal concept (O, O).

(ii) A is the intent of some formal concept of ¥(H) ifand onlyif A={Y : Y € A} =
({Y € F: ACY}. In this case, A is the intent of the formal concept (A, A).

Moreover, 0T ={Y : Y € O} and AV ={Y € F: ACY}.
As a consequence of these facts, we can compute the precision (confidence) of a partial
attribute implication as given in Definition 2.10.

Corollary 3.12. Let H = (X, ) be a hypergraph. Let A and B be two sets of attributes
of U(H). Then
Y eJF:AuBCYl}

04(B) = 9
a(B) {YeF:ACY} ©)
and §4(B) =14if{Y € F: ACY}=0.
Proof. The statement follows directly by (4) and the above facts. O

Let us remark that we have assumed that if A is the empty family, then ({Y : Y €
A} =X.

4. The Hypergraphic System I'((}))

In this section we apply the general results established in the previous sections on a
well known hypergraph model, that is the complete (n, k) uniform hypergraph (Z) given
in definition 2.14, for n > k fixed. Through a combinatorial study of the structure of
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the hypergraphic information system F((Z)) we will then be able to answer questions (1)
and (2) of example 1.1.

At first, let us give an example of (n,k) uniform hypergraph and equivalent informa-
tion system.

Remark 4.1. In several numerical examples we will deal with set of sets. In order to
simplify the notation, we will use the string notation 1 .. .xy instead of the set notation
{z1,...,x}. For example, 1234 will denote the set {1,2,3,4}.

Example 4.2. Let us consider the information system J = F((g)), whose information
table is the following:

1234
{23y [1][1[1]0
24 [1[1]0]1
(1,34 [1]0]1]1
234 [0[1 |11

Let A ={1,2}. Then
7a(9) = {{123,124}, {134}, {234}}
So that
COL(T) = {0, {134}, {234}, {123,124}, {134, 234}, {123,124, 134}, {123, 124, 234}, {123,124, 134, 234} }
whose diagram is the following:

{123,124, 134, 234}

{134,234} (123,124,134} {123,124,234}
| _ = |
/ —~
{134} {234} {123,124}

Hence, according to remark 2.2, the Boolean algebra CQ4(J) is isomorphic to P(3).

By using Proposition 3.4 we obtain the following useful characterization of the A-
indiscernibility classes in I'((})), where A is a subset of 7.

Proposition 4.3. Let J be the Boolean information system F((Z)) where n > k are
positive integer and let A C fi. Then, there exists a bijection between the set wa(J) of all
A-indiscernibility classes in T'(H) and the set

Ya4:={5CA:max{0,k+a—n} <|S| <min{a, k}},

where a := |A|.
14



Proof. Let S € Y4 and set s := |S|. By Proposition 3.4 all k-subsets of 7 whose
intersection with A is equal to .9, if non empty, is an A-indiscernibility class in J. But if
max{0,k+a—n} < s < minf{a, k} then there exists (}~¢) k-subsets of 4 such that their

intersection with A is .S. On the other hand if z € (Z), then the cardinality s of S :=zNA
satisfies max{0,k +a —n} < s < min{a, k}. In fact s > 0, s < a and s < k by definition
of S. Moreover it holds that S=zNA=z\(A\A) andsos > k—(n—a) =k+a—n.
We proved that the function that associates to each S € 34 the A-indiscernibility class
C:={z¢€ (Z) :x N A= S} is bijective with inverse that associates to each C' € m4(J)
the subset S := AN (N, cc @) O

Corollary 4.4. LetJ be the Boolean information system F((Z)) where n > k are positive
integers and let A C 1 and x € (Z) By setting a := |A], S :=ax N A and s := |S| we
have max{0,k +a —n} < s < min{a, k} and |[z]a] = (}°2).

Proof. As we have seen in the first part of the proof of Proposition 4.3 the A-indiscernibility
class [r]a is the set of all k-subsets of 7 whose intersection with A is equal to S,

max{0, k + a —n} < s <minfa, k} and [[z]a] = (322). -

Remark 4.5. Let H = (1, F) be a simple k-uniform hypergraph on n vertices (i.e. F is
a sub-family of (Z)) Let J:=T(H) and A a subset of the attribute set fi.

In order to compute the number of distinct equivalence classes in the set w4 (J) and the
complete list of all the objects of any indiscernibility class [x]a € wa(J) it is convenient to
see J as a binary matriz T'(J). To the attribute set A we can associate in a natural way a
(%) x| A] submatriz Ta(J) of T(J) by choosing the columns corresponding to the elements of
A. By using standard topological sort algorithms we can easily find the number of distinct
rows of T4(J) and partition the rows of T'a(J) with respect to the equality relation.

In the following result we determine the number of elements in any indiscernibility
partition 74(J) when J =T((})).

Proposition 4.6. Let J = I‘((Z)) If A is a subset of attributes of I such that |A| =1,
then: )

(i) if 1 < k we have |ma(7)] = Somintbn=k} (,L):

(i) if 1 > k we have |wa(3)] = Smatbn=th (1)),

Proof. Without loss of generality we can assume that A = {1,2,...,1}. By Proposition
3.4 we have that, given two k-subsets S1, So of [n], S1 14 S2 if and only if S1NA = SeNA.
Then we can associate to each class in m4(J) a subset of A. In particular for each subset
B of A we can consider the k-subsets S of [n] such that SN A = B. This set is either
empty or it is an equivalence class in m4(J). Such a class has (k':]lgl) elements that can
be obtained by choosing k — |B| elements in [n] \ A.

Let us suppose now [ < k. The k-subsets of [n] containing A form a class in 74(J).
More generally however we fix a subset B of A, the set of the k-subsets of [n] containing
B, if it is not empty, it matches an equivalence class of 4 with (kiTléﬂ) elements. Such
a set is empty if and only if k — |B| < n — [ which is equivalent to | — |[B| < n — k. Thus
it follows that the number of classes in m4(J) is equal to

co£()-5(1)

=0 i=0
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and thus (%) holds.

If I > k then obviously for each subset B of A such that |B| > k there exists no
k-subset S of [n] such that SN A = B. When |B| = k the unique k-subset S of [n]
containing B is B. So each k-subset in A uniquely identifies a class in 74(J). As before
if |B] < k and k — |B| < n—1 then the equivalence class of I4 of all the k-subsets S such
that S N A = B contains (k’iljé‘) elements. Finally if |B| < k and k — |B| > n — [ then

there is not an element S € ([Z]) such that SN A = B. Then when [ > k the number of
classes in 74 (J) is thus equal to

ma@l = Zk:+k (j) - ”z—: (kl—z)

1=
and the proposition is proved. O

By virtue of the result established in Proposition 4.6 it is convenient to set

TN (L) sk
c(n,l k) = (10)
S (L) i 1k
when n, [ and k are three integers such that 0 <,k < n. Clearly, ¢(n,l, k) is the answer
to question 1 in example 1.1, whereas the answer to question 2 is given by the procedure
outlined in Remark 4.5.
We obtain then the following result concerning CO A((Z))

Corollary 4.7. If A is a subset of attributes ofF((Z)) such that |A| =1 then C@A(F((Z)))
is a Boolean algebra isomorphic to (P(8),C,N, U, 0, 8), where s = c(n,l, k).

Proof. The thesis is a direct consequence of Proposition 4.7, Proposition 4.6 and of
(10). O

In the next proposition we determine a general formula of the dependency degree
between two attribute subsets of the information system F((Z))

Proposition 4.8. LetJ = F((Z)) and let A, B be two attribute subsets of J (i.e. A,B C

Att = 1) such that a = |A| and b = |B|. Then
1 if BCA
= . (1)
((Z) + (k+gfn))(2) otherwise.

Proof. By definition of A-degree dependency v4(B) is equal to the sum of the cardinality
of the indiscernibility classes in 74 (J) that are contained in some classes in mg(J). Let
A; € m4(J). By Proposition 4.3 A; is the subset of (}) whose intersection with A is the

subset
S:Am< N x)

TEA;
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and s := | S| satisfies max{0,k +a —n} < |S| < min{a, k}. In this case A; = {z € (Z) :
xrNA=S5}.

Let us suppose first that B C A. Set T := SN B C A and ¢ := |T|. By definition of
T we have t > 0, t < b and t < s < k. Moreover since S U B C A it holds

t=s+b—|SUB|>s+b—a>k+a—n+b—a=k+b—n.

Thus by Proposition 4.3 again to T we can associate an indiscernibility class B; € w5 (J)
such that B; = {z € (}) :aNB=T}. Ifz € AjthenaNB=2NANB=SNB=T,
so A; C B;. Then each class in m4(J) is contained in a suitable class in 75(J) and then
7a(B) = 1.

Let us suppose now B\ A # (. If s = k or s = k+ a — n then A; contains only
a k-element subset of 7 and trivially it is contained in some B; € mp(J). Let now
max{0,k+a—n+1} < |S| < min{a,k—1} and let p € B\ A. In this case there exist two
k-subsets x1, 2o € A; such that p € ;1 \ z2. It follows that 21 N B # x2 N B and thus by
Proposition 3.4 1 is not equivalent to x2 with respect to Ig. Thus A; is not contained
in any class in 7g(J). Therefore the only indiscernibility classes in 74 which are in some
14(B) are the set of k-subsets of 7. whose intersection S with A has cardinality s = k or
s = k4 a —n, and in both cases such classes are singletons. O

We determine now the core and the reducts of the hypergraphic system I'((})).

Proposition 4.9. Let n, k be two positive integers with k < n and let J = ]."((Z)) Then
CORE(J) =0 and RED(J) = (,",).

n—1

Proof. Let A bea (n—1)-subset of . By Proposition 4.6, we have |74 (J)| = ZLO (-
(") + (2D = (1) = [rawn(d)]. Since |7a(9)| < |mar(9)], we obtain w4 () = mae(J).
Let now B € (nr_LQ) and let S be a subset of B with |S| = k& — 1. Then there exist
two subsets of 7 whose intersection with B is exactly S, namely K = S U {u} and
K' = SU{u'}, where u, v € 2\ B with u # u/. Thus by Proposition 3.4, KIgK' and
thus 75(J) # ma(J). It follows that each (n — 1)-subset of 7 is a reduct of J. Their
intersection, which is equal to CORE(J) by Proposition 2.5, is empty. O]

Example 4.10. Let us consider the family of information systems F((Z)) for k < 5. The
set of reducts is the same for all the information systems of this family and it is:

5 5
RED(F((k) ) = (4) — {1234, 1245, 1345, 1235, 2345}.

In proposition 4.6 we have studied the hypergraph (Z) from the point of view of a
Boolean information system. We examine now the hypergraph (Z) from the point of view
of a formal context. At first we study the concept lattice of the formal context W((})).

Example 4.11. Let us consider the hypergraph (3) By section 3.2 we obtain imme-

diately the following concept lattice of the formal context \Il((;l)) The diagram of this
lattice is the following;:
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e

({12,13,14},{1})  ({12,23,24},{2}) ({13,23,34},{3}) ({14,24,34}, {4})

O G A

({12}, {1,2})  ({13}L,{1,3}) ({14}, {1,4}) ({23}, {2,3})  ({24},{2,4}) ({34}, {3,4})

\\//

In order to describe the general form of the concept lattice of \I/((Z))7 we set
V(n,k):={K Cn:|K|<k}tu{n}. (12)

(V(n, k), Q) is obviously a sub-poset of the Boolean algebra (P(72),C). We have the
following result:

Proposition 4.12. Let 1 <k <n and K := \I/((Z)) Then:

(i) The set of the formal concepts of K is: B(K) = {(AT,A) : A € V(n,k)}, where
At={ve(@:ACY}

(i) The concept lattice (B(K), ) is isomorphic to the dual poset of (V(n,k),C).

Proof. By section 3.2, A is the intent of the formal concept (A", A) if and only if A =
N{Y € (}) : A C Y}. Thus if A is the intent of some formal concept either |A| < k or
A = . On the other hand, since k < n, if A is a subset of n of cardinality less than or
equal to k then, for each j € 7\ A, there exists always a k-subset K of 7 containing A
but not containing j. Thus, again by section 3.2, A is the intent of some formal concept.
Moreover, A = i is the intent of the formal concept (), 7). Thus (i) holds.

To prove (ii) let us consider the map ¢ : B(K) — V(n, k) given by ¢(AT, A) := A.
By the previous part it follows that ¢ is bijective. It remains to prove that it is order-
reversing. This follows directly from the definition of the order relations. O

Remark 4.13. Notice that if k = n then V(n, k) is the power set of 0, while by section
3.2 we see that there is the formal concept ((}),7) in B(K). So Proposition 4.12 does
not hold in this case.

For the formal context \IJ((Z)) we can establish a result analogous to Proposition 4.8.
In other terms, we can exactly determine the precision of the implication between two
any attribute subsets of W((})).
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Proposition 4.14. Let A and B be two attribute subsets of \IJ((Z)) Then

GZA0BD/Gola) i jAl<k
2B = (13)

1 otherwise.
Proof. By Corollary 3.12 we have that

{Y e (y):AUBCY}
{Y e (i) Acyy

6a(B) = (14)

and 04(B) =1if {Y € (}) : ACY} =0. Now, if [A| < k then {Y € (}) : AC Y} #0
and we have that [{Y € (}): ACY}| = (Z:“ﬁ“), Y e (}):AuBCY}| = (Z:llﬁﬁg“),
hence the first identity in (13) follows directly by (14). Finally, if |A] > & then {Y €
(}) : AC Y} =0 and this provides the second identity in (13). O

It would be interesting to extend all the results of this section to more general Boolean
information tables. In particular, a formula to compute the attribute dependence (propo-
sitions 4.8 and 4.14) would be welcome for any generic Boolean information table. As an
approximation one could try to use the results of these propositions to give a lower /upper
bound for other Boolean information systems. Let us note however that if we take a
generic Boolean information table without any delimiting condition, a trivial bound can
only be given.

5. The Granular Partition Lattice of Hypergraphs

In this section we study the collection of all partitions generated by a hypergraphic
system.

In general, let X = {z1,...,2,} be a finite set and denote by 7(X) or simply by 7 a
partition of X in M disjoint blocks B; C X. We write m(X) := {By,..., By} to denote
such a partition and II(X) to denote the set of all the partitions of X. It is well known
that a partial order on the set II(X) can be given as follows:
for all m, 7" € II(X)

77 < (VBem (3B e€r’): BC B (15)

The set II(X) with the partial order < is a lattice, and it is called partition lattice of the
set X. We denote by Or(x) the so-called discrete partition {{z1}, {z2},...,{z,}}, and
by 11-[( x) the so-called trivial partition { X}, therefore respectively the minimum and the
maximum of the lattice II(X). See [11], [7] for a discussion about these lattice properties.

Now, let 3 = (U, Att, V, F) be a given information system, where U = {uq,...,up}.

Once fixed a set of attributes A C Att, through the A-indiscernibility relation we obtain
the partition of the universe m4(J) = {[u]a : v € U}. We set now

Y(T) :={ma(7): A C Att}. (16)
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Since Y (J) is a subset of II(U), we can consider on Y(J) the induced partial order <
from II(U). Therefore the pair (T(J), <) is a sub-poset of the partition lattice (II(U), <).
The poset (T(J), =) is an important structure in granular computing and in rough set
theory (see [35]) as well as in database theory (see [22]). Specifically, according to
Yao (see [35]) the order structure (Y(J) <) “can be used to develop a partition model
of databases”. Actually it is known (see [22]) that (Y(J),=<) has a lattice structure.
We denote, respectively, by 0y and 15 the minimum and the maximum of the lattice
(Y(J),=<). Let us note here that 15 always coincides with the maximum 1H(U) = {U}
of the partition lattice TI(U), whereas, in general, 0; may differ from the minimum
Oy = {{wa}, {ua}, ..., {un}} of II(U). Finally, we also recall that although (Y(J), <)
has a lattice structure with respect to the partial order < induced by II(U), it is not (in
general) a sub-lattice of (II(U), <). In fact, in [22] it was proved that while the meet
of (Y(J),=) coincides with the meet of (II(U), <), their joins can be different. More
precisely, the join on Y(J) can be characterized in terms of the Galois connection that
will be introduced in the next subsection.

Example 5.1. Let us consider the following information table J:

J a1 | a2 | a3 | a4 | as
P1 0 1 0 1 0
P2 1 0[]0 O 1
3 1 1 1 1 0
ps || O 1 2 0 1
D5 1 0[]0 O 1
D6 1 1 2 1 0

Let us take the two attribute subsets A = {a3} and B = {a1,a2,a4,0a5}. So that we
have

ma(J) = {{p1,p2,p5}, {p3}, {pa; e} }, 75(I) = {{p1}, {p2,p5}, {3, P6}, {Pa}}-

Then the join of w4 (J) and wp(J) in IL(U) is m = {{p1, 02,05}, {P3,P1,p6}}. However,
is not an element of Y(J) because there does not exist a set of attributes that generate it.
On the other hand, the join of w4 (J) and w5 (J) in Y (J) is m¢(J) = {{p1,p2,P3, P4, P5,P6}}-

In literature there is not a commonly used name in order to designate the lattice
(T(J), =<). In this paper we call it granular partition lattice:

Definition 5.2. Let J = (U, Att,V, F) be an information system. We call granular
partition lattice of J the lattice (Y(J), =, 0y, 1), where 05 = waw () and 19 = mp(J) =
iH(U). In particular, if H = (X, ) is a hypergraph, we call granular partition lattice of
H, denoted by Y(H), the granular partition lattice of T'(H).

We determine now the granular partition lattice of (Z) foralln >k > 1.

Theorem 5.3. The granular partition lattice (T((Z)), =) is isomorphic to the dual lattice
of (V(n,n — 2),C) (see notation in equation (12)).
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Proof. As we proved in the proof of the Propostion 4.9 it holds that if A C 7 has
cardinality [A| > n — 2, then 74 = m;, while if |A| <n —2, then 74 # 7. Consider now
the function ¢ : T((})) — V(n,n — 2) defined by:

A if |Al<n-2

d(ma) =
n if Al >n-—2.

Let us prove now that ¢ is well defined. For this we have to prove that, if 74 = np
are two subsets of 71, then ¢(m4) = ¢(7p). Let A, B C 7, with [A] <n—-2, B<n-—2
and ¢(ma) = A # B = ¢(mp). Since A # B, we have AANB = (A\ B)U (B\ A) # 0.
Without loss of generality we can assume A\ B # ). Let a € A\ B and let K be a
k-subset of 7 such that a € K and |[BN K| > |B| + k —n. Note that such a K exists
in this case. Set S := BN K and let K’ € (}) such that BN K’ = S and a ¢ K'. By
Proposition 3.4, KIgK' but =(KI14K') and thus 74 # 7p.

The map ¢ is clearly both injective and surjective. Let us prove it is an isomorphism.
For this let A, B C 7 such that 74 < 7. If |A] > n — 1, then ¢(wa) =1 2O ¢(mwp), for
each B. Let us suppose |A| < n — 1. In this case, since m4 < mp, we have |B| <n — 1.
Thus ¢(ra) = A and ¢(rp) = B. Since w4 # ms, there exist K, Ky € (:) such that
K, # K5 By Proposition 4.3 it holds k+a—n < |K1UA| = |[Ks UA| < k, where a = |A|.
Let b € B\ A. Then there exist K], K} € (Z) such that | UA| = |[KoUA| = |[KjUA| =
|K5 U A| and b € K\ Kj. This implies K114 K} but =(K{IpK}), and this contradicts
the condition m4 < wg. Thus B C A and the theorem is proved. O

5.1. Indiscernibility Partition Lattice and Pattern Structures

We establish now an interesting connection between the granular partition lattice and
another order structure based on the notion of pattern structure as introduced in [16].
A pattern structure can be considered a generalization of the formal context notion. For
more details concerning these structures we refer the reader to [16].

Definition 5.4. [16] A pattern structure is a triple § = (G, (D,N),0), where G is a
set whose elements are called objects, (D,C) is a meel-semilattice whose inf-operation
is denoted by M and § : G — D is a function called description map. The elements of D
are called patterns. If g € G, the pattern 6(g) is called the description of the object g in
(D,5).

If § = (G, (D,N),d) is a pattern structure, one can consider the following two square
operators:

AeP(@G) AT =[] d(g)eD (17)
geEA
and
deDwd):={geG:dC i)} € PG) (18)

These operators form a Galois connection between the partially ordered sets (P(G), C)
and (D, C).
If A€ P(G) and d € D, the closures of A and d in 8 are respectively

cls(A) := (ADE and clg(d) := (d°)F (19)
21



Definition 5.5. [16] Let 8 = (G, (D,M),0) be a pattern structure. A pattern concept of
8 is an ordered pair (A,d) € P(G) x D such that AP =d and d° = A.

We denote by PCO(S8) the set of all pattern concepts of 8. In [16] is considered the
following partial order < on PCO(8). If (A;,d;) and (Asg,ds) are two pattern concepts
of § then

(Al,dl) < (Ag,dg) 1<— A C AQ( — do C dl) (20)

It results then (see [16]) that the partially ordered set
P (8) := (PCO(S), <)

is a complete lattice, which is called pattern concept lattice of the pattern structure 8.
Now we recall a useful construction which associates a pattern structure to any in-

formation system in a very natural way. This construction was introduced in [3], where

more details can be found.

In what follows, let J = (U, Att, F,Val) be an information system.

Definition 5.6. [3] We denote by Jps the pattern structure (G, (D,C),6) such that G :=
Att, (D,C) == (II(U), =) and 6(a) := 7(4y(J) for all a € Att. The pattern structure Jpq
is called partition pattern structure of J.

Remark 5.7. By Definition 5.6, if A C Att and © € II(U), from (17) and (18) we

obtain
A% = A 7wy (9) = 7a(9) (21)
acA
and
mH={acAtt:m <19} (22)

At this point we can prove the following isomorphism between the granular partition
lattice of J and the pattern concept lattice of J,.

Theorem 5.8. The granular partition lattice (Y (), =) is order-isomorphic to the dual
lattice of Peo(Tps)-

Proof. By (20) and (21), the map ¢ : PCO(Jps) — Y (J) defined by ¢(A4,7) := 7, it is a
lattice homomorphism. It is clearly injective because, if 11 = ¢(A1,7m1) = ¢(Az2, T2) = o,
then A, = 77 = 75} = A, and thus (A1, 71) = (Ag,m). Moreover, by (21) it follows
that the image of ¢ is contained in Y(J).

Let now 7 = n5(J) € Y(J) and let A := 7. Let us prove that 74(J) = 7. By (21)
and (22) we deduce that

7= N\ T (9) = 7a(9).
a€A

On the other hand, let b € B. Since {b} C B, we have 7 = 7p(J) =< m3(J), so that
B C A, and therefore m4(J) < m5(J) = m. Hence m4(J) = w. This implies that (A,7) is
a pattern concept of J,, and finally m = ¢(A, ) is in the image of the map ¢. Thus the
image of ¢ is equal to YT (J) and the thesis follows. O

By the previous theorem we obtain the following useful consequence.
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Corollary 5.9. Let A C Att. Then wa(J) = Tely, . (A) (7).
Proof. By (19) and (21) we have
s, (A) = (A%)7 = ma(9)° (23)

On the other hand, by Theorem 5.8 the couple (74 (J)Y, 74(J)) is a pattern concept in
Jps, therefore by (23) and (21) we have

ma(0) = (7a(9)7)7 = ey, (A7 = 7, _(a)(9).
O

By means of the closure notion for the partition pattern structure J,s introduced in
Definition 5.6, we are also able to provide a link between the join of two indiscernibility
partitions in Y(J) and their corresponding join in (II(U), <).

Proposition 5.10. Let A, B C Att and let A :=cly (A), B :=cly, (A). Then

(maV7B)r@) = m4-50) = cly,.((Ta V TB)n1))>

where (T4 V 7B)y(g) and (T V 7B)n(w) are the joins of m4(J) and wp(J), respectively in
T(J) and in (IL(U), X).

Proof. Let A := cly, (A) and B := cly, (B), so that A = (74)" and B = (75)" by (21).
On the other hand, by (22) we also have

[(ma VWB)H(U)]D ={ac Att: (maV7B)nWw) = ma(J)}

e
={a€ Att: mo(J) < W{a}(fj) and m5(J) = W{a}(j)} =ANB.

Then, by (24) and (21) we deduce that
cly,,((ma V 7p)nw)) = (AN B)Y = m5-5(9).

Let us note now that 74-5(J) is an upper bound of w4(J) and 75(J) in Y(J). In fact,
by Corollary 5.9 we have 74 (J) = m5(J) = 75-5(7), because AN B C A. In a similar
way we obtain 7g(J) = 75-5(7).

Let now C C Att such that m4(J) < m¢(J) and 7p(J) <X mc(J). We set C := cly, (C) =
(mc(7))F. By Corollary 5.9 we have m(J) < 75(J) and m5(J) < m=(J). Then, since
(A,74), (B,7g) and (C,mc) are all pattern concepts in Jps, by (20) we obtain C C A
and C C B. Thus C C AN B and finally 5 5(J) < 75(J) = m¢(J). This shows that
m4~5(J) is the join of m4(J) and 75 (J) in Y(J) and the thesis follows. O

6. Conclusion

In this work, we presented a unified picture for bridging hypergraph theory with For-
mal Concept Analysis and Rough Set Theory. Results about formal equivalence between
hypergraphs and formal context/Boolean information tables are surveyed. Further, we
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have seen that a sub-class of k-uniform hypergraphs corresponds to Boolean informa-
tion tables obtained by a scaling procedure of many-valued ones. These equivalences
are the starting point for using hypergraph methods in FCA and RST and vice versa.
Here, we developed in detail the case of k-uniform complete hypergraphs and we were
able, using combinatorial techniques, to study the indiscernibility classes, the functional
dependencies and the reducts in the equivalent Boolean information systems.

For the future, we plan to extend our results to non-complete k-uniform hypergraphs
in order to capture any information table through nominal scaling. Other techniques
to scale from a many-valued to a Boolean situation could also be considered and the
corresponding hypergraph investigated. The general idea is to develop new techniques to
study FCA and RST using tools from hypergraph theory and vice versa, to investigate
the typical FCA and RST instruments in hypergraphs. Examples are:

e connect the minimal transversal hypergraph with rough set reducts and use algo-
rithms to solve one problem to study the other [12, 13];

e define a dynamical system on hypergraphs which represents the idea to move from
information tables to their rough set reducts and then iteratively to the reducts
of reducts and so on. It can be proved that the dynamical system has a fixed
point which can characterize the original information table. Similarly, it is possible
to define a dynamical system on hypergraphs representing the transition from a
formal context to its intents and show that also this system reaches a fix point
which summarizes the essential features of the original formal context.

Finally, due to the generality of formal contexts and information tables, many links to
other disciplines can be find, for instance with Chu spaces and Scott systems [24, 34, 39].
All these connections are worth to investigate in order to build a whole picture and to
make all discipline cross fertilize each other.
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