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ON THE BERNOULLI AUTOMORPHISM OF REVERSIBLE

LINEAR CELLULAR AUTOMATA

CHIH-HUNG CHANG AND HUILAN CHANG

Abstract. This investigation studies the ergodic properties of reversible
linear cellular automata over Zm for m ∈ N. We show that a reversible
linear cellular automaton is either a Bernoulli automorphism or non-
ergodic. This gives an affirmative answer to an open problem proposed
in [Pivato, Ergodic theory of cellular automata, Encyclopedia of Com-
plexity and Systems Science, 2009, pp. 2980-3015] for the case of re-
versible linear cellular automata.

1. Introduction

Motivated by biological applications, John von Neumann introduced cel-

lular automata (CAs) in the late 1940s. The main goal was to design self-

replicating artificial systems that are also computationally universal and are

analogous to human brain. Namely, CA is designed as a computing device

in which the memory and the processing units are not separated from each

other, and is massively parallel and capable of repairing and building itself

given the necessary raw material.

CA has been systematically studied by Hedlund from purely mathemat-

ical point of view [9]. For the past few decades, studying CA from the

viewpoint of the ergodic theory has received remarkable attention [1, 2, 5,

6, 10, 14, 21, 22]. Pivato has characterized the invariant measures of biper-

mutative right-sided, nearest neighbor cellular automata [19]. Moreover,
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Pivato and Yassawi introduced the concepts of harmonic mixing for mea-

sures and diffusion for a linear CA and developed broad sufficient conditions

for convergence the limit measures [21, 22]. Sablik demonstrates the measure

rigidity and directional dynamics for CA [23, 24]. Host et al. have studied

the role of uniform Bernoulli measure in the dynamics of cellular automata

of algebraic origin [10]. Furthermore, the sufficient conditions whether a

one-dimensional permutative CA is strong mixing, k-mixing, or Bernoulli

automorphic were independently revealed by Kleveland and Shereshevsky

[14, 25, 26]. Recently, one-sided expansive invertible cellular automata and

two-sided expansive permutation cellular automata have been demonstrated

to be strong mixing (see [3, 4, 12, 13, 17]).

Almost all the results about are for one-dimensional (mostly permutative)

CA and for the uniform measure. It is natural to ask the following question:

Problem 1 (See [20]). Can mixing and ergodicity be obtained for non-

permutative CA and/or non-uniform measures? What about multidimen-

sional CA?

Theorem 2.5 and Corollary 2.4 indicate that an invertible linear CA is

either Bernoulli automorphic or non-ergodic for the uniform Bernoulli mea-

sure. In [6], Cattaneo et al. address a necessary and sufficient condition

for the ergodicity of linear CA. Corollary 2.4 reveals a concise condition

for the ergodicity of invertible CA. The result remains true for those mea-

sures satisfying some conditions (see Remark 6.1). The methodology can

be extended to the investigation of multidimensional invertible linear CA,

and even possible to the non-permutative cases. Related works are under

preparation.

The rest of this paper is organized as follows. Section 2 states the main

results and some preliminaries. The proofs are postponed to Sections 4 and

5 while the key ideas are revealed via some examples in Section 3. Discussion

and further works are addressed in Section 6.
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2. Statement of Main Results

Let Zm = {0,1, . . . ,m − 1} be the ring of the integers modulo m, where

m ≥ 2, and let ZZ
m be the space of all doubly-infinite sequences x = (xn)∞n=−∞ ∈

Z
Z
m, equipped with the product of the Tychonoff topology. Then the shift

σ ∶ ZZ
m → Z

Z
m defined by (σx)i = xi+1 is a homeomorphism of the compact

metric space Z
Z
m. A one-dimension cellular automaton is a continuous map

Tf ∶ ZZ
m → Z

Z
m defined by (Tfx)i = f(xi+l, . . . , xi+r), where l, r ∈ Z and

f ∶ Zr−l+1
m → Zm is a given local rule or map. A local rule f is said to be

linear if it can be written as

f(xl, . . . , xr) = Σ
r
i=lλixi (mod m), l, r ∈ Z,

where at least one among λl, . . . , λr is nonzero in Zm [8, 16].

A local rule f is said to be permutative in xj (or, at the index j) if for

any given finite sequence

(xl, . . . , xj−1, xj+1, . . . , xr) ∈ Zr−l
m

we have

{f(xl, . . . , xj−1, xj , xj+1, . . . , xr) ∶ xj ∈ Zm} = Zm.

The notion of permutative cellular automata was first introduced by Hed-

lund [9]. A linear local rule f is permutative at the index j if and only if

gcd(λj ,m) = 1, where gcd(p, q) denotes the greatest common divisor of p

and q.

For every linear local rule f(xl, . . . , xr) = Σr
i=lλixi (mod m), there as-

sociates a formal power series F (X) = Σr
i=lλiX

−i. Let Tf be the cellular

automaton defined by the local rule f . Ito et al. characterize the necessary

and sufficient condition for the invertibility of Tf .

Theorem 2.1 (See [11]). Tf is invertible if and only if for each prime factor

p∣m there exists a unique jp such that f is permutative at the index jp.

For the case where m = pk for some prime number p and k ∈ N, it comes

immediately that Tf is invertible if and only if there exists a unique j such
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that gcd(λj , p) = 1. Manzini and Margara demonstrate the corresponding

formal power series F (X) is invertible in ZmJX,X−1K.

Theorem 2.2 (See [15]). Suppose m = pk and Tf is invertible. Write

F (X) = λjpX
−jp + pH(X). Let H̃(X) = −λjpX

jpH(X). Then

F−1(X) = λ−1jp X
jp(1 + pH̃(X) +⋯ + pk−1H̃k−1(X)),

where λ−1jp is the inverse element of λjp in Zm.

Let T ∶ X → X be a measure-preserving transformation on a probability

space (X,B, µ). T is called strong mixing if

lim
n→∞

µ(T −nA ∩B) = µ(A)µ(B)

for any A,B ∈ B. Furthermore, T is called k-mixing if for every given

{Ai}ki=0 ⊂ B,

lim
n1,n2,...,nk→∞

µ(A0 ∩ T
−n1A1 ∩⋯ ∩ T

−(n1+⋯+nk)Ak) = µ(A0)µ(A1)⋯µ(Ak).

It is seen that strong mixing is 1-mixing.

It is known that every surjective cellular automaton preserves the uniform

Bernoulli measure (cf. [7, 14, 25] for instance). For the rest of this paper, µ

refers to the uniform Bernoulli measure unless stated otherwise. Kleveland

[14] and Shereshevsky [25, 26] have proved that Tf is strong mixing if r < 0

(resp. l > 0) and f is left permutative (resp. right permutative); some of

these cellular automata are even k-mixing. Recently, one-sided expansive

invertible cellular automata and two-sided expansive permutation cellular

automata have been demonstrated to be strong mixing (see [3, 4, 12, 13, 17]).

Theorem 2.3 addresses the necessary and sufficient condition for whether an

invertible linear cellular automaton is strong mixing, which is an extension

and characterizes the strong mixing property of invertible linear cellular

automata completely.

Theorem 2.3. An invertible linear cellular automaton Tf is strong mixing

with respect to the uniform Bernoulli measure if and only if jp ≠ 0 for every

prime factor p of m.
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The following corollary, which can be derived from the demonstration of

Theorem 2.3 with a minor modification, addresses the “opposite” result to

the above theorem. Notably, a one-dimensional linear cellular automaton

with local rule f(x−r, . . . , xr) = Σr
i=−1λixi (mod m) is ergodic if and only if

gcd(λ−r, . . . , λ−1, λ1, . . . , λr,m) = 1 [6]. (In fact, a necessary and sufficient

condition for the ergodicity of a multidimensional linear cellular automa-

ton is demonstrated in [6].) Corollary 2.4 indicates a concise if-and-only-if

condition for the ergodicity of one-dimensional invertible linear cellular au-

tomaton.

Corollary 2.4. An invertible linear cellular automaton Tf is non-ergodic

with respect to the uniform Bernoulli measure if and only if jp = 0 for some

prime factor p of m.

Recall that T is ergodic if and only if limn→∞ µ(T −nA ∩ B) > 0 for any

A,B ∈ B with positive measures. Examples 3.1 and 3.2 interpret an intuitive

idea for the reliability of Theorem 2.3; the rigorous proof is postponed to

Section 4.

A stronger property in ergodic theory is Bernoulli automorphism. Given

ǫ ≥ 0, two partitions ξ = {Ci} and η = {Dj} of the measure space (ZZ
m,B, µ)

are said to be ǫ-independent if

∑
i, j

∣µ(Ci ∩Dj) − µ(Ci)µ(Dj)∣ ≤ ǫ.

ξ and η are independent if ǫ = 0. A partition ξ = {Ci} is called Bernoulli for

an automorphism Tf if there exists an integer N > 0 such that the partitions
0

⋁
k=−n

T kξ and
N+n

⋁
k=N

T kξ are independent for all n ≥ 0. Furthermore, Tf is a

Bernoulli automorphism if Tf has a generating Bernoulli partition.

Suppose the local rule f is permutative in the variable xr (resp. xl) and

0 ≤ l < r (resp. l < r ≤ 0), Shereshevsky showed that the natural extension of

the dynamical system (ZZ
m,B, µ,Tf ) is a Bernoulli automorphism [25, 26].

It is well-known that a Bernoulli automorphism is also strong mixing. With
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the similar discussion of the demonstration of Theorem 2.3, we extend the

results to the class of invertible linear cellular automata.

Theorem 2.5. An invertible linear cellular automaton Tf is a Bernoulli

automorphism with respect to the uniform Bernoulli measure if and only if

jp ≠ 0 for every prime factor p of m.

3. Examples

This section clarifies the key ideas of the proof of Theorems 2.3 and 2.5

and Corollary 2.4 by examining three examples.

Example 3.1. Consider m = 4 = 22 and f(x1, x2, x3) = 2x1 + x2 + 2x3

(mod 4). It follows that f−1(x−3, x−2, x−1) = 2x−3 +x−2 + 2x−1 (mod 4), and

f2n(x4n) = x4n (mod 4), f−2n(x−4n) = x−4n (mod 4).

Given any other cylinder [aL′ , . . . , aR′]R′L′ , there exists N ∈ N such that

R′ < L + 4n for n ≥ N . It is well-known that all surjective CA preserve the

uniform Bernoulli measure µ. Therefore,

µ(T −kf [aL, . . . , aR]RL ∩ [aL′ , . . . , aR′]R′L′ )
= µ(T −kf [aL, . . . , aR]RL)µ([aL′ , . . . , aR′]R′L′ )
= µ([aL, . . . , aR]RL)µ([aL′ , . . . , aR′]R′L′ )

for k ≥ 2N . This demonstrates Tf is strong mixing.

Next example investigates the case where m has two distinct prime fac-

tors. The discussion can be extended to more general cases.

Example 3.2. Suppose m = 12 = 22 ⋅ 3 and f(x0, x1, x2) = 6x0 + 3x1 + 2x2
(mod 12). Let φ4 and φ3 be the canonical projections from Z12 to Z4 and

Z3, respectively. Then Φ ∶= Φ4 ×Φ3 is an isomorphism from Z
Z

12 to Z
Z

4 ×Z
Z

3 ,

where Φ4 ∶ Z
Z

12 → Z
Z

4 and Φ3 ∶ Z
Z

12 → Z
Z

3 are obtained from φ4 and φ3,

respectively.
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Let f4 and f3 be defined as

f4(x0, x1, x2) = f(x0, x1, x2) (mod 4)
and

f3(x0, x1, x2) = f(x0, x1, x2) (mod 3),
respectively. In other words,

f4(x0, x1, x2) = 2x0 + 3x1 + 2x2 (mod 4),
f3(x0, x1, x2) = 2x2 (mod 3).

Then the projections of Tf on Z
Z

4
and Z

Z

3
, denoted by T4 and T3, are the

cellular automata with local rules f4 and f3, respectively. Furthermore, let

µ4 and µ3 be the push-forward measures of Φ4 and Φ3, respectively. µ is

the uniform Bernoulli measure on Z
Z

12
indicates that

1) µ4 and µ3 are the uniform Bernoulli measures on Z
Z

4
and Z

Z

3
, respectively.

2) µ ≅ µ4 × µ3.

3) Tf ≅ T4 × T3, and the diagram

Z
Z

12

Tf
//

Φ

��

Z
Z

12

Φ

��

Z
Z

4 × Z
Z

3 T4×T3

// Z
Z

4 × Z
Z

3

is commutative.

Similar to the discussion of Example 3.1, the local rule of T −14 is expressed

as

f−14 (x−2, x−1, x0) = 2x−2 + 3x−1 + 2x0 (mod 4),
and

f2n
4 (x2n) = x2n (mod 4), f−2n4 (x−2n) = x−2n (mod 4)

Given any other cylinder U ′ = [aL′ , . . . , aR′]R′L′ , pick N = ⌊ ∣R′−L∣
2
⌋ + 1. It

follows immediately

(1) µ4(T −k4 U4 ∩U
′
4) = µ4(T −k4 U4)µ4(U ′4) = µ4(U4)µ4(U ′4) for k ≥ 2N
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since L + k > R′, where Aj ∶= Φj(A) for A ∈ B.
Similarly, the local rule of T −13 is f−13 (x−2) = 2x−2 (mod 3). This infers

f−n3 = { 2x−2n, n is odd;
x−2n, n is even.

It is seen that µ3(T −n3 U3) = µ3(U3) for all n and

(2) µ3(T −k3 U3 ∩U
′
3) = µ3(T −k3 U3)µ3(U ′3) = µ3(U3)µ3(U ′3) for k ≥ N.

Combining (1) and (2) we have, for k ≥ 2N ,

µ(T −kf U ∩U ′) = (µ4 × µ3)[(T −kU ∩U ′)4 × (T −kU ∩U ′)3]
= µ4((T −kU ∩U ′)4)µ3((T −kU ∩U ′)3)
= µ4(T −k4 U4 ∩U

′
4)µ3(T −k3 U3 ∩U

′
3)

= (µ4 × µ3)(U4 ×U3) ⋅ (µ4 × µ3)(U ′4 ×U ′3) = µ(U)µ(U ′).
The strong mixing property of Tf then follows.

Next example addresses that Tf is even non-ergodic if jp = 0 for some

p∣m.

Example 3.3. Let m = 36 = 22 ⋅ 32 and let f be given as

f(x−1, x0, x1) = 15x−1 + 10x0 + 6x1 (mod 36).
It is seen that j2 = −1 and j3 = 0. To deduce that Tf is not ergodic, we firstly

observe that

f6k = 9x−6k + 28x0 (mod 36) and f−6k = 28x0 + 9x6k (mod 36)
for all k ∈ N. Suppose U = [0]0. Then α0 is a multiple of 9 for each

α = (αi) ∈ T −6kf (U). Hence Tf is not ergodic since T −6kf (U)∩ [1]0 = ∅ for all

k.

4. Proof of Theorem 2.3

This section is devoted to demonstrating an invertible linear cellular au-

tomaton is strong mixing if and only if jp ≠ 0 for all prime factor p of the

integer m. One can verify without difficulty that the existence of prime fac-

tor p of m such that jp = 0 infers such a cellular automaton is not ergodic,
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thus it is not strong mixing. (An intuitive exploration is that jp = 0 for

some prime factor p indicates T n
p is a trivial shift map for some n ∈ N, where

Tp ≡ T (mod pk) and pk∣m,pk+1 ∤ m.) It remains to show the “if” part of

Theorem 2.3.

Let L be the collection of linear local rules and let

Zm[X,X−1] = {Σr
i=laix

i, l, r ∈ Z}
be the set of bi-polynomials of variable X. Define a mapping χ ∶ L →

Zm[X,X−1], which relates a linear local rule f to a bi-polynomial F (X), as
χ(f) = χ( r

∑
i=l

λixi) = r

∑
i=l

λiX
−i
∶= F (X).

It is easily seen that χ is bijective. Moreover, let ZmJX,X−1K denote the for-

mal power series generated by {X,X−1} over Zm. Then χ̂ ∶ ZZ
m → ZmJx,x−1K

defined by

χ̂(b) = ∞

∑
i=−∞

biX
i, where b = (bi)i∈Z ∈ ZZ

m

is also a bijection. Observe that, for each b = (bi) ∈ ZZ
m,

χ̂(Tf(b)) = χ̂ [( r+i

∑
n=l+i

λn−ibn)i] = ∞

∑
i=−∞

( r+i

∑
n=l+i

λn−ibn)Xi,

and

T(χ̂(b)) = T( ∞∑
i=−∞

biX
i)

= ( r

∑
n=l

λnX
−n)( ∞∑

i=−∞

biX
i) = ∞

∑
i=−∞

( r+i

∑
n=l+i

λn−ibn)Xi,

where T(Θ(X)) ∶= F (X)Θ(X). This implements that the diagram

(3) Z
Z
m

T
//

χ̂

��

Z
Z
m

χ̂

��

ZmJX,X−1K
T

// ZmJX,X−1K

commutes. Moreover, it follows immediately from the mathematical induc-

tion that fn = χ−1((F (X))n) for all n ∈ N, where fn = f ○ fn−1.

Suppose m = pk for some prime number p and k ∈ N. Write F (X) as

F (X) = λjpX
−jp + pH(X).
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Lemma 4.1. (F (X))pk−1 ≡ λm
jp
X−p

(k−1)jp (mod pk).
Proof. Observe that

(λjpX
−jp + pH(X))p = p

∑
j=0

(p
j
)(λjpX

−jp)j(pH(X))p−j

≡
p

∑
j=p−1

(p
j
)(λjpX

−jp)j(pH(X))p−j (mod p2)
= p(λjpX

−jp)p−1(pH(X)) + (λjpX
−jp)p

≡ λp
jp
X−pjp (mod p2)

Given n ∈ N, let

φ(n) =#{i ∶ 1 ≤ i ≤ n,gcd(i, n) = 1}
be Euler’s totient function. Euler indicated that

aφ(n) ≡ 1 (mod n) for all gcd(a,n) = 1.
More specifically, ap

k−1
≡ ap

k (mod pk) for all gcd(a, p) = 1. This implies

(λjpX
−jp + pH(X))p ≡ λp2

jp
X−pjp (mod p2)

Assume that Lemma 4.1 holds for m = pk−1, that is,

(F (X))pk−2 = pk−1Q(X) + λpk−2

jp
X−p

(k−2)jp

for some Q(X). Therefore,
(F (X))pk−1 = (pk−1Q(X) + λpk−2

jp
X−p

(k−2)jp)p

=
p

∑
j=0

(p
j
)(pk−1Q(X))j (λpk−2

jp
X−p

(k−2)jp)p−j

≡
1

∑
j=0

(p
j
)(pk−1Q(X))j (λpk−2

jp
X−p

(k−2)jp)p−j (mod pk)
≡ λpk−1

jp
X−p

(k−1)jp (mod pk)
≡ λpk

jp
X−p

(k−1)jp (mod pk)
This completes the proof. �
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Suppose Tf is an invertible linear cellular automaton. Theorem 2.2 infers

that T −1f is a linear cellular automaton with local rule f−1 = χ−1(F−1(X)),
where

F−1(X) = λ−1jp Xjp(1 + pH̃(X) +⋯+ pk−1H̃k−1(X))
and H̃(X) = −λjpX

jpH(X). Since F−1(X) is also of the form F−1(X) =
λ−1jp X

jp + pH(X), it follows from Lemma 4.1 that

(4) (F−1(X))pk−1 ≡ λ−mjp Xpk−1jp (mod pk).
For the clarification of the discussion, the notation g↔ [t1, t2] refers to the

local rule g(xt1 , . . . , xt2) = Σt2
i=t1λixi (mod m). Combining the one-to-one

correspondence between L and Zm[X,X−1], Lemma 4.1, and the commuta-

tive diagram (3), a straightforward examination deduces that

(5) fn
↔ [ℓpk−1jp], f−n↔ [−ℓpk−1jp],

if n = ℓpk−1 for some ℓ ∈ N, and

fn
↔ [ℓpk−1jp + ℓ′l, ℓpk−1jp + ℓ

′r],(6)

f−n↔ [−ℓpk−1jp + ℓ′l, −ℓpk−1jp + ℓ′r],(7)

if n = ℓpk−1 + ℓ′ for some ℓ ∈ N,1 ≤ ℓ′ < pk−1, where

l = (l − jp)(k − 1) − jp, r = (r − jp)(k − 1) − jp.
The strong mixing property of invertible cellular automaton for the case

where m is a multiple power of a prime number follows via (5), (6), and (7).

Lemma 4.2. Suppose m = pk for some prime number p and k ∈ N. Then

an invertible linear cellular automaton is strong mixing if and only if jp ≠ 0.

Proof. The “only if” part follows immediately from (5). Given any two

cylinders U,V ∈ ZZ
m, write U and V as U = [U]ur

ul
and V = [V ]vrvl , respectively,

for some ul, ur, vl, vr ∈ Z. Herein the notation [α]i2i1 , i1 ≤ i2, refers to the

cylinder

i1[αi1 , . . . , αi2]i2 = {x ∈ ZZ

m ∶ xj = αj, i1 ≤ j ≤ i2}.
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Claim 4.3. T −nf U is a finite union of cylinders for every n ∈ Z.

To see this, it suffices to show the case where n = 1.

Obviously T −1f U ⊆ [U ′]u′r
u′
l

, where

u′l =min{ul − (l − jp)(k − 1) + jp, ul − (r − jp)(k − 1) + jp},
u′r =max{ur − (l − jp)(k − 1) + jp, ur − (r − jp)(k − 1) + jp}.

gcd(λ−1jp ,m) ≡ 1 (mod m) indicates f−1(xl′ , . . . , xr′) is a permutation at x−jp ,

where l′ = (l − jp)(k − 1) − jp, r′ = (r − jp)(k − 1) − jp, and l′ ≤ −jp ≤ r
′ or

r′ ≤ −jp ≤ l
′. A straightforward and careful verification deduces

(T −1f U)i ∶= {xi ∶ x = (xj) ∈ T −1f U} = Zm

provided

i ∈ Z ∖ {min{u′l, u′r},min{u′l, u′r} + 1, . . . ,max{u′l, u′r}}.
In other words, T −1f U is a finite union of cylinders, and Claim 4.3 follows.

Since T −nf U is a finite union of cylinders, (5) and (7) imply that there

exists N ∈ N such that T −nf U ⊆ [U ′]u′r
u′
l

satisfies either u′l > vr or u′r < vl for

n ≥ N . It follows that

µ(T −nf U ∩ V ) = µ(T −nf U)µ(V ) = µ(U)µ(V )
for n ≥ N since µ is Tf -invariant. This demonstrates the strong mixing

property of invertible linear cellular automata for the case wherem = pk. �

Notably, for every n ∈ N and cylinder U , neither T −nf U nor T n
f U are

cylinders in general. It is seen in the proof of Lemma 4.2 that T −1f U is a

sub-cylinder of cylinder [U ′]u′r
u′
l

with xu′
l
, . . . , xu′r being constrained by some

equations came from f for all x ∈ T −1f U (cf. Examples 3.1 and 3.2).

Suppose m = sq for some coprime factors s, q ∈ N. Define fs ∶ Z
r−l+1
s → Zs

and fq ∶ Z
r−l+1
q → Zq by

fs(xl, . . . , xr) = f(xl, . . . , xr) (mod s)
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and

fq(xl, . . . , xr) = f(xl, . . . , xr) (mod q),
respectively. Then fs, fq generate invertible cellular automata Ts ∶ Z

Z
s → Z

Z
s

and Tq ∶ Z
Z
q → Z

Z
q . Observe that the canonical isomorphism φ ∶ Zm → Zs×Zq

induces an isomorphism Φ ∶ ZZ
m → Z

Z
s × Z

Z
q . A straightforward examination

shows that the diagram

(8) Z
Z
m

Tf
//

Φ

��

Z
Z
m

Φ

��

Z
Z
s × Z

Z
q Ts×Tq

// Z
Z
s × Z

Z
q

commutes.

Furthermore, let µs and µq be the push-forward measures of µ on Z
Z
s and

Z
Z
q with respect to canonical projections Φs and Φq, respectively. It follows

that µ ≅ µp × µq. For any two measurable sets U,V ∈ ZZ
m such that

µs(Φs(U) ∩Φs(V )) = µs(Φs(U)) ⋅ µs(Φs(U))
and

µq(Φq(U) ∩Φq(V )) = µq(Φq(U)) ⋅ µq(Φq(V )),
one can see that

(µs × µq)(Φ(U ∩ V )) = µs(Φs(U ∩ V )) ⋅ µq(Φq(U ∩ V ))
= µs(Φs(U) ∩Φs(V )) ⋅ µq(Φq(U) ∩Φq(V ))
= [µs(Φs(U)) ⋅ µs(Φs(V ))] ⋅ [µq(Φq(U)) ⋅ µq(Φq(V ))]
= [µs(Φs(U)) ⋅ µq(Φq(U))] ⋅ [µs(Φs(V )) ⋅ µq(Φq(V ))]
= (µs × µq)(Φ(U)) ⋅ (µs × µq)(Φ(V )) = µ(U) ⋅ µ(V ).

In other words,

(9) µ(U ∩ V ) = µ(U) ⋅ µ(V ).
For the general case, factorizing m into the product of its prime factors

m = pk1
1
pk2
2
⋯p

kh
h
. Analogous discussion as above demonstrates that
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1) The diagram

(10) Z
Z
m

Tf
//

Φ

��

Z
Z
m

Φ

��

Z
Z

p
k1
1

×⋯ ×ZZ

p
kh
h

T
p
k1
1

×⋯×T
p
kh
h

// Z
Z

p
k1
1

×⋯×ZZ

p
kh
h

is commutative.

2) Φ ∶= Φ
p
k1
1

×⋯×Φ
p
kh
h

is an isomorphism, and µ ≅ µ
p
k1
1

×⋯× µ
p
kh
h

.

3) For any two measurable sets U,V ∈ ZZ
m such that

µs(Φs(U) ∩Φs(V )) = µs(Φs(U)) ⋅ µs(Φs(U)), s = pkii ,1 ≤ i ≤ h,

then

µ(U ∩ V ) = µ(U) ⋅ µ(V ).
In other words, we have demonstrated the following lemma.

Lemma 4.4. Suppose m = pk1
1
pk2
2
⋯p

kh
h

for some prime number p1, . . . , ph

and k1, . . . , kh ∈ N. A linear cellular automaton Tf is strong mixing if and

only if T
p
ki
i

is strong mixing for 1 ≤ i ≤ h.

Proof. Obviously, the strong mixing property of Tf implies T
p
ki
i

is strong

mixing for 1 ≤ i ≤ h. Suppose T
p
ki
i

is strong mixing for 1 ≤ i ≤ h. Given two

cylinders U and V , let Ki be a positive integer, as indicated in the proof of

Lemma 4.2, such that µ
p
ki
i

(T −n
p
ki
i

U ∩ V ) = µ
p
ki
i

(U)µ
p
ki
i

(V ) for n ≥ Ki, where

1 ≤ i ≤ h. Let K =max{Ki}. A straightforward examination infers that

µ(T −nf U ∩ V ) = µ(U)µ(V ) for n ≥K.

This completes the proof. �

Notably Lemma 4.4 remains true if one replaces strong mixing by either

weak mixing or ergodic. The elucidation can be done via a minor modifica-

tion of the discussion above and is omitted.

As a conclusion of this section, it is seen that Theorem 2.3 follows from

Lemmas 4.2 and 4.4.
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5. Proof of Theorem 2.5

This section focuses on the proof of Theorem 2.5. Similar to the discussion

in Section 4, where the key ideas of the present elucidation are addressed in,

it is not difficult to demonstrate that Tf is not a Bernoulli automorphism

if there exists a prime factor p of m such that jp = 0. Hence it remains

to show that jp ≠ 0 for all prime factors p of m implies Tf is a Bernoulli

automorphism.

Alternatively, an automorphism Tf is Bernoulli if and only if there is a

generator ξ which is Bernoulli for Tf [18]. Let ξn2

n1
denote the partition con-

sists of all cylinders of the form [U]n2

n1
for n1, n2 ∈ Z. It follows immediately

from (5), (7), and the proof of Lemma 4.2 that ξn2

n1
is a generator provided

n2 − n1 ≥ r − l.

Notably, Lemma 4.4 infers that we may assume m = pk for some prime

number p and k ∈ N without loss of generality. Moreover, we assume that

r ≥ l ≥ 0 for the clarification of the elucidation.

Set ℓ as the smallest positive integer satisfying 2ℓ ≥ r − l. Then ξℓ−ℓ is

a generator. Write ξℓ−ℓ = {Ui}m2ℓ+1

i=1 . Claim 4.3, which demonstrates that

T −nf Ui is a cylinder for 1 ≤ i ≤m2ℓ+1 and n ∈ Z, together with equations (5),

(6), and (7) shows that

(11)
0

⋁
i=−n

T i
fξ

ℓ
−ℓ ⊆ ξ

ℓ+njp
−ℓ ,

N+n

⋁
i=N

T i
f ξ

ℓ
−ℓ ⊆ ξ

ℓ−Njp

−ℓ−(N+n)jp
,

if n = cpk−1 for some c ∈ N, and

0

⋁
i=−n

T i
fξ

ℓ
−ℓ ⊆ ξ

ℓ+(cpk−1+1)jp+d(k−1)(r−jp)
−ℓ ,(12)

N+n

⋁
i=N

T i
fξ

ℓ
−ℓ ⊆ ξ

ℓ−Njp

−ℓ−(cpk−1+1)jp−d(k−1)(r−jp)
,(13)

if n = cpk−1 + d for some c ∈ N,1 ≤ d < pk−1, herein

N = tpk−1 and t =max{1,⌈ 2ℓ

pk−1jp
⌉} .
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Notably, both
0

⋁
i=−n

T i
f ξ

ℓ
−ℓ and

N+n

⋁
i=N

T i
fξ

ℓ
−ℓ are collection of cylinders of the

form [U]n2

n1
and [V ]n′2

n′
1

, respectively, where the indices n1, n2, n
′
1, and n′2,

depend on the value of n, are addressed in (11), (12), (13). Analogous

discussion as addressed in the proof of Lemma 4.2 indicates that
0

⋁
i=−n

T i
f ξ

ℓ
−ℓ

and
N+n

⋁
i=N

T i
fξ

ℓ
−ℓ are independent. Hence Tf is an Bernoulli automorphism,

and this completes the proof of Theorem 2.5.

6. Conclusion and Discussion

This paper investigates invertible linear cellular automata over Z
Z
m with

local rules of the form

f(xl, . . . , xr) = Σr
i=lλixi (mod m), l, r ∈ Z,m ≥ 2.

Without using the natural extension, Theorems 2.3 and 2.5 reveal that an

invertible linear cellular automaton is strong mixing and is a Bernoulli au-

tomorphism with respect to the uniform Bernoulli measure if and only if the

canonical projection fp of f is not permutative at the index j = 0 for every

prime factor p of m. This gives an affirmative answer for the open problem

proposed by Pivato for reversible linear cellular automata [20]. Furthermore,

the elucidation extends the results in [14, 25] to all linear automorphisms.

Notably, it can be verified without difficulty that an invertible linear cel-

lular automaton is not ergodic if and only if jp = 0 for some prime factor p

of m (cf. Corollary 2.4 and Example 3.3).

Remark 6.1. Notably, one of the key points in demonstrating Theorem

2.3 is that the uniform Bernoulli measure µ is isomorphic to the product

measure of those push-forward measures µ
p
k1
1

× ⋯ × µ
p
kh
h

under canonical

projection maps. Hence Theorem 2.3 (resp. Theorem 2.5) remains true for

every Tf -invariant measure µ which is isomorphic to the product measure

µ
p
k1
1

× ⋯ × µ
p
kh
h

provided T
p
ki
i

is strong mixing (resp. Bernoulli) for T
p
ki
i

-

invariant measure µ
p
ki
i

for 1 ≤ i ≤ h.
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The methodology addressed in this paper can be applied to investigating

multidimensional reversible linear cellular automata over Zm. Meanwhile,

the elucidation of ergodic properties of nonlinear cases and cellular automata

defined on Cayley graph are in preparation.
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