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Cooperative coevolutionary differential evolution with

improved augmented Lagrangian to solve constrained

optimisation problems

Behrooz Ghasemishabankareh∗, Xiaodong Li, Melih Ozlen

School of Science, RMIT University, Melbourne, Australia

Abstract

In constrained optimisation, the augmented Lagrangian method is considered
as one of the most effective and efficient methods. This paper studies the
behaviour of augmented Lagrangian function (ALF) in the solution space
and then proposes an improved augmented Lagrangian method. We have
shown that our proposed method can overcome some of the drawbacks of
the conventional augmented Lagrangian method. With the improved aug-
mented Lagrangian approach, this paper then proposes a cooperative coevo-
lutionary differential evolution algorithm for solving constrained optimisation
problems. The proposed algorithm is evaluated on a set of 24 well-known
benchmark functions and five practical engineering problems. Experimental
results demonstrate that the proposed algorithm outperforms the state-of-
the-art algorithms with respect to solution quality as well as efficiency.

Keywords: Augmented Lagrangian method, Constrained optimisation,
Cooperative coevolution, Differential evolution

1. Introduction

Most of the science and engineering optimisation problems in real world
are highly constrained. These constrained optimisation problems present se-
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rious challenges to existing optimisation methods. Developing effective con-
straint handling techniques is critical in addressing these challenges. Con-
straint handling techniques can be categorised into four groups [26]: main-
taining feasibility of solutions, penalty functions, distinguishing between fea-
sible and infeasible solutions and hybrid methods. Other categorisations are
also possible [8]. Generally speaking, each of these techniques has some ad-
vantages and disadvantages.

Evolutionary algorithms (EAs) have been applied to various optimisation
problems which classical optimisation algorithms cannot be directly applied
to or do not provide promising results [40]. One of the most common con-
straint handling techniques with EA is the penalty function approach, as
presented by Courant et al. [10]. The penalty function approach converts a
constrained optimisation problem into a sequence of unconstrained problems
by adding a penalty term to the original objective function to penalise infeasi-
ble solutions [28]. However penalty functions are often not differentiable and
this is the main drawback of using this approach. Another popular approach
is the Lagrangian multiplier method, which is based on Kuhn-Tucker con-
ditions and can be used to convert a constrained optimisation problem into
an unconstrained one. However, this approach assumes the problem to be
convex. In order to handle non-convex problems, the augmented Lagrangian
method is introduced in [38], to convexify the objective function by adding
quadratic penalty terms [44].

Many studies have been carried out during the last decade to solve con-
strained optimisation problems using the augmented Lagrangian approach.
Adeli and Cheng [1] proposed a hybrid genetic algorithm (GA) to solve struc-
tural optimisation using ALF. Sarma and Adeli [42] presented a fuzzy aug-
mented Lagrangian method using GA to optimise steel structures. Rocha
et al. [37] proposed a stochastic population based algorithm using the aug-
mented Lagrangian method. An artificial fish swarm algorithm based hy-
perbolic augmented Lagrangian method is used to solve constrained optimi-
sation problems in [9]. An ant colony optimisation (ACO) algorithm with
augmented Lagrangian method is presented in [21] to solve continuous global
optimisation problems. Mallipeddi and Suganthan [22] presented an ensem-
ble of four different constraint handling methods to solve constrained opti-
misation problems.

Dealing with complex combinatorial solution spaces as well as problems
with high number of constraints is a challenging task. Some attempts have
been made to hybridise the EAs with local search algorithms to cope with
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this challenge in an efficient way [40] e.g., a hybrid particle swarm optimi-
sation(PSO) with GA [14]. Another approach to deal with the aforemen-
tioned challenge is using a coevolutionary algorithm. Tahk and Sun [44]
presented a coevolutionary algorithm using zero-sum game to coevolve the
decision variables and Lagrangian multipliers. A coevolutionary GA has
been also used to solve constrained optimisation problems [3]. Krohling et
al. [19] used a coevolutionary PSO augmented Lagrangian function to deal
with constraints. They proposed a Gaussian probability distribution for the
acceleration coefficient in PSO. Nema et al. [29] presented a hybrid coevolu-
tionary algorithm with the min-max approach to solve constrained optimisa-
tion problems. They also used an augmented Lagrangian method to handle
constraints.

Although ALF is an efficient method to deal with constraints, it changes
the fitness values dramatically for solutions lying far from the boundaries
of the feasible space. In this paper, we propose an improved augmented
Lagrangian function (iALF) to handle this issue in a more effective man-
ner. Based on iALF, we also propose an efficient CCiALF method for solv-
ing constrained optimisation problems. The proposed algorithm produces
higher quality solutions using fewer number of function evaluations (NFE).
To demonstrate the capability of CCiALF algorithm, two sets of benchmarks
are used in our study and the results are compared with that of the state-of-
the-art algorithms.

The rest of the paper is structured as follows: First some background on
ALF is described in section 2, and then our improved ALF (iALF) is pre-
sented in section 3. The proposed CCiALF method is introduced in Section
4 and experimental results are presented in Section 5. Finally, Section 6
provides conclusion and future research directions.

2. Augmented Lagrangian function

The general constrained optimisation problem can be described as follows:

min
x
f(x), x ∈ Rp (1)

gi(x) ≥ 0, i = 1, ...,m (2)

hj(x) = 0, j = 1, ..., n (3)

lbk ≤ xk ≤ ubk, k = 1, ..., p (4)
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where Eq. (1) represents the objective function, Eqs. (2) and (3) are in-
equality and equality constraints, respectively. Eq. (4) represents lower and
upper bounds on decision variables x. In [16] and [31], only the equality
constraints are considered and the above problem is transformed into an
unconstrained one by adding quadratic penalty terms and dual values to
the objective function. Rockafellar [39] utilised the idea and modified it for
inequality constraints. The augmented Lagrangian (also called as penalty
Lagrangian by Rockafellar [38]) replacing the quadratic penalty term by θ
function is presented as follows [13]:

F (x,µ, τ ) = f(x)+R
m∑
j=1

[(θ(gj(x)+µj))
2−(µj)

2]+R
n∑
k=1

[(hk(x)+τk)
2−(τk)

2]

(5)
θ(G) = min{0, G} (6)

where R is a positive penalty parameter, µ is a 1×m multiplier, τ is a 1×n
multiplier for inequality and equality constraints respectively, and G can be
any function or value. The θ function checks if the inner expression (e.g. G)
is greater than zero or not. If G ≥ 0 then θ(G) = 0, otherwise θ(G) = G.

Deb and Srivastava [13] evaluated the classical ALF using benchmark
functions and it is shown that the classical ALF has limited success, e.g.,
the solutions are still far from the known optima. Fig. 1 shows an example
of a 2-dimensional problem where ALF divides the search space into four
different regions: the inner feasible region, ie., the inner feasible area far
from the boundary (region 1), the feasible area close to the boundary (region
2), the feasible area on the boundary(region 3) and finally the infeasible area
(region 4).

For the sake of simplicity, we consider the optimisation problems with
only inequality constraints. Now the ALF is formulated as follows:

F (x,µ) = f(x) +R

m∑
j=1

[(θ(gj(x) + µj))
2 − (µj)

2] (7)

If we consider the problem has one constraint (m=1), the ALF value in
the feasible and infeasible regions are as follows:

• Region 1: For a given point w (in region 1), since µ < 0, |µ| < g(w),
G = (g(w)+µ) is greater than zero and according to Eq. (6), θ(g(w)+
µ) = 0. By substitution of the values in Eq. (7), F = f(w)−Rµ2.
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Figure 1: Four different regions divided by ALF.

• Region 2: For a given point x (in region 2), since x is close to the
boundary and µ < 0 , |µ| > g(x), then θ(g(x) + µ) = g(x) + µ and
ALF value is F = f(x) +R(g(x)2 + 2g(x)µ).

• Region 3: For a given point y (in region 3), µ < 0 and g(y) = 0. As
a result, θ(g(y) + µ) = µ and F = f(y).

• Region 4: For a given point z (in region 4), µ < 0, g(z) < 0, θ(g(z) +
µ) = g(z) + µ and the ALF value is F = f(z) +R(g(z)2 + 2g(z)µ).

Table 1 summarises the calculation procedure of the augmented Lagrangian
function in different regions. The fifth column in Table 1 demonstrates the
ALF values for all points w, x, y, z in regions 1, 2, 3 and 4 respectively.
Note that we assume R has a large positive value.

Since R is a large positive number and µ has a negative value, for region
1, Rµ2 is a large positive number and by subtracting Rµ2 from the objective
function value f , the ALF value F decreases dramatically. In region 2, since
a solution is close to the boundary (g > 0), g2 is a small positive number and
2gµ is a negative number where (|g2| < |2gµ|). So by adding R(g2 + 2gµ) to
the f , the value of F decreases slightly. In region 3, F is equal to the original
objective function value f . Finally in region 4, a solution is infeasible (g < 0),
g2 and 2gµ are both positive numbers. Hence, by adding the penalty value
of R(g2 + 2gµ) to f , the value of F increases. Adding an extra value to
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the original objective function value in regions 1 and 2 changes the fitness
landscape. To illustrate this problem, an example is presented here.

Consider problem g24 from CEC’2006 [20]. The problem formulation is
as follows:

min f(x) = −x1 − x2
s.t. g1(x) = 2x41 − 8x31 + 8x21 − x2 + 2 ≥ 0

g2(x) = 4x41 − 32x31 + 88x21 − 96x1 − x2 + 36 ≥ 0

0 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 4

(8)

In this problem two points (xA and xB) are selected from regions 1 and 2,
respectively. Assume that µ = −1 and R = 50000 (a positive large penalty
value). As shown in Table 2, xA and xB are both feasible solutions satisfying
all constraints and since f(xA) ≥ f(xB), xB is better than xA. Although xB

is better than xA, the ALF value for xA and xB shows that F (xA) ≤ F (xB)
incorrectly suggesting that xA is better than xB.

The above-mentioned problem for ALF occurs because ALF drastically
distorts the fitness landscape of the feasible areas in regions 1 and 2. These
changes in fitness values may cause ALF to give misleading information. In
this case, the solution fitness value in region 1 is dramatically decreased,
whereas the fitness of solution in region 2 is only slightly decreased, giving
an incorrect result.

3. Improved augmented Lagrangian function

In this section the improved ALF (iALF) is presented. We have shown
in the previous section that ALF has some issues in regions 1 and 2 of the
search space. The main issue is that ALF distorts the fitness values for
feasible solutions. It would be desirable to minimise the amount of distortion
of fitness in the feasible region. Ideally, two feasible solutions should just be
compared according to the original objective function values and an extra
value should not be added. However, in ALF the extra value distorts the
landscape of fitness in the feasible region. To rectify this issue, we propose
an iALF as follows:

iF (x,µ) = f(x) +R

m∑
j=1

[(θ(gj(x)) + µj)
2 − (µj)

2] (9)
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where if point x is a feasible solution (located in region 1, 2 or 3) the iALF
value iF equals to the original objective value f and if point x is an infeasible
solution (located in region 4) iF is set to equal to f+R

∑
(gj(x)2+2gj(x)µj).

In other words, if x is in the feasible area, iALF should not change the fitness
landscape and objective function value will stay the same as its iF value.
Whereas, if x is in the infeasible area, the R

∑
(gj(x)2 + 2gj(x)µj) term is

added to the objective function value to penalise the infeasible solution. The
last column of Table 1 shows the iF values in different regions.

Table 1: F vs. iF values in different regions.

Points g(x) µ θ(g + µ) F iF

w (Region 1) > 0 < 0 0 f(w)−Rµ2 f(w)

x (Region 2) > 0 < 0 g(x) + µ f(x) +R(g(x)2 + 2g(x)µ) f(x)

y (Region 3) = 0 < 0 µ f(y) f(y)

z (Region 4) < 0 < 0 g(z) + µ f(z) +R(g(z)2 + 2g(z)µ) f +R(g(z)2 + 2g(z)µ)

The iALF is applied to calculate the fitness function for problem g24 in
Table 2. The last row presents the iF value for points xA and xB. As
discussed earlier, since both points are feasible, iALF will not change the
fitness landscape. Hence, the iF value is equal to the objective function
value f . Since iF (xA) ≥ iF (xB) which is the same as f(xA) ≥ f(xB),
iALF will give us the correct result, i.e., xB is better than xA.

Table 2: F and iF for problem g24.

Point xA Point xB

x1 2.404678 x1 2.329524
x2 1.797169 x2 3.178475
g1(xA) 2.096757 ≥ 0 g1(xB) 4.91E − 05 ≥ 0
g2(xA) 0.999992 ≥ 0 g2(xB) 2.03E − 07 ≥ 0
f(xA) -4.201847 f(xB) -5.507999
µ1 -1 µ1 -1
µ2 -1 µ2 -1
R 50000 R 50000
F (xA) -100004.2018 F (xB) -10.440193
iF (xA) -4.201847 iF (xB) -5.508012

Fig. 2 demonstrates the distortion of the fitness function in neighbour-
hood of points xA and xB by ALF. As shown in Fig. 2, the iF and f values
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(a) F, iF and f in region 1 (point xA) (b) F, iF and f in region 2 (point xB)

Figure 2: Comparison of ALF and iALF in different regions for problem g24.

are equal while the F value is dramatically distorted in Fig. 2a and slightly
distorted in Fig. 2b.

4. The proposed CCiALF algorithm

In our proposed CCiALF method, iALF is used to handle constraints and
differential evolution (DE) is adopted as an subcomponent optimiser within
the cooperative coevolutionary framework. CCiALF algorithm coevolves two
populations which interact with each other at each iteration. According to
Eq. (9), the iALF has two sets of variables (x and µ). The first population
(PopulationI) evolves the decision vector x, whereas the second population
(PopulationII) evolves the multiplier vector µ. The fitness of an individual
in one population is evaluated according to how well it collaborates with
the best-fit individual from the other population. The procedure of DE, the
cooperative coevolutionary method and CCiALF algorithm are described in
the following subsections.

4.1. DE algorithm

DE is a powerful stochastic population-based optimisation method which
is proposed by Storn and Price [43]. DE evolves a population of Npop

p-dimensional vectors in generation It, i.e., xi,It = (x1i,It, . . . , x
p
i,It) , i =

1, . . . , Npop from one generation to the next. The initial population can be
generated as follows:

xi,1 = lb+ rand(0, 1).(ub− lb); i = 1, 2, · · · , Npop (10)

where rand(0, 1) is an uniform random variable in [0,1] and ub, lb are upper
and lower bound vectors for x, respectively.
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After initialisation phase, a mutation operator is performed on the target
vector xi,It to generate a mutant vector vi,It. There are different strategies
to produce a mutant vector [32]. After mutant vectors are generated, the
crossover operator should be performed on xi,It and its corresponding mu-
tant vector vi,It to produce a trial vector (ui,It). Binomial and exponential
crossover techniques are two general crossover operators.

If any of the generated trial vectors does not satisfy Eq. (4), the trial
vector should be regenerated randomly in [lb,ub]. Then the fitness function
of the trial vector ui,It and the corresponding target vector xi,It should be
compared and the next generation should be formed. The binary selection
procedure is as follows:

xi,It+1 =

{
ui,It, iff(ui,It) ≤ f(xi,It)
xi,It, otherwise

The aforementioned steps are performed until the termination condition
is satisfied. Since the performance of DE algorithm significantly depends
on adopting trial vector generation strategies and their associated control
parameter values, numerous variants of DE algorithm have been introduced
during the last decade. Qin and Suganthan [33] proposed a self adaptive
DE where the choice of learning strategy and two control parameters are
not required to be pre-specified by a user. Brest et al. [6] presented a new
version of DE (jDE) for obtaining self adaptive control parameter settings.
In order to improve the optimisation performance, Zhang and Sanderson [46]
introduced a novel DE algorithm (JADE) by applying a new mutation strat-
egy with an optional external archive and updating control parameters in an
adaptive manner. A multi-criteria adaptive DE (MADE) algorithm utilises
a multi-criteria adaptation approach to choose trail vector generation strate-
gies and separately adjusts the control parameters of each strategy [7]. A
self adaptive DE (SaDE) is presented in [32] to make the trial vector gen-
eration strategies and their associated control parameter values self-adapted
according to the experiences at previous generations. Other variations of DE
algorithm with ensemble of parameters and strategies are proposed in [18]
and [17].

4.2. Cooperative coevolutionary algorithm

Fig. 3 shows how a cooperative coevolutionary algorithm works. As
mentioned before, iALF has two variables: x, the decision variable vector for
the problem to be optimised, and µ, the Lagrangian multipliers. PopulationI
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and PopulationII evolve x and µ, respectively. In Fig. 3, m, n, p, Npop1,
Npop2 are the number of inequalities, the number of equalities, the number of
decision variables, the number of individuals in PopulationI and the number
of individuals in PopulationII, respectively.

Figure 3: Cooperative coevolutionary algorithm.

PopulationI (x) and PopulationII (µ) should be initialised randomly ac-
cording to Eq. (10). Note that for populationII, lb, ub are µ0 and 0, respec-
tively. In order to evaluate the fitness function for PopulationI and II, mem-
bers of both populations should interact and x, µ should be given. Therefore
in PopulationI, at the initialisation step, each individual is combined with a
random individual from Population II, but from the next iteration onwards,
each individual (xi,It; i = 1, . . . , Npop1) is combined with the best µ vector
(µ∗), and this combined vector is evaluated using the fitness function (Eq.
(9)) to assess how well the individual collaborates with the best individual
from the other population. Similarly, to evaluate each individual in Popula-
tionII, vector (µj,It; j = 1, . . . , Npop2) is combined with the best individual
in PopulationI (x∗). Then Eq. (9) is applied to calculate the fitness function
values for all members in PopulationII. At each iteration (It), each individ-
ual in PopulationI and Population II is coevolved in a round-robin fashion
[30]. The following procedure continues until the termination condition (e.g.
maximum number of iterations (Itmax)) is satisfied and the x∗ is reported as
algorithm’s final solution.

4.3. CCiALF algorithm

Algorithm 1 provides the pseudo-code describing the proposed CCiALF
algorithm in detail. PopulationI and II are randomly generated in the range
[lb,ub]. Then by combining two subpopulations, the fitness function value

10



is calculated and the best individual from each sub-population (x∗,µ∗) is
selected. Since the performance of DE highly depends on the efficient trial
vector generation strategies and associated control parameter values, the
SaDE is adopted to make the trial vector generation strategies and their as-
sociated control parameter values self-adaptive according to the experiences
from previous generations [32]. During the iterations of CCiALF, SaDE [32]
is used as a subcomponent optimiser to evolve PopulationI and II. As shown
in Eq .(9) the penalty parameter R is needed to evaluate the iALF value.
The adaptive procedure for R value provides a balance between objective
function value and constraint violation [13]. Consequently, the R parameter
is updated according to the statistics of the current population. Hence, in
the CCiALF procedure, in every β2 iterations, R is updated according to the
method presented in [13].

In addition, to improve the convergence speed, in every β1 iterations, if
the difference between the best objective value in two successive iterations
is less than δ, which is defined by a user, a point-based local search is per-
formed on the worse solution in the current generation. Using a local search
procedure within CCiALF algorithm, increases the convergence speed and
prevents CCiALF from getting trapped at local optima. To save computa-
tional cost, the local search procedure is just performed on PopulationI.

For the local search procedure, any point-based optimisation algorithm
can be used. Similar to [13], in this paper fmincons() routine of MATLAB
is used [12]. fmincons() attempts to find the minimum of a scalar function
of several variables starting at an initial estimate. This function uses an
interior point method by default to solve unconstrained problems [23].

The termination criterion is the maximum NFE (MaxNFE) or no im-
provement in the objective function value in β3 successive iterations. The
algorithm stops when it reaches MaxNFE or it has not improved for β3 num-
ber of iterations.

5. Experimental results

We use a well-known constrained optimisation test functions suite, CEC’2006
[20] for evaluating CCiALF algorithm. In addition, five practical engineering
problems from [34],[41],[4],[15] and [35] are also used to assess the CCiALF’s
performance on solving real-world engineering problems. In order to find
out how well the iALF performs against the conventional ALF method, the
performance of iALF is first compared with ALF. Then, we apply CCiALF
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Algorithm 1 CCiALF algorithm

1: procedure CCiALF (Npop1 , Npop2 , Itmax, µ0, β1, β2, δ, Const,MaxNFE)
2: Initialisation
3: Randomly generate PopulationI,0 and PopulationII,0 (Eq. (10))

4: Initialise R0 as follows :R0 =
∑Npop1

i=1 |fi(x)|∑Npop1
i=1

∑m+n
j=1 θ(gij(x))

; Rold = R0

5: Calculate iF1,0(x,µ), iF2,0(x
∗,µ) for PopulationI,II respectively (Eq. (9))

6: Add NFE0

7: BFS(1) = x∗

8: Select (x∗,µ∗)
9: Main Loop

10: for all It = 1: Itmax do
11: for all s= I: II do % Number of subpopulations%
12: Perform SaDE on Populations,It
13: Combine the Populations,It with the best individual of other sub-

population
14: Calculate fitness functions for combined individuals
15: Populations,It+1 ← SaDE Selection Procedure on Populations,It
16: Add NFE0

17: end for
18: if mod(ItMax, β1) = 0 and |BFS(It)−BFS(It− 1)| < δ then
19: Do local search on the worst vector in PopulationI and add NFE0

20: end if
21: if mod(ItMax, β2) = 0 then

22: Calculate R using: R = 0.5 f(x
∗)

Npop1
+ 0.5Rold

23: else
24: R = Rold
25: end if
26: Select (x∗,µ∗)
27: BFS(It+ 1) = x∗

28: if |BFS(It)−BFS(It− 1)| = 0 then
29: count = count+ 1
30: else
31: count = 0
32: end if
33: if NFE0 > MaxNFE or count > β3 then
34: break
35: end if
36: end for
37: end procedure
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(Algorithm 1) to the benchmark functions as well as several engineering prob-
lems to demonstrate the capability of CCiALF algorithm.

The proposed CCiALF algorithm is implemented in MATLAB on a PC
with Intel(R) Core(TM) i7-4790 3.60 GHz processor with 8 GB RAM and
run 30 times for each set of benchmark. Parameter settings of algorithm are
as follows: Npop1 = 200, Npop2 = 20, ItMax = 500, µ0 = −5, β1 = 0.1 ∗ ItMax,
β2 = 5, δ = 0.0001, β3 = 0.02 ∗ ItMax, MaxNFE = 240000.

5.1. ALF vs. iALF

In this section CEC’2006 benchmarks are used to evaluate both ALF and
iALF to demonstrate the performance difference between these two methods.
As mentioned in Section 2, ALF changes the fitness landscape of the solution
space and it may affect the performance of the algorithm dramatically. iALF
described in Section 3 aims to combat this issue. If Eq. (9) is replaced by Eq.
(7) in CCiALF (Algorithm 1) and used to evaluate the fitness function value,
this algorithm is called as CCALF algorithm. We evaluate both CCALF and
CCiALF on the CEC’2006 benchmarks. To help understand better whether
the improvement comes from this iALF, we deliberately remove the local
search from this comparison. We adopt a CCiALF without local search,
called CCiALFNLS, which is compared directly with CCALFNLS.

As shown in Eqs. (1), (2) and (3) the constrained problems are composed
of equality and inequality constraints. The equality constraints Eq. (2) are
transformed into inequality constraints by Eq. (11) [20].

|hi(x)| − ε ≤ 0 (11)

where ε is a tolerance parameter for equality constraints. The value of ε is
equal to 0.0001. By applying above-mentioned transformation, the problem
is reformulated as follows:

min
x
f(x), x ∈ Rn

gi(x) ≥ 0, i = 1, ...,m

hi(x) + ε ≥ 0, i = 1, ..., n

ε− hi(x) ≥ 0, i = 1, ..., n

lbi ≤ xi ≤ ubi, i = 1, ..., p

The CEC’2006 test functions are used to evaluate the performance of
CCALFNLS and CCiALFNLS algorithms. For each problem 30 independent
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runs are performed and mean (Mn) and standard deviation (sd) are pro-
vided in Table 3. In order to compare the performance of CCiALFNLS with
CCALFNLS algorithm, the t-test with the significance level of 0.05 is per-
formed. To perform the t-test the following hypotheses are considered.

H0 : Mnj = Mni

Ha : Mnj 6= Mni
(12)

where j=CCiALFNLS and i=CCALFNLS. After performing the pairwise t-
test for both algorithms, if CCiALFNLS is equal, superior or inferior to the
compared CCALFNLS algorithm, then h is equal to 0, 1 and -1 respectively.
As shown in Table 3, CCiALFNLS is superior to CCALFNLS in 18 test func-
tions (out of 22) and in 2 test functions both algorithms have the same
performance. In addition, CCALFNLS failed to obtain any feasible solution
for g03 and g14 (denoted by “inf” in Table 3). Fig. 4 shows the convergence
plots for CCiALFNLS and CCALFNLS algorithms in solving test problems g08,
g12, g16 and g19. These problems are chosen because g08 and g12 require
low computational cost (approximately 20,000 NFE). On the other hand, g16
and g19 use high computational cost (more than 200,000 NFE). As shown
in Fig. 4, CCiALFNLS converged to better solutions and were faster than
CCALFNLS. The aforementioned results demonstrate that CCiALFNLS out-
performs CCALFNLS in terms of constraint handling effectiveness, solution
quality and convergence speed.

Table 3: Comparison between CCiALFNLS and CCALFNLS in solving CEC’2006.

Algorithm g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11

CCiALFNLS
Mn -15 -0.789524 -0.92708 -30665.5 5184.802 -6961.81 24.30625 -0.09583 680.6301 7049.272 0.749898

sd 1.23E-15 1.04E-02 1.99E-01 2.03E-05 1.13E+02 1.22E-02 1.70E-04 1.20E-17 1.16E-10 5.53E-02 2.05E-06

CCALFNLS
Mn -11.466814 -0.48845 inf -28091.3 5842.945 -3387.15 30.81662 -0.06685 683.1372 19117.74 1.514531

sd 7.78E-01 4.56E-02 inf 6.49E+02 3.93E+02 3.84E+02 1.45E+00 3.59E-02 6.55E-01 3.98E+03 1.08E+00

h 1 1 - 1 1 1 1 1 1 1 1

Algorithm g12 g13 g14 g15 g16 g17 g18 g19 g21 g23 g24

CCiALFNLS
Mn -1 0.511189 -47.582 962.6993 -1.90516 8939.882 -0.82779 32.68655 240.2353 -282.256 -5.5034

sd 0.00E+00 2.64E-01 5.23E-01 1.56E+00 2.61E-08 5.58E+01 7.81E-02 1.03E-01 5.09E+01 1.07E+02 7.86E-08

CCALFNLS
Mn -0.96133 0.901668 inf 963.7127 -1.1045 8985.492 -0.33879 37.00475 545.5552 633.0714 -3.61184

sd 3.09E-02 2.20E-01 inf 2.20E+00 1.83E-01 1.01E+02 1.40E-01 3.76E-01 2.15E+02 2.70E+02 2.38E-02

h 1 1 - 0 1 0 1 1 1 1 1

5.2. Comparing CCiALF with other algorithms

Tables 4 and 5 present the results of CCiALF in comparison with seven
state-of-the-art algorithms found in literature, on the CEC’2006 test func-
tions set. In Tables 4 and 5, abbreviations are used for best solution (b),
mean(Mn), worst solution (w), standard deviation (sd) and average number
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(a) g08 (b) g12

(c) g16 (d) g19

Figure 4: Convergence graph for CCiALFNLS and CCALFNLS algorithms

of function evaluations (NFE). In Tables 4 and 5, “N/A” indicates that the
results are not reported in the cited algorithms and the best mean (Mn) val-
ues are presented in boldface. The performance of the proposed CCiALF is
compared with P-Bf AFSP[36], COMDE [27], A-DDE[25], PSGA[14], APF-
GA[45], M-ABC[24] and CB-ABC [5] algorithms. The results provided by
these approaches were directly taken from cited authors’ works.

The t-test with the significance level of 0.05 is performed according to Eq.
(12). After performing the pairwise t-test for CCiALF and other algorithms,
if CCiALF is equal, superior or inferior to the compared algorithm, then h
is equal to 0, 1 and -1, respectively. For instance in Table 4, problem g01,
column CB-ABC the value of h is equal to zero. Performing the pairwise
t-test demonstrates CCiALF and CB-ABC performed similarly in problem
g05.

For each column in Tables 4 and 5, the number of times h=1, h=0 and
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Table 4: Comparison of results for test functions g01 to g13.

Prob/
Opt value P-Bf AFSP[36] COMDE [27] A-DDE[25] PSGA[14] APF-GA[45] M-ABC[24] CB-ABC [5] CCiALF

b -14.99999 -15 -15 -15 -15 -15 -15 -15
Mn -14.99992 -15 -15 -15 -15 -15 -15 -15

g01 w N/A -15 -15 -15 N/A -15 -15 -14.99999
-15.0000 sd 2.30E-05 1.97E-13 7.00E-06 0 0.00E+00 0 5.03E-15 2.39E-08

h 1 0 0 0 0 0 0
NFE 48,929 130,000 180,000 100,000 500,000 20,500 135,180 30,819
b -0.764816 -0.803619 -0.803605 -0.803597 -0.803601 -0.803615 -0.8036191 -0.8036176
Mn -0.730774 -0.801238 -0.77109 -0.794836 -0.803518 -0.799336 -0.7945223 -0.7930875

g02 w N/A -0.785265 -0.609853 -0.786442 N/A -0.777438 -0.777844 -0.7617067
-0.803619 sd 1.80E-02 5.00E-03 3.66E-02 5.64E-03 1.00E-04 6.84E-03 8.32E-03 8.30E-03

h 1 -1 1 0 -1 -1 0
NFE 104,312 200,000 180,000 100,000 500,000 83,500 198,270 240,000
b -1.000008 -1.000000 -1 -1.0005 -1.001 -1 -1.0005 -1.000501
Mn -0.999575 -1.000000 -1 -1.0005 -1.001 -1 -1.0005 -1.000501

g03 w N/A -0.9999999 -1 -1.0005 N/A -1 -1.0005 -1.000500
-1.0005 sd 4.70E-04 3.03E-08 9.3E-12 2.69E-05 0.00E+00 4.68E-05 3.64E-07 1.69E-08

h 1 1 1 0 -1 1 0
NFE 51,994 150,000 180,000 100,000 500,000 189,000 90,090 87,860
b -30665.538 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
Mn -30665.524 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539

g04 w N/A -30665.539 -30665.539 -30665.539 N/A -30665.539 -30665.539 -30665.539
-30665.5387 sd 1.00E-02 0 3.20E-13 7.28E-12 1.00E-04 2.22E-11 8.72E-11 9.80E-06

h 1 0 0 0 0 0 0
NFE 102,188 50,000 180,000 100,000 500,000 76,400 45,045 26,268
b 5126.498 5126.498 5126.497 5126.497 5126.497 5126.736 5126.497 5126.4967
Mn 5128.478 5126.498 5126.497 5140.897 5127.542 5178.139 5126.497 5126.497

g05 w N/A 5126.498 5126.497 5166.438 N/A 5317.196 5126.497 5126.497
5126.4967 sd 1.50E+00 0 2.10E-11 1.44E+01 1.43E+00 5.61E+01 1.07E-10 9.17E-08

h 1 1 0 1 1 1 0
NFE 112,853 200,000 180,000 100,000 500,000 N/A 135180 156,248
b -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
Mn -6961.813 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814

g06 w N/A -6961.81388 -6961.814 -6961.814 N/A -6961.814 -6961.814 -6961.814
-6961.8139 sd 6.20E-04 0 2.11E-12 9.26E-12 0.00E+00 0 1.82E-12 5.19E-11

h 1 0 0 0 0 0 0
NFE 106,718 12,000 180,000 100,000 500,000 107,000 45,000 17,573
b 24.6325 24.3062 24.306 24.36 24.3062 24.315 24.3062 24.3062
Mn 25.4384 24.3062 24.306 24.738 24.3062 24.415 24.3062 24.3062

g07 w N/A 24.3062 24.306 24.999 N/A 24.854 24.3062 24.3062
24.3062 sd 3.60E-01 4.70E-07 4.02E-05 2.30E-01 0.00E+00 1.24E-01 4.16E-7 6.82E-07

h 1 0 -1 1 0 1 0
NFE 117,449 200,000 180,000 100,000 500,000 N/A 135,180 8,745
b -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582505
Mn -0.095824 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582505

g08 w N/A -0.095825 -0.095825 -0.095825 N/A -0.095825 -0.095825 -0.09582505
-0.095825 sd 3.40E-07 9.00E-18 9.10E-10 3.84E-09 0.00E+00 4.23E-17 2.87E-17 1.07E-15

h 1 1 1 1 1 1 1
NFE 8,967 4,000 180,000 100,000 500,000 1,550 8,000 4,812
b 680.6491 680.6300 680.63 680.631 680.63 680.632 680.63 680.6300
Mn 680.6674 680.6300 680.63 680.658 680.63 680.647 680.63 680.6300

g09 w N/A 680.6300 680.63 680.725 N/A 680.691 680.63 680.6300
680.630057 sd 8.60E-03 4.07E-13 1.15E-10 2.48E-02 0.00E+00 1.55E-02 2.77E-09 5.43E-08

h 1 0 0 1 0 1 0
NFE 106,406 70,000 180,000 100,000 500,000 N/A 45,045 12,801
b 7077.524 7049.248 7049.248 7049.255 7049.248 7051.706 7049.248 7049.248
Mn 7198.382 7049.248 7049.248 7059.107 7077.682 7233.882 7049.248 7049.248

g10 w N/A 7049.248615 7049.248 7092.609 N/A 7473.109 7049.248 7049.248
7049.248 sd 5.10E+01 1.50E-04 3.23E-04 12.6 5.12E+01 1.10E+02 3.98E-05 6.04E-07

h 1 0 0 1 1 1 0
NFE 125,880 200,000 180,000 100,000 500,000 N/A 135,180 2,858
b 0.7499 0.7499999 0.75 0.7499 0.7499 0.75 0.7499 0.7498959
Mn 0.749901 0.7499999 0.75 0.7499 0.7499 0.75 0.7499 0.7498984

g11 w N/A 0.7499999 0.75 0.7499 N/A 0.75 0.7499 0.7499000
0.749900 sd 8.10E-07 0 5.35E-15 1.92E-07 0.00E+00 2.3E-05 1.29E-10 2.04944E-16

h 1 1 1 1 1 1 1
NFE 75,997 50,000 180,000 100,000 500,000 189,000 90,090 168,448
b -1 -1 -1 -1 -1 -1 -1 -1
Mn -0.999998 -1 -1 -1 -1 -1 -1 -1

g12 w N/A -1 -1 -1 N/A -1 -1 -1
-1.000 sd 6.50E-07 0 4.10E-09 2.76E-09 0 0 0 0

h 1 0 0 0 0 0 0
NFE 11,494 6,000 180,000 100,000 500,000 1,350 13,500 17,892
b 0.056265 0.0539415 0.053942 0.054103 0.053942 0.053985 0.053942 0.05394151
Mn 0.289244 0.0539415 0.079627 0.061601 0.053942 0.158552 0.06677 0.05394261

g13 w N/A 0.0539415 0.438803 0.083042 N/A 0.442905 0.4388 0.05394986
0.0539415 sd 1.30E-01 1.40E-17 9.60E-02 7.23E-03 0.00E+00 1.73E-01 6.91E-02 4.03E-06

h 1 0 0 1 0 1 0
NFE 95,508 150,000 180,000 100,000 500,000 189,000 198,270 19,883

h=-1 are counted and summarised in Table 6 as Superior, Equal and Infe-
rior, respectively. For instance, in Table 6 the column PSGA, 16-6-0 means
that CCiALF is superior 16 times, equal 6 times, and inferior 0 time, when
compared with PSGA. Fig. 5 shows the computed scores of the CCiALF in
comparison with other algorithms.

As shown in Fig. 5, CCiALF significantly outperforms P-Bf AFSP,
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Table 5: Comparison of results for test functions g14 to g24 .

Prob/
Opt value PSGA[14] APF-GA[45] M-ABC[24] CB-ABC [5] CCiALF

b -47.738 -47.7648 -47.641 -47.7649 -47.7649
Mn -47.679 -47.7648 -47.271 -47.7649 -47.7649

g14 w -47.567 N/A -46.537 -47.7648 -47.7649
-47.765 sd 3.74E-02 1.00E-04 2.46E-01 1.02E-05 4.04E-08

h 1 1 1 0
NFE 100,000 500,000 N/A 239,715 152,697
b 961.715 961.7150 961.715 961.715 961.7150
Mn 961.732 961.7150 961.719 961.715 961.7150

g15 w 961.769 N/A 961.793 961.715 961.7150
961.715 sd 1.74E-02 0.00E+00 1.42E-02 2.81E-11 1.86E-08

h 1 0 0 0
NFE 100,000 500,000 189,000 135,180 77,910
b -1.905 -1.905155 -1.905 -1.905 -1.905155
Mn -1.905 -1.905155 -1.905 -1.905 -1.905155

g16 w -1.905 N/A -1.905 -1.905 -1.905155
-1.905 sd 4.68E-15 0.00E+00 4.52E-16 7.90E-11 9.77E-09

h 1 0 1 1
NFE 100,000 500,000 23,300 45,045 196,196
b 8855.704 8853.539 8866.618 8853.534 8857.447
Mn 8944.808 8888.487 8987.459 8902.870 8916.856

g17 w 9009.484 N/A 9165.219 8941.941 8956.457
8853.540 sd 2.75E+01 2.90E+01 9.57E+01 3.74E-01 3.64E+01

h 1 -1 1 -1
NFE 100,000 500,000 189,000 239,715 240,000
b -0.866025 -0.866025 -0.866025 -0.866025 -0.8660255
Mn -0.856956 -0.865925 -0.7950187 -0.866025 -0.8660255

g18 w -0.814956 N/A -0.672216 -0.866025 -0.8660249
-0.866025 sd 1.21E-02 0.00E+00 9.39E-02 1.72E-08 3.58E-07

h 1 1 1 1
NFE 100,000 500,000 70,600 135180 8,742
b 32.796 32.65559 33.285 32.6556 32.65561
Mn 33.752 32.65559 34.267 32.6556 32.66077

g19 w 34.789 N/A 35.746 32.6557 32.75902
32.656 sd 6.61E-01 0.00E+00 6.31E-01 1.88E-05 2.35E-04

h 1 -1 1 -1
NFE 100,000 500,000 N/A 198,270 240,000
b 193.78 196.6330 266.5 193.725 193.7243
Mn 241.603 199.5158 306.609 193.725 193.7352

g21 w 293.762 N/A 329.96 193.725 193.7586
193.725 sd 4.07E+01 2.36E+00 1.98E+01 2.17E-06 1.20E-02

h 1 1 1 -1
NFE 100,000 500,000 N/A 198,270 240,000
b -400.052 -399.7624 -159.739 -400.055 -400.0551
Mn -193.642 -394.7627 -35.272 -400.055 -400.0536

g23 w -12.929 N/A 109.01 -400.055 -400.0364
-400.055 sd 1.23E+02 3.87E+00 8.28E+01 6.89E-05 5.00E-03

h 1 1 1 0
NFE 100,000 500,000 N/A 239,715 240,000
b -5.508 -5.508013 -5.508 -5.508 -5.508013
Mn -5.508 -5.508013 -5.508 -5.508 -5.508013

g24 w -5.508 N/A -5.508 -5.508 -5.508013
-5.508 sd 1.33E-08 0.00E+00 2.71E-15 7.15E-15 1.30E-08

h 1 0 1 1
NFE 100,000 500,000 6,800 27,000 6,450

Table 6: Pairwise comparison of CCiALF algorithm and other algorithms.

P-Bf AFSP[36] COMDE [27] A-DDE[25] PSGA[14] APF-GA[45] M-ABC[24] CB-ABC [5]
Superior 13(100%) 4(31%) 4(31%) 16(73%) 8(37%) 16(73%) 5(23%)
Equal 0(0%) 8(61%) 8(61%) 6(27%) 10(45%) 5(23%) 14(63%)
Inferior 0(0%) 1(8%) 1(8%) 0(0%) 4(18%) 1(4%) 3(14%)
Total functions 13 13 13 22 22 22 22

COMDE, A-DDE, PSGA, APF-GA and M-ABC algorithms. But the pro-
posed algorithm wins 5 times, draws 14 times and loses 3 times when com-
pared to CB-ABC (according to Table 6), suggesting that both CCiALF
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Figure 5: The number of “wins-draws-losses” of CCiALF compared with other algorithms.

and CB-ABC algorithms perform similarly. To compare both algorithms in
terms of efficiency, their NFE are presented in Fig. 6. For 13 out of 22 test

Figure 6: Comparison of CCiALF with CB-ABC [5] in terms of NFE.

functions (g01, g03, g04, g06, g07, g08, g09, g10, g13, g14, g15, g18 and
g24), CCiALF has fewer NFE than CB-ABC. For these 13 test functions,
CCiALF has superior or equal solution quality compared to CB-ABC. On
the other hand, for the remaining problems (g02, g05, g11, g12, g16, g17,
g19, g21 and g23) CCiALF has consumed more NFE than that of CB-ABC.
In order to perform a fair comparison between CCiALF and CB-ABC, the
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same MaxNFE that were used by CB-ABC[5] are used here to obtain the
results shown in Table 7. In this case, CCiALF algorithm has similar or

Table 7: Comparison between CCiALF and CB-ABC with equal MaxNFE.

Algorithm g02 g05 g11 g12 g16 g17 g19 g21 g23

CCiALF
Mn -0.7929139 5126.497 0.7499 -1 -1.90514 8916.836 32.66290 193.7383 -400.0537

sd 6.08E-03 6.17E-04 4.35E-07 3.64E-10 1.48E-07 2.27E+01 5.45E-02 2.45E-02 5.83E-05

CB-ABC
Mn -0.7945223 5126.497 0.7499 -1 -1.905 8902.870 32.6556 193.725 -400.055

sd 8.32E-03 1.07E-10 1.29E-10 0 7.90E-11 3.74E-01 1.88E-05 2.17E-06 6.89E-05

h 0 0 0 0 1 -1 -1 -1 -1

MaxNFE 198,270 135,180 90,090 13,500 45,045 239,715 198,270 198,270 239,715

better performance than CB-ABC algorithm in g02, g05, g11, g12 and g16
while CCiALF lost the competition in g17, g19, g21 and g23. To sum up,
according to Tables 4, 5 and 7, CCiALF has superior or equal solution qual-
ity compared to CB-ABC in 18 out of 22 test functions (g01, g02, g03, g04,
g05, g06, g07, g08, g09, g10, g11, g12, g13, g14, g15, g16, g18 and g24) while
using less or equal computation budget.

5.3. Results on engineering problems

In this section CCiALF algorithm is evaluated on five engineering prob-
lems from [34],[41],[4],[15] and [35]. The first problem is known as welded
beam design [34]. In this problem the cost function is minimised subject
to the stress constraint, physical constraints, buckling constraint, deflection
constraint and side constraints. The problem is formulated as follows [8]:

min f(x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2)

s.t. g1(x) ≡ τmax − τ(x) ≥ 0

g2(x) ≡ σmax − σ(x) ≥ 0

g3(x) ≡ x4 − x1 ≥ 0

g4(x) ≡ 5.0− 0.10471x21 − 0.04811x3x4(14.0 + x2) ≥ 0

g5(x) ≡ x1 − 0.125 ≥ 0

g6(x) ≡ δmax − δ(x) ≥ 0

g7(x) ≡ Pc(x)− 6000 ≥ 0

0.1 ≤ (x1, x4) ≤ 2, 0.1 ≤ (x2, x3) ≤ 10

(13)

where,
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where P=6000 lb, L=14 in., δmax = 0.25 in., E = 30× 106 psi, G = 12× 106

psi, τmax = 13600 psi and σmax = 30000 psi. The results of CCiALF are
compared with Coe02 [8], COMDE [27], MVDE [11] and CB-ABC [5] algo-
rithms in Table 8. As shown in Table 8, CCiALF outperforms Coe02 and
MVDE algorithms in terms of solution quality. Although CCiALF has sim-
ilar solution quality as COMDE and CB-ABC algorithms, the NFE value
for CCiALF is significantly fewer than other algorithms. The best objective
function value found by CCiALF algorithm is fCCiALF = 1.724852 with the
decision vector:
xCCiALF = (0.205729639785972, 3.470488665631285, 9.036623910355711, 0.205729639786304).
The reported decision variable is feasible and constraints are : g1(x) =
7.24E − 10, g2(x) = 2.00E − 08, g3(x) = 3.32E − 13, g4(x) = 3.432983785,
g5(x) = 0.08072964, g6(x) = 0.235540323 and g7(x) = 1.88E − 08.

The second engineering problem is proposed by Sandgren [41] called pres-
sure vessel design which tries to minimise the cost function for materials of
forming and welding of pressure vessel. The four decision variables are x1
(thickness of the shell), x2 (thickness of the head), x3 (inner radius) and
x4 (length of the cylindrical segment of the vessel). x1 and x2 can only
be the integer multiples of 0.0625 inch [2]. Table 8 presents the statistical
results for CCiALF, Coe02 [8], HCP [29], COMDE [27], MVDE [11] and
CB-ABC [5] algorithms. The best found solution obtained by CCiALF is
fCCiALF = 6059.7143350 with the decision vector:
xCCiALF = (0.8125, 0.4375, 42.098445595854810, 176.6365958424410)
and the constraints are g1(x) = 0, g2(x) = 3.59E − 02, g3(x) = 0 and
g4(x) = 63.36 which demonstrates the obtained solution is feasible. The
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Table 8: Results for engineering problems (Note that “N/A” denotes the results are not
available and the best mean vales are presented in boldface).

Welded beam design
Algorithm best mean worst std NFE h
Coe02[8] 1.728226 1.792654 1.993408 7.47E-02 80,000 1
COMDE [27] 1.724852 1.724852 1.724852 1.60E-12 20,000 0
MVDE [11] 1.7248527 1.7248621 1.7249215 7.88E-06 15,000 1
CB-ABC [5] 1.724852 1.724852 N/A 2.38E-11 15,000 0
CCiALF 1.724852 1.724852 1.724854 5.11E-07 10,000

Pressure vessel design
Algorithm best mean worst std NFE h
Coe02[8] 6059.946341 6177.253268 6469.32201 1.31E+02 80,000 1
HCP[29] 6059.69 6171.13 N/A 1.13E+02 30,000 1
COMDE [27] 6059.714335 6059.714335 6059.714335 3.62E-10 30,000 0
MVDE [11] 6059.714387 6059.997236 6090.533528 2.91E+00 15,000 0
CB-ABC [5] 6059.714335 6126.623676 N/A 1.14E+02 15,000 1
CCiALF 6059.714335 6059.714335 6059.714335 1.01E-11 12,000

Weight of a tension/compression string
Algorithm best mean worst std NFE h
Coe02[8] 0.012679 0.012742 0.012973 5.90E-05 80,000 1
HCP[29] 0.012679 0.0127 N/A 1.90E-05 650 1
COMDE [27] 0.012665233 0.012667168 0.012676809 3.09E-06 20,000 1
MVDE [11] 0.01266527172 0.012667324 0.012719055 2.45E-06 10,000 1
CB-ABC [5] 0.012665 0.012671 N/A 1.42E-05 15,000 1
CCiALF 0.01266523279 0.012665251 0.012665233 9.87E-08 5,000

Speed reducer design
Algorithm best mean worst std NFE h
COMDE [27] 2994.4710661 2994.4710661 2994.4710661 1.54E-12 21,000 0
MVDE [11] 2994.471066 2994.471066 2994.471069 2.82E-07 30,000 0
CB-ABC [5] 2994.471066 2994.471066 N/A 2.48E-07 15,000 0
CCiALF 2994.471066 2994.471066 2994.4710661 2.31E-12 10,000

Three-bar truss design
Algorithm best mean worst std NFE h
COMDE [27] 263.8958434 263.8958434 263.8958434 5.43E-13 21,000 0
MVDE [11] 263.89584337 263.89584338 263.8958548 2.58E-07 7,000 0
CCiALF 263.89584337 263.89584337 263.89584337 4.23E-14 5000

CCiALF algorithm outperforms Coe02, HCP and CB-ABC algorithms in
terms of solution quality and is more efficient than COMDE and MVDE
algorithms. This problem is formulated as follows [29]:
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min f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

s.t. g1(x) = −0.0193x3 + x1 ≥ 0

g2(x) = −0.00954x3 + x2 ≥ 0

g3(x) = −1296000 + πx23x4 +
4

3
πx33 ≥ 0

g4(x) = −x4 + 240 ≥ 0

0.0625 ≤ x1 ≤ 6.1875, 0.0625 ≤ x2 ≤ 6.1875,

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

(14)

The third engineering problem is minimisation of weight of a tension/
compression sting presented by [4] subject to constraints on minimum de-
flection, shear stress, surge frequency and limits on outside diameter. The
formulation of the problem is as follows [29]:

min f(x) = (x3 + 2)x2x
2
1

s.t. g1(x) =
x32x3

71785x41
− 1 ≥ 0

g2(x) = 1− 4x22 − x1x2
12566(x2x31 − x41)

− 1

5108x21
≥ 0

g3(x) =
140.45x1
x22x3

− 1 ≥ 0

g4(x) = 1− x1 + x2
1.5

≥ 0

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(15)

The results for CCiALF, Coe02 [8], HCP [29] COMDE [27], MVDE [11]
and CB-ABC [5] algorithms are presented in Table 8. As shown in Table 8,
CCiALF slightly improves the best known objective function value and the
proposed algorithm outperforms other algorithms. The obtained objective
function value is fCCiALF = 0.01266523279 and the corresponding decision
vector and constraints are as follows:
x = (0.051689059696547, 0.356717706450724, 11.288967706745048), g1(x) =
2.22E − 16, g2(x) = 1.11E − 16, g3(x) = 4.05 and g4(x) = 7.28E − 01.

The fourth engineering problem is introduced by Golinski [15] and known
as speed reducer design. The problem involves the minimisation of the weight
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of speed reducer. The speed reducer problem has seven decision variables and
eleven constraints. The formula of speed reducer design is as follows:

min f(x) = 0.7854x1x
2
2(3.3333x23 + 14.9334x3 − 43.0934)− 1.508x1

(x26 + x27) + 7.4777(x36 + x37) + 0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) = 1− 27

x1x22x3
≥ 0

g2(x) = 1− 397.5

x1x22x
2
3

≥ 0

g3(x) = 1− 1.93x34
x2x3x46

≥ 0

g4(x) = 1− 1.93x35
x2x3x47

≥ 0

g5(x) = 1− 1

110x36

√√√√(745x4
x2x3

)2

+ 16.9× 106 ≥ 0

g6(x) = 1− 1

85x37

√√√√(745x5
x2x3

)2

+ 157.5× 106 ≥ 0

g7(x) = 1− x2x3
40
≥ 0

g8(x) = 1− 5x2
x1
≥ 0

g9(x) = 1− x1
12x2

≥ 0

g10(x) = 1− (1.5x6 + 1.9)

x4
≥ 0

g11(x) = 1− (1.1x7 + 1.9)

x5
≥ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

(16)

The problem is solved by CCiALF and the results are compared with COMDE
[27], MVDE [11] and CB-ABC [5] algorithms in Table 8. Although the per-
formance of CCiALF algorithm is similar to other algorithms, the NFE value
is significantly fewer than others. The decision variable vector and the con-
straints are as follows:
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x = (3.505071907646737, 0.700070905298447, 17.000572946016090, 7.413638851442300,

7.824441935611341, 3.352677467256310, 5.287622983296388), g1(x) = 7.39E − 02,
g2(x) = 1.98E − 01, g3(x) = 4.92E − 01, g4(x) = 9.4E − 01, g5(x) =
7.79E − 12, g6(x) = 5.65E − 12, g7(x) = 7.02E − 01, g8(x) = 3.27E − 12,
g9(x) = 5.83E − 01, g10(x) = 5.13E − 02 and g11(x) = 1.08E − 11 with
fCCiALF = 2994.471066.

The last engineering problem is called three-bar truss design [35]. The
optimisation problem consists of minimising the volume of a loaded 3-bar
truss, subject to stress constraints on each of the truss members. Eq. (17)
presents the formulation of the three-bar truss design.

min f(x) = (2
√

2x1 + x2)× 100

s.t. g1(x) = 2− 2×
√

2x1 + x2√
2x21 + 2x1x2

≥ 0

g2(x) = 2− 2× x2√
2x21 + 2x1x2

≥ 0

g3(x) = 2− 2× 1

x1 +
√

2x2
≥ 0

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

(17)

As shown in Table 8, CCiALF algorithm has the same performance as COMDE
[27] and MVDE [11] algorithms with fewer number of function evaluations.
The decision vector and the constraints obtained by CCiALF are as follows:
x = (0.788675131095601, 0.408248300361130), g1(x) = 0, g2(x) = 1.46E+00
and g3(x) = 5.36E − 01 with fCCiALF = 263.89584337.

To sum up, CCiALF algorithm slightly improves the objective function
value for the third engineering problem, whereas the CCiALF reaches the
best known objective value in other engineering problems. In all engineering
problems CCiALF uses remarkably fewer NFE in comparison to other algo-
rithms. Particularly, in the four engineering problems which CCiALF and
CB-ABC are compared, the proposed CCiALF algorithm is equal or superior
to CB-ABC algorithm in terms of solution quality with less computational
cost. In short, CCiALF demonstrates promising results in obtaining high
quality solutions for these engineering problems while the NFE for solving
all engineering problems are fewer than other algorithms.
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6. Conclusion

In this paper a CCiALF algorithm has been proposed to solve constrained
optimisation problems. The proposed algorithm employs the cooperative co-
evolutionary framework that coevolves two populations, one for the decision
variables, and the other for Lagrangian multipliers. We have demonstrated
that the conventional ALF method has an issue of distorting the objective
values for solutions in feasible regions and to remedy this problem, we have
proposed an improved ALF method (iALF), which can reduce the amount
of distortion caused in the ALF. In order to demonstrate the capability of
the proposed iALF, CCiALFNLS and CCALFNLS algorithms are applied to
solve the CEC’2006 test functions. The experimental results have shown
that CCiALFNLS significantly outperforms CCALFNLS in terms of constraint
handling efficiency, solution quality and convergence speed. Following that,
this paper also shows that CCiALF algorithm is equal or superior to the
state-of-the-art algorithms in terms of solution quality and superior in effi-
ciency. Another substantial advantage of CCiALF algorithm is its ability to
deal with black-box optimisation problems as well as solving real-world en-
gineering problems in an efficient way. Our future work will be looking into
applying CCiALF algorithm to solve more challenging real-world constrained
optimisation problems.
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