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Abstract

In this paper, we propose a novel data-driven approach for removing trends (detrending) from
nonstationary, fractal and multifractal time series. We consider real-valued time series relative to
measurements of an underlying dynamical system that evolves through time. We assume that such
a dynamical process is predictable to a certain degree by means of a class of recurrent networks
called Echo State Network (ESN), which are capable to model a generic dynamical process. In
order to isolate the superimposed (multi)fractal component of interest, we define a data-driven filter
by leveraging on the ESN prediction capability to identify the trend component of a given input
time series. Specifically, the (estimated) trend is removed from the original time series and the
residual signal is analyzed with the multifractal detrended fluctuation analysis procedure to verify
the correctness of the detrending procedure. In order to demonstrate the effectiveness of the proposed
technique, we consider several synthetic time series consisting of different types of trends and fractal
noise components with known characteristics. We also process a real-world dataset, the sunspot
time series, which is well-known for its multifractal features and has recently gained attention in the
complex systems field. Results demonstrate the validity and generality of the proposed detrending
method based on ESNs.
Keywords— Fractal time series; Multiscaling; Fluctuation analysis; Detrending; Echo state network;
Prediction.

1 Introduction

Memory is one of the most interesting aspects of many processes in Nature and society [19]. In order
to characterize and predict a system with memory, it is necessary to keep into account its past history.
Memory can be quantified in different ways, depending on the particular features and effects of interest.
One of the most common approaches in the study of real-valued time series is the analysis of the autocor-
relation function. In such a linear setting, the extent of memory can be roughly quantified through the
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decay of the autocorrelation function, which indicates the characteristic time scales at which the series
remains correlated. When the decay is exponential, the series is said to manifest short-term memory and
the influence of the past to the current state is limited in time. Instead, if the decay follows a power-law,
then there is no characteristic scale in the autocorrelation, i.e., the influences of the past have no cut-off.
In this case, a time series is said to manifest long-term memory or long-term correlation (LTC) and the
strength of this correlation is referred to as degree of persistence of the generating stochastic process.
Persistence of a stochastic process [41] is quantified by the self-similarity coefficient of the process’ fluc-
tuations, called Hurst exponent H ∈ [0, 1]. A straightforward numeric approach to estimate the Hurst
coefficient is the Fluctuation Analysis (FA), which evaluates the slope of the fluctuations scaling func-
tion F (s). This function is in turn calculated by dividing the integrated time series in segments of equal
sizes s and evaluating the root mean square difference between their extremal points. When the process
corresponds to uncorrelated noise (e.g., white Gaussian noise), then the value of H is 0.5, whereas if the
process is persistent (correlated) or antipersistent (anticorrelated) it will be respectively greater than or
less than 0.5.

However, conventional methods employed to analyze the LTC properties of a time series (e.g., FA,
spectral analysis, R/S analysis [3, 43, 44]) are misleading when such time series are non-stationary [8].
In fact, in many cases a process is driven by underlying trends [25], which operate at specific time
scales, like seasons in the analysis of data related to a natural phenomenon and days in financial market
analysis. Usually, when investigating memory properties of a process, one is interested in the fractal
properties of the intrinsic fluctuations of such a process. Hence, to analyze the fluctuations of the
stationary component of a time series, it is necessary to remove the non-stationary trend components.
This can be done by employing one of the several methods proposed for this purpose, like detrended
fluctuation analysis (DFA), detrended moving average, wavelet leaders [47], adaptive fractal analysis
[40], and the so-called geometric-based approaches [17]. Notably, DFA has been shown to be successful
in a broad range of applications [29, 32, 44]. The DFA has been generalized in the so-called Multifractal
Detrended Fluctuation Analysis (MFDFA) [4, 9, 30, 38], which accounts for the existence of multiple
scaling exponents in the same data. DFA and the related variants remove trends from data by means
of window-based local (polynomial) fittings. However, trends are often defined in terms of periodicities
and/or fast-varying functions, resulting thus in a spurious detection of fractality [20]. For this reason,
additional detrending methods are often used as a preprocessing step of the (MF-)DFA to single out
these trends before the polynomial detrending takes place. In other research works, the local detrending
step of DFA is modified or replaced with other ad-hoc methods [24, 31, 39].

The main problem with detrending lies in the difficulty of defining what exactly a trend is [48].
Local-fit based methods rely on the assumption that a trend is generally a slow-varying process, while
the superimposed noise is a process characterized by higher frequencies. While this is often the case, it
is still difficult to determine the right form and parameters of the fitting function without biasing the
analysis. Moreover, window-based fitting algorithms are heavily influenced by the choice of the window
sizes. In [48] a trend is defined as an intrinsically fitted monotonic function or a function in which there
can be at most one extremum within a given data span. This method is not affected by border effects
since it is not window-based. However, a problem with this definition is that it does not (fully) describe
periodic trends in a consistent way. Chianca et al. [10] suggested to perform a detrending by applying
a simple low-pass filter, in order to eliminate slow periodic trends from data. While this approach is
suitable for systems with slow-varying trends, it is difficult to apply to more general cases, when the
trends’ frequencies span over a significant portion of the (power) spectrum. Another approach that has
been demonstrated to be useful in the case of periodicities was proposed by Nagarajan [37]. As a first step,
the signal is represented as a matrix, whose dimension has to be much larger than the number of frequency
components of the periodic (or quasi-periodic) trends as shown by the power spectrum. The well-known
singular value decomposition method is then applied to remove components related to large-magnitude
eigenvalues, which correspond to the trend. Such a method, although interesting and mathematically
well-founded, is very demanding in terms of computations and also assumes a deterministic form for
trends.

In this work, we follow an approach similar to Wu et al. [48] and define a trend in a completely
data-driven way. We consider the analyzed time series as a series of noisy measurements of an unknown
dynamical process. We also assume that the dynamical process is predictable to a certain degree by means
of a particular type of Recurrent Neural Network (RNN) called Echo State Network (ESN) [7, 34]. RNNs
have been shown to be able to predict the outcome of a number of dynamical processes [12]. In particular,
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a fundamental theorem formulated within the Neural Filtering framework, relates the number of neurons
in a RNN hidden layer with the expected approximation accuracy of the estimated signal with respect
to the true signal [33] of the process. Specifically, given a sufficiently large amount of processing units,
a RNN that takes as input the measurement process can output an estimation that can be made as
close as desired to the signal process, given its past input sequences. However, not all processes are
predictable at the same level, as formally studied in [5, 11], for instance. For example, chaotic processes
are not predictable for long time-steps, while other deterministic systems, like a sinusoidal waveform,
can be easily predicted. In a stochastic setting, instead, we note that white noise cannot be predicted
at all, since the past observations do not convey any information about the future. On the other hand
correlated noise signals, such as fractional Gaussian noise (fGn), are in theory partially predictable
given the presence of memory in the process. To handle prediction problems of increasing difficulty,
models characterized by a higher complexity or a larger amount of training data are required. In the
case of ESNs, the complexity of the model is mainly determined by the properties and the size of its
recurrent hidden layer. Here we propose to perform a data-driven detrending of nonstationary, fractal
and multifractal time series by using ESNs acting as a filter. In this study, trends are the only form of
nonstationarities that we consider. By means of ESNs, we predict the trend of a given input time series,
which is always superimposed to the (multi)fractal component of interest. Such a trend is then removed
from the original time series and the residual signal is analyzed with MFDFA in order to evaluate its
scaling and (multi)fractal properties.

The remainder of the paper is structured as follows. In Section 2, we provide technical background
related the main tools utilized in this work, namely the MFDFA procedure and ESNs. In Section 3 we
present the detrending method based on ESNs. Notably, we employ an ensemble of ESNs with fixed
complexity (i.e., network sizes and connectivities) to separate the (multi)fractal signals from the trends.
In Section 4, we show and discuss the experimental results obtained on a number of time series related
to mathematical models and on the well-known sunspot data. Finally, concluding remarks are provided
in Section 5.

2 Technical background

In this Section we provide a technical background on the main tools used in this work: Multifractal
Detrended Fluctuation Analysis and Echo State Networks.

2.1 Multifractal detrended fluctuation analysis

The Multifractal Detrended Fluctuation Analysis, a generalization of the Detrended Fluctuation Analy-
sis, is at present one of the most efficient methods for estimating and quantifying the fractal properties
of a time series. The procedure is described thoroughly in [30] and is reported briefly in the following.
Let x = {x(t)}Tt=1 be a time series of length T with compact support. The procedure consists of five
steps, three of which are identical to the DFA version.

• Step 1 : Evaluate Y (i) as the cumulative sum (profile) of the series as

Y (i) ≡
i∑
t=1

[x(t)− 〈x〉] , i = 1, . . . , T. (1)

• Step 2 : Separate Y (i) in Ns ≡ b(T/s)c non-overlapping segments of equal length s, b·c being the
floor operation. To account for non-zero remainders of the division, this operation is repeated in
reverse order starting from the opposite end of the series, thus obtaining a total of 2Ns segments.

• Step 3 : Perform local detrending by fitting a polynomial functional form on each of the 2Ns
segments. Then determine the variance,

F 2(ν, s) ≡ 1

s

s∑
i=1

{
Y [(ν − 1)s+ i]− yν(i)

}2

, (2)
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for each segment ν = 1, . . . , Ns and

F 2(ν, s) ≡ 1

s

s∑
i=1

{
Y [T − (ν −Ns)s+ i]− yν(i)

}2

(3)

for ν = Ns + 1, . . . , 2Ns, where yν(i) is the fitted polynomial in segment ν. The order m of the
fitting polynomial, yν(i), determines the extent of the (MF-)DFA in filtering out trends in the
series, thus it has to be tuned according to the expected maximum trending order of the time
series.

• Step 4 : Compute the qth-order average of the variance over all segments,

Fq(s) ≡
{

1

2Ns

2Ns∑
ν=1

[
F 2(ν, s)

]q/2}1/q

, (4)

with q ∈ R. The q-dependence of the fluctuations function Fq(s) highlights the contribution of
fluctuations at different orders of magnitude. For q > 0 (q < 0) only larger (smaller) fluctuations
contribute mostly to the average in Eq. (4). For q = 2 the standard DFA procedure is obtained.
The case q = 0 is not well defined with the averaging form in Eq. (4) and so a logarithmic form
has to be employed,

F0(s) = exp

{
1

2Ns

2Ns∑
ν=1

ln
[
F 2(ν, s)

]}
. (5)

Steps 2 to 4 are repeated for different time scales s, where all values of s have to be chosen such
that s ≥ m+2 to allow for a meaningful fitting of data. It is also convenient to avoid scales s > T/4
because of the statistical unreliability of such small numbers Ns of segments considered.

• Step 5 : Determine the scaling behavior of the fluctuation functions by analyzing log-log plots
of Fq(s) versus s for each value of q. If the series xi is long-range power-law correlated, Fq(s) is
approximated (for large values of s) by the form

Fq(s) ∼ sh(q). (6)

The exponent h(q) is the generalized Hurst exponent ; for q = 2 and stationary time series, h(q)
reduces to the standard Hurst exponent, H. When the time series manifests a uniform scaling over all
magnitudes of fluctuations - i.e. h(q) is independent of q - the series is said monofractal. On the contrary,
when h(q) is spread over several values the series is multifractal.

Starting from Eq. (4) and using Eq. (6), it is straightforward to obtain

T/s∑
ν=1

[F (ν, s)]q ∼ sqh(q)−1, (7)

where, for simplicity, it has been assumed that the length T of the series is a multiple of the scale s, such
that Ns = T/s. The exponent

τ(q) = qh(q)− 1 (8)

corresponds to the multifractal generalization of the mass exponent. In case of positive stationary and
normalized time series, τ(q) corresponds to the scaling exponent of the q-order partition function Zq(s).
Another quantity that characterizes the multifractality of a series is the singularity spectrum, D(α),
which is obtained by applying the Legendre transform to τ(q),

D(α) = qα− τ(q), (9)

where α is equal to the derivative τ ′(q) and corresponds to the Hölder or singularity exponent. Using
Eq. (8) it is possible to directly relate α and D(α) to h(q), obtaining:

α = h(q) + qh′(q) and D(α) = q[α− h(q)] + 1. (10)
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The multifractal spectrum in Eq. (9) allows to infer important information regarding the “degree of
multifractality” and the specific sensitivity of the time series to fluctuations of different magnitudes. In
fact, the width of the support of D(·) is an important quantitative indicator of the multifractal character
of the series (the larger, the more multifractal a series is). Also the codomain of D(·) encodes useful
information, since it corresponds to the dimension of the subset of the times series domain which is
characterized by the singularity exponent α.

2.2 Echo state networks

ESNs belong to the class of computational dynamical systems, implemented according to the biologically-
inspired reservoir computing approach [34]. An input signal is fed to a large, recurrent and randomly
connected hidden layer, the reservoir, whose outputs are combined by a memory-less linear layer, called
readout, to solve a specified task. ESNs have been adopted in a variety of different contexts, such as
time series prediction [6], static classification [2], speech recognition [45], adaptive control [21] harmonic
distortion measurements [35] and, in general, for modeling of various kinds of non-linear dynamical
systems [22]. A schematic depiction of an ESN is shown in Fig. 1.
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Figure 1: Schematic depiction of an ESN.
The circles represent the input variables u,
the state variables h and the output vari-
ables y. The squares depicted with solid
lines, Wo

r and Wo
i , are the trainable weight

matrices of the readout, while the squares
with dashed lines, Wr

r , Wr
o and Wr

i , are
random initialized weight matrices. The
polygon represents the non-linear transfor-
mation performed by neurons and z-1 is the
backshift/lag operator.

The current output of an ESN is computed in two distinct phases. First, the Ni-dimensional input
vector u(t) ∈ RNi is given as input to the recurrent reservoir, whose internal state h(t − 1) ∈ RNr is
updated according to the state equation:

h(t) = fres (Wr
iu(t) + Wr

rh(t− 1) + Wr
oy(t− 1)) , (11)

where Wr
i ∈ RNr×Ni , Wr

r ∈ RNr×Nr and Wr
o ∈ RNr×No are randomly initialized at the beginning of

the learning process, and they remain unaltered afterwards. fres(·) in Eq. (11) is a suitable non-linear
function, typically a sigmoid, and y(t− 1) ∈ RNo is the previous output of the network. In our case, we
have fres(·) = tanh(·). In the second phase, the ESN prediction is computed according to:

y(t) = Wo
iu(t) + Wo

rh(t) , (12)

where Wo
i ∈ RNo×Ni ,Wo

r ∈ RNo×Nr are trainable connections. The difference between fixed and
adaptable weight matrices is shown in Fig. 1 with the use of continuous and dashed lines, respectively.

Finally, a few words should be spent on the choice of the matrix Wr
r . According to the ESN theory,

the reservoir must satisfies the so-called “echo state property” (ESP) [34]. This means that the effect of
a given input on the state of the reservoir must vanish in a finite number of time-instants. In this paper
we adopt the widely used rule-of-thumb that suggests to rescale the matrix Wr

r to have ρ(Wr
r) < 1,

where ρ(·) denotes the spectral radius.
To determine the weight matrices of the readout, let us consider a training sequence of Ttr desired

input-outputs pairs {u(t),d(t)}Ttr

t=1, where the output is given by d(t) = u(t + τf ). Here, τf defines
the forecast horizon (or step ahead) considered in the prediction, i.e. how far ahead in time the input
signal must be predicted. In the initial phase of training, called “state harvesting”, the inputs are fed to
the reservoir in accordance with Eq. (11), producing a sequence of internal states {h(t)}Ttr

t=1. Since, by
definition, the outputs of the ESN are not available for feedback, the desired output is used instead in
Eq. (12) (the so-called “teacher forcing”). The states are stacked in a matrix H ∈ RTtr×Ni+Nr and the
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desired outputs in a vector d ∈ RQ:

H =

 uT (1), hT (1)
...

uT (Ttr), h
T (Ttr)

 , (13)

d =

 d(1)
...

d(Ttr)

 . (14)

The initial D rows from Eq. (13) and Eq. (14) should be discarded, since they refer to a transient phase
in the ESN’s behavior. We refer to them as the washout elements.

At this point the resulting training problem is a standard linear regression, which can be solved in
a large variety of ways. We used the least-square regression, which is the algorithm originally proposed
for training the readout [27]. It consists in the following regularized least-square problem:

w∗ls = arg min
w∈RNi+Nr

1

2
‖Hw − d‖22 +

α

2
‖w‖22 , (15)

where w = [wo
i w

o
r ]
T

and α ∈ R+ is a positive scalar known as regularization factor. A solution of
problem (15) can be obtained in closed form as:

w∗ls =
(
HTH + αI

)−1
HTd . (16)

Whenever Nr +Ni > Q, Eq. (16) can be computed more efficiently by rewriting it as:

w∗ls = HT
(
HHT + αI

)−1
d . (17)

Once the readout layer is trained, when the network is fed with an unseen input signal u(t), with
t > Ttr, it returns a predicted value ŷ(t) = u(t + τf ), according to the step ahead τf defined in the
training phase.

3 Detrending using ESNs

We now describe the main assumptions of our model and the detrending procedure to be used on a given
univariate time series y(t). We consider y(t) as being composed of two superimposed components of
different degrees of predictability:

• a trend process x(t), which corresponds to the main stochastic process. This process represents
the intrinsic dynamical evolution of the studied system and is predictable with high accuracy by
an ESN;

• a noise process n(t), which is less predictable by an ESN, hence requiring a more complex model
to be described.

Under the assumption of statistical independence between x(t) and n(t), y(t) can be separated in the
sum

y(t) = x(t) + n(t), t ∈ N. (18)

The trend x(t) is a nonstationary stochastic process of larger magnitude with respect to n(t), even if
there are no hard constraints on their relative scales. The noise process, instead is a zero-mean, self-
similar and stationary stochastic process which can in general be correlated, and thus is characterized by
a Hurst coefficient and a multifractal spectrum. Prototypical examples of such a process are fractional
Gaussian noise and (fractional) Lévy stable processes [19, 41].

We are interested in removing the trend process from data and in obtaining the noise component n(t)
in order to be able to study its fractal properties. One way to approach this problem is to apply a filter
to the measurement process and, in contrast with the common use of filters, only keep the noise part
by subtracting the filtered signal from the original time series. A discrete-time optimal filter is a system
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that takes as input a measurement process y(t) and outputs an estimate, x̄(t), of x(t) at each time step
t, such that a given error criterion (e.g., mean square error) is optimized. The simplest kind of filters are
linear filters, which are widely employed in virtue of their efficiency and analytic tractability. However,
in many situations not only the assumption of linearity is violated, but also an explicit analytical model
of the signal is not available a priori. In these situations, it can be convenient to employ data-driven
models that do not make strong assumptions on the data being processed and are capable to describe a
wide range of processes.

In this work we employ an Echo State Network (see Section 2.2) as a nonlinear filter in order to learn an
approximation x̄(t) of the trend process x(t), by training the system only with the measurement process
y(t). Since we are dealing with correlated noise, there is a possibility for an arbitrarily complex network
to learn and predict also part of the noise process n(t) and thus overfitting data. However, given our
assumption of noise as a less predictable process, we constrain the neural network descriptive capability
by using proper regularization techniques to prevent such overfitting. The proposed detrending with
ESN procedure, called DESN, consists of a series of steps, whose details are provided in the following.

Let us consider the pair of time series {udata(t), ydata(t)}Tt=1 representing respectively the input and
desired output of the network. Since in the prediction framework ydata(t) = udata(t + τf ), with τf the

forecast horizon, the two time series can be constructed from a time series z = {z(t)}T+τf
t=1 , representing

the measurements of the observed process. The two time series are then split into two separate datasets:
training {utr(t), ytr(t)}Ttr

t=1 and test set {uts(t), yts(t)}Tt=Ttr+1. The readout is trained by feeding the ESN
with utr(t) and forcing ytr(t) as teacher signal. At this point, the detrending procedure is applied on the
remaining data of the test set. In particular, the prediction ŷts(t) is in turn utilized to detrend yts(t), as
explained below. From now on, we assume the ESN to be already trained and then, since the training
data are no longer considered, we will denote yts(t) simply as y(t). The time series ŷ(t), which denotes
the values predicted by the ESN, can be expressed as:

ŷ(t) = y(t) + epred(t) = x(t) + n(t) + epred(t), t ∈ N, (19)

where epred(t) is the ESN prediction error as a function of time.
The performance of a prediction model can be evaluated through the forecast accuracy, typically

implemented as the normalized root mean square error [13], quantifying the differences between predicted
and observed values. For a given model complexity, the prediction error is related to the amount of
training data and on the accuracy of the training procedure. However, even for a optimally trained
model, in the presence of noise the forecast will always be subject to an error, due to (intrinsic) stochastic
unpredictability of the process or insufficient complexity of the prediction model. We refer to this source
of error as intrinsic unpredictability of the process with respect to the given model complexity and its
related error function as eintr(t). By assuming independence between the training error etr(t) and the
intrinsic error eintr(t), we can write epred(t) as the sum of the independent components

epred(t) = etr(t) + eintr(t), t ∈ N. (20)

If the prediction model is properly trained, we can assume the training error to be negligible, i.e.,

etr(t) ' 0 ∀ t ∈ N. (21)

Our assumption in this work is that the trend process x(t) of the observed signal y(t) is completely
predictable by an ESN model and all sources of intrinsic unpredictability are concentrated in the noise
component n(t). This assumption corresponds to approximating:

ŷ(t) = x̄(t) ' x(t) ∀ t ∈ N. (22)

When Eqs. (21) and (22) hold, by inserting Eq. (20) in (19) we obtain:

n(t) ' −eintr(t) ∀ t ∈ N. (23)

In this case, the predicted time series, ŷ(t), is a good approximation x̄(t) of the trend component x(t) of
y(t). Therefore, an estimation n̄(t) of the true noise n(t) can be obtained as:

n̄(t) ≡ y(t)− ŷ(t) = −epred(t) ' −eintr(t). (24)
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The time series that we analyze here contains measurements of a signal with a superimposed noise, which
increases the difficulty of obtaining high reliability in short-term forecasts. For this reason, one needs
to wait until the trend accumulates sufficiently before it becomes clear: considering different forecast
horizons could significantly influence the result of the prediction. In order to mitigate the dependency
of the prediction performance on the particular forecast horizon τf , we perform multiple forecasts using
an ensemble of k independent ESNs, each one trained considering a different prediction step-ahead

τ
(i)
f , i = 1, ..., k. The output signals of the ensemble of predictors, elaborated on the basis of the same

input data but using different forecast horizons, generate independent outcomes ŷi(t), i = 1, ..., k, that are

combined together in an average forecast, ŷ(t) = 1/k
∑k
i=1 ŷi(t). This approach provides a more accurate

prediction by compensating for the variance introduced by the single predictors. Such an approach is
related to the well-known frameworks of ensemble learning [14, 46] and neural network ensembles [23].
In the latter it has been shown experimentally that the synergy of multiple back-propagation neural
networks improved learning, generalization capability, noise tolerance, and self-organization with respect
to a single, yet more complex system.

3.1 Other detrending methods

In this section, we describe some existing methodologies that have been used in previous works for
separating trends from the noise components in a time series [4]. To be consistent with our approach,
we consider the following detrending procedures as MFDFA preprocessing steps.

Empirical Mode Decomposition Empirical Mode Decomposition (EMD) is a data-driven technique
that performs a decomposition of the original signal, y(t), in terms of a finite number of modes gi(t),
called Intrinsic Mode Functions (IMF), and a residual component. IMFs are derived directly from data,
without any prior assumption about their model. EMD [18] can be used to extrapolate a trend in data
by considering the residual given by: x̄(t) = y(t)−

∑n
i=1 gi(t). The residue is hence subtracted from the

original time series in order to remove the global trend and obtain an estimate of the noise. Generally,
as shown in Wu et al. [48], also a number of IMFs are selected along the residual in order to better
approximate the trend. This is especially needed where the trend is composed by periodicities, which
cannot be approximated by a single residual. The EMD procedure has also been applied as a local
detrending method in the windows computed with DFA, in place of the conventional polynomial fitting
[39].

Fourier-Detrended Fluctuation Analysis The Fourier-Detrended Fluctuation Analysis (FDFA) is
a tool used for identifying trends characterized by frequencies with a significant power [36]. The method
targets the first few coefficients (those having larger amplitude or real part) of a Fourier expansion and
thus it can be considered as a simple high-pass filter [10]. We use a slightly different approach here, which
consists in cutting the spectral components with higher amplitude, rather than exclusively focusing on
those having lower frequencies – as originally proposed in [10]. In this way, the definition of trends is
relaxed in order to consider all larger amplitude periodicities, independently of their variation speed.
Specifically, we first apply the discrete fast Fourier transform to the data records, then we sort the
spectral components according to a decreasing order of their amplitude. Successively, we truncate the
first τfreq coefficients of the Fourier expansion. Finally, we apply the inverse Fourier transform to the
truncated series. After this last step, border effects may appear at the opposite ends of the time series.
These distortions are eliminated by cropping a portion of the initial and last part of the series.

Smoothing Smoothing methods operate in the time domain and basically implement low-pass filters.
High frequency are attenuated on the base of the specific properties of the adopted smoothing method.
We consider four different smoothing procedures, which depend on a parameter σ, representing the span
of the smoothing procedure:

• Algorithm 1: a low-pass filter with coefficients equal to the reciprocal of the span (moving average);

• Algorithm 2: local regression using weighted linear least squares and a 1st degree polynomial model;

• Algorithm 3: local regression using weighted linear least squares and a 2nd degree polynomial
model;
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• Algorithm 4: a generalized moving average with filter coefficients determined by an unweighted
linear least-squares regression and a polynomial model of specified degree p.

4 Experimental results

In this section, we evaluate the performance of DESN, the proposed detrending method based on ESN. We
compare the results with those obtained using the detrending methods introduced in Section 3.1, namely
Empirical Mode Decomposition (EMD), Fourier-Detrended Fluctuation Analysis (FDFA), and different
Smoothing (SM) techniques. In order to demonstrate the effectiveness of the proposed technique, we
consider several synthetic time series having a self-similar noise component with known characteristics.
We also test the methods on a real-world dataset, the sunspot time series, described in Section 4.2.
These latter data have already been studied in the (multi)fractal analysis context – see, for example,
[15, 24] and references therein. The datasets taken into account and a MATLAB code for reproducing
all experiments presented in this paper are publicly available1.

4.1 Synthetic time series

As described above, the synthetic time series are of the form y(t) = x(t) + n(t), with x(t) the trend
and n(t) the noise component. We use the four aforementioned detrending methods for computing an
estimation of x(t), namely x̄(t), and we evaluate the accuracy of each method by analyzing the LTC
and multifractal properties of the estimated noise, n̄(t) = y(t) − x̄(t). The accuracy of each method
is evaluated by comparing the coefficients obtained with MFDFA (see Section 2.1) on the estimated
noise n̄(t) with respect to the ground-truth n(t). For all the synthetic series and methods, the MFDFA
procedure has been executed on scales ranging from 16 to 1024 data points and with a second-order local
polynomial detrending. The parameter q ranges from -5 to +5.

We consider seven time series Y1, . . . ,Y7, which are obtained by combining a trend selected from
one of the five different time series X1, . . . ,X5 with a noise selected from one of the three different time
series n1, n2, and n3. Signals used as trend are described by the functions shown in Table 1. For the
trend signals, X1,X2,X4, and X5, we report the interval from which the values of the domain variable
x are extracted. In Table 2 are summarized the average properties of the synthetic noise components.
We use two different sets of ten fGn processes generated by setting H respectively to 0.7 and 0.3, and
a deterministic binomial multifractal cascade [38] with multiplicative factor equal to 0.60708. For the
noise n3, we also consider the spectrum asymmetry

Θ =
∆αL −∆αR
∆αL + ∆αR

, (25)

where ∆αL and ∆αR are the width of the left and right part of the support of D(α) (9), respectively.
A negative value for Θ denotes a right-sided spectrum, highlighting a stronger multifractality on smaller
fluctuations, while the contrary holds in the case of a positive value. All time series have been normalized
by calculating the z-score; the amplitudes of signal and noise series are multiplied by a suitable scalar
value, in order to obtain a signal-to-noise ratio of 16.

Overall, we performed seven different tests. In Table 3, we report the time series under consideration
and the values used for configuring each detrending procedure. Note that the length of the i-th time
series Yi is given by the length of the noise component, which is reported in Table 2. For DESN, we
consider an additional time series for training the network (referred as ytr(t) in Section 3), whose length
is half of Yi’s length.

Results are obtained by averaging ten independent realizations of the tests. The sources of randomic-
ity for each test are the different realizations of the noise process – for n1 and n2 – and the different
executions of the DESN procedure – ESN input and reservoir weights. We used a grid search to tune

1https://bitbucket.org/slackericida/desn v1/overview
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Table 1: Description of the functions used as trend within the synthetic signals. The term νmax refers to
the Nyquist frequency fs/2, where fs is the sampling rate, and the terms U(xmin, xmax) and N (µx, σx)
are respectively the uniform and normal distributions.

ID Description

X1 sin(t).

X2
∑10

i=1Ai sin(2πνit),
{
νi = U(0, 10−5νmax)

}
, {Ai = N (1, 1)}.

X3 s‖s‖s‖..., with s the first 100 digits of π.

X4
∑10

i=1Ai sin(2πνit), {νi = U(0, 0.5νmax)} , {Ai = N (1, 1)}.

X5 sin(t)/t2.

Table 2: Characteristics of the synthetic noise processes. The Hurst exponent and MFW of n1 and n2

are the outcome of MFDFA averaged over ten independent realizations of the process.

ID Description Length avg. Hurst avg. MFW (Θ)

n1 fGn 150000 0.695 0.022

n2 fGn 150000 0.303 0.032

n3 Binomial cascade 131072 0.883 1.192 (0.048)

Table 3: Time series and configuration of the different detrending procedures used in each test. For
DESN, we report the values of the size of the reservoir (Nr), the spectral radius (ρ), the regularization
coefficient (λ), and the number k of forecast models. For FDFA, we report the thresholds τfreq and τtime

used for determining the amount of coefficients to be truncated in both frequency and time domain. For
SM, we report the span of the moving average σ and the identifier of the adopted algorithm. Finally, for
EMD we report the number of the last s IMFs which are used for defining the trend.

Data DESN FDFA SM EMD

Y1 = X1 + n1
Nr = 500, ρ = 0.99,
λ = 0.1, k = 30

τfreq = 150, τtime = 950 σ = 50, algo: 2 s = 13

Y2 = X2 + n1
Nr = 200, ρ = 0.4,
λ = 0.1, k = 20

τfreq = 60, τtime = 1 σ = 1800, algo: 3 s = 5

Y3 = X3 + n1
Nr = 500, ρ = 0.99,
λ = 0.1, k = 20

τfreq = 115, τtime = 50 σ = 20, algo: 4 s = 19

Y4 = X4 + n1
Nr = 400, ρ = 0.99,
λ = 0.1, k = 10

τfreq = 400, τtime = 3000 σ = 10, algo: 1 s = 17

Y5 = X5 + n1
Nr = 100, ρ = 0.99,
λ = 0.05, k = 30

τfreq = 4000, τtime = 250 σ = 1000, algo: 1 s = 8

Y6 = X1 + n2
Nr = 500, ρ = 0.99,
λ = 0.1, k = 30

τfreq = 400, τtime = 2000 σ = 50, algo: 2 s = 17

Y7 = X1 + n3
Nr = 500, ρ = 0.99,
λ = 0.05, k = 20

τfreq = 250, τtime = 2000 σ = 60, algo: 4 s = 24

the (hyper-)parameters of the different methods in their respective spaces. For each detrending method,
we considered a different sets of bounds and search resolutions of the respective parameter space and a
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specific loss function for guiding the optimization. The error measurement that we used is the normalized
root mean squared error (NRMSE) function, which is defined as follows:

NRMSE =

√
〈‖y − d‖2〉
〈‖y − 〈d〉‖2〉

, (26)

being y the ESN output (12) and d the desired one.

Parameter settings of detrending methods For DESN, the parameters that we considered are the
size Nr of the reservoir, searched in [100, 500] with resolution 100; the spectral radius ρ searched in the
set {0.4, 0.518, 0.636, 0.754, 0.872, 0.99}; the regularization coefficient λ used in the linear regression for
the training of the readout is searched in [0.05, 0.3] with step size 0.05; the number k of forecast models
used is searched in [10, 30] with step size 10. As discussed in Section 3, we used a different forecast step
for training each of the k ESNs of the ensemble. In particular, the forecast step of the i-th predictor
model is mk = 10 · i. The adopted loss function is the average error computed on y and forecast ŷi of
the i-th prediction model, that is, 1/k

∑k
i=1 NRMSE(ŷi, y).

For the SM procedure, we tuned the span of the moving average σ in [10, 2000] with step size 10.
For guiding the hyper-parameter optimization, we used a loss function which minimizes the error and
maximizes the span, defined as: fSM = ηSM ·Err + (1− ηSM)1/σ, where Err is the error evaluated as Eq.
(26) and ηSM ∈ [0, 1] is a weight parameter that was set to 0.1 in every test. Note that for ηSM = 0 the
error component is neglected, then the resulting span is maximized covering the whole time series; this
generates a smooth function which assumes in every point the mean value of the original signal. On the
other hand, by setting ηSM = 1, only the error is minimized and the span assumes its minimum value
σ = 2, which generally produces an insufficient smoothing of the signal. We evaluated the performances
using all the four algorithms described in Section 3.1 and we reported here the one which achieved the
best results. The polynomial degree p in the algorithm 4 was set to 15 in every test.

For setting the optimal values of the parameter τfreq in the FDFA procedure, after having ordered the
Fourier coefficients by their amplitude (from larger to smaller), by visual inspection we first identify the
“elbow” in the sequence, which is its inflection point, which determines the frequencies to be truncated
(i.e., these having very high power). Once the inverse Fourier transform is performed, some cropping on
the boundaries of the time series is necessary to attenuate boundary effects caused by the alteration of
the spectrum.

Finally, in the EMD approach we used the standard setup of the stop criterion for retrieving the IMFs,
as described in [26]. The sum of the last s IMFs represents the trend and the number s is optimized by
minimizing the following loss function: fEMD = ηEMDErr + (1− ηEMD)s/S, where S represents the total
number of IMFs identified relative to each signal – usually between 15 and 20 components. Also in this
case, Err is the error evaluated with Eq. (26) and ηEMD ∈ [0, 1] is a weight parameter. Note that for
ηEMD = 0 the error component is neglected and s assumes the minimum value 1, i.e., only the last IMF
is selected for approximating the trend. On the other hand, when ηEMD = 1 the error is minimized, but
all the s IMFs are selected for representing the trend, which then coincides with the original signal. We
set ηEMD = 0.1 when we tested the synthetic signals Y3, Y4, Y6, and Y7, while in the processing of the
remaining signals (including the sunspot time series) we set ηEMD = 0.5.

Discussion of results In Fig. 2, we plot a short sample of each time series with superimposed the
trends identified by the different detrending procedures. The details of the results are reported in Table
4, where we show the resulting Hurst coefficient and multifractal spectrum width (MFW) for each time
series, with their corresponding standard deviations. In Fig. 3 we graphically represent the quality of the
scaling of the fluctuation function for the estimated noise components. The linear fittings of the scaling
functions are highlighted in green when the considered detrending method (column) has preserved a
correct scaling behavior on the selected time series (row), while we used red dashed linear fittings to
denote an incorrect scaling or significantly altered Hurst/MFW coefficients with respect to the ground
truth.

As shown in Table 4, the four methods perform differently on each time series. With the EMD and
SM methods, and considering the parameter optimization criteria presented in Section 3.1, we could not
obtain a correct scaling for most of the tested time series. The first five time series, Y1-5, are composed
by a signal (trend) with a superimposed persistent noise with H = 0.7, according to Table 3.
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Figure 2: Colors online. Trends identified on the different signals. The function depicted with black
dashed lines represents the trend of the original time series. The colored lines represent the trends
identified using DESN, EMD, FDFA, and SM. For clarity of representation only small portions of the
time series are shown.

In Y1, the trend is a single sinusoid, which is the simplest periodic function and it is easily separable
from noise, which is much more complex from a prediction perspective. As expected, the Hurst exponent
is estimated with a good precision by DESN. FDFA obtains a similar accuracy, since in this case the trend
can be easily isolated, it being described by a single high-amplitude frequency in the Fourier domain. In
fact, as described in Section 3.1, FDFA operates by eliminating the frequencies with largest amplitudes,
so its maximum efficiency is reached when trends consists of few isolated dominating frequencies. On
the other hand, in time series where trend periodicities are spread over a large portion of the spectrum
or are too entwined with the noise frequencies, FDFA tends to fail. In fact, by cutting a significant
amount of frequencies, FDFA tends to corrupt the spectrum of noise and hence its scaling properties.
It is important to point out that the original FDFA method proposed in [10] works only as a low-pass
filter without taking into account amplitudes, so its limitation is even more evident in these particular
cases. The SM and EMD procedures do not perform well on identifying the trend in Y1. While this is a
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Figure 3: Colors online. Scaling of fluctuation functions related to the detrended time series. Only one
instance of each test in Table 4 is reported here. The least-square linear fittings are highlighted in green
when they correspond to a correct scaling function and in red otherwise.

common issue with EMD applied to sinusoidal signals [48], with SM we can observe in the example of
Fig. 3 a crossover that breaks the global scaling. This crossover is given by the smoothing algorithm
acting only at a scale determined by its span parameter.

Despite the apparent increasing difficulty of the detrending task on the second time series Y2, whose
trend is a linear combination of low-frequency sinusoids with different amplitudes, all methods perform
equally well. However, by comparing the trend functions in Table 1, it is important to notice that the
frequency of the sinusoid function in X1 is significantly higher than the maximum value of the frequencies
characterizing the trend X2. In this case, in fact, the variation of the trend signal is sufficiently slow to
be isolated properly by EMD and SM, which behave in this case as low-pass filters.

On the third series Y3, the results are similar to what observed in the first test. In fact, the trend
signal is a periodic series obtained by repeatedly concatenating the first 100 digits of π. Therefore, the
trend is characterized by a broad spectrum with fast frequencies, and thus EMD and SM are once again
unable to perform the required task. In fact, even if from Fig. 3 we can observe the log-log scaling of
EMD to be approximately linear, the obtained Hurst coefficient is 0.366, which differs significantly from
the true value of 0.695 and incorrectly denoting an antipersistent behavior. This means that the fractal
properties of noise have been considerably altered by the EMD detrending procedure and the result is
not to be considered correct.

The trend in Y4 is a more complex version of Y2, since the signal X4 is characterized also by high
frequencies, it being composed by a linear combination of 10 sine waves with frequencies chosen randomly
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in a broad interval. In this case, only FDFA succeeds in detrending the series correctly, since the spectrum
of the trend consists of isolated high-amplitude frequencies. In fact, as explained above, the FDFA
procedure implemented in this work filters the spectral components with greater amplitudes, regardless
of their frequency, thus making the filtering method independent of the variation speed of the signal.
EMD and SM, instead, are designed with the underlying assumption that trends are characterized by
low frequencies (slow variation) and hence they are unable to filter rapidly-varying trends correctly.
DESN, on the other hand, does not perform any explicit assumption regarding the form of the trend.
In this case, however, the resulting signal is much harder to predict since its periodicity is much longer
than the network’s memory can account for. In particular, it has been shown that ESNs are unable to
learn functions composed of even two superimposed oscillators with incommensurable frequencies [28],
because of the aperiodicity of the compound signal. Such a signal, in fact, would require the simultaneous
coexistence of two stable and uncoupled oscillating modes in the network’s dynamics, a configuration
that is very difficult to attain in practice.

The time series Y5 is instead a classic example where the FDFA method fails. In this case, the
trend signal does not consist of isolated frequencies, but it is described by a continuous distribution
of frequencies in the spectrum, most of them characterized by a small amplitude. Hence, the filtering
performed by FDFA alters the signal and this results in a crossover at larger scales, as we observe in
Fig. 3. All the other methods, instead, perform well on this time series, given the regular behavior of
its trend signal in the time domain and the prevalence of low frequencies in the Fourier domain.

The time series Y6 is composed by the trend X1 with the addition of antipersistent noise. Analogously
as what observed for Y1, only DESN and FDFA succeed in correctly identifying the trend on such a time
series. So far, in every test the estimation of n1 and n2 resulted to be monofractal, as confirmed by the
estimated MFWs shown in Table 4. The only exception is in the outcome given by EMD on Y5, where
we detect on n̄(t) the presence of spurious multifractal scaling, which is not present in the ground-truth
signal n1.

The time series Y7 is the only series characterized by a multifractal scaling. As shown in the results, in
this case only DESN and FDFA produce a correct scaling function, even if the precision of the estimation
is not optimal, probably because of the higher complexity of such a time series. The calculated Hurst
coefficient is (slightly) overestimated by DESN and underestimated by FDFA. The principal difference
in performance between these two approaches lies in the estimated multifractal spectrum width. In fact,
in this case the estimate obtained with DESN is significantly closer to the ground truth, while FDFA
considerably underestimates its value, thus suggesting a process with far less multifractal properties.
Moreover, we can observe that both methods overestimate the asymmetry with a bias on the left-hand
side of the spectrum. In the case of DESN, this can be explained by considering that the right-hand
side of the spectrum corresponds to the smaller fluctuations, which are more easily affected by the ESN
prediction error.

4.2 Sunspot data

In this section, we consider the time series relative to the number of daily sunspots [1]. The dataset
contains more than 70000 records and is characterized by a trend given by the well-known 11-year cycle
of the sun. Such a dataset has been already used by other authors in the field of (multi)fractal time
series analysis (see, e.g., [15, 24]). For all the methods taken into account here, the MFDFA procedure
has been executed on the detrended series with scale parameter ranging from 16 to 1024 data points,
first-order local polynomial detrending, and parameter q ranging from -5 to +5.

For this test, we configured FDFA with τfreq = 150 and τtime = 500. In the EMD case, we set the
weight parameter ηEMD = 0.5 in the cost function. For SM, we set the span σ = 1000, the weight
parameter ηSM = 0.1, and we used algorithm 2. For DESN, we set the reservoir size Nr = 500, the
regularization coefficient λ = 0.05, and the spectral radius ρ = 0.99. For DESN, we compared two
settings with different numbers k of forecast models, namely k = 10 and k = 30, which produced slightly
different, yet qualitatively comparable results. Since there is no known ground truth for the sunspot
time series, in this section we compare our results with the properties reported in other works [15, 24].

In Table 5, we show the values of the Hurst coefficient and the width of the multifractal spectrum.
As we can see in the table, all four methods, when suitably tuned, agree on the persistence of the process
up to fluctuations of ∼ 0.05 in the Hurst exponent values. Such values are also similar to the coefficient
H = 0.73 reported in Ref. [24], where an adaptive detrending is performed on the time series relative
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Table 4: Average values and standard deviations (where applicable) of Hurst exponent and width of the
multifractal spectrum (MFW) of the noise estimated on each time series along with the ground truth
(GT) value evaluated on the original noise. The asymmetry Θ of the multifractal spectrum (Eq. (25))
of the series Y7 is reported in brackets. The standard deviation is not defined for the results of FDFA on
series Y7, since the values are deterministic. The cases in which the detrending method did not succeed
in preserving the noise self-similarity are denoted with “n.s.”.

H
u
rs

t

ID GT DESN FDFA SM EMD

Y1 0.695 0.713 ± 0.007 0.705 ± 0.007 n.s. n.s.

Y2 0.695 0.719 ± 0.007 0.690 ± 0.004 0.706 ± 0.005 0.701 ± 0.006

Y3 0.695 0.691 ± 0.006 0.702 ± 0.006 n.s. 0.366 ± 0.004

Y4 0.695 n.s. 0.687 ± 0.002 n.s. n.s.

Y5 0.695 0.718 ± 0.006 n.s. 0.711 ± 0.006 0.711 ± 0.007

Y6 0.303 0.318 ± 0.003 0.314 ± 0.002 n.s. n.s.

Y7 0.883 1.021 ± 0.003 0.793 n.s. n.s.

M
F

W
(Θ

)

Y1 0.022 0.027 ± 0.012 0.026 ± 0.006 n.s. n.s.

Y2 0.022 0.032 ± 0.014 0.034 ± 0.013 0.028 ± 0.011 0.023 ± 0.009

Y3 0.022 0.029 ± 0.008 0.024 ± 0.006 n.s. 0.023 ± 0.005

Y4 0.022 n.s. 0.037 ± 0.010 n.s. n.s.

Y5 0.022 0.019 ± 0.007 n.s. 0.018 ± 0.005 0.102 ± 0.041

Y6 0.032 0.040 ± 0.008 0.043 ± 0.002 n.s. n.s.

Y7 1.192
(0.048)

1.116 ± 0.046
(0.397 ± 0.060)

0.593 (0.849) n.s. n.s.

to monthly sunspot. The Hurst exponent retrieved with DESN, with an ensemble of k = 10 ESNs, is
closer to the ground truth with respect to the other methods, while the outcome obtained with k = 30 is
slightly higher. By assuming that the true value lies in-between the general consensus, this may suggest
that a suitable dimension of the ESN ensemble has to be chosen in order to obtain best performance,
even if the observed variability is in general fairly low. Regarding the MFW, we observe that DESN
is not in agreement with the other detrending methods and, to a lower extent, also on the asymmetry
Θ. In fact, even if all methods agree on the right-sided multifractal nature of the series, both DESN
configurations denote a lower degree of multifractality and lower asymmetry. However, it is worth noting
that the MFW value estimated by DESN is much closer to the values reported in [15], while the degree
of asymmetry is still different. It is also worth pointing out that the authors in [15] did not perform
any detrending in their work. This was possible thanks to the fact that the underlying trend is very
slow and a number of sufficient data points can be analyzed by considering scales lower than half of the
dominating periodicity. In Fig. 4, we show the trends identified using the different approaches herein
taken into account. As it is possible to observe, the trend calculated by DESN correctly recognizes the
characteristic 11-year cycle of the sunspot time series. In Fig. 5, we show the results of the scaling of
the fluctuation function obtained by using the two configurations for k of DESN. The general agreement
of the values estimated by DESN with other methods offers a sound justification for the quality and
reliability of the proposed detrending method.
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Table 5: Hurst exponent, MFW, and asymmetry (Θ) of the detrended sunspot time series, estimated
using different detrending methods.

Method Hurst MFW Θ

DESN (k = 10) 0.729± 0.0003 0.456± 0.0560 −0.408± 0.0536

DESN (k = 30) 0.808± 0.0002 0.641± 0.0614 −0.542± 0.0412

FDFA 0.688 1.205 −0.556

SM 0.680 1.118 −0.726

EMD 0.731 1.686 −0.786
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Figure 4: Colors online. Trends identified on the sunspot time series. The function depicted with black
dashed lines represent the original time series. The colored lines represent the trends identified using
EMD, FDFA, SM, and DESN with k = 10 and k = 30.
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Figure 5: Scaling properties of the (detrended) sunspot time series obtained with DESN for two settings
of the ensemble parameter k.
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5 Conclusions

In this paper, we have explored the possibility of identifying and removing trends in a given time series
by means of echo state networks, a particular type of recurrent neural network. The proposed method,
called DESN, allows to filter out trends with minimal assumptions and without performing a windowed
fitting as proposed in other detrending approaches. This is possible by exploiting the capability of
recurrent neural networks to learn and predict complex dynamical processes in order to separate the
actual trend from its stochastic fluctuations. Our main assumption consists in considering the noise
and trends components as processes with very different degrees of predictability. We exploited such an
assumption as a separating criterion. Notably, we have used an ensemble of echo state networks as a
filter, operating with a standard configuration and trained using linear regression for the readout layer.
Many other approaches exist both for designing the reservoir and for training the readout [16, 42], which
could be evaluated in future works depending on the specific problem at hand.

As a first benchmark, we have analyzed the performance of DESN and other detrending techniques
taken from the literature on several synthetic time series generated using different types of trends and
noise processes. The quality of the detrending has been evaluated by comparing the properties of the
estimated noise with respect to the known ground truths. The evaluations of the Hurst exponents and the
properties of the multifractal spectra on the detrended series have been performed with the multifractal
detrended fluctuation analysis procedure, a consolidated method in the field of fractal analysis of time
series. In most cases, the resulting fractal coefficients computed by DESN procedure agreed with the
expected values and the noise self-similarity properties were preserved by the detrending operation.
On the other hand, in several occasions other detrending methods were not able to perform a correct
detrending, which resulted in an incorrect scaling of the fluctuation function. In general, DESN and a
detrending method based on Fourier analysis have shown to be the most reliable methods in terms of
detrending accuracy on the considered synthetic time series.

As a second test, we have analyzed the well-known sunspot time series, which is a multifractal time
series that has been taken into account in several related works [15, 24]. Our experimental results suggest
that the multifractal properties retrieved by using DESN were both qualitatively and quantitatively
compatible with those suggested in other works taken from the literature. This further strengthens the
validity of the proposed data-driven detrending method based on echo state networks.
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[38] P. Oświȩcimka, J. Kwapień, and S. Drożdż. Wavelet versus detrended fluctuation analysis of multifractal structures.
Physical Review E, 74:016103, Jul. 2006. doi: 10.1103/PhysRevE.74.016103.

[39] X-Y. Qian, G-F. Gu, and W-X. Zhou. Modified detrended fluctuation analysis based on empirical mode decomposition
for the characterization of anti-persistent processes. Physica A: Statistical Mechanics and its Applications, 390(23):
4388–4395, 2011. doi: 10.1016/j.physa.2011.07.008.

[40] M. A. Riley, S. Bonnette, N. Kuznetsov, S. Wallot, and J. Gao. A tutorial introduction to adaptive fractal analysis.
Frontiers in Physiology, 3, 2012. doi: 10.3389/fphys.2012.00371.
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