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Abstract

Existing journey planners and route recommenders mainly focus on calcu-
lating the shortest path with minimum distance or travel time. However,
elderly people and those with special needs (i.e. those in wheelchairs or
walking with sticks) often prefer a safer and more gentle journey. Given that
their route options are affected by accessibility issues such as climbing a steep
slope, it is important to design a journey planner that takes in to account
the accessibility of the route, as well as the standard metrics, such as travel
time and distance. Accessibility has not been explored widely in path finding
problems. There are two key challenges for computing accessibility. First,
the accessibility of a route is not well-defined. Second, the accessibility of a
route varies from user to user. In this paper, a new algorithm is designed to
tackle the above two challenges. Two metrics are defined to reflect the acces-
sibility of a route, in terms of the total vertical distance and the maximum
slope. Then, a multi-objective A* search algorithm is designed to obtain a
set of Pareto-optimal routes in terms of the total distance covered and the
two accessibility metrics. The user can then choose from the routes provided
by the new algorithm, the most suitable one according to their own prefer-
ences. The experimental results show that the proposed algorithm is able to
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provide a diverse set of routes with different accessibility options, including
the shortest path which does not consider any accessibility metrics. In other
words, the new journey planner can satisfy the preferences of a wide range
of users including both the healthy and those with special needs.

Keywords: Journey Planning, Accessible Path, Route Ranking, Path
Routing, Multi-Objective A* Algorithm.

1. Introduction

The world’s population is ageing and people aged 65 and above is increas-
ing at an alarming rate. According to World Bank’s report [37], Australia
has 15% of their total population aged 65 and over in 2014 whereas in United
States, Singapore and Portugal this rate is 14%, 11% and 19% respectively.
Globally, within the older population group, older persons aged 80 years or
over account for 14% of the total population in 2013. It is projected to reach
19% in 2050 which is equivalent to 392 million persons aged 80 years or over
by 2050 [39]. So, it is becoming more and more important to consider the
special needs of this increasingly large number of people when developing
public services for them. Among the various special needs of elderly people,
mobility needs are becoming more important as more people retire from driv-
ing, and thus require improved journey planner options which may combine
accessible public transport and walking routes to meet their mobility needs.
For example, they will require mobility to access health care services, vari-
ous social activities, shopping, and simply maintain community connections.
However, there are many perceived barriers which limit the usual mobility
requirements of elderly people and those with special needs. Of these bar-
riers, accessibility issues are considered the most important [45]. A review
in [4] shows that public transport has a significant influence on access to
various health services for elderly people and those who stop driving their
own vehicles. Other research points out that special consideration must be
given while constructing or upgrading road and footpath infrastructure [46],
for instance, as this can impact on pedestrians who use a cane, guide dog or
wheelchair. It is important to meet everyone’s mobility needs so that they do
not become isolated from society [5]. Although there has been improvement
in aspects of public transport and civil engineering to improve accessibility,
the following question still remains:



“Which 1s the most accessible route to take between two points-of-interest
(POIs) within walking distance?”

By point-of-interest, we mean a place where a journey starts or finishes
(e.g. home, hospital, public transport station, or community place). The pro-
liferation of mobile technologies and navigation services can help to provide
solutions to this question. It has now become easier to go from one place to
another by using various navigation devices. Route recommendation systems
that are available compute choices of routes from a list of recommendations
based on various criteria such as shortest route and fastest route. Although
these systems are built to help people to be mobile, they cannot always sat-
isfy every type of user. For example, a person with a manual wheel chair,
who may be querying a route recommender system to travel between two
locations, may not be satisfied with the outcome of their query. He may
be directed to a path which is inaccessible or too steep and risky for him.
This happens as the recommender only considers paths that are shortest and
fastest. But, for this special user, route accessibility is the main key factor
that needs to be considered. Moreover, recommendations for a route based
on accessibility needs depend on the person’s physical capability. For a daily
commute, it may be considered less necessary to use a recommender system
since the user would be well aware of the environment. However, the situa-
tion is different when the user wants to visit a new or unknown place. It is
particularly necessary to design an accessible path recommendation for the
elderly people and people with special needs to fit their physical abilities.

Route accessibility is very difficult to model as there are many factors that
can affect the accessibility of a route. Of them, the most influential factor
is the gradient of the route. To be specific, people with a wheelchair can
comfortably wheel themselves up a specific gradient but not beyond a slope
of one-in-fourteen [41]. How to give a route recommendation that is accessible
for a wheelchair is a challenge, since there are so many possibilities that can
happen along the path. For example, a very smooth route can be rendered
inaccessible by a very sharp rise in gradient over a very small portion of the
route. On the other hand, there may have several routes with a gentle rise in
gradient in several portions but all of them could be accessible because this
rise is below a certain margin. The challenge is to pick the best route from
all the latter options. The existing path planning algorithms try to minimize
the total travel distance or travel time. However, there is no measure defined
for evaluating the accessibility of a path either. In the accessible path routing
problem, there are the following challenges: First, the current network graph



used for journey planning does not take into account the slope of the paths,
and thus does not support the accessibility optimization. Second, there is
no measure for evaluating the accessibility of the path. Third, there is no
algorithm proposed for the accessible path routing.

In this paper, we propose a Contour-based Accessible Path Routing Al-
gorithm (CAPRA) to address the above challenges. Specifically, the contri-
bution of this paper is listed as follows:

e A Contour-based graph generation and query-based adaptation scheme
is proposed to represent the slope of the paths in the graph with the
aid of contour lines;

e Two metrics, total vertical distance and maximal slope, are defined for
evaluating the accessibility of a path;

e A Multi-Objective A* search algorithm is designed for minimizing the
total distance, total vertical distance and maximal slope;

o A diverse set of trade-off paths is provided, including the shortest path.
The users can choose the most suitable path according to their own
preference.

The rest of the paper is organized as follows. Section 2 introduces the re-
lated work on route recommendation. Section 3 describes the proposed route
recommendation algorithm (CAPRA), which includes the data preprocess-
ing, accessibility metrics definition, and multi-objective path finding. The
experimental studies are carried out in Section 4, comparing the proposed
algorithm with Google directions [13] solution, which is the representative
state-of-the-art solution. Section 5 discusses and summarizes the results ob-
tained in Section 4. Finally, Section 6 concludes the paper and presents some
directions for future work.

2. Related Work

Some researchers focus on identifying different mobility aspects for the
elderly and the people with special needs. Another direction of research
focuses on different techniques for collecting information on physical acces-
sibility barriers along the path whereas a number of researchers consider
different parameters for calculating the score of a path. Also, there is an-
other direction of research where the aim is to develop systems for mobility
assistance.



2.1. Mobility Aspects for the Elderly and People with Special Needs

Several surveys have been conducted to identify the mobility aspects and
accessibility barriers for the elderly and people with special needs [24, 10,
27, 2, 30]. A spatial analysis of accessibility of train stations and access to
their surroundings for elderly passengers is presented in [24], where the au-
thors leveraged data from State Government organizations and conducted
a field survey of seven railway stations in Perth, Western Australia. The
survey identified the trip purposes and attitudes towards accessibility for the
elderly travelers. This research found that accessibility at the train station
and surrounding areas is affected by route directness, facility and service
quality at station, mixed land use, and intermodal connectivity. The re-
searchers calculated accessibility indices for train stations and surroundings
by combining elderly patronage rates and identifying variables that affect
accessibility. They classified the data into three types of elderly passengers:
those who walk and ride, park and ride and those who take the bus and
ride, since the main form of public transport in Perth is bus. However, the
research did not consider the route accessibility that can have an impact on
the elderly and passengers with special needs and influence their attitudes
towards their patronage of public transport in a major way. The research in
[10] presented a way to determine the accessibility of public transport and
evaluate the service quality by analyzing pervasive mobility data. The au-
thors in [27] conducted a survey to learn about the opportunities and barriers
associated with ridesharing from an elderly person’s point of view. Some re-
search also focuses on blind passengers’ travel needs. An interview with a
group of blind and deaf-blind public transport users revealed that they are
primarily concerned with independence and safety [2]. In [30], the routing be-
haviour of pedestrians in an indoor environment is investigated by evaluating
responses to active RFID and QR-code based route navigation systems for
blind people. Such systems were also evaluated in [1], which recognized that
all of these systems must work in an integrated manner to achieve desired
accessibility outcomes for the individuals concerned.

2.2. Crowdsourcing as a Tool for Data Collection and Route Recommenda-
tion
Several studies have collected data on accessibility barriers along a path
through crowdsourcing [28, 19, 3, 34, 35, 21, 38, 18, 9]. Crowdsourcing has
been widely used for accessibility data collection in general as well as for



pedestrian navigation. An accessibility information sharing platform for peo-
ple with disabilities was explained in [28], which aimed to provide disabled
people with a suitable path to their destination. The authors in [19] proposed
and onlined crowdsourcing techniques with the Google Street View applica-
tion to identify the bus-stop landmark locations and improve the accessibility
of blind riders. Crowdsourcing was also used to collect information on stop
identification landmarks in [2]. A platform for collaborative accessibility map
generation was proposed in [3]. The system allowed users to add photos of
the side walk accessibility barriers and comment on them. The authors in
[34] designed a system which they call mPASS to collect indoor and outdoor
accessibility data as well as analyse many outdoor accessibility requirements.
The system crowdsourced notifications about a possible accessibility barrier
(such as stairs for example) to alert other users of the system to be aware but
it may also need to be confirmed. By considering the user preferences and
specific needs, the system aimed to provide personalized paths for users. It
stores the user profiles based on their needs and preferences, which are then
updated by allowing the users to select their choices (neutral, like, dislike
and avoid) against a specific accessibility barrier. A route recommendation
system based on crowdsourced data was presented in [35], where the authors
quantified the human perceptions of quietness; happiness and beauty to rec-
ommend paths. Crowdsourcing was also used to select a small set of paths
from a large set of recommendations. A crowd-driven turn-by-turn path se-
lection technique was proposed in [21], where the authors collect live traffic
information through crowdsourcing and then ruled out the less important
paths. Crowd perceptions about routing directions were collected through a
series of routing questions. The research also proposed a strategy to select the
most important set of routing questions. A route recommender system based
on crowd-voting data from social media was introduced in [38]. The aim was
to suggest the most pleasurable route for urban walking rather than recom-
mending a route based on time/distance. A crowd-aided mobile platform for
user safety perception management was presented in [18]. The authors also
extended their work by finding the safest route between two locations in [9],
leveraging the data collected through their mobile crowdsourced platform.
Though crowdsourcing is an effective tool for data acquisition, it can suffer
from various issues such as trust, missing data, incorrect data, etc.



2.3. Measuring Route Scores

Several authors have defined a walkability score for a pedestrian route
or a specific location [47, 42, 23, 15, 36, 41, 43, 11]. A model for measur-
ing walking accessibility towards public transport terminals was presented in
[47] by introducing the concept of equivalent walking distance. The equiv-
alent walking distance is the sum of the actual walking distance plus other
factors along the route (crossing, ascending steps, conflict points), the val-
ues of which are measured by calculating the trade-off of that factor with
respect to the actual walking distance. “Walkscore” is a publicly available
system which provides a score for the walk and a transit score for a specific
address [42]. It uses the distance of local amenities and transit facilities from
an address to assign the score. A map route ranking method that consid-
ers environmental factors is presented in [23]. The direction and elevation
services are used to select and rank the routes recommended by the Google
Maps application [15]. However, this approach did not consider a context
aware route search and the routes generated from Google Maps are based on
shortest distance or minimum time and no on accessibility issues. Another
model for recommending a walking route was proposed in [36]. Routes were
generated by combining the A* algorithm and genetic algorithms and were
evaluated against safety, amenity and walkability criteria. In the system,
the user was required to enter the weights for each of these criteria to define
the objective functions for each route. However, the safety was a qualita-
tive measure and users might find it difficult to assign weights for different
parameters. RouteCheckr [41] is a Dijkstra-based client/server architecture
which aims to provide personalized routing to mobility impaired users. The
system is based on multimodal annotation of geo-data. Users can rank their
choices and then, based on the multi-criteria cost associated with each route,
the best route is presented. The problem with the weighted sum approach is
that all the parameters are required to be converted to a common scale. A
traffic aware real-time route recommendation system was proposed in [43].
A combination of Dijkstra and A* algorithms was used to recommend the
best route based on shortest time. The technique employed the real-time and
historical taxi data. A bi-criteria optimization algorithm for urban naviga-
tion was proposed by [11]. The aim was to provide a set of paths that shows
trade-off between distance and safety.



2.4. Mobility Assistance

A significant amount of mobility assistance can be made available to aid
different groups of users. Considering the concept that blind travelers nav-
igate through a place based on some landmarks, a braille-based application
was developed by [2] that provides information on bus and bus-stop land-
marks. It can become a problem if the landmark is not available due to any
construction work. A train station navigation application for blind passen-
gers was presented in [16] where descriptions of the station were stored at
different levels of the tree structure: overview, floors, platforms and places
of interest (POls). The system starts with a basic overview of the station,
i.e., how many floors the station has and how they are numbered with re-
spect to the ground. The user can travel floor by floor and can have various
descriptions about the POIs. M3I is an interactive platform for pedestrian
navigation in both indoor and outdoor environments [44]. The platform in-
corporates speech and gesture recognition for navigation support. A rich
overview of mobility assistance systems for elderly or mobility impaired per-
sons was presented in [22], where the authors also explain the current status
and usability of such systems.

Current literature does not consider topographical information which is
one of the most influential factors in accessibility based path modelling. Also
these researchers aim to achieve a single objective such as minimising dis-
tance, optimising safety, or increasing accessibility of the path. To the best of
our knowledge, our work is the first that combines contour information from
topographical map data with road network data to model path accessibility
and aim for optimising two objectives: the distance and the accessibility of
the path.

3. Contour-based Accessible Path Routing

In this section we model path accessibility in terms of path elevation and
optimise two objectives of the paths: the distance and the accessibility. In
summary our contributions are as follows:

e We try to optimise the accessibility along with the distance for the first
time. No existing literature has addressed this issue before.

e For solving the problem, we develop a new multi-objective A* search
algorithm known as Contour-based Accessible Path Routing Algorithm



(CAPRA), more particularly the admissible heuristic functions for all
the objectives, so that we can guarantee to obtain all the Pareto-
optimal solutions in query time.

e We propose a new graph model that contains both the distance infor-
mation and the elevation information for the A* search.

The proposed Contour-based Accessible Path Routing Algorithm (CAPRA)
mainly consists of the following three modules:

1. Data preprocessing: contour-based graph generation and query-based
adaptation;

2. Accessibility evaluation of paths;

3. Path routing based on distance and accessibility.

First, in the data preprocessing phase, the contour line is adopted to
generate a new contour-based graph so that the elevation difference of each
road segment can be evaluated more precisely. We have developed two new
accessibility metrics: the vertical distance and maximal slope based on the
contour graph to evaluate the accessibility of a path. Finally, we have de-
signed a multi-objective A* search algorithm to find the best trade-off paths
in terms of both distance and accessibility.

3.1. Data Preprocessing: Contour-based Graph Generation and Query-based
Adaptation

Contour-based Graph Generation. Many of the papers discussed in Section 2
consider the road network as a representation of a graph where the nodes are
the intersections where the roads cross each other. A road segment is referred
to an edge between two nodes in the road network. It is different from a road
or a street. For example, in Figure 1 which shows an area in Melbourne City,
Australia, the Queen Street is divided into several road segments, e.g., the
one between Lonsdale Street and Little Bourke Street, and the one between
Little Bourke Street and Bourke Street.

Finding the shortest path between two locations in the road network
is a commonly encountered problem in journey planning and tourist trip
design. Here, a path is a sequence of nodes in the road network connecting
with road segments. Dijkstra [7] and A* [20] search algorithms, and their
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Figure 1: Google Map of an area in Melbourne City, Australia.

variants [40, 12, 6, 8, 26] are mostly used to find the shortest path in terms
of distance or travel time. There is no doubt about the effectiveness of such
algorithms. However, this approach to representing the road network has
a major drawback because the accessibility of one route segment might not
always give a true reflection of the accessibility if the route segment is only the
connection between two road crossings. It could happen that a route segment
with a good accessibility rating may contain a very small portion which is
wheelchair inaccessible due to a steep slope or steps. In this paper, we
consider this issue to be very important. That is, a road segment can have a
number of different slopes in between corners and intersections. For example,
in Figure 2, the road segment AB has two different slopes, one upward from
A (elevation of 60m) to C (elevation of 7hm), and the other downward from C
to B (elevation of 60m). The road network is a planar graph, only considering
the latitude and longitude values. Therefore, the accessibility of AB given
by the road network (the elevation difference between A and B) will be much
different from its actual accessibility (the elevation difference between C and
A, and C and B).

In practice, it is challenging to identify the exact geographical locations of
the turning points between the slopes in a road segment (the exact location
of the point C in Figure 2 for example). Therefore, in this paper, a contour-
based graph generation is developed to approximate the locations of such
turning points. Specifically, a new graph is generated by including the con-
tour lines on the road network, and adding new nodes at the cross-sections
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Figure 2: A contour map showing road segment AB with two different slopes.

between the contour lines and the road segments. A contour line is the line
of geographical surface points on the map connecting points of the same el-
evation. Contour lines can be drawn for any elevation value on the earth’s
surface. Figure 2 can be considered as an illustration of a partial contour
map of Melbourne, Australia, in which the grey curve lines on the map are
contour lines. This contour map is an example of 5 meter contour interval
which can be generated using the Open Street Map application, Srtm20sm
[33] for any location on the earth. The Srtm2Osm is a module which can
generate the contour lines from the digital elevation model provided by the
Shuttle Radar Topography Mission (SRTM) [29]. It can be seen that there
are many crossing points between the contour lines and the road segments on
the map. We include these crossing points as nodes with our road network
graph.

In Figure 2, we can see that there is only one contour line that intersects
road segment AB at point C. Therefore, we add C to the road segment AB.
After combining the road network and the contour lines, the nodes in the
graph are defined as the union set of the intersections of the roads with the
crossing points of other roads and other contour lines. As a result, there are
more nodes and edges in the newly generated graph than the original one.
For example, the original road segment AB is divided into two smaller seg-
ments AC and BC. The operations (i.e., intersection and union) required for
contour-based graph generation can be seen to be similar to the ll_intersects
and pp_plus operators respectively as described by Giiting et al. in [17]. The
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pp_plus operator outputs the union of two point objects. It scans and merges
the point sequences from two point objects into a new points object. Given
two line objects Ly and Lo, the ll_intersects operator outputs whether they
intersect or not. The output is true if both objects have no segments in com-
mon but at least one common point which is an intersection point but not a
meeting point. Note that the elevation interval is an important parameter,
since it determines both the accuracy of the turning point approximation and
the number of new points added, and thus the size of the newly generated
graph.

Each node in the contour-based graph, has a latitude and a longitude
value given by the road network. In addition, the elevation value can be
obtained by the Google Elevation API [14]. Therefore, the contour-based
graph can be seen as a 3-D graph, where each node can be featured with
the 3-dimensional vector (latitude, longitude, elevation). With the contour-
based graph, one can calculate the elevation differences in different segments
of a path much more accurately than by using only the pure road network.

In the proposed contour-based accessible path routing system, the contour-
based graph is generated in the data preprocessing phase, and stored in an
XML file. The details of the data preprocessing are described in Algorithm
1 below, where the road network is extracted from Open Street Map (OSM),
and JOSM is a cross-platform OSM editor that can merge the contour lines
and OSM road network and identify the crossing points of the contour lines
and the roads.

Algorithm 1: Data preprocessing: contour-based graph generation

Extract the contour lines using Srtm20Osm [33];

Extract the road network using Open Street Map [32];

Combine the road network and the contour lines using JOSM [31];
Identify the crossing points between the contour lines and streets;
Generate the contour-based graph by adding the new crossing points and
edges;

6 Generate the XML file for the contour-based graph using JOSM;

[ R

Query-Based Adaptation. The generated network graph only consists of the
intersection points between the road segments and between the road segments
and the contour lines. On the other hand, the query points (starting and
ending points of the journey) can be anywhere on the map, and thus are
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highly likely to be outside the network graph. Therefore, it is necessary to
include the query points into the graph in real time. Intuitively, a journey
must start and end somewhere in the middle of a street. Therefore, the
following scheme is proposed:

Step 1. Identify the existing edge on the graph that is closest to the query
point;

Step 2. Remove the edge, and add an edge from the query point to each of
the two end-nodes of the edge.

Figure 3 shows an example of including a query point into the network
graph. Given the query point O, the closest edge AB is first identified and
removed. Then, the two edges AO and BO are added into the network graph.
The above procedure is applied to both the starting and ending point of the
journey.

A B A B
o} (o}
D C D C
A network graph with the The closest edge is AB. Add edges
query point O. AO and BO, and remove AB.

Figure 3: An example of including a query point into the network graph.

3.2. Accessibility Fvaluation of Paths

The accessibility metrics of a path are derived from classical physics. In
particular, assuming that the user keeps the same velocity while travelling
along the path, the following two factors are closely relevant to the accessi-
bility of a path: (1) the total energy consumed and (2) the maximal force
needed to climb up the slopes along the path.
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To facilitate this description, we take an example of a slope from point A
to B in Figure 4, where a wheelchair user with gravity G is climbing up the
slope whose steepness is a with a constant velocity v.

Figure 4: An example of moving up a slope of incline o from A to B.

According to the relationship between work and mechanical energy, when
moving up a slope from point A to B, we have

Wap = TMEp — TME,, (1)

where W is the energy consumed (work done) by the user for climbing from
A to B (the elevation of B is higher than that of A), and TM E4 and TM Ep
are the total mechanical energy of the user at points A and B, respectively.
It is known that the total mechanical energy is the sum of the kinetic energy
K FE and the potential energy PE. Then,

1

TME,=KE s+ PE, = §mv2 + Gza, (2)
1

TMEp = KEg + PEg = imUQ + Gz, (3)

WAB:TMEB—TMEA:G<ZB—ZA), (4)

where m is the mass of the user, v is the velocity of the user, which stays the
same during the climbing, G is the gravity of the user, and z4 and zp are

14



the respective elevation of points A and B so that |z — 24| is the vertical
distance between point A and B.

On the other hand, the driving force needed for climbing up the slope
from A to B while maintaining the velocity is as follows:

1BO|

Fiap=G -sina=G AB| (5)

where « is the steepness of the slope.
Similarly, when moving down from a higher point C to a lower point D,
the two objectives are

WCD = G(ZC — ZD), (6)
_~ O]
Fep =G D) (7)

Note that |AB| and |C'D| are not straightforward in practice. Therefore,
they are replaced by |AO| and |OD]|, respectively, and sin « is replaced by
tan a accordingly. Since « is always less than 90 degrees, minimizing sin « is
equivalent to minimizing tan «.

Then, given a path represented by a sequence of nodes P = (vg, vy, ..., v,),
the total energy consumed W (P) and the maximal force F'(P) needed to
climb up and moving down all the slopes along the path are calculated as
follows:

W(P) = Z inqvw (8>

F(P) = max {F, ..}, (9)

ie{l,...,n}

where Wy, . = G - |2y, — 20, |, and Fy, ., = G - ﬁ in which
d(v;_1,v;) is the horizontal distance of path segment between v;_; and v; and
|2y, — 2u,_, | 18 the vertical distance between nodes v; and v;_;.

Given that the gravity G of the user is a constant, and —7/2 < o < /2,

Egs. (8) and (9) can be simplified to

W(P) = Z |ZU1' — Rui_qls (1())
i=1
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|Zvi - ’Z’Uz‘—l‘
F(P) = ze?llaxn}{ d(vi—1,v;) } ' (11)
Therefore, Eq. (10) illustrates the relationship between energy consump-
tion and vertical distance travelled either up or down between successive
points along the path. Note that the total energy consumption for traveling
along a path is related to the sum of the vertical distances along the path.
So, minimizing the total vertical distance during accessible path planning
will reduce the total energy consumption. Eq. (11) shows the greatest force
required to move up or down the biggest elevation difference. Here, the re-
quired maximal driving force for moving up or down a slope is related to
the vertical distance and the length of the slope. The elevation difference
between start and end point of a slope is crucial. A longer path segment
requires less travelling force compared to a shorter path segment with sim-
ilar vertical distance. Also people may want to choose a path which is the
shortest of all.

3.3. Path Routing Based on Distance and Accessibility

When an elderly user or person with special needs is planning to travel
along a path from a source to a destination on the map, both the distance
and accessibility are critical factors to consider. To be specific, we assume
the user would prefer the path with shorter distance and higher accessibility.
However, in practice, the distance and accessibility may be in conflict with
each other. In this case, one should provide a set of trade-off paths, which
are termed the Pareto-optimal paths, instead of one single global optimal
path.

The three objectives to be minimized in the accessible path routing can
be described as follows:

min f,(P) = > d(viiy, ), (12)
=1
min fo(P) = W(P) = D 1z = 2l (13)
=1
min f;(P) = F(P) = max {M} , (14)
P i€{1,...,n} d(UZ'_l, ’Ui)

where, f1(P) is the total horizontal distance of P, fo(P) is the total vertical
distance of P, and f3(P) is the maximal slope of P, and W(P) and F(P)
are defined in Eqgs. (10) and (11) respectively.
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Note that fo(P) is consistent with the energy consumed for moving up
and moving down all the slopes. f3(P) is standing for the maximal force
needed.

Given two paths P, and P,, P; is said to dominate P, if and only if all
the objective values of P, are no worse than those of P, and there is at least
one objective for which P; has a better value than P,. We denote P, < P,
for P; dominating P,. A path P* is said to be Pareto-optimal, if and only
if there is no other path that dominates P*. The goal of this problem is to
find all the possible Pareto-optimal paths.

In this paper, the multi-objective A* search algorithm is employed to find
the Pareto-optimal paths. Specifically, the framework of the multi-objective
A* search algorithm proposed in [25] is adopted here. The framework is
described in Algorithm 2.

Two sets of labels OPEN and GOAL are defined where OPEN is ini-
tialized with the source nodes and the algorithm steps through all nodes
identifying non-dominated nodes which are stored in GOAL.

Once the target or destination node is reached, the elements in GOAL
and OPEN are updated by removing the elements that are dominated by the
new label. The search process stops when OPEN becomes empty, and all the
paths have been obtained by the backtracking procedure Backtrack(GOAL).
Further details of the multi-objective A* search algorithm can be found in
[25].

For using the multi-objective A* search algorithm, the following two re-
quirements must be satisfied:

1. the costs c(u,v) of all the edges (u,v) € F must be nonnegative;

2. the heuristic function is admissible, i.e., it never overestimates the ac-
tual minimal cost of reaching the goal.

Therefore, to design a multi-objective A* search algorithm for minimizing
the objectives shown in Eqs. (12)—(14), we must design the cost functions
c(u,v) and the heuristic functions Heuristic(v,t, G) that satisfy the above
two requirements.

From Egs. (12), (13), and (14), we set ¢(u,v) and Heuristic(v,t,G) as
follows:

c1(u,v) =d(u,v), hi(v) =d(v,t),

ca(u,v) = |z — zu|, h2(v) = |2zt — 24],
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Algorithm 2: The framework of multi-objective A* search algorithm.

Input: The graph G, source node s and target node ¢
Output: A set of trade-off paths P = {Py,..., Py}
// Initialization
1 foreach v € G do g (v) < 0, Gop(v)  0;
2 GOAL + (), OPEN « ()
OPEN < OPEN U (5,0,0,h(5)), op(s) = Gop(s) UC;
// Search

w

4 while OPEN is not empty do
5 L(u) := (u,pred(u), §(u), h(u)) < Extract(OPEN);
6 OPEN <+ OPEN \ L(u);
T Gop(u) = Gop(u) \ §(u), Ja(u) < Gaa(u) U Glu);
8 if w =1t then
9 Add L(u) into GOAL, and remove from GOAL the elements with
dominated g(-);
10 Remove from OPEN the elements whose f(-) := §(-) + h(-) are
dominated by g(u);
11 else
12 foreach v € N(u) do
13 if Adding (u,v) forms a cycle then continue;
14 g(v) = g(u) + e(u, v); // update §(v)
15 h(v)  Heuristic(v,t, G); // calculate hi(v)
16 L(v) = (v, L(w), §(v), h(v));
17 if v is a new node then
18 OPEN < OPEN U L(v), Gop(v) <= Gop(v) U g(v);
19 else
20 if g(v) is non-dominated by any g € Gop(v) U gu(v) then
21 Remove from g (v) and gop(v) the elements whose g(-)
are dominated by g(v);
22 OPEN < OPEN U L(v), Gop(v) <= Gop(v) U G(v);
23 end
24 end
25 end
26 end
27 return P < Backtrack(GOAL);
28 end
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c3(u, v) = max {W - gg(u),O} . hy(v) =0,

u,v) < (c1(u,v), ca(u,v), c3(u, v)),
Heuristic(v,t,G) < (hi(v), he(v), h3(v)).

First, we note that V(u,v) € E, ¢;(u,v) > 0,4 = 1,2,3. Then, for the
total distance fi, the heuristic h;(v) is admissible under the assumption of
triangular inequality. For the total vertical distance f,, for any other point
v' # v and v # t, we have

|2t — 20| < 2o — 20| + |20 — 2.

That is, he(v) < co(v,v") + ho(v'). Therefore, ho(v) is admissible.

Finally, since ¢3(u,v) > 0, hs(v) = 0 is clearly admissible. In fact, since it
is difficult to predict the maximal slope from any point to the target, we set
hs(v) = 0 to reduce the A* search in terms of f3 to the Dijkstra algorithm.
The function g3(-) is naturally defined by A*. That is, g3(s) = 0, where s is
the source node, and for any edge (u,v), g3(v) = gs(u) + c3(u, v)

In addition, since the function Extract(OPEN) can return any elements
with non-dominated f(-), we choose the one with the shortest estimated
distance fi(-) so as to reach the target node as soon as possible and reduce

the search space.

4. Experimental Studies

For the experimental studies, case studies are conducted for various hilly
cities in the world, including San Francisco (USA), Lisbon (Portugal) and
Singapore. These cities are good examples for the experimental studies as
they are built on slopes which means that moving up and down hills usually
occurs in these cities. In addition, different city layouts are taken into ac-
count and we selected four random journeys for our experiment. We selected
San Francisco, because the streets are normally laid out as a grid system.
However, for historical reasons, such rectangular city blocks are not common
in many European and Asian cities. Therefore, we selected Lisbon and Sin-
gapore as the representative examples of the cities with more complex city
layouts which are also hilly.

Note that there is no existing algorithm which takes the elevation into
account when computing a path between two points. In addition, since we
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have designed CAPRA to employ the multi-objective A* search to find the
paths, it is guaranteed to find the shortest path. In other words, CAPRA
must include the optimal path in terms of distance and there is no need to
compare with other shortest path finding algorithms. Here, we only compare
CAPRA with the path produced by Google Directions AP [13] to show its
reasonableness in reality.

In the preprocessing phase, the contour interval is set to bm. The reason
behind the selection of such a small contour interval is that it allows us to
obtain even small changes in elevation. Once the contour interval is selected,
the corresponding contour-based road network graph is generated and stored
in the memory. For each test scenario, both CAPRA and Google Directions
APT are applied and the paths obtained by them are compared in terms of the
three accessibility measures, i.e., horizontal distance, vertical distance and
maximal slope defined in Egs. (12), (13), and (14) respectively . To evaluate
the efficacy of our contour based graph generation technique, the accessibility
measure values for both CAPRA and Google Directions API paths are also
calculated without considering the contours and compared with the obtained
accessibility measure values of CAPRA from contour-based graph built with
the contour interval of 5m. Specifically, to calculate the accessibility measure
values of a path in the later case, the path is first divided into 10m-long
small segments. Then, for each segment, the vertical distance and slope are
calculated. Finally, the total vertical distance of the path is obtained by
summing up all the vertical distances and the maximal slope of the path
is obtained by selecting the maximal segmental slope. Although these are
still not true values, they are good approximations by choosing a sufficiently
small segment length.

4.1. Case Study-1 in San Francisco, USA

Figure 5 gives an example from 817 Lombard St (point A) to 1132 Union
St (point B), San Francisco, USA. We selected this path because the path
mainly consists of upward slopes and the elevation of point B is higher than
point A.

There are four paths from A to B shown in the figure. The solid path is
the shortest path found by the Google Directions. The three dashed paths
are the trade-off paths obtained by our new algorithm CAPRA. One can
see that the first path CAPRA1 (brown dashed) obtained by CAPRA is the
same as the one obtained by Google Directions. In addition, CAPRA has
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Figure 5: San Francisco, USA: The paths from 817 Lombard St to 1132 Union St. The solid
path is obtained by Google Directions, and the dashed paths are obtained by CAPRA.

provided two other paths CAPRA2 and CAPRA3 (purple and green dashed
respectively).

A comparison summary of cost-benefit between distance and accessibility
measure values of the paths obtained from 5m-interval contour based network
graph and 10m-long segment based network graph are given in Table 1. We
can see that the CAPRA1 does not provide the best accessibility score in
terms of slope. On the other hand, the CAPRA2 path has better slope
score, but longer distance and vertical distance compared to CAPRA1. The
CAPRAZ2 also provides shorter distance compared to the CAPRA3 but pays
more in terms of slope. Therefore, the paths are non-dominated to each other.
A user can choose the best path based of his/her distance and accessibility
requirement.

We also can see that the accessibility measure values of the paths obtained
by CAPRA from the contour based network graph is very close to the corre-
sponding values from 10m-long segment based network graph. This implies
that a contour interval of 5m is sufficient to build an accurate contour-based
network graph. In addition, while increasing the length of the path, the
maximal slope decreases from 0.23 to 0.15.

Figure 6 shows the elevation changes along the paths given in Fig. 5. It
can be seen that the CAPRA3 path has many more segments than the other
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Table 1: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario are shown in Fig. 5. “Distance”, “Vertical” and “Slope” stand
for the total horizontal distance, total vertical distance W (P), and maximal slope F(P),
respectively. There is no accessibility measure value for Google from the 5m contour
interval network graph, since the path is obtained by the Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m)  Vertical(m) Slope Distance(m) Vertical(m) Slope

Google - - - 623 72.7 0.23
CAPRA1 623 73.0 0.23 623 72.7 0.23
CAPRA2 688 78.6 0.21 688 78.3 0.22
CAPRA3 943 82.2 0.14 943 82.2 0.15

: T st
o mnlllIIIIIII|||||“|“ = mnlllIIIIIII|||||“|“
(a) Google (b) CAPRA1
g &
B S
1111111 c_—— ]
(c) CAPRA2 (d) CAPRA3

Figure 6: The elevation (in meters) changes along the paths given in Fig. 5.

paths due to the much larger horizontal distance. However, it achieved a
much smoother slope (evidenced by the maximal slope of 0.15) by choosing
the longer distance to travel.

4.2. Case Study-2 in San Francisco, USA

Fig. 7 shows another scenario from 1260 Green St (point A) to 1398
Lombard St (point B), San Francisco, USA, but with mainly downward slopes
and the elevation of point B is much lower than point A. In this scenario,
CAPRA obtained four different paths. CAPRA3 (green dashed) is the same
as that obtained by Google Directions. It should be noted that CAPRA
managed to obtain two shorter paths CAPRA 1 and CAPRA 2 (red and
purple dashed) than Google Directions, but with larger vertical distance and
maximal slope.

Table 2 shows a comparison summary of cost-benefit between distance
and accessibility measure values of the paths obtained by Google Directions
and CAPRA in the second scenario shown in Fig. 7. It can be seen that
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Figure 7: San Francisco, USA: The paths from 1260 Green St to 1398 Lombard St. The
solid path is obtained by Google Directions, and the dashed paths are obtained by CAPRA.

when the length of the path increases, the vertical distance and maximal
slope tend to decrease. This way, the users can choose the most suitable
path based on their own preferences in terms of distance and accessibility.
Fig. 8 gives the elevation changes for the paths shown in Fig. 7. It can
be seen that for the path obtained by Google Directions and the first three
paths obtained by CAPRA, the downward slopes are concentrated in the
first half of the path (and the end of the path for CAPRA2). In contrast,

the slopes are more uniformly distributed throughout the path for CAPRA4,
which leads to a much smoother path overall.

Table 2: The accessibility measure values of the paths obtained by Google Directions
and CAPRA in the scenario shown in Fig. 7. “Distance”, “Vertical” and “Slope” stand
for the total horizontal distance, total vertical distance W (P), and maximal slope F(P),

respectively. There is no accessibility measure value for Google from 5m contour interval
network graph, since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment
Distance(m) Vertical(m) Slope Distance(m) Vertical(m) Slope
Google - - - 787 43.9 0.15
CAPRA1 730 55.6 0.19 730 55.6 0.21
CAPRA2 772 47.4 0.14 772 47.6 0.15
CAPRA3 787 43.6 0.14 787 43.9 0.15
CAPRA4 997 43.6 0.09 997 43.9 0.09
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Figure 8: The downhill elevation (in meters) changes along the paths given in Fig. 7.

4.8. Case Study in Lisbon, Portugal

Fig. 9 shows a scenario from Rua Sao Boaventura 182 (point A) to Trav-
essa Horta 21 (point B), Lisbon, Portugal. We selected this area of Lisbon
because it is no longer a simple grid-like road network and is therefore more
complex than that in San Francisco. The road network partly consists of
some parallel streets (e.g., R. Vinha) which increases multiple routing pos-
sibilities. It can be seen that CAPRA obtained seven different paths in this
scenario, none of which was the same as the Google path. A shortcut path
CAPRA1 (brown dashed) was found, and the second path CAPRA2 (green
dashed) was very similar to the Google path (turn right at a parallel street).
In order to reduce the slope, two longer paths CAPRAG6 and CAPRAT (light
and deep blue dashed) were also obtained, which have much reduced maxi-
mal slope. In this case, the irregular roads were employed as well.

Table 3 summarizes the cost-benefit between distance and accessibility
measure values of the paths obtained by Google Directions and CAPRA in
the scenario shown in Fig. 9. One can see that the CAPRA2 path has very
similar distance and accessibility measure values to the Google path, due to
the similar structure. For the paths obtained by CAPRA, although the value
of the maximal slope for the paths from 5m contour interval is slightly higher
than the 10m-long road segment one, the partial order is still consistent (i.e.,
a larger estimated value still leads to a larger real value). Therefore, one can
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Figure 9: Lisbon, Portugal: The paths from Rua Sao Boaventura 182 to Travessa Horta

21. The solid path is obtained by Google Directions, and the dashed paths are obtained
by CAPRA.

Table 3: The accessibility measure values of the paths obtained by Google Directions
and CAPRA in the scenario shown in Fig. 9. “Distance”, “Vertical” and “Slope” stand
for the total horizontal distance, total vertical distance W (P), and maximal slope F(P),
respectively. There is no accessibility measure value for Google from 5m contour interval
network graph, since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment
Distance(m)  Vertical(m) Slope Distance(m) Vertical(m) Slope
Google - - - 464 31.6 0.19
CAPRA1 376 36.8 0.18 376 35.4 0.23
CAPRA2 463 32.1 0.18 463 31.5 0.19
CAPRA3 568 51.7 0.17 568 50.4 0.20
CAPRA4 575 45.7 0.17 575 45.3 0.20
CAPRA5 601 37.7 0.17 601 36.6 0.19
CAPRAG6 613 44.7 0.13 613 43.1 0.14
CAPRAT 720 36.8 0.13 720 36.2 0.14

still find the correct relative position of the paths on the Pareto front which
is the set of Pareto optimal outcomes. It means that a CAPRA user is still
able to choose a Pareto-optimal path which suits him /her best.

Fig. 10 gives the elevation changes over the paths given in Fig. 9. It can
be seen that the vertical motions of the paths can be quite different from
each other. For example, the first half of the Google path is relatively flat
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Figure 10: The elevation (in meters) change along the paths given in Fig. 9.

(slightly upward), while the CAPRAG6 path keeps falling down until the last
15% of the path, and then goes up to reach the destination. They are trade-
off paths and thus it is hard to tell which elevation change is better unless
we look at elevation changes of each segment separately.

4.4. Bukit Timah, Singapore

Fig. 11 shows a scenario from 23 Victoria Park Rd (point A) to 21
Duke’s Rd (point B), Singapore. We selected this place because the roads
in Singapore are very hilly and do not follow a grid. In this case, only two
paths were obtained by CAPRA. The first path CAPRA 1 (brown dashed)
is same as the Google path.

Table 4 shows the cost-benefit between distance and accessibility measure
values of the paths obtained by Google Directions and CAPRA in the scenario
shown in Fig. 11. As in the other scenarios, CAPRA managed to reach a
smoother slope at the cost of a longer distance.

Fig. 12 gives the elevation change through the paths given in Fig. 11. In
this case, the elevation change of the three paths are similar to each other.
This is because their directions are roughly the same, and a major portion
of the paths are parallel to each other.
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Figure 11: Singapore: The paths from 23 Victoria Park Rd to 21 Duke’s Rd. The solid
path is obtained by Google Directions, and the dashed paths are obtained by CAPRA.

Table 4: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario shown in Fig. 11. “Distance”, “Vertical” and “Slope” stand
for the total horizontal distance, total vertical distance W (P), and maximal slope F(P),
respectively. There is no accessibility measure value for Google from 5m contour interval
network graph, since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m)  Vertical(m) Slope Distance(m) Vertical(m) Slope
Google - - - 1444 30.7 0.06
CAPRA1 1444 28.8 0.06 1444 30.7 0.06
CAPRA2 1595 29.4 0.05 1595 31.7 0.05

Elevation
Elevation

(a) Google (b) CAPRA1
] T ———
(c) CAPRA2

Figure 12: The elevation (in meters) change along the paths given in Fig. 11.

5. Discussion

Overall, the results for all the above case studies show that CAPRA is
able to provide a wide range of reasonably good paths in terms of both
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vertical distance W (P) and slope F(P), including the optimal path in terms
of distance. In most of the cases, CAPRA can obtain the Google path, or
the paths with the same measure values as the Google path. In addition,
the trade-off paths with larger horizontal distances but smoother slopes are
obtained as well. The estimated values of the CAPRA paths obtained from
5m contour intervals are close to their equivalent values obtained from 10m-
long small road segments, which verifies the accuracy of the contour-based
graph generation.

From the summary of cost-benefit analysis in Table 1-4, it can be seen that
CAPRA can achieve a good trade-off between path length and accessibility
(i.e., vertical distance and maximal slope). This way, the CAPRA users can
choose the most suitable path based on their own preferences and accessibility
requirements.

We note that there may be other physical accessibility barriers (i.e., stairs,
ramps, traffic and road conditions) that can influence the accessibility of
a walking path. For example, a path with an accessible elevation score
may have a segment with stairs that cannot be traversed by people with
wheelchairs. In this paper, we assume that those physical accessibility bar-
riers are handled with care.

We further note the computation complexity for calculating the Pareto-
optimal trade-off paths. The worst-case time complexity of the adopted
MOA* framework is O(d), where d is the length of the longest non-dominated
path, and b is the branching factor, i.e. the number of neighbours of each node
in the graph. This computation complexity is no more than the traditional
MOA* presented in [25]. The search space is an issue for the multi-objective
framework since the function Extract(OPEN) can return any elements with
non-dominated | (). Therefore, we choose the element with the shortest es-
timated distance fi(-) so as to reach the target node as soon as possible. In
this way our adopted multi-objective framework is able to reduce the search
space. The experiments showed that our system can provide results in query
time (< 1 seconds) on normal machine (4GB RAM, Windows 7 OS, Intel
Core-i7 CPU with 3.40 GHz clock speed) for all the test scenarios. Table 5
summarizes the four scenarios used in this research to illustrate the corre-
sponding number of nodes, edges and trade-off paths.

The main contribution of our paper is to address the walk accessibility
problem considering the elevation of the path. However, we believe that there
might be several ways to speed up the algorithm. For example, to reduce
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Table 5: Summary of the Four Scenarios.

Case Study Total Nodes Total Edges Trade-off Paths

San Francisco-1 33,122 2,963 3
San Francisco-2 33,122 2,963 4
Lisbon 10,411 2,515 7
Bukit Timah 16,177 1,870 2

the search space and speed up the algorithm, we could return the shortest
distance element until a complete path to the destination is found. From
then on, we could return the element with the smallest vertical distance f,
until a path to the destination with smaller f; is found. Then we could
switch to returning the element with smallest f3 until a path with smaller f3
is found, then switch back to f; and so on. This way, we would make sure
to successively decrease the limits for fi, fo, and f3.

6. Conclusion and Future Works

In order to serve the elderly and disabled people and those with special
needs, a new contour-based path planning system called CAPRA is proposed
in this paper. This new algorithm considers the accessibility of the path as
well as the horizontal distance. The paths constructed may well serve healthy
commuters while travelling, bike-riding, roller-skating as alternative routes
with more gentle slopes.

The contributions of the paper include a new contour-based graph gen-
eration for path planning. We have developed new accessibility measures for
routes and have designed a multi-objective A* routing algorithm.

We have demonstrated the use of CAPRA in four different hilly envi-
ronments where the path elevation could be very steep and problematic for
a person in a wheelchair. The experimental studies on several representa-
tive hilly cities in the world shows that the proposed CAPRA can provide
not only the standard shortest path which is the same as that provided by
Google Directions or an A* algorithm, but also other alternatives which may
be longer but have smoother slopes.

Our new algorithm can give the users a wider range of options to choose
from. The users may not necessarily be elderly people or disabled but could
instead, be bike riders or roller bladers or people pushing prams. In fact,
anyone who might prefer to know about alternate routes to their required
destination for a variety of preferences. In this paper, we have explained our
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three object preferences, but other preferences could also be implemented in
the future, depending on the user needs.

In this paper, we address and define walking path accessibility consider-
ing the elevation of the path. However, there are other physical accessibility
barriers present that may need to be taken into account. For example, the
walk accessibility of a path may be affected by the stairs, high curbs and busy
intersections. In future, a matrix such as the SAW criteria [36] and walka-
bility score [42] can be incorporated with our approach to help the disabled
and elderly people to check whether the route is affected by any physical ac-
cessibility barrier. The integration of such data can also be achieved through
crowdsourcing, as some of these hazards are not permanent, but temporar-
ily constructed for road maintenance or building construction, for example.
For the purpose of real-time data collection, the crowdsourcing platform de-
scribed in [18] could be used. The R-Q based method proposed in [21] is
able to provide an answer to the routing queries related to traffic conditions.
Also, it can be adapted with our model to provide live updates about the
busy-ness of a road. In this regard, the urban data from pedestrian sensors
could be utilized with the crowdsourcing platform. Also, user profiles could
be incorporated to satisfy individual requirements.

Acknowledgment

This research was supported under Australian Research Council’s Linkage
Projects funding scheme (project number LP120200305). Also the authors
acknowledge the contribution of Bo Wang who worked as a summer student
on this project.

References

[1] S. Alghamdi, R. van Schyndel, M. Hamilton, Blind User Response to
a Navigational System to Assist Blind People Using Active RFID and
QR-Code, in: Proceedings of the 8th International Conference on Perva-
sive Computing Technologies for Healthcare, ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2014, pp. 313-316.

[2] S. Azenkot, S. Prasain, A. Borning, E. Fortuna, R. Ladner, J. Wobbrock,
Enhancing Independence and Safety for Blind and Deaf-blind Public

30



Transit Riders, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 2011, pp. 3247-3256.

C. Cardonha, D. Gallo, P. Avegliano, R. Herrmann, F. Koch, S. Borger,
A Crowdsourcing Platform for The Construction of Accessibility Maps,
in: Proceedings of the 10th International Cross-Disciplinary Conference
on Web Accessibility, ACM, 2013.

K. Corcoran, J. McNab, S. Girgis, R. Colagiuri, Is Transport a Barrier
To Healthcare for Older People With Chronic Diseases?, Asia Pacific
Journal of Health Management 7 (1) (2012) 49-56.

J. Davey, Older People and Transport: Coping Without A Car, Ageing
and Society 27 (1) (2007) 49-65.

D. Delling, P. Sanders, D. Schultes, D. Wagner, Engineering Route Plan-
ning Algorithms, in: Algorithmics of Large and Complex Networks,
Springer, 2009, pp. 117-139.

E. Dijkstra, A Note on Two Problems in Connexion with Graphs, Nu-
merische mathematik 1 (1) (1959) 269-271.

Y. Disser, M. Miiller-Hannemann, M. Schnee, Multi-criteria Shortest
Paths in Time-dependent Train Networks, in: Experimental Algorithms,
Springer, 2008, pp. 347-361.

S. Elsmore, 1. Subastian, F. Salim, M. Hamilton, VDIM: Vector-based
Diffusion and Interpolation Matrix for Computing Region-based Crowd-
sourced Ratings: Towards Safe Route Selection for Human Navigation,

in: Proceedings of the 13th International Conference on Mobile and
Ubiquitous Multimedia, ACM, 2014, pp. 212-215.

L. Ferrari, M. Berlingerio, F. Calabrese, B. Curtis-Davidson, Measur-
ing public transport accessibility using pervasive mobility data, IEEE
Pervasive Computing (2013) 26-33.

E. Galbrun, K. Pelechrinis, E. Terzi, Safe Navigation in Urban Envi-
ronments, in: The 3rd International Workshop on Urban Computing
(UrbComp 2014), 2014.

31



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hierar-
chies: Faster and Simpler Hierarchical Routing in Road Networks, in:
Experimental Algorithms, Springer, 2008, pp. 319-333.

Google, Google Directions API, https://developers.google.com/
maps/documentation/directions/, Last Accessed: 3-July-2015.

Google, Google Elevation API, https://developers.google.com/
maps/documentation/elevation/, Last Accessed: 26-Feb-2015.

Google, Google Maps, http://www.maps.google.com, Last Accessed:
10-Jan-2014.

M. Guentert, Improving Public Transit Accessibility for Blind Riders:
A Train Station Navigation Assistant, in: The Proceedings of the 13th
International ACM SIGACCESS Conference on Computers and Acces-
sibility, ACM, 2011, pp. 317-318.

R. Giiting, T. d. Ridder, M. Schneider, Implementation of the ROSE
Algebra: Efficient Algorithms for Realm-Based Spatial Data Types., in:
Proc. of the 4th Intl. Symposium on Large Spatial Databases, 1995, pp.
216-239.

M. Hamilton, F. Salim, E. Cheng, S. Choy, Transafe: A Crowdsourced
Mobile Platform for Crime and Safety Perception Management, in:
IEEE International Symposium on Technology and Society 2011, IEEE,
2011, pp. 32-37.

K. Hara, S. Azenkot, M. Campbell, C. Bennett, V. Le, S. Pannella,
R. Moore, K. Minckler, R. Ng, J. Froehlich, Improving Public Tran-
sit Accessibility for Blind Riders by Crowdsourcing Bus Stop Landmark
Locations with Google Street View, in: Proceedings of the 15th Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility,
ACM, 2013.

P. Hart, N. Nilsson, B. Raphael, A Formal Basis For The Heuristic
Determination of Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics 4 (2) (1968) 100-107.

32



[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

C. Jason, Z. Yongxin, T. Lei, Where to: Crowd-aided path selection, in:
40th International Conference on Very Large Data Bases (VLDB’2014),
ACM, 2014, pp. 2005-2016.

B. Krieg-Briickner, C. Mandel, C. Budelmann, B. Gersdorf, A. Martinez,
Indoor and Outdoor Mobility Assistance, in: Ambient Assisted Living,
Springer, 2015, pp. 33-52.

J. Li, Map Route Ranking with Weighted Distance using Environmental
Factors, arXiv preprint arXiv:1404.0934.

T. Lin, J. Xia, T. Robinson, K. Goulias, R. Church, D. Olaru, J. Tapin,
R. Han, Spatial Analysis of Access to And Accessibility Surrounding
Train Stations: A Case Study of Accessibility for The Elderly in Perth,
Western Australia, Journal of Transport Geography 39 (2014) 111-120.

L. Mandow, J. De La Cruz, A New Approach to Multiobjective A*
Search., in: Proceedings of the 19th international joint conference on
Artificial intelligence (IJCAI ’05), Citeseer, 2005, pp. 218-223.

L. Mandow, J. De La Cruz, Multiobjective A* Search with Consistent
Heuristics, Journal of the ACM (JACM) 57 (5).

J. Meurer, M. Stein, D. Randall, M. Rohde, V. Wulf, Social Depen-
dency and Mobile Autonomy: Supporting Older Adults’ Mobility with
Ridesharing ICT, in: Proceedings of The 32nd Annual ACM Conference
on Human Factors in Computing Systems, ACM, 2014, pp. 1923-1932.

T. Miura, K. Yabu, M. Sakajiri, M. Ueda, J. Suzuki, A. Hiyama, M. Hi-
rose, T. Ifukube, Social Platform for Sharing Accessibility Information
Among People with Disabilities: Evaluation of a Field Assessment, in:
Proceedings of the 15th International ACM SIGACCESS Conference on
Computers and Accessibility, ACM, 2013.

NASA, Shuttle Radar Topography Mission (SRTM), http://srtm.
usgs.gov/, Last Accessed: 26-Feb-2015.

M. Nasir, C. Lim, S. Nahavandi, D. Creighton, Prediction of Pedestri-
ans Routes Within a Built Environment in Normal Conditions, Expert
Systems with Applications 41 (10) (2014) 4975-4988.

33



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

OpenStreetMap, JOSM: OpenStreetMap (OSM) Editor in JAVA,
https://josm.openstreetmap.de/, Last Accessed: 26-Feb-2015.

OpenStreetMap, OpenStreetMap (OSM), http://www.
openstreetmap.org/, Last Accessed: 26-Feb-2015.

OpenStreetMap, OpenStreetMap, Srtm20sm, http://wiki.
openstreetmap.org/wiki/Srtm20sm, Last Accessed: 26-Feb-2015.

C. Prandi, P. Salomoni, S. Mirri, mPASS: Integrating People Sensing
and Crowdsourcing to Map Urban Accessibility, in: Proceedings of the
[EEE International Conference on Consumer Communications and Net-
working Conference, 2014, pp. 10-13.

D. Quercia, R. Schifanella, L. Aiello, The Shortest Path to Happiness:
Recommending Beautiful, Quiet, and Happy Routes in The City, in:
Proceedings of the 25th ACM Conference on Hypertext and Social Me-
dia, ACM, 2014, pp. 116-125.

W. Sasaki, Y. Takama, Walking Route Recommender System Consid-
ering SAW Criteria, in: Technologies and Applications of Artificial In-
telligence (TAAI), 2013 Conference on, IEEE, 2013, pp. 246-251.

The World Bank, World Bank Group Annual Report 2014,Popula-
tion Ages 65 And Above (% of Total), http://data.worldbank.org/
indicator/SP.POP.65UP.TO.ZS, Last Accessed: 27-Jul-2015.

M. Traunmueller, A. Fatah gen Schieck, Introducing the Space Recom-
mender System: How Crowd-sourced Voting Data Can Enrich Urban
Exploration in The Digital Era, in: Proceedings of the 6th International
Conference on Communities and Technologies, ACM, 2013, pp. 149-156.

United Nations, United Nations, World Population Ageing
2013, http://www.un.org/en/development/desa/population/
publications/pdf/ageing/WorldPopulationAgeing2013.pdf, Last
Accessed: 28-Jul-2015.

M. Valtorta, A Result on The Computational Complexity of Heuristic
Estimates for the A* Algorithm, Information Sciences 34 (1) (1984) 47—
59.

34



[41]

[42]

[43]

[44]

[45]

[46]

T. Volkel, G. Weber, RouteCheckr: Personalized Multicriteria Routing
for Mobility Impaired Pedestrians, in: Proceedings of the 10th inter-
national ACM SIGACCESS conference on Computers and accessibility,
ACM, 2008, pp. 185-192.

Walkscore, Walkscore.com, http://www.walkscore.com, Last Ac-
cessed: 10-Jan-2014.

H. Wang, G. Li, H. Hu, S. Chen, B. Shen, H. Wu, W. Li, K. Tan, R3: A
Real-Time Route Recommendation System, Proceedings of the VLDB
Endowment 7 (13) (2014) 1549-1552.

R. Wasinger, C. Stahl, A. Kriiger, M3l in a Pedestrian Navigation &
Exploration System, in: Human-Computer Interaction with Mobile De-
vices and Services, Springer, 2003, pp. 481-485.

H. Wennberg, A. Stahl, C. Hydén, Older Pedestrians’ Perceptions of The
Outdoor Environment in A Year-round Perspective, European Journal
of Ageing 6 (4) (2009) 277-290.

M. Whelan, J. Langford, J. Oxley, S. Koppel, J. Charlton, The Elderly
and Mobility: A Review of The Literature, Monash University Accident
Research Centre Australia, 2006.

S. Wibowo, P. Olszewski, Modeling Walking Accessibility to Public
Transport Terminals: Case Study of Singapore Mass Rapid Transit,
Journal of the Eastern Asia Society for Transportation Studies 6 (2005)
147-156.

35



