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Abstract

In this study, we present a new sparse-representation-based face-classification algo-

rithm that exploits dynamic dictionary optimization on an extended dictionary using

synthesized faces. More specifically, given a dictionary consisting of face examples,

we first augment the dictionary with a set of virtual faces generated by calculating the

image difference of a pair of faces. This results in an extended dictionary with hy-

brid training samples, which enhances the capacity of the dictionary to represent new

samples. Second, to reduce the redundancy of the extended dictionary and improve

the classification accuracy, we use a dictionary-optimization method. We truncate the

extended dictionary with a more compact structure by discarding the original sam-

ples with small contributions to represent a test sample. Finally, we perform sparse-

representation-based face classification using the optimized dictionary. Experimental

results obtained using the AR and FERRET face datasets demonstrate the superiority of

the proposed method in terms of accuracy, especially for small-sample-size problems.
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1. Introduction

In recent years, sparse representation has received extensive attention for its wide

applications in signal processing, such as super-resolution reconstruction [51, 52], im-

age segmentation [38, 41], signal encoding [12, 18], color image restoration [21], im-

age denoising [9], and pattern recognition [34, 35, 40]. In contrast with traditional5

methods [4, 19, 24, 25, 26, 27, 55, 60], sparse representation has introduced a number

of new methodologies with promising results to the aforementioned areas. A survey

of sparse representation and its applications is presented in [59]. For pattern recogni-

tion and classification, the most well-known sparse representation method is believed

to be sparse-representation-based classification (SRC) [43, 44], which performs classi-10

fication using an approach that is different from that used by conventional classifiers,

e.g., support vector machines (SVMs) [14, 15, 39, 45], AdaBoost [29, 42], and other

statistical methods [16, 30].

Given a test sample and a dictionary consisting of a number of training sam-

ples/atoms with labels, the aim of SRC is to reconstruct the test sample using a sparse15

linear combination of all the training samples. In order to achieve the sparsity of re-

construction coefficient vectors, the `1-norm regularization is used in SRC. By design,

SRC considers all possible supports (samples from all the classes in the dictionary) and

adaptively selects the minimal number of training samples to represent the test sample,

in which the resulting reconstruction residuals provide discriminative information for20

classification among the training classes. In the classification step, SRC evaluates the

reconstruction error of each class in the dictionary with the test sample, and assigns the

label to the class with the minimum reconstruction error. As opposed to the `1-norm,

the `2-norm regularization has also been studied in collaborative-representation-based

classification (CRC) [57], which shows that the use of `2-norm regularization is more25

efficient and accurate for face recognition.

Sparse representation is naturally discriminative [3, 10, 20, 56, 62]. The accuracy

of SRC is directly related to the representation capability of a dictionary and the spar-

sity of reconstruction coefficient vectors. Of the total number of training samples, SRC

selects a subset that compactly reconstructs an input signal and rejects all the other less30
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relative samples. Therefore, the ability of sparse representation to explore discrimina-

tive information depends on the design of a sparse-constrained signal reconstruction

algorithm, and the construction of an effective dictionary that is capable of preserving

important properties of various types of signals.

In this paper, we focus on the problem of face classification using the sparse-35

representation-based framework. Face classification/recognition is one of the most

popular and challenging tasks in machine vision and pattern recognition. Despite the

capability of SRC in exploring intrinsic characteristics using a training dataset, it can-

not effectively address the issues posed by appearance variations. Moreover, in in-

dustrial applications, some products such as CCTV security systems usually offer few40

or even a single face image per subject for face verification, which is the well-known

‘small-sample-size’ (SSS) problem [6]. To mitigate these issues, a number of new

approaches have been developed, which can be roughly divided into two categories.

The first one is to improve the underlying model of the classical SRC pipeline. For

example, Xu et al. [47] integrated conventional and inverse representations for face45

recognition, and obtained impressive face recognition results. Yang et al. and Zhu et

al. [54, 61] introduced the similarity and distinctiveness of features to CRC, and pre-

sented a more general model. Chen et al. [5] extended SRC to 2D-SRC, which can

directly handle 2D matrices of face images rather than converting them into vectors.

The other important category is to augment an available dictionary with synthesized50

virtual faces. The use of synthesized face images has been shown to be beneficial for

a number of face-analysis tasks, such as face recognition [32, 46, 49] and facial land-

mark detection [11, 13, 17]. For SRC-based face classification, Deng et al. augmented

the original dictionary by generating intraclass variant faces [7, 8]. Ryu et al. [31]

used the distribution of a given gallery set to generate virtual training samples, while55

Beymer et al. [1] and Vetter et al. [2] constructed new frontalized face images for face

recognition. Finally, the symmetry property of human faces has also been widely used

in SRC-based face classification and other face analysis applications [12, 36, 50].

The aforementioned methods indicate that virtual training samples can be generat-

ed in two ways: the first one is to extract non-trivial knowledge hidden in the intrinsic60

variation mode among training samples, and the second is to synthesize new training
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samples by performing image perturbation on original samples. Nevertheless, the use

of synthesized faces may lead to issues in decision making owing to the information

redundancy among original and synthesized faces. The reason is that the use of a large

number of virtual samples may lead to over-fitting, and the relationship between differ-65

ent virtual samples cannot be precisely described in the reconstruction step. Thereby,

heuristic or adaptive strategies are expected to discover a subset with the most compet-

itive training samples for signal reconstruction.

In general, traditional sparse-representation-based classification methods exploit

all of the training samples to represent a query image for classification, and are re-70

ferred to as ‘global-representation-based’ approaches. In contrast, we refer to a method

using only a subset of the original training samples as a ‘local-representation-based’

approach. As demonstrated by the two-phase CRC [48] and linear-regression-based

classification (LRC) [23] methods, local-representation-based methods perform better

than global methods in terms of both accuracy and efficiency. By design, a robust75

local-representation-based method should be able to convert a difficult face classifica-

tion task into an easier one using an optimized dictionary. It can also be regarded as

a specific evaluation method that uses merely a subset of training samples to repre-

sent and classify a query sample. In fact, the underlying rationale behind the use of

local-representation-based methods has already been empirically proven, and is widely80

admitted. If a test sample highly correlates to the training samples obtained from a

specific subject, it should be reasonable to assign the label of the test sample to the

subject. Therefore, it is important to develop a new method that enables us to ac-

quire more inherent sparse fidelity information from insufficient (even a single training

sample per subject) training samples. To this end, we propose a two-step local-sparse-85

representation-based classification method, namely ‘Two-Step LSRC’. In contrast, we

use the term ‘Two-Step SRC’ for the classical SRC method that performs classification

on an optimized dictionary without synthesized faces. The proposed method includes

three main contributions to the field:

• We construct an extended dictionary using the original training samples and a set90

of synthesized virtual samples. A virtual face is generated using the local differ-
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ence image between a pair of faces. With the help of the extended dictionary, we

can better represent a test sample.

• Because an extended dictionary may over-fit test samples and lead to inaccurate

decision making, we optimize the dictionary to reduce the information redun-95

dancy. To this end, we discard the training samples with small contributions to

representing a test sample. Note that in general, we only discard the original

training samples, while retaining all of the synthesized ones during the opti-

mization step. We discard synthesized samples only when we have a very large

number of synthesized faces. This is different from the elimination strategy used100

in [32, 33], in which they always discard synthesized samples.

• We optimized the extended dictionary by performing adaptive contribution mea-

surement, and we used the optimized dictionary for robust face classification.

We determined the class of a test sample using the class that yields the mini-

mum reconstruction error. Experimental results obtained on the AR and FERET105

datasets demonstrate that the proposed method achieves significant improvement

in accuracy for face classification, especially for the small-sample-size problem.

The remainder of the paper is organized as follows: In Section 2, we present a brief

overview of the sparse-representation-based classification method, which serves as a

prerequisite of the proposed Two-Step LSRC approach in Section 3. In Section 4, we110

give a comprehensive analysis of the proposed method, and in Section 5, we present

the experimental results obtained for the AR and FERET face datasets. Finally, we

conclude the paper in Section 6.

2. Sparse-representation-based classification

Given K ×M training samples {x1, ...,xKM}, where x ∈ RD, K is the number115

of classes, M is the number of samples of each class, and D is the dimensionality of a

sample, SRC reconstructs a test sample y ∈ RD using a linear combination of all the

training samples:

y =

KM∑
i=1

αixi + e, (1)
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where αi is the reconstruction coefficient corresponding to the ith training sample xi

and e is the residual. The above equation can be compactly rewritten as:120

y = Xα+ e, (2)

where X = [x1, ...,xKM ] ∈ RD×KM is the training sample matrix, also known as the

dictionary, and α = [α1, ..., αKM ]T is the reconstruction coefficient vector.

In fact, SRC encodes the sample y using the dictionary X. The sparsity of the

obtained reconstruction coefficient vector α is achieved by optimizing the `0-norm

constrained loss:125

min‖α‖0 s.t. y = Xα. (3)

However, this is an NP-hard problem that is very difficult to solve. To mitigate this

issue, the classical SRC [43, 44] method uses the `1-norm for regularization:

min‖α‖1 s.t. y = Xα. (4)

By solving the above optimization problem, the classical SRC algorithm represents

a test sample using an over-complete dictionary, and achieves promising results for

occlusion- and illumination-invariant face recognition. However, the dimensionality of130

a face image is usually much higher than the number of atoms/samples in a dictionary.

Hence, it is practically very difficult to construct an over-complete dictionary. More-

over, facial appearance variations lead to difficulties in SRC-based face classification,

and the solution of the `1-norm regularized optimization problem is time-consuming.

More recently, the direct use of the `2-norm constraint has shown superior results135

in face classification in terms of both accuracy and speed [57, 58]:

min‖α‖22 s.t. y = Xα. (5)

For this optimization problem, we can use the efficient closed-form solution:

α = (XTX+ µI)−1XTy, (6)

where µ is the weight of the regularization term and I is the identity matrix.

Given a test sample and the reconstruction coefficient vector, we can calculate the

contribution of the ith training sample to the reconstruction of the test sample. We140
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define the ‘contribution’ of the ith training sample to the test sample as αixi, and then

calculate the contribution of each class in the dictionary to the test sample. For exam-

ple, for the training samples of the kth class {x(k−1)M+1, ...,xkM}, the contribution

of the kth class to the test sample is:

ck = α(k−1)M+1x(k−1)M+1 + ...+ αkMxkM . (7)

To obtain the classification result of the test sample, the label of the test sample is145

assigned to the label of the class with the minimum reconstruction error:

Label(y) = argmin
k

Ek(y), k ∈ {1, ...,K}, (8)

where

Ek(y) =‖ y − ck ‖22 . (9)

The assigned label k of the test sample indicates that the training samples of the kth

class in the dictionary best represent the test sample.

3. Proposed method150

Most studies mentioned in Section 1 demonstrate that the use of sparse-

representation-based methods provides useful information for face classification. How-

ever, most of these approaches are not able to deal with the case where samples of

the same class (subject) exhibit wide appearance variations, especially when there

is a small number of training samples. In this section, we present a new sparse-155

representation-based face classification method, namely Two-Step LSRC, that dynam-

ically optimizes an augmented dictionary consisting of synthesized local face differ-

ences. Fig. 1 shows the schematic diagram of the proposed method. A further discus-

sion and analysis of the proposed method are given in Section 4.

3.1. Dictionary augmentation and optimization160

For sparse-representation-based face classification, it is difficult to deal with the

difficulties caused by intrinsic and external variations, including illumination, pose,

expression, and occlusion. To address this issue, we assume that the image difference
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original faces synthesised faces

extended dictionary optimised hybrid dictionary

classification

test samples

sparse coding

sparse coding

Figure 1: A schematic diagram of the proposed Two-Step LSRC framework.

between two original training samples reflects appearance variations of human faces to

some extent; hence, it shares a certain proportion of the contribution to a test sample.165

This hypothesis has also been used and testified in [7]. Therefore, in this paper, we syn-

thesize a set of auxiliary virtual samples that provide an effective offset for the adverse

influence posed by appearance variations. With synthesized virtual samples, the aug-

mented dictionary can better represent a test sample. To further reduce the information

redundancy and improve the discriminative information of reconstruction coefficient170

vectors, we perform online dictionary optimization for robust face classification.

The first stage of the proposed Two-Step LSRC is to synthesize a number of virtual

training samples as an auxiliary dictionary for the original one. In this step, the initial

difference images are synthesized using the within-class deformation of a subject, i.e.,

the intensity difference caused by illumination, pose, expression, and occlusion vari-175

ations. In this study, we used five to ten additional subjects that were not included in

the original dictionary to construct the initial auxiliary training set. Some original face

images in the AR face dataset and the corresponding synthesized difference images are

shown in Fig. 2. The difference image for each face is synthesized by subtracting the

natural face from an original face image with appearance variations in expression, il-180

lumination, or occlusion, which represents a specific appearance variation type. Then,

we obtained the extended dictionary by concatenating the original and auxiliary dic-

tionary matrices into a larger one. With the extended dictionary, both the original and

synthesized training samples are jointly used to represent a test sample by linear com-

bination. In the proposed approach, the synthesized samples have equal weights as the185
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Original images with expressions

Original images with disguises and 
illuminations

Difference images

Natural image

Difference images

Natural image

Original images with illuminations

Original images with disguises and 
illuminations

Difference images

Difference images

Natural image

Natural image

Figure 2: Some examples of the original faces and synthesized faces in the AR dataset.

The synthesized face difference images represent local appearance variations by sub-

tracting the natural face from faces with illumination, expression, and changes in dis-

guise.

original ones when we estimate the reconstruction coefficient vector for a test sample.

Despite the outstanding representative capability of the extended dictionary, its use

is not without difficulties. The extended dictionary is somewhat redundant; thus, it

may over-fit test images and inject uncertainty into decision making. To address this

issue, we applied an online dictionary-optimization approach to construct a more com-190

pact dictionary by discarding the samples of the classes with smaller contributions to

representing a test sample. The final goal of dictionary optimization is to select the

most representative training samples from the extended dictionary. Concretely, we first

acquire the reconstruction coefficient vector of a test sample using the extended dic-

tionary. Then, we can calculate the reconstruction error of each training class for the195

test sample, and a smaller reconstruction error indicates a larger contribution to the

representation of the test sample. Thus, we can discard a certain proportion of training

samples with larger reconstruction errors because they are useless for reconstructing

the test sample. A similar idea has also been used in previous studies [32, 33]. Howev-

er, the difference is that we only discard original training samples, while retaining all200

of the synthesized ones in the optimized dictionary. We discard synthesized faces only
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when the number of synthesized faces is larger than those of the original ones. In addi-

tion, we do not involve synthesized samples in decision making. The synthesized faces

are only used to establish a partnership with the original samples when representing a

test sample. Details of the proposed dictionary optimization are presented in the next205

section.

3.2. Proposed Two-Step LSRC

The Two-Step LSRC algorithm is designed to better represent a test sample y and

obtain its label using sparse-representation-based classification with `2-norm regular-

ization. The pipeline of our Two-Step LSRC is described as follows.210

Step 1: Initialization and dictionary augmentation

Given a dictionary with KM samples {x1, ...,xKM}, we first generate N syn-

thesized training samples {x̂1, ..., x̂N} as introduced in Section 3.1. The extended

dictionary is expressed by the matrix Z = [x1, ...,xKM , x̂1, ..., x̂N ].

Step 2: Dynamic optimization of the extended dictionary215

(1) `2-norm regularized coefficient vector encoding:

Calculate the coefficient vector by α = (ZTZ + µI)−1ZTy, where α =

[α1, ..., αKM , α̂1, ..., α̂N ]T consists of the coefficients for all the column vectors in

Z;

(2) Calculate the contribution of each class in the original dictionary to the test220

sample using Eq. (7), and evaluate the reconstruction error of each class Ek(y) using

Eq. (9).

(3) Update the atoms in the extended dictionary Z:

Find the labels L(P ) = {l1, l2, ...} of the classes with relatively larger reconstruc-

tion errors, where P is a pre-defined proportion to the total number of classes in the225

dictionary. Update the extended dictionary by removing the original training samples

with the labels in the setL(P ). Perform the same procedure on the synthesized samples

if N > KM .

Step 3: Classification

First, we obtained the reconstruction coefficient vector using the optimized hybrid230

dictionary, as in Eq. (6). Assume the number of training classes remaining in the
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optimized dictionary is R = K − |LP | and the original training samples of the rth

class are {x(r−1)M+1, ...,xrM}. the contribution of the rth class to the test sample is

obtained by:

cr = α(r−1)M+1x(r−1)M+1 + ...+ αrMxrM , (10)

and the reconstruction error of the rth class is:235

Er(y) =‖ y − cr ‖22 . (11)

Output the label of y using the label of the class with the minimum reconstruction

error:

Label(y) = argmin
r
{Er(y)}. (12)

4. Analysis of the proposed Two-Step LSRC algorithm

In this section, we first discuss how the proposed method can reduce the residual

in sparse-representation-based signal reconstruction, and then we give a probability240

explanation with an empirical illustration of the proposed method. Finally, we highlight

the contribution and novelty of the proposed algorithm.

4.1. Advantages of using synthesized samples

As discussed in the last section, given a dictionary, the objective of the proposed al-

gorithm is to reconstruct a new sample using a linear combination of the atoms/samples245

in the dictionary, in which the reconstruction coefficient vector is regularized by `2-

norm for the purposes of efficiency and accuracy. However, owing to the limited vol-

ume of training samples in the dictionary and facial appearance variations, it is usu-

ally difficult to obtain an over-complete dictionary and to perfectly reconstruct a new

face. In such a case, we used the residual e to measure the reconstruction error, i.e.,250

e = y −Xα.

In the proposed algorithm, we attempted to reduce the norm of the residual e by

introducing a set of local difference faces. The advantage of the proposed dictionary

augmentation method is that the new dictionary is capable of dealing with appearance

variations such as illumination, pose, expression, and disguise. More specifically, we255
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rewrote the extended dictionary as Z = [X, X̂], where X = [x1, ...,xKM ] is the

original dictionary, X̂ = [x̂1, ..., x̂N ] is the synthesized dictionary consisting of N

local difference faces. The linear reconstruction of a test sample y using the extended

dictionary can be expressed as:

y ≈ Xα+ X̂α̂. (13)

As the reconstruction error e of the original dictionary can be calculated by e = y −260

Xα, the above equation is modified to:

e = X̂α̂+ ê, (14)

which means that the synthesized local difference faces are used to reconstruct the

residual between the test sample and the original dictionary. In addition, we can con-

clude that the new reconstruction error of the extended dictionary is smaller than that

of the original dictionary, i.e., ||ê||22 ≤ ||e||22. However, it is uncertain whether a small-265

er reconstruction error would lead to more accurate classification results because the

auxiliary training samples affect the contributions of both intra-class and external-class

samples when representing a test sample. To further improve the accuracy of face clas-

sification, we dynamically optimized the extended dictionary in the proposed algorithm

using an elimination strategy.270

4.2. Probability explanation of the dictionary-optimization approach

As introduced in Section 4.1, a test sample y is represented by the extended dic-

tionary Z = [X, X̂]. In fact, the proposed Two-Step LSRC algorithm assumes that

the auxiliary dictionary, which consists of synthesized faces, provides complementary

contributions to the representation of y.275

Concretely, the linear representation of y using the original samples can be rewrit-

ten as:

y = X1α1 + ...+Xkαk + ...+XKαK + e, (15)

where Xk is the kth class-specific sub-dictionary consisting of the original samples of

the kth class, and αk is the corresponding class-specific reconstruction coefficient vec-

tor. Theoretically, all of the entries of αk should be zero except for the one belonging280
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to the same class of y. With the original dictionary, the ideal result of the obtained

coefficient vector should be:

α = [(0, ..., 0), ...,αT
k , ..., (0, ..., 0)]

T , (αT
k 6= (0, ..., 0)T ), (16)

where the elements are all zero except those in αk. The traditional SRC algorithm con-

siders the classes with coefficients of zero that do not affect the final classification pro-

cedure. However, in practice, it is very difficult for sparse-representation-based classi-285

fication methods to obtain a coefficient vector satisfying Eq. (16), especially when we

use the `2-norm regularization. The noise in a reconstruction coefficient vector intro-

duces uncertainty in decision making, and may result in inaccurate face classification.

To address the above problem and construct an optimal dictionary, we interpret the

sparse representation as a variable selection problem. By design, we ignored the train-290

ing samples with smaller contributions when representing a test sample; this is done by

setting the corresponding coefficients to zero. In other words, we attempted to filter the

classes with smaller reconstruction coefficients using an elimination strategy for dictio-

nary optimization. Because the synthesized local difference samples reflect the intrinsic

knowledge of a test sample to some extent, the auxiliary dictionary X̂ = [x̂1, ..., x̂N ]295

can share a certain proportion of the contribution to the test sample y. Using the ex-

tended hybrid dictionary, the coefficient vector is modified as [αT , α̂T ]T , where α

and α̂ contain the coefficients corresponding to the original and synthesized samples,

respectively. Although the process of solving α satisfying Eq. (16) is still very diffi-

cult, using the synthesized local difference faces, the elimination of less-representative300

training classes in dictionary optimization enlarges the elements in the corresponding

class-specific reconstruction vector that have the same label as y. The probability ex-

planation for this assumption is given as follows.

We used Ti to indicate the event for which a test sample y belongs to the ith class

and P (Ti/y) is the probability of an event where y belongs to the ith class. More305

specifically, when αi ≈ (0, ..., 0)T , (i 6= k, i ∈ [1, ...,K]), we can obtain P (Ti/y) ≈

0, which means that the test sample does not belong to the ith class. As denoted

by Eq. (9), we used Ek(y) as the reconstruction error between the kth original sub-

dictionary Xk and y. In fact, we can assume that P (Tk/y) ∝
∑K

i=1Ei(y)/Ek(y),
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which means that we can obtain higher posterior probability P (Tk/y), while Ek(y)310

is relatively smaller than the reconstruction errors of other classes. Thus, we assign

P (Ti/y) = 0 when Ei(y) belongs to the subsets with larger reconstruction errors.

Finally, we used the remaining atoms in the optimized dictionary to better represent

y and perform robust classification. The joint use of the synthesized faces and the

elimination strategy reduces the relative reconstruction error of the correct training315

class; hence, improving the accuracy in sparse-representation-based face classification.

4.3. An empirical illustration of the proposed method

To better illustrate how the proposed method works, we compared the relative

reconstruction errors between all the training classes and a test sample in sparse-320

representation-based classification using a) the original dictionary without elimination,

b) the original dictionary with elimination, c) the extended dictionary without elimina-

tion, and d) the extended dictionary with elimination, as in Fig. 3. It should be noted

that the term ‘relative reconstruction error’ refers to the percentage of the reconstruc-

tion error derived from a specific class relative to the sum of the reconstruction errors325

over all the training classes and auxiliary training samples. In Fig. 3, the test sample

belongs to the 13th class of all the 20 classes (each class has eight training samples),

and we used 25 auxiliary local difference faces in the extended dictionary. The rela-

tive reconstruction errors derived from the training samples of the correct class, i.e.,

the 13th class, are highlighted using dark blue bars. The red bars indicate the training330

classes with higher relative reconstruction errors, which should be eliminated during

the dictionary-optimization step. The remaining classes that are different from the la-

bel of the test sample are plotted using light blue bars, and the relative reconstruction

errors derived from the auxiliary local difference faces are plotted using purple bars

(ID 21-45).335

Because the percentage of the reconstruction error derived from a class of training

samples is inversely proportional to the probability P (Ti/y), the error derived from the

correct class should have the smallest value for the purpose of accurate decision mak-

ing. In contrast, a larger error indicates that the training samples in the corresponding

14
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Figure 3: A comparison of the percentage of the reconstruction error derived from each

class for a test sample using: (a) the original dictionary without elimination; (b) the

extended dictionary without elimination; (c) the original dictionary with elimination;

and (d) the extended dictionary with elimination. To obtain the meanings of the bars

with different colors, refer to Section 4.3. The horizontal axes indicate the ID of the

training classes (1-20) and synthesized samples (21-45), while the vertical axes indicate

the percentage of the reconstruction error derived from a specific class (or sample). We

performed the experiment on the AR database, and we selected the test sample using

the 15th image of the 13th subject. We selected the training samples using the first

eight images of the first 20 subjects. Then, we generated the auxiliary local difference

faces by subtracting the first image from other images of the 22nd subject.

class are incapable of representing the test sample, and they should be discarded from340

the optimized dictionary.

In Fig. 3a, the results are obtained using the original dictionary, which is similar

to the classical SRC algorithm [44]. The correct class does not provide the smallest
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reconstruction error, and leads to an inaccurate classification result. The relative recon-

struction errors derived from the 10th, 12th, and 18th classes are all smaller than that345

of the correct class. With the auxiliary local difference faces, the relative reconstruc-

tion errors derived from the correct class (13th) is decreased, which is smaller than that

derived from the 12th and 18th classes, as shown in Fig. 3b. However, the 10th class

still has the smallest error and the final classification result is incorrect. This method is

similar to the ESRC [7] algorithm, which also uses auxiliary samples.350

We obtained Fig. 3c using the original dictionary with the elimination strategy,

which demonstrates that the simple use of the elimination strategy cannot improve the

accuracy for sparse-representation-based classification. This method can be viewed as

the Two-Step SRC algorithm. Finally, in Fig. 3d, the proposed Two-Step LSRC algo-

rithm uses the extended dictionary with auxiliary training samples and the elimination355

strategy, which significantly reduces the relative reconstruction error derived from the

correct class and obtains an accurate face-classification result.

In this section, we demonstrate that the single use of synthesized faces or the

dictionary-optimization approach is not able to obtain the minimum reconstruction

error of the training samples in the correct class for a test sample. In contrast, the360

proposed Two-Step LSRC, which combines dictionary augmentation and optimization

methods, significantly reduces the reconstruction error of the correct class and im-

proves the face-classification accuracy.

4.4. Novelty of the proposed method

As discussed above, the superiority of the proposed Two-Step LSRC algorithm365

stems from two aspects:

1) A simple but effective data augmentation method is proposed to synthesize lo-

cal difference faces in our Two-Step LSRC. With the generated local difference faces,

we can obtain a more robust sparse representation for a new sample. As mentioned

in Section 4.1, the reconstruction error can be reduced using the synthesized local d-370

ifference faces. The main reason is that these local difference faces reflect some local

appearance variations in pose, expression, illumination, and occlusion. For a new test

sample, the synthesized local difference faces are used as a complementary dictionary
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that collaborates with the original one to represent the test sample. This is very impor-

tant for successful compress sensing and sparse representation. In addition, according375

to Section 4.3, the use of synthesized faces reduces the relative reconstruction error

derived from the class that has the same label as a test sample, which is beneficial for

decision making (Fig. 3b). Although the single use of an extended dictionary does not

provide accurate classification in the example shown in Section 4.3, in practical appli-

cations, it improves the accuracy of face classification when compared to that of using380

the original dictionary. This is validated in our experimental results in the next section.

2) To further improve the accuracy of the proposed algorithm in face classification,

we apply dictionary optimization to the augmented training samples. The elimination

strategy works as a filter mechanism that selects the most representative samples by

assessing the contribution of each class to the test sample. The two-step mechanism385

successively reduces the size of candidate classes by discarding a number of insignifi-

cant classes to represent the test sample. With this mechanism, we can select the best

class that matches the test sample by reducing the relative reconstruction error between

the correct class and a test sample, as discussed in Section 4.3. In contrast, the tra-

ditional SRC method makes decisions from all the training classes. Therefore, it is390

not able to identify all of the external classes that make smaller contributions to the

reconstruction of a test sample. In summary, the assessment method in our proposed

algorithm is used to evaluate the effectiveness of the samples of each class when rep-

resenting a test sample, and hence, it obtains more accurate face-classification results.

Finally, it should be noted that the use of the `2-norm constraint in the proposed al-395

gorithm is more efficient when compared to the use of the `1-norm constraint in the

classical SRC [44].

5. Experimental Results

In this section, we present our experimental results obtained on the FERET [28] and

AR [22] face datasets, which have been widely used to benchmark face classification400

algorithms. The face images of these two databases were captured with illumination,

pose, and expression variations. Moreover, disguised face images were also included in

17



Figure 4: Example faces of the AR dataset.

Figure 5: Face examples of the FERET dataset.

the AR dataset. In our experiments, we used the closed-form solution of α in Eq. (6),

and the regularization term µ was set to 0.01.

For the AR dataset, we selected 3120 images from 120 subjects (26 images per405

subject). These images were captured over two sessions. The selected subset has also

been widely used in previous studies [46, 49, 50]. Each image was down-sampled to

40 × 50 and converted to a 2000 × 1 vector. Some examples faces of the AR dataset

are shown in Fig. 4.

The FERET dataset was obtained from the FERET program, and it has become410

a standard benchmarking dataset for evaluating state-of-the-art face-recognition algo-

rithms. The proposed algorithm was evaluated on a subset of FERET. The subset has

1400 images of 200 individuals (seven images per individual). Each face image in

FERET was also resized and converted to a 2000 × 1 vector. Some example faces of

the FERET dataset are shown in Fig. 5.415

5.1. Face classification with insufficient training samples

This experiment is designed to evaluate the accuracy of the proposed Two-Step L-

SRC algorithm when we have insufficient training samples (few training samples per

subject). In the experiment, we compared the proposed method with various face-
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recognition approaches such as the well-known PCA, LDA, SRC, and ESRC methods.420

The nearest-neighbor classifier with Euclidean distance was used to perform face clas-

sification for PCA and LDA.

5.1.1. Results obtained using the AR dataset

We first evaluated the proposed Two-Step LSRC algorithm using the AR face

dataset. In this experiment, we selected a subset of the first 100 subjects in the database.425

Because the first 20 images of each subject contain all of the variation types, we se-

lected two images per individual from these 20 images for training, and the remaining

images for testing purposes. More specifically, for the 1st to 10th subjects, the first

two images were selected as training samples; for the 11th to 20th subjects, the 3rd

and 4th images were used for training, and in the same manner, the last two images430

were selected as training samples for the 91st to 100th subjects. Thus, we developed a

training set of 200 images and a test set of 2400 images. The auxiliary dictionary with

local difference faces was constructed as presented in Section 3. In order to evaluate

the generalization capacity of the proposed algorithm, we used the images from the

101st to 105th subjects (not included in the training or test subsets) to synthesize 125435

virtual faces.

Table 1 shows the recognition rates of PCA [37], PCA+LDA [53], SRC [44], ESR-

C [7], Two-Step SRC, and Two-Step LSRC using the AR Database. Note that the tradi-

tional methods including PCA, PCA+LDA, SRC, and ESRC were performed without

dictionary optimization. As shown in Table 1, the proposed Two-Step LSRC method440

outperforms all of the other algorithms, regardless of the number of training samples

that were discarded in the elimination step. Second, when compared with the classical

PCA and PCA+LDA algorithms, the sparse-representation-based algorithms obtained

higher recognition rates for the AR face dataset. This validates the effectiveness of

the use of sparse-representation-based face-classification methods. Third, the simple445

use of synthesized local difference faces improves the performance in terms of ac-

curacy even without the elimination strategy, and this is shown by comparing ESRC

to Two-Step SRC and SRC. Then, by using only the dictionary-optimization method,

we cannot improve the accuracy by comparing the recognition rates between Two-
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Step SRC and SRC. However, the joint use of the proposed dictionary augmentation450

and optimization methods achieves superior recognition results compared to the other

methods. Finally, when we discard 70% of training classes, the proposed Two-Step

LSRC method achieves a 71.9% recognition rate, which is 2.88% higher than that of

the state-of-the-art ESRC algorithm.

5.1.2. Results obtained using the FERET dataset455

In this experiment, we selected a subset that contains the first 190 subjects in the

FERET database. More specifically, for each subject, we selected the first two images

for training, and the remaining images were used as test samples. Thus, we created a

training set of 380 images and a test set of 950 images. Meanwhile, to generate the

auxiliary dictionary with synthesized faces, we selected the 191st to the 200th subjects460

in order to synthesize 60 virtual samples. In Table 2, we compared the proposed method

with PCA [37], PCA+LDA [53], SRC [44], ESRC [7], and the Two-Step SRC.

The performance of different face-classification algorithms in Table 2 is similar

to corresponding values in Table 1. First, all of the spare-representation-based face-

classification algorithms outperform the classical PCA and PCA+LDA algorithms in465

terms of accuracy. Second, the single use of auxiliary training samples (ESRC vs SRC)

performs better than the single use of the elimination strategy (Two-Step SRC vs SRC).

Finally, the proposed Two-Step LSRC algorithm that uses both the dictionary augmen-

tation and optimization methods is superior to the others in terms of face-recognition

rate. In particular, our Two-Step LSRC achieves a 69.47% recognition rate, which is470

10.73% higher than ESRC when we discard 80% or 90% of training samples. The

FERET face dataset is easier than AR for face recognition. This is why the improve-

ment of the proposed algorithm is more significant than the results obtained for the AR

dataset.

According to the experimental results obtained for the AR and FERET face dataset-475

s, we can conclude that the proposed Two-Step LSRC improves the performance of face

classification in terms of accuracy, when compared to the SRC and ESRC methods as

well as the classical PCA and PCA+LDA algorithms.
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5.2. Face classification using a single training sample

In this section, we design two other experiments and present the face-recognition480

results obtained for different methods when we have only a single training sample per

subject. We used the experiments to verify the effectiveness of the proposed method

when dealing with the small-sample-size (SSS) problem.

In this section, for the first experiment, we selected the first 100 subjects of the

AR database to generate training and test subsets. In practice, we selected one image485

from the first 13 images of each subject for training. More specifically, for the 1st to

8th subjects, the first image was selected as the training sample; for the 9th to 16th

subjects, the second image was selected for training, and in the same manner, the 13th

image was selected as the training sample for the 97th to 100th subjects. Meanwhile,

we used the remaining 25 images of each subject for testing. Thus, we generated a490

training set of 100 images and a test set of 2500 images. Moreover, the auxiliary

dictionary was constructed using the 101st to 105th subjects. In total, we generated

125 auxiliary virtual samples. For the second experiment, we selected the first 190

subjects from FERET to generate both training and test samples. More specifically, for

each subject, the first image was selected for training and the remaining images were495

selected for testing. Thus, we created a training set of 190 images and a test set of

1140 images. The auxiliary dictionary of FERET was generated in the same way as in

Section 5.1.2.

The recognition rates of the ESRC, SRC, Two-Step SRC, and Two-Step LSRC

methods are shown in Fig. 6, and are parameterized by the percentage of discarded500

training classes (0% - 90%). In this experiment, we used two different elimination s-

trategies for dictionary optimization. The first one only discards original training sam-

ples, which results in a static auxiliary sample set. The second one discards both the

original training samples and synthesized samples, which provides an updated auxil-

iary sample set.505

First, as shown in Fig. 6a and Fig. 6b, the use of the proposed dictionary-

augmentation method improves the face classification accuracy for both the AR and

FERET datasets, and we observe this by comparing the blue and red lines to the black

ones. Second, the single use of the elimination strategy is unstable, and cannot always
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Figure 6: Recognition rates of different methods obtained using the (a) AR (1/25) and

(b) FERET (1/6) face databases (No. Training / No. Test), when we have only one

training sample per subject.
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improve the accuracy of a sparse-representation-based face-classification method. Note510

that there is a sharp drop in the face-recognition rate of Two-Step SRC (without syn-

thesized samples) for the AR database (Fig. 6a). The reason for this phenomenon may

lie in the fact that the dictionary contains an insufficient number of training samples,

i.e., only a single training image per class in the dictionary. In contrast, the joint use

of synthesized faces and the elimination strategy does not result in this issue. More-515

over, we find that the accuracy of the proposed Two-Step LSRC algorithm increases

as the percentage of the discarded training samples increases. For example, the pro-

posed Two-Step LSRC improves the accuracy from 49.31% to 59.49% for the FERET

database. The main reason is that we can realize more accurate decision making when

we have fewer candidate classes, as discussed in Section 4.4. Finally, the use of updat-520

ed auxiliary sample sets does not significantly improve the face-recognition accuracy

when compared to the static one. This is why we only discard original training samples

in dictionary optimization.

6. Conclusion

In this paper, we proposed a new sparse-representation-based face-classification525

method, namely Two-Step LSRC. The key innovation of this work is to perform face

classification using an optimized dictionary with virtual training samples. The pro-

posed method successfully utilizes local difference face images as an auxiliary dictio-

nary, along with a dictionary-optimization strategy, which enhances the representation

capacity of the original dictionary. According to our experimental results obtained530

using the AR and FERET datasets, our dictionary-argumentation method successful-

ly improves the accuracy of sparse-representation-based classification methods in face

classification. Of the many possible research directions associated with this work, the

following two are worth noting: (1) to explore the selection of different fuzzy measure-

ment methods in our Two-Step LSRC, and (2) to investigate the use of different fuzzy535

memberships of the synthesized samples, which allows them to dynamically contribute

to the representation of a test sample.
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