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Abstract

Active contour models are popular and widely used for a variety of image segmentation 

applications with promising accuracy, but they may suffer from limited segmentation 

performances due to the presence of intensity inhomogeneity. To overcome this drawback, a novel 

region-based active contour model based on two different local fitted images is proposed by 

constructing a novel local hybrid image fitting energy, which is minimized in a variational level set 

framework to guide the evolving of contour curves toward the desired boundaries. The proposed 

model is evaluated and compared with several typical active contour models to segment synthetic 

and real images with different intensity characteristics. Experimental results demonstrate that the 

proposed model outperforms these models in terms of accuracy in image segmentation.
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1. Introduction

Since the introduction by Kass et al. [12], active contour models [8] have become very 

popular in the field of image segmentation in the past years, and can yield closed and 

smooth contours of the desired objects with promising accuracy [4]. These models are in 

general characterized by a predefined energy functional with intensity and/or gradient 

information based on the intrinsic properties of images. This energy functional can be 

minimized by using the level set method [17], where contour curves are represented 

implicitly as the zero level set of higher dimensional function. This energy minimization 

procedure is effective [6] to drive the motion of contour curves towards the boundaries of 

target objects and achieve satisfactory segmentation results for images with different 

intensity characteristics.

In the past, a variety of active contour models have been proposed for image segmentation 

purpose [1,2,7]. They can be coarsely categorized into the edge- [18,45] and region-based 
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models [13–15,19,20,25,29] according to image information used in the energy functional. 

Edge-based active contour models usually utilize intensity gradients to approximate the 

target boundaries and attract contour curves toward desirable boundaries [11]. This type of 

models is efficient but sensitive to image noise and the initial curve placement due to the 

local characteristic of image gradients. Different from this type of models, region-based 

models employ a great deal of image information, such as pixel intensities, shape and texture 

features in global or local regions, to make contour curves accurately converge to desirable 

target boundaries. The region-based models are in general more robust to image noise, less 

sensitive to the initial contour curve placement, and more capable of dealing with weak 

boundaries and intensity inhomogeneity owing to the use of more image information, which 

in turn causes more segmentation time.

Among region-based models, the Chan–Vese (CV) model [2] has been widely used for many 

image segmentation tasks. It assumes that images to be processed have homogeneous 

intensities and can be partitioned into several disjoint subregions according to intensity 

characteristics. However, this model may not work well for images with intensity 

inhomogeneity due to the mere use of global intensity averages. To accurately segment 

inhomogeneous images, a number of region-based models [14,15] have been developed by 

constructing a proper energy functional to drive the evolution of contour curves. Li et al. 

[14] and Zhang et al. [44] improved the CV model by using the local binary fitting (LBF) 

energy and local image fitting (LIF) energy, respectively. Ali et al. [1] developed a 

variational model from multiplicative and difference images to handle intensity 

inhomogeneity, which turned out to outperform the CV model and its many variants [36]. 

Mabood et al. [21] proposed an absolute median deviation based model for noisy images, 

which was accurate and efficient as compared to the local Chan–Vese (LCV) model [36]. 

More models can be found in [9,16,30,32] by defining energy functional with other 

information, such as texture features [22,46], prior shape information [3,23,40] and local 

patch [35]. With proper initialization, these models are able to successfully extract the 

desirable objects depicted on images, but typically need complicated estimation strategies 

[10,31].

Another strategy to accurately segment the objects in an image is to incorporate feature 

information into the energy functional to reduce the adverse influence of intensity 

inhomogeneity. There are a variety of feature information [5,7,21] used in segmentation, but 

most of them are not applicable for inhomogeneous images and cannot effectively highlight 

desirable objects located in inhomogeneous regions. Hence, it is desirable to design novel 

information for accurate segmentation.

In this study, we proposed to construct a local hybrid image fitting (LHIF) energy functional 

for accurate image segmentation by leveraging the strength of both LBF and LIF models. 

Specifically, a novel local fitted image was derived from the LBF and LIF models, aiming to 

approximate the square of local image and called square fitted image (SFI). Using this SFI 

image, a novel local intensity fitting energy was constructed, together with a regularization 

term of level set function. Minimizing this energy functional in a variational level set 

formulation will drive contour curves toward the boundaries of desirable objects in an 

optimal way. The developed model was validated using a number of synthetic and real 
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images as well as medical images. A comparison with several typical active contour models 

was also performed.

2. Related work

2.1. CV model

The CV model can be viewed as a variant of the Mumford–Shah model [16] based on the 

assumption of image homogeneity. It partitions a given image into two disjoint subregions 

with an initial contour curve C (i.e., inside and outside regions of C, expressed as Cin and 

Cout, respectively). The initial curve evolves to the desired boundaries according to the 

following energy functional:

(1)

where constants c1 and c2 are the average intensities for the regions Cin and Cout, 

respectively; I(x) denotes the pixel intensity in the position of x. λ1 and λ2 are weighting 

parameters for intensity fitting terms, which play a major role in driving the motion of the 

contour curve; while υ is the weighting parameter for length penalty term |C|. In calculus of 

variations, the level set formulation of the CV model is obtained by minimizing this energy 

functional with respect to the level set function ϕ and given by as follows:

(2)

where δ(·) is the Dirac function; div(·) and ∇ are the divergence and gradient operator, 

respectively. c1 and c2 are computed according to the following formulations:

(3)

where H1(ϕ) = H(ϕ) and H2(ϕ) = 1 − H(ϕ) are used to identify the internal and external 

regions of ϕ;  is the smooth Heaviside function [39] with a small 

positive constant ε, and its derivative is the Dirac function .

In the CV model, the differences between c1 and c2 should be large enough to attract contour 

curves to the desired boundaries according to the assumption of image homogeneity. When 

image intensities are not homogeneous, c1 may be approximately equal to c2 in certain 

regions, which means that the model loses the capability of identifying the desired objects 

and image background, together with boundary leakages and inadequate segmentation.
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2.2. LBF model

To overcome the drawbacks of the CV model, the LBF model [14] was proposed by 

introducing a binary fitting energy in a local region specified by a Gaussian kernel, and this 

LBF energy can be given by:

(4)

where  is a Gaussian kernel with standard deviation σ and used 

to define a local region centered at x; y is a pixel coordinate in this local region; f1(x) and 

f2(x) are spatially varying intensity averages for the internal and external regions of contour 

curve C, which are quite different from constants c1 and c2 of the CV model due to the 

introduction of Kσ(x, y). The other symbols have the same meanings as those mentioned 

above in the CV model.

The presence of Gaussian kernel Kσ(x, y) enables the LBF model to identify small intensity 

differences in local regions and have the capability of handling intensity inhomogeneity. 

Meanwhile, this model can avoid the time-consuming reinitialization step by introducing a 

new regularization term to penalize the deviation from a signed distance function [18]. 

However, this model relies on the initial curve placement to avoid the local minimums of the 

energy functional in the presence of severe intensity inhomogeneity due to the localization 

property of Gaussian kernel and simple intensity statistical estimation.

2.3. LIF model

The LIF model [44] was proposed by introducing the local image fitting energy with the 

local intensity averages mi, i=1,2 based on the piecewise-smooth assumption that image I 
can be simply reconstructed by the internal region of m1 and the external region of m2 in a 

local region. The LIF energy can be regarded as a constraint of the differences between the 

local fitted image and the original image, and expressed as:

(5)

(6)

(7)

where Ω is the whole image region; ILFI denotes the local fitted image (LFI) for the 

approximation of the image I in a local region; m1 and m2 are intensity averages in this 
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region defined by Gaussian window Wk with the stand deviation of σ and the radius of k. 

This model is able to achieve similar segmentation accuracy as the LBF model, and needs 

less computational time due to the presence of Gaussian smoothing for the level set function 

ϕ. However, the LIF model tends to ignore some details in the segmentation of small objects, 

because of the usage of the Gaussian smoothing filter, and thereby may suffer from 

inadequate image segmentation in the presence of intensity inhomogeneity.

3. Proposed method

To obtain reasonable segmentation performances for inhomogeneous images, we proposed 

to construct a novel energy functional by incorporating other valuable information. We 

noticed that a local region can not only be divided into two disjoint parts with fi(x) in the 

LBF model, but also reconstructed approximately with mi in the LIF model. This means that 

the LBF and LIF models can be combined together for image segmentation purpose. The 

combination will result in a novel local fitted image, called square fitted image (SFI) and 

quite different from the LFI image, and a novel active contour model, constructed by 

defining a local hybrid image fitting (LHIF) energy based on images ISFI, ILFI and I. The SFI 

image and LHIF energy are explained in detail in the following.

3.1. The SFI image

In the LIF model, a local region can be approximated by a local fitted image with the 

formulation of ILFI(x) = m1H1(ϕ) + m2H2(ϕ), where m1 and m2 are intensity averages in the 

local neighborhood specified by Gaussian window. The average mi equals to fi(x) in the LBF 

model (i.e., m1 = f1(x) and m2 = f2(x)) when setting the same Gaussian parameters, by 

which image ILFI can be incorporated into the LBF model. To this end, we set the same 

Gaussian parameters for mi and fi(x), with λ1 = λ2 = 1, and then the LBF fitting energy can 

be expanded as:

(8)

The minimization of the LBF fitting energy is equivalent to approximately minimizing the 

formulation of  in a local neighborhood centered 

at x, largely ignoring the effect of Gaussian kernel Kσ(x, y), which is mainly used to specify 

a local neighborhood. Due to I ≈ ILFI in a local region, this approximation formulation can 

be further expressed as , leading to another fitted image 

, called square fitted image ISFI. Hence, the minimization of the LBF 

fitting energy can be obtained when local intensity average mi satisfying the following two 

conditions, i.e., I(x) ≈ ILFI(x) and I2(x) ≈ ISFI(x).
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3.2. The LHIF fitting energy

To take advantage of two local fitted images ISFI and ILFI, a local hybrid image fitting 

(LHIF) energy was proposed by quantifying the image differences between original image I 
and its two approximated versions, i.e., ISFI and ILFI in terms of Kullback–Leibler 

divergence, which can be expressed as:

(9)

(10)

where λ1 and λ2 are the weighting parameters for the first and second integral terms; ILFI(x) 

and ISFI(x) are used to approximate images of I and I2, respectively.

Note that images I and I2 can be expressed as

(11)

where DLFI(x) and DSFI(x) are the residual errors for the approximations of I and I2 and 

correlated according to the formulation

(12)

Here, we do not focus on the relationship between these two errors, but on how to minimize 

the LHIF fitting energy because when both DLFI(x) and DSFI(x) are small enough and 

approach zero, this energy functional can be successfully minimized in theory.

To obtain smooth contour curves, two commonly used regularization terms 

 and L(ϕ) = ∫|∇H(ϕ)|dx [18] were introduced into our model, 

resulting in the final fitting energy functional given by:

(13)

where μ and υ are the weighting parameters for the signed distance function P(ϕ) and the 

length of level set function L(ϕ), respectively.
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This energy functional is minimized by standard gradient descent [41,42]: for a fixed ϕ, E(ϕ) 

is minimized with respect to fi(x) or mi, which is given by:

(14)

For fixed fi(x), E(ϕ) is minimized with respect to ϕ based on the gradient descent flow (see 

Appendix A)

(15)

(16)

(17)

4. Experiments

To demonstrate the performance of the developed mode, we applied it to segment both 

synthetic and real images in a variational level set framework. ϕ was initially set to a positive 

constant c0 outside a region and −c0 inside; and then computed iteratively by: ϕn+1 = ϕn + Δt 
· Δϕn; where Δt is time-step and n is iteration number. Gaussian kernel Kσ was truncated by 

a (2k + 1)(2k + 1) window, where k has been recommended for the smallest odd number no 

less than 2σ [14,15,34]. Other parameters were set by default as follows: σ = 3, c0 = 2, λ1 = 

1.0, λ2 = 0.1, Δt = 0.1, μ = 1, ε = 0.1 and υ = 0.001 × 255 × 255. The tests were conducted 

in Matlab R2013a programming environment on a PC with 3.3 GHz Intel Core system and 

8GB RAM.

4.1. Segmentation of synthetic and real images

Fig. 1 shows the segmentation results of the proposed model for both synthetic and real 

images, which are inhomogeneous. Three randomly chosen initial rectangular contour 

curves shown in the first row, can evolve successfully to the boundaries of the desired 

objects with different sizes and shapes. According to these evolution results, it can be seen 

that our proposed model is capable of accurately segmenting the desired objects from noisy 

and inhomogeneous images. Also, our model needs relatively few iterations to drive the 

contours to desirable boundaries.
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4.2. Segmentation of medical images

Fig. 2 shows the segmentation results when applying the developed model to four clinically 

medical images with both intensity inhomogeneity and complex image background. As 

demonstrated by these examples, our proposed model can accurately identify the boundaries 

of all targeted objects based on randomly chosen rectangle initial curves, while successfully 

excluding a great deal of undesired background information due to the existence of two 

different local information from images ILFI and ISFI. Both of these two fitted images are 

capable of effectively highlighting the desirable objects with different texture characteristics, 

and significantly reduces the adverse influence of complicated image background in image 

segmentation. ISFI demonstrates a unique strength in emphasizing the intensity differences 

between the foreground and background of images to be segmented, which can be partly 

verified according to the two estimated images of DLFI and DSFI.

4.3. Comparative evaluation

We also compared the developed model with region-based active contour models 1 (i.e., the 

CV model, LBF model, LIF model, local Gaussian distribution fitting (LGDF) model [33], 

local region-based CV model (LRCV) [20] and cross entropy based model (CEM) [27]) to 

display their performance differences. The comparison of these models was presented in Fig. 

3, where the initial green contour curves and their final evolution results were displayed in 

different rows, respectively. These segmentation results can effectively demonstrate their 

performances in terms of handling severe intensity inhomogeneity, extracting multiple target 

objects, and excluding complex image background. Specifically, the CV and CEM models 

cannot handle intensity inhomogeneity and had the worst segmentation performances among 

these models; and the LBF, LIF, LGDF, and LRCV models can, to some extent, extract the 

desirable objects from those regions with severe intensity inhomogeneity, but had the 

inadequate or excessive segmentation problems in the neighborhood nearby the target 

boundaries. Different from above these models, our proposed model achieved better 

segmentation performances in terms of accuracy for all these four images based on the same 

initial contour curves.

We also quantitatively assessed the performance of these models using the Dice Similarity 

Coefficient (DSC) [31] as defined as:

(18)

where ∩ is the intersection operator; N (·) is the number of pixels enclosed set. A is 

segmentation results of a given algorithm; B is the ground truths, which in general 

approximately replaced by the manual segmentation. The value of DSC ranges from 0 to 1, 

and the higher the value of DSC is, the more accurate the result of the algorithm is. 

1The Matlab source code of LBF, LIF and LGDF algorithms can be found from http://www.engr.uconn.edu/~cmli/, http://
www4.comp.polyu.edu.hk/~cslzhang/ and http://www.unc.edu/~liwa/, respectively.
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According to this metric, the segmentation results of these models, based on images 

displayed in Figs. 1 and 2, were quantified and shown in Tables 1 and 2, respectively.

The quantitative assessments demonstrate that our model has the largest values of DSC for 

all test images, the CV and CEM models have the lowest values of this measure due to 

absence of local image information. Although the LBF, LIF, LGDF and LRCV models can 

segment the desired objects in the presence of intensity inhomogeneity, they are less 

accurate than our proposed model. In addition, the computational cost of these models in our 

experiments were given in Table 3 for images displayed in Fig. 1. Although our model need 

more segmentation time than the CV model for these images due to the existence of various 

local information, it is more efficient than the LBF, LIF, LGDF and LRCV models. As for 

the CEM model, it is based on the same global information as the CV model, but its 

segmentation time varies dramatically with images. In summary, our model has better 

segmentation performances than the global and local region-based models, considering both 

computational time and accuracy.

We further compared our developed model with available local region-based models (i.e., 
the LBF, LIF, LGDF, and LRCV models) based on publicly available Berkeley segmentation 

data set 500 (BSDS500) [24,28]. This dataset consists of a number of natural images and 

their ground truth manually generated by different individuals. The performance was 

quantitatively evaluated using the probabilistic rand index (PRI) [26], which was given by:

(19)

where B = {B1, B2, ···, BM} is M ground truths, A = {x1, x2, ···, xN} is the result of a 

specified algorithm where a subscript indexes one of N pixels. sij is a membership function, 

and set to 1 when pixels i and j belong to the same cluster, and otherwise to 0. qij is the 

ground truth probability of pixels i and j belonging to the same cluster. The PRI takes a 

value between 0 and 1, with a higher value representing a more accurate segmentation. With 

the PRI, the comparative results of all models were displayed in Table 4. 2 As demonstrated 

by the results, our model has the highest PRI values for 12 images, along with highest mean 

of the PRI.

5. Discussion

5.1. Parameters analysis

Although our proposed model demonstrated a relatively high performance in image 

segmentation, it is not easy to achieve an optimal tradeoff among different weighting 

parameters. Most of these parameters have been analyzed and discussed in previous studies 

[33] in detail. Here, we only focus on parameters λ1 and λ2, which are mainly used in our 

model to keep a tradeoff between the two intensity integral terms derived from ILFI(x) and 

ISFI(x), respectively. The first integral term tends to segment the objects with different 

2The segmentation results of the LBF, LIF, LGDF and LRCV models have already been obtained by Ji et al. [10].
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intensity characteristics, including certain background regions nearby the desired 

boundaries; while the second term highlights to some extent the differences of image 

intensities in local regions, consequently making it difficult to extract undesired background 

regions. To correctly segment desired foreground and avoid undesired background, it is 

advisable to set proper values for λ1 and λ2 according to the characteristics of the image 

itself, including intensity inhomogeneity, noise level and image contrast. For example, (λ1, 

λ2) are set to (0.85, 0.1), (1.0, 0.1) and (1.0, 0.25) respectively for the segmentations of 

images shown in Fig. 4. Their segmentation results demonstrate that our proposed model is 

relatively stable when solely changing the parameter λ1 in a small range, but unstable when 

changing the parameter λ2 under the condition of fixing the other parameters. This means 

that the first integral term plays greater important part in image segmentation than the 

second term; and is more tolerant for the changes of its corresponding weighting parameter.

5.2. Sensitivity to initialization and noise

To estimate our model in terms of sensitivity to initial curve placements and robustness 

against noise, it was tested, by keeping all the parameters fixed, for a medical image 

displayed in Fig. 5 with different initial curves; and then compared with the LBF, LIF, 

LGDF and LRCV models based on the same initial curve for another medical image shown 

in Fig. 6, which was normalized and corrupted by Gaussian white noise with zeros mean and 

variances of 0.005, 0.01, and 0.015, respectively. The red evolution results presented in Fig. 

5 demonstrate that our model has nearly the same results for different initial curves, and 

deteriorated performances as noise variances increase according to Fig. 6. These noises 

cause some undesirable regions are extracted, together with ignoring small details of target 

objects; but these adverse segmented components of our model are tiny compared with the 

whole segmentation results. This means that our model is insensitive to initial curve 

placements due to the local information from both ILFI and ISFI, and robust to some extent 

against Gaussian white noise in segmentation, relative to other existing models shown in 

Fig. 6.

6. Conclusions

In this study, a novel region-based active contour model was developed for accurate image 

segmentation. Its novelty lies in the introduction of a novel local hybrid region intensity 

fitting energy based on the LBF and LIF models, and this energy functional was constructed 

by using the original image and its two local fitted versions drawning upon the concept of 

Kullback–Leibler divergence, and minimized in a variational level set framework to drive the 

motion of the contour curves to desirable boundaries. Experiments demonstrate that our 

proposed model is capable of segmenting synthetic and real images, as well as clinically 

medical images, and has a relatively higher performance as compared to available region-

based models.

Acknowledgments

This work is supported, in part, by Chinese Academy of Sciences Research, Development Equipment Project (Grant 
No.YZ201313, YZ201445), National Natural Science Foundation (Grant No.11505281), National Institutes of 
Health (NIH) (Grant No.R21CA197493, R01HL096613).

Wang et al. Page 10

Inf Sci (Ny). Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Ali H, Badshah N, Chen K, Khan G. A variational model with hybrid images data fitting energies 
for segmentation of images with intensity inhomogeneity. Pattern Recognit. 2016; 51:27–42.

2. Chan T, Vese L. Active contour without edges. IEEE Trans Image Process. 2001; 10(2):266–277. 
[PubMed: 18249617] 

3. Chen F, Yu H, Hu R. Shape sparse representation for joint object classification and segmentation. 
IEEE Trans Image Process. 2013; 22(3):992–1004. [PubMed: 23144032] 

4. Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: 
integrating color, texture, motion and shape. Int J Comput Vis. 2007; 72(2):195–215.

5. Dai L, Ding J, Yang J. Inhomogeneity-embedded active contour for natural image segmentation. 
Pattern Recognit. 2015; 48(8):2513–2529.

6. Estellers V, Zosso D, Lai R, Osher S, Thiran J, Bresson X. Efficient algorithm for level set method 
preserving distance function. IEEE Trans Image Process. 2012; 21(12):4722–4734. [PubMed: 
22692909] 

7. He C, Wang Y, Chen Q. Active contours driven by weighted region-scalable fitting energy based on 
local entropy. Signal Process. 2012; 92(2):587–600.

8. He L, Peng Z, Everding B, Wang X, Han C, Weiss K, Wee W. A comparative study of deformable 
contour methods on medical image segmentation. Image Vis Comput. 2008; 26(2):141–163.

9. Jayadevappa D, Kumar S, Murty D. Medical image segmentation algorithms using deformable 
models: a review. IETE Tech Rev. 2011; 28(3):248–255.

10. Ji Z, Xia Y, Sun Q, Cao G, Chen Q. Active contours driven by local likelihood image fitting energy 
for image segmentation. Inf Sci. 2015; 301(20):285–304.

11. Jifeng N, Chengke W, Shigang L, Shuqin Y. NGVF: an improved external force field for active 
contour model. Pattern Recognit Lett. 2007; 28(1):58–63.

12. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1987; 1(4):
321–331.

13. Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans Image Process. 
2008; 17(11):2029–2039. [PubMed: 18854247] 

14. Li, C., Kao, C., Gore, J., Ding, Z. Implicit active contours driven by local binary fitting energy. 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2007. p. 339-345.

15. Li C, Kao C, Gore J, Ding Z. Minimization of region-scalable fitting energy for image 
segmentation. IEEE Trans Image Process. 2008; 17(10):1940–1949. [PubMed: 18784040] 

16. Li C, Wang X, Eberl S, Fulham M, Feng D. Robust model for segmenting images with/without 
intensity inhomogeneities. IEEE Trans Image Process. 2013; 22(8):3296–3309. [PubMed: 
23693130] 

17. Li C, Wang X, Eberl S, Fulham M, Yin Y, Chen J, Feng D. A likelihood and local constraint level 
set model for liver tumor segmentation from ct volumes. IEEE Trans Biomed Eng. 2013; 60(10):
2967–2977. [PubMed: 23771304] 

18. Li C, Xu C, Gui C, Fox M. Distance regularized level set evolution and its application to image 
segmentation. IEEE Trans Image Process. 2010; 19(12):3243–3254. [PubMed: 20801742] 

19. Li D, Li W, Liao Q. Active contours driven by local and global probability distributions. J Vis 
Commun Image Represent. 2013; 24(5):522–533.

20. Liu S, Peng Y. A local region-based Chan-Vese model for image segmentation. Pattern Recognit. 
2012; 45(7):2769–2779.

21. Mabood L, Ali H, Badshah N, Ullah T. Absolute median deviation based a robust image 
segmentation model. J Inf Commun Technol. 2015; 9(1):13–22.

22. Min H, Jia W, Wang X, Zhao Y, Hu R, Luo Y, Xue F. An intensity-texture model based level set 
method for image segmentation. Pattern Recognit. 2015; 48(4):1547–1562.

23. Mylona E, Savelonas M, Maroulis D. Automated adjustment of region-based active contour 
parameters using local image geometry. IEEE Trans Cybern. 2014; 44(12):2757–2770. [PubMed: 
24771604] 

Wang et al. Page 11

Inf Sci (Ny). Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Pablo A, Michael M, Charless F, Jitendra M. Contour detection and hierarchical image 
segmentation. IEEE Trans Pattern Anal Mach Intell. 2011; 33(5):898–916. [PubMed: 20733228] 

25. Posirca I, Chen Y, Barcelos C. A new stochastic variational PDE model for soft Mumford-Shah 
segmentation. J Math Anal Appl. 2011; 384(384):104–114.

26. Ranjith, U., Caroline, P., Martial, H. A measure for objective evaluation of image segmentation 
algorithms. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR); 2005. p. 34-34.

27. Song Y, Wu Y, Dai Y. A new active contour remote sensing river image segmentation algorithm 
inspired from the cross entropy. Digital Signal Process. 2016; 48:322–332.

28. Swain M, Ballard D. Color indexing. Int J Comput Vis. 1991; 7(1):11–32.

29. Tomoshige S, Oost E, Shimizu A, Watanabe H, Nawano S. A conditional statistical shape model 
with integrated error estimation of the conditions: application to liver segmentation in non-contrast 
ct images. Med Image Anal. 2014; 18(1):130–143. [PubMed: 24184436] 

30. Wang B, Gao X, Tao D, Li X. A nonlinear adaptive level set for image segmentation. IEEE Trans 
Cybern. 2014; 44(3):418–428. [PubMed: 23797311] 

31. Wang H, Huang T, Xu Z, Wang Y. An active contour model and its algorithms with local and 
global gaussian distribution fitting energies. Inf Sci. 2014b; 263(1):43–59.

32. Wang H, Liu M. Active contours driven by local gaussian distribution fitting energy based on local 
entropy. Int J Pattern Recognit Artif Intell. 2013; 27(6):1073–1089.

33. Wang L, He L, Mishra A, Li C. Active contours driven by local gaussian distribution fitting energy. 
Signal Process. 2009; 89(12):2435–2447.

34. Wang L, Pan C. Robust level set image segmentation via a local entropy-based k-means clustering. 
Pattern Recogn. 2014; 47(5):1917–1925.

35. Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore J, Shen D. Segmentation of neonatal brain mr images 
using patch-driven level sets. NeuroImage. 2014a; 84(1):141–158. [PubMed: 23968736] 

36. Wang X, Huang D, Xu H. An efficient local Chan–Vese model for image segmentation. Pattern 
Recognit. 2010; 43(3):603–618.

37. Wu H, Appia V, Yezzi A. Numerical conditioning problems and solutions for nonparametric i.i.d. 
statistical active contours. IEEE Trans Pattern Anal Mach Intell. 2013a; 35(6):1298–1311. 
[PubMed: 23599049] 

38. Wu Y, Wang Y, Jia Y. Adaptive diffusion flow active contours for image segmentation. Comput 
Vision Image Understanding. 2013b; 117(10):1421–1435.

39. Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 1998; 7(3):
359–369. [PubMed: 18276256] 

40. Yang X, Gao X, Li J, Han B. A shape-initialized and intensity-adaptive level set method for auroral 
oval segmentation. Inf Sci. 2014; 277(2):794–807.

41. Yezzi, J., Tsai, A., Willsky, A. Medical image segmentation via coupled curve evolution equations 
with global constraints. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis; 
2000. p. 359-369.

42. Yezzi J, Tsai A, Willsky A. A fully global approach to image segmentation via coupled curve 
evolution equations. J Vis Commun Image Representation. 2002; 13(2):195–216.

43. Yue X, Miao D, Zhang N, Cao L, Wu Q. Multiscale roughness measure for color image 
segmentation. Inf Sci. 2012; 216(20):93–112.

44. Zhang K, Song H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognit. 
2010; 43(4):1199–1206.

45. Zhang K, Zhang L, Song H, Zhou W. Active contours with selective local or global segmentation: a 
new formulation and level set method. Image Vis Comput. 2010; 28(4):668–676.

46. Zhao Y, Rada L, Chen K, Harding S, Zheng Y. Automated vessel segmentation using infinite 
perimeter active contour model with hybrid region information with application to retinal images. 
IEEE Trans Image Process. 2015; 34(9):1797–1807.

Wang et al. Page 12

Inf Sci (Ny). Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix A. Derivation of the gradient flow

The minimization of energy functional E(ϕ) is equal to search for the steady-state solution of 

the following gradient flow formulation:

where  is the Gateaux derivative [37,38,43] of E(ϕ) with respect to ϕ. In our proposed 

model, the derivations of regularization terms of ϕ in Eq. (12) have been already analyzed in 

previous paper [33], we only need to solve the derivative of ELHIF in the manner: ϕ̃ = ϕ + ηϱ 
with a small variation η. Fixing fi(x), i = 1, 2 and letting ϱ → 0, we have

Thus the corresponding Euler–Lagrange equation can be given by:

The Gateaux derivative of ELHIF is derived as follows

Combining the derivative of all the three terms in our proposed model, the total variational 

formulation of ϕ is as below
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Fig. 1. 
The segmentation results of the proposed model for both synthetic and real images displayed 

in different columns by changing default parameter values (i.e., σ = 5, Δt = 0. 01, ε = 1. 0 

and υ = 0.0085 × 255 × 255 for the first image; σ = 5 and ε = 5 for the second image, λ2 = 

0.05, σ = 7, Δt = 0.01 and ε = 7 for the third image). Row 1: initial rectangle contours and 

their final evolutions. Row 2 and Row 3: intermediate results with 50 and 100 iterations, 

respectively.
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Fig. 2. 
The segmentation results of our proposed model for four medical images by replacing 

several default parameter values from left to right (i.e., λ2 = 0.07, σ = 5, Δt = 0.01 and ε = 

1.0 for the first image; σ = 19, Δt = 0.01 and ε = 7 for the second image; σ = 5, Δt = 0.35 

and ε = 1 for the third image; and σ = 8, Δt = 0.01 and ε = 1 for the last image). Row 1: 

initial rectangle contours and their final evolutions. Row 2 and Row 3: fitted images ILFI and 

DLFI. Row 4 and Row 5: fitted images ISFI and DSFI.
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Fig. 3. 
Comparisons of the CV, LBF, LIF, LGDF, LRCV, CEM and our models for the segmentation 

of four images displayed in different columns based on the same initial green contour 

curves. Row 1 to Row 7: results of the CV, LBF, LIF, LGDF, LRCV, CEM and our models, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
The segmentation results of our model by merely changing (λ1, λ2) to (0.85, 0.1), (1.0, 0.1) 

and (1.0, 0.25) for images shown in different columns.
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Fig. 5. 
The segmentation results of our models for a real image based on different initial contour 

curves. Row 1: initial rectangle contours and their final evolutions. Row 2: the estimated 

level set functions.
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Fig. 6. 
Comparison of the LBF, LIF, LGDF, LRCV and our models based on the same green initial 

curves for the image corrupted by Gaussian white noise with variances of 0.005, 0.01, and 

0.015, respectively. Rows 1–5: the results of the LBF, LIF, LGDF, LRCV and our models, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)

Wang et al. Page 19

Inf Sci (Ny). Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

Table 1

Comparison of our proposed model with the CV, LBF, LIF, LGDF, LRCV and CEM models based on DSC for 

synthetic and real images shown in Fig. 1.

Models Image1 Image2 Image3 Mean

CV 0.533 0.813 0.935 0.760

LBF 0.969 0.949 0.972 0.963

LIF 0.972 0.940 0.966 0.959

LGDF 0.970 0.948 0.948 0.955

LRCV 0.883 0.934 0.891 0.903

CEM 0.672 0.611 0.797 0.693

LHIF 0.987 0.959 0.981 0.976
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