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Abstract

In this paper, we propose a semi-supervised clustering method, CEC-
IB, that models data with a set of Gaussian distributions and that retrieves
clusters based on a partial labeling provided by the user (partition-level side
information). By combining the ideas from cross-entropy clustering (CEC)
with those from the information bottleneck method (IB), our method trades
between three conflicting goals: the accuracy with which the data set is mod-
eled, the simplicity of the model, and the consistency of the clustering with
side information. Experiments demonstrate that CEC-IB has a performance
comparable to Gaussian mixture models (GMM) in a classical semi-supervised
scenario, but is faster, more robust to noisy labels, automatically determines
the optimal number of clusters, and performs well when not all classes are
present in the side information. Moreover, in contrast to other semi-supervised
models, it can be successfully applied in discovering natural subgroups if the
partition-level side information is derived from the top levels of a hierarchical
clustering.

1 Introduction

Clustering is one of the core techniques of machine learning and data analysis,
and aims at partitioning data sets based on, e.g., the internal similarity of the
resulting clusters. While clustering is an unsupervised technique, one can improve
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its performance by introducing additional knowledge as side information. This is
the field of semi-supervised or constrained clustering.

One classical type of side information in clustering are pairwise constraints: hu-
man experts determine whether a given pair of data points belongs to the same
(must-link) or to different clusters (cannot-link) [7]. Although this approach re-
ceived high attention in the last decade, the latest reports [48] suggest that in real-
life problems it is difficult to answer whether or not two objects belong to the same
group without a deeper knowledge of data set. This is even more problematic as
erroneous pairwise constraints can easily lead to contradictory side information [13].

A possible remedy is to let experts categorize a set of data points rather than
specifying pairwise constraints. This partition-level side information was proposed
in [5] and recently considered in [27]. The concept is related to partial labeling
applied in semi-supervised classification and assumes that a small portion of data
is labeled. In contrast to semi-supervised classification [45,49], the number of cate-
gories is not limited to the true number of classes; in semi-supervised clustering one
may discover several clusters among unlabeled data points. Another advantage of
partition-level side information is that, in contrast to pairwise constraints, it does
not become self-contradictory if some data points are mislabeled.

In this paper, we introduce a semi-supervised clustering method, CEC-IB, based
on partition-level side information. CEC-IB combines Cross-Entropy Clustering
(CEC) [39, 40, 42], a model-based clustering technique, with the Information Bot-
tleneck (IB) method [11, 43] to build the smallest model that preserves the
side information and provides a good model of the data distribution. In
other words, CEC-IB automatically determines the required number of clusters
to trade between model complexity, model accuracy, and consistency with the side
information.

Consistency with side information is ensured by penalizing solutions in which
data points from different categories are put in the same cluster. Since modeling
a category by multiple clusters is not penalized, one can apply CEC-IB to obtain
a fine clustering even if the the human expert categorizes the data into only few
basic groups, see Figure 1. Although this type of side information seems to be a
perfect use case for cannot-link constraints, the computational cost of introducing
side information to CEC-IB is negligible while the incorporation of cannot-link
constraints to similar Gaussian mixture model (GMM) approaches requires the use of
graphical models, which involves high computational cost. CEC-IB thus combines
the flexibility of cannot-link constraints with an efficient implementation.

We summarize the main contributions and the outline of our paper:

1. We combine ideas from model-based CEC and from the information bottleneck
method to formulate our clustering method CEC-IB for both complete and

2



Data

category B

Bk. . .B1

category A

Ak
. . .A1

side-information=⇒⇐=side-information

Figure 1: Subgroups discovery task. The expert provides side information by di-
viding a data set into two categories. Making use of this knowledge, the algorithm
discovers natural subgroups more reliably than in the unsupervised case.

partial side information (Sections 3.2 and 3.3). The proposed method does
not require the true number of clusters as an input.

2. We propose a modified Hartigan algorithm to optimize the CEC-IB cost func-
tion (Section 3.4). The algorithm has a complexity that is linear in the number
of data points in each iteration, and it usually requires less iterations than the
expectation-maximization (EM) algorithm used for fitting GMMs (C).

3. We provide a theoretical analysis of the trade-off between the CEC and the
IB cost function in Section 4. This places the parameter selection problem on
a solid mathematical ground (see Theorems 4.1 and 4.2).

4. We perform extensive experiments demonstrating that CEC-IB is more robust
to noisy side information (i.e., miscategorized data points) than state-of-the-
art approaches to semi-supervised clustering (Section 5.4). Moreover, CEC-
IB performs well when not all categories are present in the side information
(Section 5.3), even though the true number of clusters is not specified.

5. We perform two case studies: In Section 5.6, a human expert provided a
partition-level side information about the division of chemical compounds into
two basic groups (as in Figure 1); CEC-IB discovers natural chemical sub-
groups more reliably than other semi-supervised methods, even if some labels
are misspecified by the expert (Figure 2). The second case study in Section 5.7
applies CEC-IB to image segmentation.
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Figure 2: Detection of chemical subgroups when 10% of side information was er-
roneous. The results of CEC-IB, GMM with cannot-link constraints, constrained
k-means and fuzzy c-means (fc-means) were measured by normalized mutual infor-
mation.

2 Related work

Clustering has been an important topic in machine learning and data analysis for a
long time. Various methods were introduced for splitting data into groups, including
model-based, distance-based, spectral, fuzzy, and hierarchical methods (see [1, 18]
for a survey).

Adding to this diversity of techniques, a large number of specialized types of clus-
tering have been developed. One example is multi-view clustering, which considers
gathering information coming from different domains [19]. As another example,
complementary or alternative clustering aims at finding groups which provide a
perspective on the data that expands on what can be inferred from previous cluster-
ings [14]. Finally, semi-supervised clustering – the problem investigated in this work
– makes use of side information to achieve better clustering results or to provide
robustness against noisy side information [7].

The traditional approach to incorporate side information into clustering is based
on pairwise constraints. The authors of [4] suggested reducing distances between
data points with a must-link constraint and adding a dimension for each cannot-link
constraint. After updating all other distances to, e.g., satisfy the triangle inequality,
the thus obtained pairwise distance matrix can be used for unsupervised cluster-
ing. Kamvar et al. [20] considered a similar procedure, taking the pairwise affinity
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matrix and setting must-links and cannot-links to predefined maximum and min-
imum values, respectively. Instead of clustering, they applied eigenvector-based
classification taking the labeled data as training set. Another spectral technique,
proposed in [46], relies on solving a generalized eigenvalue problem. Qian et al. [34]
developed a framework for spectral clustering that allows using side information in
the form of pairwise constraints, partial labeling, and grouping information. An
information-theoretic cost function, squared mutual information, was proposed for
semi-supervised clustering in [10]. Also clustering techniques based on non-negative
matrix or concept factorization can incorporate pairwise constraints as regulariz-
ers [28].

As mentioned in the introduction, partition-level side information refers to a
partial labeling of the data points that need not necessarily consider all classes –
the categories provided as side information may be only a subset of classes, or, as in
Figure 1, be of a hierarchical nature. In consequence, clustering with partition-level
side information differs significantly from a typical semi-supervised classification
task, as the clustering algorithm should detect clusters within categories and/or
within unlabeled data points. A recent paper using partition-level side informa-
tion is [27], where the authors add additional dimensions to feature vectors and
propose a modification of k-means to cluster data points. In [5], partition-level
side information was used to design a better initialization strategy for k-means.
Similarly, partition-level side information was used to propose a semi-supervised
version of fuzzy c-means [32, 33]. The authors added a regularization term to the
fuzzy c-means cost function that penalizes fuzzy clusterings that are inconsistent
with the side information. This technique was later combined with feature selection
methods [22]. Finally, partition-level side information can be used in density-based
clustering such as DBSCAN. Specifically, in [25] the authors proposed an algorithm
that sets the parameter defining the neighborhood radius of a data point based on
partial labeling.

GMMs can be easily adapted to make us of partition-level side information by
combining the classical unsupervised GMM with a supervised one [2, 49]. This
approach can be extended to labels with reliability information [9, 12, 17]. Various
statistical and machine learning libraries, such as mixmod [24] or bgmm [8], provide
implementations of GMMs with partition-level side information.

Also pairwise constraints can be incorporated into GMMs, where dependencies
between the hidden cluster indicator variables are then usually modeled by a hidden
Markov random field. This procedure was adopted, for example, in [36] to account
for cannot-link constraints. Must-link constraints were considered by treating all
involved data points as a single data point with a higher weight. The parameters
of the GMM, which was used for hard or soft clustering, are obtained by a gener-
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alized expectation-maximization procedure that requires simplifications or approx-
imations [6, 23, 29]. An overview of GMM-based methods with pairwise constraints
can be found in [30].

In contrast to most GMM approaches, our method does not require knowledge
of the correct number of clusters; initialized with any (larger) number, CEC-IB re-
duces the number of clusters for an optimal trade-off between model accuracy, model
complexity (i.e., number of clusters), and consistency with the side information.

Our method is closely related to the information bottleneck method, which fo-
cuses on lossy compression of data preserving the information of a stochastically
related random variable [37,43]. Modifications of IB were used in consensus cluster-
ing [44] or alternative clustering [14]. The mutual information between data points
and its clusters, which describes the cost of (lossy) data compression in IB, is re-
placed in our model by the cross-entropy – see Section 3.2 for more details. Thus,
while IB focuses model simplicity and consistency with side information, CEC-IB
adds model accuracy to the cost.

3 Cross-Entropy Clustering with an Information

Bottleneck Constraint

We now pave the way for our CEC-IB method. Since our model is related to CEC,
we first review its basics in Section 3.1. For completely labeled data, i.e., for the case
where all data points are labeled, we then introduce our CEC-IB model based on
ideas from IB in Section 3.2. Section 3.3 extends the analysis to deal with the case
where only some data points are labeled. We conclude this section by presenting
and analyzing a clustering algorithm that finds a local optimum of our CEC-IB
cost function.

3.1 Cross-entropy clustering

CEC is a model-based clustering method that minimizes the empirical cross-entropy
between a finite data set X ⊂ RN and a parametric mixture of densities [42]. This
parametric mixture is a subdensity1 given by

f = max(p1f1, . . . , pkfk)

where p1 through pk are non-negative weights summing to one and where f1 through
fk are densities from the Gaussian family G of probability distributions on RN . The

1i.e., f(x) ≥ 0 and
∫
RN f(x)dx ≤ 1.

6



empirical cross-entropy between X and subdensity f is

H×(X‖f) = − 1

|X|
∑
x∈X

log f(x) = − 1

|X|

k∑
i=1

∑
x∈Yi

log(pifi(x))

where
Y = {Y1, . . . , Yk}, Yi := {x ∈ X: pifi(x) = max

j
pjfj(x)} (1)

is a partition of X induced by the subdensity f . Letting

µYi =
1

|Yi|
∑
x∈Yi

x,

ΣYi =
1

|Yi|
∑
x∈Yi

(x− µYi)(x− µYi)T

be the sample mean vector and sample covariance matrix of cluster Yi, we show in A
that CEC looks for a clustering Y such that the following cost is minimized:

H×(X‖f) = H(Y) +
k∑
i=1

|Yi|
|X|

H(N (µYi ,ΣYi)), (2)

where the model complexity is measured by the Shannon entropy of the partition
Y ,

H(Y) := −
k∑
i=1

|Yi|
|X|

log
|Yi|
|X|

,

and where the model accuracy, i.e., accuracy of density estimation in cluster Yi, is
measured by the differential entropy of the Gaussian density fi,

H(N (µYi ,ΣYi)) = N
2

ln(2πe) + 1
2

ln det(ΣYi) = min
fi∈G

H×(Yi‖fi).

The main difference between CEC and GMM-based clustering lies in substituting
a mixture density f = p1f1+· · ·+pkfk by a subdensity f = max(p1f1, . . . , pkfk). This
modification allows to obtain a closed form solution for the mixture density given a
fixed partition Y , while for a fixed mixture density the partition Y is given in (1).
This suggests a heuristic similar to the k-means method. In consequence, CEC
might yield a slightly worse density estimation of data than GMM, but converges
faster (see Section 3.4 and Appendix C) while the experimental results show that
the clustering effects are similar.
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3.2 CEC-IB with completely labeled data

We now introduce CEC-IB for completely labeled data (i.e., all data points are
labeled) by combining the ideas from model-based clustering with those from the
information bottleneck method. We also show that under some assumptions CEC-
IB admits an alternative derivation based on conditional cross-entropy given the
side information.

Definition 3.1. Let X be a finite data set and let X` ⊆ X denote the set of labeled
data points. The partition-level side information is a partition Z = {Z1, . . . , Zm}
of X`, where every Zj ∈ Z contains all elements of X` with the same label.

To make this definition clear, suppose that X = {X1, X2, . . . , Xl} is the true
partition of the data that we want to recover, i.e., we want to obtain Y = X . The
partition-level side information Z can take several possible forms, including:

• |Z| = l, and Zj ⊆ Xj for j = 1, . . . , l. This is equivalent to the notion of
partial labeling in semi-supervised classification.

• |Z| = m < l and for every j = 1, . . . ,m there is a different i such that Zj ⊆ Xi.
This is the case where only some of the true clusters are labeled.

• |Z| = m < l and there are m disjoint sets Ij ⊂ {1, . . . , l} such that Zj ⊂⋃
i∈Ij Xi. This is the case where the labeling is derived from a higher level of

the hierarchical true clustering (cf. Figure 1).

For the remainder of this subsection, we assume that the side information is
complete, i.e., that each data point x ∈ X is labeled with exactly one category.
In other words, X` = X and Z is a partition of X. We drop this assumption in
Section 3.3, where we consider partial labeling, i.e., X` ⊆ X.

Our effort focuses on finding a partition that is consistent with side information:

Definition 3.2. Let X be a finite data set and let X` ⊆ X be the set of labeled
data points that is partitioned into Z = {Z1, . . . , Zm}. We say that a partition
Y = {Y1, . . . , Yk} of X is consistent with Z, if for every Yi there exists at most one
Zj such that Zj ∩ Yi 6= ∅.

The definition of consistency generalizes the refinement relation between parti-
tions of the same set. If, as in this section, X` = X, then Y is consistent with
Z if and only if Y is a refinement of Z. In other words, a clustering Y is consis-
tent with Z if every Yi ∈ Y contains elements from at most one category Zj ∈ Z.
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Mathematically, for a clustering Y consistent with Z we have

∀Yi ∈ Y : ∃!j′ = j′(i): Zj ∩ Yi =

{
Yi j = j′

0 else.
(3)

Thus, for a consistent clustering Y the conditional entropy H(Z|Y) vanishes:

H(Z|Y) =
k∑
i=1

|Yi|
|X|

H(Z|Yi) = −
k∑
i=1

m∑
j=1

|Zj ∩ Yi|
|X|

log

(
|Zj ∩ Yi|
|Yi|

)
(a)
= −

k∑
i=1

|Zj′ ∩ Yi|
|X|

log

(
|Yi|
|Yi|

)
= 0

where (a) is due to (1).
The conditional entropy H(Z|Y) therefore is a measure for consistency with side

information: the smaller the conditional entropy, the higher is the consistency. We
thus propose the following cost function for CEC-IB in the case of complete side
information, i.e., when X` = X and Z is a partition of X:

Eβ(X,Z;Y) := H(Y) +
k∑
i=1

|Yi|
|X|

H(N (µYi ,ΣYi)) + βH(Z|Y), where β ≥ 0. (4)

The first two terms are the CEC cost function (2), and the last term H(Z|Y)
penalizes clusterings Y that are not consistent with the side information Z. Thus
CEC-IB aims at finding the minimal number of clusters needed to model the data
set distribution and to preserve the consistency with the side information. The
weight parameter β trades between these objectives; we will analyze rationales for
selecting this parameter in Section 4.

Our cost function (4) is intricately connected to the IB and related methods. In
the notation of this work, i.e., in terms of partitions rather than random variables,
the IB cost function is given as [43]

I(X;Y)− βI(Y ;Z) = H(Y)−H(Y|X)− βH(Z) + βH(Z|Y).

Noticing that H(Z) does not depend on the clustering Y , the main difference be-
tween IB and CEC-IB is that CEC-IB incorporates a term accounting for the
modeling accuracy in each cluster, while IB adds a term related to the “softness” of
the clustering: Since H(Y|X) is minimized for deterministic, i.e., hard clusters, IB
implicitly encourages soft clusters. A version of IB ensuring deterministic clusters
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was recently introduced in [41]. The cost function of this method dispenses with the
term related to the softness of the clusters leading to a clustering method minimizing

H(Y) + βH(Z|Y).

Our CEC-IB method can thus be seen as deterministic IB with an additional term
accounting for model accuracy. CEC-IB can therefore be considered as a model-
based version of the information bottleneck method.

We end this subsection by showing that under some assumptions, one can arrive
at the CEC-IB cost function (with β = 1) in a slightly different way, by minimizing
the conditional cross-entropy function:

Theorem 3.1. Let X be a finite data set that is partitioned into Z = {Z1, . . . , Zm}.
Minimizing the CEC-IB cost function (4), for β = 1, is equivalent to minimizing
the conditional cross-entropy function:

H×((X‖f)|Z) :=
m∑
j=1

|Zj|
|X|

H×(Zj‖f|j),

where
f|Zj := f|j = max(p1(j)f1, . . . , pk(j)fk)

is the conditional density f given j-th category and where p1(j), . . . , pk(j) are non-
negative weights summing to one.

The proof of this theorem is given in B. It essentially states that our cost function
ensures that each category Zj is modeled by a parametric mixture of densities that
is both simple and accurate. We believe that this view on the problem can lead to
the development of a clustering algorithm slightly different from what is presented
in this paper.

3.3 CEC-IB with partially labeled data

The previous section assumed that all data points in X were labeled, i.e., the
partition-level side information Z = {Z1, . . . , Zm} was a partition of X. In this
section, we relax this assumption and assume that only a subset X` ⊆ X is labeled.
In this case Z is a partition only of X`, and in consequence, the conditional entropy
H(Z|Y) from the previous subsection is undefined.

To deal with this problem, let L = {X`, X \ X`} denote the partition of X
into labeled and unlabeled data. We decompose the conditional entropy of Z given
partitions Y and L as

H(Z|Y ,L) =
|X`|
|X|

H(Z|Y , X`) +
|X \X`|
|X|

H(Z|Y , X \X`), (5)
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where

H(Z|Y , X`) =
k∑
i=1

|Yi ∩X`|
|X`|

H(Z|Yi ∩X`)

=
k∑
i=1

|Yi ∩X`|
|X`|

m∑
j=1

|Yi ∩ Zj|
|Yi ∩X`|

(
− log

|Yi ∩ Zj|
|Yi ∩X`|

)
.

Let us now assume that the partition-level side information is a representative
sample of true categories. In other words, assume that the probability for a category
of an unlabeled data point given the cluster equals the empirical probability of this
category for labeled data points in this cluster. To formalize this reasoning, we view
the partition Z as a random variable that takes values in {1, . . . ,m}. Our labeled
data set X` corresponds to realizations of this random variable, i.e., for every x ∈ X`,
the corresponding random variable Z assumes the value indicated by the labeling.
Since the side information was assumed to be representative, the relative fraction
of data points in cluster Yi assigned to category Zj gives us an estimate of the true
underlying probability; we extrapolate this estimate to unlabeled data points and
put

P(Z = j|Yi ∩ (X \X`)) = P(Z = j|Yi ∩X`) =
|Yi ∩ Zj|
|Yi ∩X`|

= P(Z = j|Yi).

Hence, H(Z|Yi ∩ (X \X`)) = H(Z|Yi ∩X`) for every Yi, and we get for (5):

H(Z|Y) = H(Z|Y ,L) (6)

=
|X`|
|X|

H(Z|Y , X`) +
|X \X`|
|X|

H(Z|Y , X \X`) (7)

=
|X`|
|X|

k∑
i=1

|Yi ∩X`|
|X`|

H(Z|Yi ∩X`)

+
|X \X`|
|X|

k∑
i=1

|Yi ∩ (X \X`)|
|X \X`|

H(Z|Yi ∩X`) (8)

=
k∑
i=1

|Yi|
|X|

H(Z|Yi ∩X`). (9)

where the first equality follows because the conditional entropy H(Z|Y ,L) does not
depend on the partition L.

With this, we define the CEC-IB cost function for a model with partition-level
side information:
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Definition 3.3. (CEC-IB cost function) Let X be a finite data set and let X` ⊆ X
be the set of labeled data points that is partitioned into Z = {Z1, . . . , Zm}. The
cost of clustering X into the partition Y = {Y1, . . . , Yk} for a given parameter β ≥ 0
equals

Eβ(X,Z;Y) := H(Y) +
k∑
i=1

|Yi|
|X|

(H(N (µYi ,ΣYi)) + βH(Z|Yi ∩X`)) . (10)

To shorten the notation we sometimes write Eβ(Y) assuming that X and Z are
fixed.

Note that for a complete side information, i.e., for X` = X, we get precisely the
cost function (4) obtained in the previous subsection.

3.4 Optimization algorithm

The optimization of CEC-IB cost function can be performed similarly as in the
classical CEC method, in which the Hartigan approach [15] is used.

Let X be a finite data set and let X` ⊆ X be the set of labeled data points
that is partitioned into Z = {Z1, . . . , Zm}. The entire procedure consists of two
steps: initialization and iteration. In the initialization step, a partition Y is created
randomly; fi = N (µYi ,ΣYi) are Gaussian maximum likelihood estimators on Yi. In
the iteration stage, we go over all data points and reassign each of them to the
cluster that decreases the CEC-IB cost (10) the most. After each reassignment,
the clusters densities fi are re-parameterized by the maximum likelihood estimators
of new clusters and the cardinalities of categories Zj ∩ Yi are recalculated. If no
cluster membership changed then the method terminates with a partition Y .

Note that this procedure automatically removes unnecessary clusters by intro-
ducing the term H(Y), which is the cost of cluster identification. If the method is
initialized with more clusters than necessary, some clusters will lose data points to
other clusters in order to reduce H(Y), and the corresponding clusters may finally
disappear altogether (e.g., by the number of data points contained in this cluster
falling below a predefined threshold).

To describe the algorithm in detail, let us denote the cost of a single cluster
Y ⊂ X by

Eβ(Y ) :=
|Y |
|X|

(
− ln

|Y |
|X|

+H(N (µY ,ΣY )) + βH(Z|Y ∩X`)

)
, (11)
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assuming that X, Z, and β are fixed. Then, for a given partition Y of X the minimal
value of CEC-IB cost function equals:

Eβ(X,Z;Y) =
k∑
i=1

Eβ(Yi).

Making use of the above notation, the algorithm can be written as follows:

1: INPUT:
2: X ⊂ RN – data set
3: Z = {Z1, . . . , Zm} – partition-level side information
4: k – initial number of clusters
5: β – weight parameter
6: ε > 0 – cluster reduction parameter
7: OUTPUT:
8: Partition Y of X
9: INITIALIZATION:

10: Y = {Y1, . . . , Yk} – random partition of X into k groups
11: ITERATION:
12: repeat
13: for all x ∈ X do
14: Yx ← get cluster of x
15: Y ← arg max

Y ∈Y
{Eβ(Yx) + Eβ(Y )− Eβ(Yx \ {x})− Eβ(Y ∪ {x})}

16: if Y 6= Yx then
17: move x from Yx to Y
18: update density models of Yx and Y
19: if |Yx| < ε · |X| then
20: delete cluster Yx and assign its elements to these clusters which minimize the

CEC-IB cost function
21: end if
22: end if
23: end for
24: until no switch for all subsequent elements of X

The outlined algorithm is not deterministic and its results depend on the randomly
chosen initial partition. Therefore, the algorithm can be restarted multiple times to
avoid getting stuck in bad local minima.

One may think that the recalculation of the models and the evaluation of the
cost in lines 15 and 18 is computationally complex. Looking at (11), one can see
that evaluating the cost for a given cluster requires recomputing the sample mean
vector and sample covariance matrix, which, according to [42, Theorem 4.3.], has a
complexity quadratic in the dimensionN of the dataset. Computing the determinant
of the sample covariance matrix can be done with cubic complexity. Moreover,
computing the conditional entropy of Z given the current cluster Y is linear in the
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number m of categories; if the selected data point x is not labeled, then there is no
cost at all for computing these terms, since they cancel in the difference in line 15.
Since in each iteration, all data points have to be visited and, for each data point,
all clusters have to be tested, one arrives at a computational complexity in the order
of O(nk(N3 +m)). In comparison, Lloyd’s algorithm for k-means has a complexity
of O(nkN) in each iteration and the expectation maximization (EM) algorithm
to fit a GMM has a complexity of O(nkN2) [35, p. 232]. Note, however, that
neither classical k-means nor EM is designed to deal with side information, hence,
the complexity of semi-supervised algorithms is in general larger. In particular,
the addition of cannot-link constraints to GMM can involve a high computational
cost. Moreover, in C we provide experimental evidence that the proposed Hartigan
algorithm converges faster than Lloyd’s or EM, because the model is re-parametrized
after each switch.

4 Selection of the weight parameter

In this section we discuss the selection of the weight parameter β, trading between
model complexity, model accuracy, and consistency with side information. Trivially,
for β = 0 we obtain pure model-based clustering, i.e., the CEC method while,
for β → ∞, model fitting becomes irrelevant and the obtained clustering is fully
consistent with reference labeling.

Our first theoretical result states that for β = 1 the algorithm tends to create
clusters that are fully consistent with the side-information. Before proceeding, we
introduce the following definitions:

Definition 4.1. Let X be a data set and let Y = {Y1, . . . , Yk} be a partition of
X. Let further Z = {Z1, . . . , Zm} be a partition of X` ⊆ X. We say that Y is a
coarsening of Z, if for every Zj there exists a cluster Yi such that Zj ⊆ Yi.

We say that the partition Y is proportional to Z, if the fraction of data points
in each cluster equals the fraction of labeled data points in this cluster, i.e., if |Yi||X| =∑m

j=1
|Zj∩Yi|
|X`|

= |Yi∩X`|
|X`|

.

Proportionality is required in the proofs below since it admits applying the chain
rule of entropy to H(Z|Y) even in the case where X` ⊂ X. In other words, if Y is
proportional to Z, then (see D for the proof):

H(Z|Y) +H(Y) = H(Z,Y).

Every coarsening of a proportional partition Y is proportional. Trivially, if X` = X,
then every partition Y is proportional to Z. Note, however, that for finite data sets
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and if X` ⊂ X, it may happen that there exists no partition Y proportional to the
side information Z (e.g., if all but one data points are labeled). Nevertheless, the
following theorems remain valid as guidelines for parameter selection.

Finally, note that consistency as in Definition 3.2 and coarsening as in Defini-
tion 4.1 are, loosely speaking, opposites of each other. In fact, if X` = X and if Z
is a partition of X, then Y is a coarsening of Z if and only of Z is consistent with
Y . Although we are interested in partitions Y consistent with Z, we use the con-
cept of a coarsening to derive results for parameter selection. Moreover, note that a
partition Y can be both consistent with and a coarsening of the side information Z.
This is the case where every Yi contains exactly one Zj and every Zj is contained in
exactly one Yi (i.e., Y has the same number of elements as Z).

Theorem 4.1. Let X ⊂ RN be a finite data set and X` ⊆ X be the set of labeled
data points that is partitioned into Z = {Z1, . . . , Zm}. Let Y = {Y1, . . . , Yk} be a
proportional coarsening of Z, and suppose that the sample covariance matrices Σi

of Yi are positive definite.
If Ỹ = {Ỹ1, . . . , Ỹk′} is a coarsening of Y, then

E1(Ỹ) ≥ E1(Y). (12)

Proof. See E.

An immediate consequence of Theorem 4.1 is that, for β = 1, CEC-IB tends
to put elements with different labels in different clusters. Note, however, that there
might be partitions Y that are consistent with Z that have an even lower cost (10):
Since every consistent partition Y satisfies H(Z|Y) = 0, any further refinement of
Y reduces the cost whenever the cost for model complexity, H(Y), is outweighed by

the modeling inaccuracy
∑k

i=1
|Yi|
|X|H(N (µYi ,ΣYi)).

Theorem 4.1 does not assume that the side information induces a partition of
X that fits our intuition of clusters: the Zj need not be a connected set, but could
result from, say, a random labeling of the data set X. Then, for β = 1, splitting X
into clusters that are consistent with the side information will be at least as good
as creating a single cluster. Interestingly, if the labeling is completely random, any
β < 1 will prevent dividing the data set into clusters:

Remark 4.1. Suppose a completely random labeling for the setting of Theorem 4.1.
More precisely, we assume that the set of labeled data X` is divided into Z =
{Z1, . . . , Zm} and that the partition Y is a proportional coarsening of Z. If suffi-
ciently many data points are labeled, we may assume that the sample covariance
matrix ΣYi of Yi is close to the covariance matrix ΣX of X, i.e. ΣYi ≈ ΣX . For any
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coarsening Ỹ of Y , the cross-entropies for Y and Ỹ are approximately equal:

∑
i

|Yi|
|X|

H(N (µYi ,ΣYi)) ≈
∑
j

|Ỹj|
|X|

H(N (µỸj ,ΣỸj
)) ≈ H(N (µX ,ΣX))

because the sample covariance matrices of Ỹ ∈ Ỹ are also close to ΣX .
If we compare the remaining parts of cost function (10), then with β < 1 we

obtain:

H(Y) + βH(Z|Y) = (1− β)H(Y) + β(H(Y) +H(Z|Y))

= (1− β)H(Y) + β(H(Ỹ) +H(Z|Ỹ)) > H(Ỹ) + βH(Z|Ỹ). (13)

The last inequality follows from the fact that H(Y) > H(Ỹ). Therefore, CEC-IB
with β < 1 is robust on random labeling.

Our second result is a critical threshold β0, above which splitting a given cluster
Ỹ1 into smaller clusters Y1, . . . , Yl reduces the cost. This threshold β0 depends on
the data set and on the side information. For example, as Remark 4.1 shows, for a
completely random labeling we get β0 = 1. To derive the threshold in the general
case, we combine the proof of Theorem 4.1 with (13):

Theorem 4.2. Let X ⊂ RN be a finite data set and X` ⊆ X be the set of labeled
data points that is partitioned into Z = {Z1, . . . , Zm}. Let Y = {Y1, . . . , Yk} be a
proportional coarsening of Z, and suppose that the sample covariance matrices Σi

of Yi are positive definite. Suppose that Ỹ = {Y1, . . . , Yk′−1, (Yk′ ∪ · · · ∪ Yk)}, for
1 < k′ < k, is a coarsening of Y, and let µ and Σ be the sample mean vector and
sample covariance matrix of Yk′ ∪ · · · ∪ Yk. Let qi = pi for i = 1, . . . , k′ − 1 and
qk =

∑k
i=k′ pi. We put

β0 = 1 +

∑k
i=k′

pi
2qk′

ln
(

det Σi
det Σ

)
H
(
pk′
qk′
, . . . , pk

qk′

) . (14)

If β ≥ β0, then
Eβ(Ỹ) ≥ Eβ(Y).

Proof. See F.

We now evaluate a practically relevant instance of the above theorem, where
the data follows a Gaussian distribution and the partition-level side information is
“reasonable”:
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Example 4.1. Let X ⊂ R be a data set generated by a one-dimensional Gaussian
distribution f = N (µ, σ2), and suppose that the data set is large enough such that
the sample mean µX and sample variance σ2

X are close to µ and σ2, respectively.
A classical unsupervised model-based clustering technique, such as CEC or GMM,
terminates with a single cluster.

Now suppose that Z1 ⊂ (−∞, µ) and Z2 ⊂ [µ,+∞) are equally-sized sets, which
suggests that Y = {Y1, Y2} = {(−∞, µ)∩X, [µ,+∞)∩X} is the expected clustering.
Consequently, on one hand, the data distribution indicates that a single cluster
should be created while, on the other hand, the side information suggests splitting
the data set into two clusters. At the threshold β0 these two conflicting goals are
balanced, while for β > β0 a consistent clustering is obtained.

To calculate the critical value β0, let Y = {Y1, Y2} be proportional to Z, and let
fi = N (µYi , σ

2
Yi

) be the optimal fit for cluster Yi. Since the data in Yi can be well
approximated by a truncated Gaussian distribution, we can calculate:

σ2
Y1
≈ σ2

Y2
≈ σ2

(
1− 2

π

)
.

Making use of the previous theorem, Eβ({X}) = Eβ(Y) for

β = β0 ≈ 1 +
ln
√

1− 2
π

H(1
2
, 1

2
)
≈ 0.269. (15)

Continuing this example, in some cases the side information might be noisy,
i.e., data points are labeled wrongly. Consider the labeling Z that satisfies Z1 ⊂
(−∞, µ + c) and Z2 ⊂ [µ − c,+∞), for some c > 0. In other words, the human
experts did not agree on the labeling at the boundary between the clusters. If we
choose Y proportional to this noisy side information Z, then one has reason to
suppose that the sample variances of Y1 and Y2 are larger than in the noiseless case,
hence leading to a larger threshold β0 according to Theorem 4.1. Setting β to a
value only slightly higher than the threshold β0 for the noiseless case thus ensures a
partition Y that is consistent with the noiseless labeling, but that is robust to noise.
In summary, one should choose β large (i.e., close to 1), if one believes that the side
information is correct, but small if one has to expect noisy side information.

5 Experiments

We evaluated our method in classical semi-supervised clustering tasks on examples
retrieved from the UCI repository [26] and compared its results to state-of-the-
art semi-supervised clustering methods. We evaluated performance in the case of
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only few classes being present in the partition-level side information and for noisy
labeling, and investigated the influence of the parameter β on the clustering results.
We furthermore applied CEC-IB on a data set of chemical compounds [47] to
discover subgroups based on partition-level side information derived from the top of
a cluster hierarchy and illustrate its performance in an image segmentation task.

5.1 Experimental setting

We considered five related semi-supervised clustering methods for comparison. The
first is a classical semi-supervised classification method that is based on fitting a
GMM to the data set taking partial labeling into account. Since it is a classification
method, it only works if all true classes are present in the categorization Z. We used
the R implementation Rmixmod [24] with default settings; we refer to this method
as “mixmod”.

The second method incorporates pairwise constraints as side information for a
GMM-based clustering technique [36]. To transfer the partition-level side informa-
tion to pairwise constraints, we went over all pairs of labeled data points in X` and
generated a must-link constraint if they were in the same, and a cannot-link con-
straint if they were in different categories. We used the implementation from one
of the authors’ website2 and refer to this method as “c-GMM”. We ran c-GMM in
MultiCov mode, i.e. every cluster was characterized by its own covariance matrix.

We also applied an extension of k-means to accept partition level-side informa-
tion [27]. The method requires setting a weight parameter λ, that places weight on
the features derived from the side information. The authors suggested λ = 100, but
we found that the method performs more stable for λ = 100 · tr(Σ), i.e., for λ being
proportional to the trace of the sample covariance matrix of the data set X. We
refer to this method as “k-means”.

Moreover, we considered a semi-supervised variant of fuzzy c-means [32, 33],
which incorporates partition-level side information. We used the Euclidean distance,
set the fuzzifier parameter to 2, and chose a trade-off parameter α = |X|

|X`|
as suggested

by the authors. To obtain a “hard” clustering Y from a fuzzy partition we assigned
every point to its most probable cluster. This technique will be referred to as “fc-
means”.

Finally, we used a semi-supervised version of spectral clustering [34] (referred
to as “spec”), which was claimed to achieve state-of-the-art performance among
spectral algorithms. The method accepts pairwise constraints and operates on the
affinity (similarity) matrix of the data set. The authors of [34] suggested setting
the similarity between data points xi and xj to e−‖xi−xj‖

2/2ρ2 , where ‖ · ‖ is the

2http://www.scharp.org/thertz/code.html
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Table 1: Summary of UCI datasets used in the experiments.

Data set # Instances # Features # Classes
Ecoli+ 327 5 5
Glass 214 9 6
Iris 150 4 3
Segmentation+ 210 5 7
User Modeling 403 5 4
Vertebral 310 6 3
Wine 178 13 3

+: PCA was used to reduce a dimensionality of the data set and remove dependent attributes

Euclidean distance and where ρ > 0 is called affinity parameter. In order to account
for different variances in different dimensions, we used

e
−

∑N
`=1

|x(`)
i
−x(`)

j
|2

2ρ2σ2
(l) , (16)

where x
(`)
i is the value of the `-th coordinate of xi and where σ2

(`) is the variance of
the `-th coordinate of X. The method can be tuned with two parameters: affinity
parameter ρ and trade-off factor η. The authors suggest to find the best possible
combination of these parameters using a grid-search strategy. Since we did not
allow for tuning any parameters of other methods (including β in CEC-IB), for a
fair comparison we decided to fix these two parameters. Specifically, we put η = 0.7
analyzing the results reported in [34]. We moreover set ρ = 1 based on the fact that
the Euclidean distances are already normalized according to the variances of the
respective dimensions and since [34] reports little influence of the selection of ρ. We
generated must-link and cannot-link constraints as we did for c-GMM; moreover, the
entries of the affinity matrix were set to one for must-link, and to zero for cannot-link
constraints.

Since CEC-IB automatically determines an appropriate number of clusters by
removing clusters with too few data points, we initialized CEC-IB with twice the
correct number of clusters. In contrast, other methods were run with the correct
numbers of clusters. In a semi-supervised clustering task with correct labels from
all classes, the competing methods can thus be expected to perform better than
CEC-IB.

To better illustrate the effect of the weight parameter β, we used two parame-
terization of CEC-IB, using β = 1 and β = β0 ≈ 0.269 given by (15). We refer to
these two variants as CEC-IB1 and CEC-IB0, respectively.

The similarity between the obtained clusterings and the ground truth was eval-
uated using Normalized Mutual Information (NMI) [3]. For a reference grouping X
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and a clustering Y it is defined by

NMI(Y ,X ) =
2I(Y ;X )

H(Y) +H(X )
.

Since I(Y ;X ) ≤ min{H(Y), H(X )}, NMI is bounded from above by 1, which is
attained for identical partitions. If Y and X contain different numbers of clusters,
then NMI is always below 1.

5.2 Semi-supervised clustering

We evaluated the proposed method in a classical semi-supervised clustering task, in
which we aim to recover a reference partition based on a small sample of labeled
data.

We used seven UCI data sets, which are summarized in Table 1. The partition-
level side information was generated by choosing 0%, 10%, 20%, and 30% of the
data points and labeling them according to their class. To remove effects from
random initializations, we generated 10 different samples of side information for
each percentage and averaged the resulting NMI values.

The clustering results presented in Figure 3 show that CEC-IB1 usually achieved
a higher NMI than CEC-IB0: Since the partition-level side information is noise-
free, i.e., agrees with the reference grouping, a larger weight parameter β leads to
better performance. In general, CEC-IB1 produced results similar to the two other
GMM-based techniques, c-GMM and mixmod. Notable differences can be observed
on Vertebral dataset, where CEC-IB performed significantly better, and on Iris and
User Modeling, where the competing methods gave higher NMI. This is most likely
caused by the fact that CEC-IB failed to determine the correct number of clusters
(see Table 2), while the GMM implementations were given this correct number of
clusters as side information. As it can be seen in Table 2, in all other cases, CEC-
IB terminated with a number of clusters very close to the true value. Initializing
CEC-IB with the correct number of clusters for the Iris data set, we get results
that are comparable to those of mixmod and c-GMM (see Figure 3(h)).

Observe that k-means gave slightly lower NMI than fc-means. Nevertheless,
both algorithms performed worse than the GMM-based methods, except for the
Ecoli and Segmentation data sets. The difference in the results can be explained
by the fact that fc-means and k-means are distance-based methods and therefore
perform differently from model-based approaches. Although the performance of spec
usually increases with more labeled examples, its results are worse than the other
methods.
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(d) User Modeling
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(e) Vertebral
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(g) Iris
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(h) Iris+

Figure 3: Normalized Mutual Information of examined methods evaluated on UCI
datasets. CEC-IB was initialized with twice the true number of clusters while other
methods used the correct number of clusters.
+ CEC-IB was initialized with the correct number of clusters
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Table 2: Number of clusters returned by CEC-IB for a given amount of labeled
data.

Data set # Classes 0% 10% 20% 30%
Ecoli 5 7 6 6 6
Glass 6 5 6 6 6
Iris 3 5 5 5 5
Segmentation 7 8 8 7 8
User 4 7 6 6 6
Vertebral 3 4 4 4 4
Wine 3 3 3 3 3

5.3 Few labeled classes

In a (semi-)supervised classification task, the model learns classes from a set of
labeled data and applies this knowledge to unlabeled data points. More specifically,
the classifier cannot assign class labels that were not present in a training set. In
contrast, clustering with partition-level side information, can detect clusters within
a labeled category or within the set of unlabeled data points.

In this section, we apply CEC-IB to a data set for which the partition-level
side information contains labels of only two classes from the reference grouping. As
before we considered 0%, 10%, 20% and 30% of labeled data. For each of the 10 runs
we randomly selected two classes from a reference grouping that covered at least 30%
of data in total and generated the partition-level side information from these two
categories (the same classes were used for all percentages of side information). It
was not possible to run mixmod in this case because this package does not allow to
use a number of clusters different from the categories given in the side information.

Figure 4 shows that CEC-IB was able to consistently improve its clustering
performance with an increasing size of the labeled data set3. Surprisingly, c-GMM
sometimes dropped in performance when adding side information. This effect was
already visible in Figure 3, but seems to be more pronounced here. While a deeper
analysis of this effect is out of scope of this work, we believe that it is due to the
simplification made in [36] to facilitate applying a generalized EM scheme. This
simplification is valid if pairs of points with cannot-link constraints are disjoint, an
assumption that is clearly violated by the way we generate cannot-link constraints
(see Section 5.1).

Contrary to c-GMM, the results of fc-means and k-means were far more stable.
In most cases both algorithms increased their performance having access to more

3Although the results for 0% of labeled data should be identical with the ones reported in
Section 5.2, some minor differences might follow from a random initialization of the methods, see
Section 3.4.
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(e) Vertebral
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(g) Iris

Figure 4: Normalized Mutual Information of examined methods evaluated on UCI
datasets when the partition-level side information covered only two classes.
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labeled data. Interestingly, spec performed in general better when only two classes
were labeled than in the previous experiment where all classes were labeled. In
consequence, its results were often comparable to or sometimes even better than
other methods.

5.4 Noisy side information

In real-world applications, the side information usually comes from human experts,
who label training samples. Depending on the expertise of these workers, some
part of this side information might be noisy or erroneous. Therefore, the clustering
algorithm needs to be robust w.r.t. noisy side information.

To simulate the above scenario, we randomly selected 30% of the data points as
side information, as in Section 5.2, and assign incorrect labels for a fixed percentage
of them (0%, 10%, 20%, 30%, 40%, 50% of misspecified labels). All methods were
run in the same manner as in the previous experiments.

One can see in Figure 5 that CEC-IB0 showed the highest robustness to noisy
labels among all competing methods, i.e., the NMI deteriorated the least with in-
creasing noise. Although CEC-IB1 achieved higher NMI than CEC-IB0 for cor-
rectly labeled data (without noise), its performance is usually worse than CEC-IB0

when at least 30% of labels are misspecified. The robustness of mixmod and spec
is acceptable; their results vary with the used data set, but on average they cope
with incorrect labels comparably to CEC-IB1. In contrast, c-GMM, k-means and
fc-means are very sensitive to noisy side information. Since their performance falls
drastically below the results returned for strictly unsupervised case, they should not
be used if there is a risk of unreliable side information.

5.5 Influence of weight parameter

From Figure 3 it can be seen that β = β0 often seems to be too small to benefit suf-
ficiently from partition-level side information, although it provides high robustness
to noisy labels. In this experiment, we investigate the dependence between the value
of β and the size of the labeled data set and the fraction of noisy labels, respectively.

First, we checked the performance of CEC-IB with different values of β in
the noiseless case. We randomly selected 10%, 20% and 30% of the data points,
respectively, and labeled them according to their true classes. Figure 6 shows that
CEC-IB with β = β0 run on 30% labels performed similarly to CEC-IB with
β = 1 run on 10% labels. Therefore, we see that the lack of labeled data can be
compensated with a larger value of β. Moreover, a larger value of β makes CEC-IB
benefit more from a larger number of correctly labeled data points.
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Figure 5: Influence of misspecified labels on the clustering results. CEC-IB was
run with twice the true number of clusters.
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Figure 6: Dependence between the number of labeled data points and the value of
parameter β.
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Figure 7: Dependence between the fraction of incorrect labels and the value of
parameter β.
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Ligands of 5-HT1A receptor

Alkylamines

Indolylalkylamines
(31)

Arylamines

4-atom linker
(32)

2-atom linker
(35)

Piperazines

Benzylpiperazines
(52)

A(i)mides

Terminal amides
(86)

Sulfona(i)mides
(48)

Figure 8: Hierarchy tree of chemical compounds classes. The numbers in brackets
indicate the number of times the corresponding class appeared in the data set.

In the second experiment we investigated the relation between the fraction of
noisy side information and the weight parameter. We drew 30% of the data points
and labeled 0%, 10%, 30%, and 50% of them incorrectly (the remaining selected
data points were labeled with their correct class labels). We see in Figure 7 that
a small noise of 10% did not have severe negative effects on the clustering results.
In this case NMI was almost always higher than in the unsupervised case (i.e., for
β = 0), even for β = 1. For 50% of incorrectly labeled data points, increasing β has a
negative effect on the clustering performance, while β = β0 provided high robustness
to the large amount of noisy labels and in most cases performed at least as well as the
unsupervised scenario. For the case where 30% of labels were misspecified, choosing
β < 0.6 seems to produce results at least as good as when no side information is
available.

5.6 Hierarchy of chemical classes – a case study

Our CEC-IB cost function only penalizes including elements from different cate-
gories into the same cluster. Covering a single category by more than one cluster
is not penalized if the cost for model accuracy outweighs the cost for model com-
plexity. In this experiment, we will show that this property is useful in discovering
subgroups from side information derived from a cluster hierarchy.

We considered a data set of chemical compounds that act on 5-HT1A receptor
ligands, one of the proteins responsible for the regulation of the central nervous
system [31,38]. Part of this data set was classified hierarchically by an expert [47], as
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shown in Figure 8. For an expert it is easier to provide a coarse categorization rather
than a full hierarchical classificiation, especially if it is not clear how many subgroups
exist. Therefore, in some cases, it might be easier to get a hierarchical structure
based on this coarse categorization made by the expert and an automatic clustering
algorithm that finds a partition corresponding to the clusters at the bottom of the
hierarchy.

We used the Klekota-Roth fingerprint representation of chemical compounds [21],
which describes each object by a binary vector, where “1” means presence and “0”
denotes absence of a predefined chemical pattern. Since this representation contains
4860 features in total, its direct application to model-based clustering can lead to
singular covariance matrices of clusters. Therefore, PCA was used to reduce its
dimension to the 10 most informative components. This data set contains 284
examples in total (see Figure 8 for the cardinalities of particular chemical classes).

We generated partition-level side information from the division of chemical data
set into two classes: Piperazines and Alkylamines. We considered 0%, 10%, 20%
and 30% of data points to be labeled and supposed that the human expert assigns
incorrect labels with probabilities: 0%, 10%, 20%, and 30% respectively. Based on
the results from previous subsection we used β = 0.6 instead of β = β0, which is
denoted by CEC-IB0.6. Our method was run with 10 initial groups, while the other
algorithms used the knowledge of the correct number of clusters. As mentioned in
Section 5.3, it is not possible to run mixmod in this case, since the desired number
of clusters is larger than the number of categories.

It can be seen from Figure 9 that CEC-IB1 gave the highest score among all
methods when the expert was always assigning the correct labels and it was only
slightly better than CEC-IB0.6. In the case of 20% and 30% of misspecified labels
it was slightly better to use β = 0.6, although the differences were very small.
CEC-IB terminated usually with 6 or 7 groups.

One can observe that GMM with negative constraints was able to use this type
of side information effectively. In the noiseless case, its results improved with the
number of labeled data points, but not as much as with our method. In the noisy
case, however, its performance dropped down. It is worth mentioning that the
implementation of negative constraints with hidden Markov random fields is very
costly, while our method is computationally efficient. k-means benefited from the
side information in noiseless case, but deteriorated its performance when incorrect
labels were introduced. GMM with positive and negative constraints, and fc-means
were not able to use this type of knowledge to full effect. We observed that the
use of negative constraints only has no effect on spec, i.e. its results were almost
identical for any number of labeled data4. The results of spec with both types of

4We observed similar effects for most UCI data sets when we used negative constraints only
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Figure 9: Detection of chemical subgroups.
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(a) Image (b) Side Information

Figure 10: Test image and sample labeling dividing the picture into background and
foreground.

constraints led to some improvements, but its overall performance was quite low.
We were unable to provide a satisfactory explanation for this behavior.

5.7 Image segmentation

To further illustrate the performance of CEC-IB we applied it to an image segmen-
tation task. We chose the picture of a dog retrieved from Berkeley Image Segmen-
tation database 5 presented in Figure 10(a) (picture no. 247085 resized into 70× 46
resolution) and tried to separate the shape of the dog from the background. As
partition-level side information, we marked four regions by one of two labels (indi-
cated by white and black colors, see Figure 10(b)). This information was passed
to all considered clustering methods. In this example we focus on noiseless side
information, thus we put β = 1 for CEC-IB.

To transform the image into vector data, we selected a window of size 7×7 around
each pixel and used it as a feature vector of dimension 147 (3 color intensities for
49 pixels each). Then, we applied PCA to reduce the dimension of these vectors to
5 most informative components. In consequence, we obtained a data set with 3220
data points in R5.

Figure 11 shows the clustering results when the algorithms were run with two
clusters. It can be seen that CEC-IB, mixmod, c-GMM and spec provided reason-
able results. Generally though, in all cases the shape of the dog was often mixed
with a part of background. This is not surprising, since 1) CEC-IB, mixmod and
c-GMM are “unimodal”, i.e. they try to detect compact groups described by single
Gaussians, and 2) k-means and fc-means represent clusters by a single central point.

in the setting of Section 5.3. Changing the parametrization of the method did not overcome this
negative behavior.

5https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) CEC-IB (b) mixmod (c) c-GMM

(d) k-means (e) fc-means (f) spec

Figure 11: Image segmentation into foreground and background.

Both background and foreground are too complex to be generalized by so simple
patterns.

In order to take this into account, we first tried to detect what is a “natural”
number of segments. For this purpose, we ran CEC-IB with 10 initial groups, which
was finally reduced to 5 clusters and used this number in other algorithms. As it
was shown in previous experiments using chemical compounds, must-link constraints
cannot help when we have a partial labeling for two coarse classes, but we are
interested in discovering their subgroups. Thus, the partition-level side information
was only transformed into cannot-link constraints.

The results presented in Figure 12 show that CEC-IB separated the background
from the foreground quite well. Each of these two regions was described by two
clusters, while the fifth group was used for detecting the boundary between them.
The creation of such an additional group is natural, because feature vectors were
constructed using overlapping windows and the contrast between background and
foreground was sharp. One may notice that c-GMM and k-means also allocated
one group for the boundary (green colored cluster). Nevertheless, both methods
created clusters which mixed some elements from the background and foreground
(blue and cyan colored clusters). The result returned by fc-means separated the
two main parts of the image, but also contains a lot of small artifacts. As in the
chemical example, spec was not able to achieve reasonable results with cannot-link
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(a) CEC-IB (b) c-GMM

(c) k-means (d) fc-means

Figure 12: Image segmentation with five clusters.

constraints only. Similarly, it was not possible to run mixmod in this case.

6 Conclusion

We introduced a semi-supervised clustering method that combines model-based
clustering realized by CEC with the constraint used by the information bottle-
neck method. The proposed cost function consists of three terms: the first tries
to minimize the final number of clusters, the second penalizes the model for being
inconsistent with side information, and the third controls the quality of data model-
ing. The performance of our method can be tuned by changing a weight parameter
that trades between these three conflicting goals. Our method is flexible in the sense
that it can be applied to both classical semi-supervised clustering tasks, as well as
to tasks in which either not all classes appear in the labels or in which subgroups
should be discovered based on the labels. For the latter problems, it is difficult or
computationally expensive to use existing techniques. Setting the weight parameter
appropriately, for which we provide a deep theoretical analysis, makes our method
robust to incorrect labels. We evaluated the performance of our method on several
data sets, including a case study using chemical compounds data set and an image
segmentation task.
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A Cross-Entropy Clustering

The empirical cross-entropy between the data set X and the parametric mixture f
of Gaussian densities is, for a given clustering Y ,

H×(X‖f) = − 1

|X|

k∑
i=1

∑
x∈Yi

log(pifi(x))

= −
k∑
i=1

|Yi|
|X|

(
log pi +

1

|Yi|
∑
x∈Yi

log fi(x)

)

= −
k∑
i=1

|Yi|
|X|

log pi +
k∑
i=1

|Yi|
|X|

H×(Yi‖fi).

The first sum is minimized by selecting pi = |Yi|/|X|, in which case the cross-entropy
reduces to the entropy of the cluster partition

H(Y) := −
k∑
i=1

|Yi|
|X|

log
|Yi|
|X|

.

For the second sum, recall that the cross-entropy of a Gaussian density f =
N (µ,Σ) with mean vector µ and covariance matrix Σ equals:

H×(X‖f) = N
2

ln(2π) + 1
2
‖µX − µ‖Σ + 1

2
tr(Σ−1ΣX) + 1

2
ln det(Σ),

where µX and ΣX are the sample mean vector and sample covariance matrix of X,
respectively, and where ‖x‖Σ is the Mahalanobis norm of x with respect to Σ. The
density f ∈ G minimizing the cross-entropy function is f = N (µX ,ΣX), i.e., its
mean equals the sample mean of X, and its covariance matrix equals the sample
covariance matrix of X [42, Theorem 4.1]. In this case, the cross entropy equals the
differential Shannon entropy of N (µX ,ΣX), i.e.,

H×(X‖N (µX ,ΣX)) = N
2

ln(2πe) + 1
2

ln det(ΣX) = H(N (µX ,ΣX)).

It follows that the second sum is minimized by selecting, for every i, the maximum
likelihood estimator of Yi, fi = N (µYi ,ΣYi) [42, Theorem 4.1, Proposition 4.1].
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B Proof of Theorem 3.1

We consider the CEC cost function (2) separately for each category Zj and define
the conditional cross-entropy as

H×((X‖f)|Z) =
m∑
j=1

|Zj|
|X|

H×(Zj‖f|j)

where
f|j = max(p1(j)f1, . . . , pk(j)fk).

In other words, we assume a parameterized density model in which the weights pi(j)
may depend on the category, while the densities fi may not. Rewriting above cost
yields

H×((X‖f)|Z) = −
m∑
j=1

|Zj|
|X|

∑
x∈Zj

1

|Zj|
log f|j(x)

= − 1

|X|

m∑
j=1

k∑
i=1

∑
x∈Zj∩Yi

log pi(j)fi(x)

= −
m∑
j=1

k∑
i=1

|Zj ∩ Yi|
|X|

log pi(j)−
1

|X|

k∑
i=1

∑
x∈Yi

log fi(x).

The second sum is minimized by the maximum likelihood estimates fi = N (µYi ,ΣYi),

while the first term is minimized for pi(j) =
|Zj∩Yi|
|Zj | . We thus get

−
m∑
j=1

k∑
i=1

|Zj ∩ Yi|
|X|

log pi(j) = −
m∑
j=1

k∑
i=1

|Zj ∩ Yi|
|X|

log
|Zj ∩ Yi|
|Zj|

= H(Y|Z)

= H(Z|Y) +H(Y)−H(Z)

by the chain rule of entropy. Since H(Z) does not depend on the clustering Y , the
minimization of the above conditional cross-entropy is equivalent to the minimization
of

H(Y) +
k∑
i=1

|Yi|
|X|

H(N (µYi ,ΣYi)) +H(Z|Y). (17)

This is exactly the cost (4) for β = 1.

35



Table 3: Mean number of iterations that Hartigan CEC, EM-based GMM and Lloyd
k-means need to converge.

Data
set

Hartigan
CEC

EM-based
GMM

Hartigan
k-means

Lloyd
k-means

Ecoli 6.4 18.6 3.2 10.4
Glass 5.5 15.7 3.3 9.7
Iris 5.1 19.1 2.3 7
Segmentation 4.4 16.7 3.3 9.3
User Modeling 8.5 48.2 3.9 10.9
Vertebral 7.6 17.8 2.3 9
Wine 7.6 13.6 2.3 8.6

C Convergence Speed of Hartigan-Based CEC

We compared the number of iterations that CEC, EM, and k-means required to
converge to a local minimum. We used the seven UCI data sets from Table 1 and
averaged the results over ten runs. Side information was not considered in these
experiments. Table 3 shows that the Hartigan heuristic applied to the CEC cost
function converges faster than EM does for fitting a GMM. The same holds when
comparing the Hartigan algorithm with Lloyd’s method applied to k-means. Similar
results were obtained in an experimental evaluation [40]. We also found out that
that CEC-IB uses a similar number of iterations as CEC; however, the convergence
speed varies with the particular sample of side information, which makes a reliable
comparison more difficult.

D Chain Rule for Proportional Partitions

We now show that, for partitions Y proportional to Z, the chain rule of entropy can
be applied, i.e.,

H(Y) +H(Z|Y) = H(Z,Y).
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We have

H(Y) +H(Z|Y)

= −
k∑
i=1

|Yi|
|X|

log
|Yi|
|X|
−

k∑
i=1

|Yi|
|X|

m∑
j=1

|Yi ∩ Zj|
|Yi ∩X`|

log
|Yi ∩ Zj|
|Yi ∩X`|

(a)
= −

k∑
i=1

|Yi ∩X`|
|X`|

log
|Yi ∩X`|
|X`|

−
k∑
i=1

|Yi ∩X`|
|X`|

m∑
j=1

|Yi ∩ Zj|
|Yi ∩X`|

log
|Yi ∩ Zj|
|Yi ∩X`|

= −
k∑
i=1

m∑
j=1

|Yi ∩ Zj|
|X`|

log
|Yi ∩X`|
|X`|

−
k∑
i=1

m∑
j=1

|Yi ∩ Zj|
|X`|

log
|Yi ∩ Zj|
|Yi ∩X`|

= −
k∑
i=1

m∑
j=1

|Yi ∩ Zj|
|X`|

log
|Yi ∩ Zj|
|X`|

= H(Z,Y)

where (a) is because Y is proportional to Z and thus |Yi∩X`||X`|
= |Yi|
|X| . In a similar

manner it can be shown that

H(Z) +H(Y|Z) = H(Z,Y)

where H(Z) = −
∑m

j=1
|Zj |
|X`|

log
|Zj |
|X`|

and where

H(Y|Z) =
m∑
j=1

|Zj|
|X`|

H(Y|Zj) = −
m∑
j=1

k∑
i=1

|Yi ∩ Zj|
|X`|

log
|Yi ∩ Zj|
|Zj|

.

E Proof of Theorem 4.1

Lemma E.1. Let the data set X ⊂ RN be partitioned into two clusters Y1 and Y2

such that the sample covariance matrix Σi of Yi is positive definite for i = 1, 2.
Then

H(N (µX ,ΣX)) ≥ |Y1|
|X|

H(N (µY1 ,ΣY1)) +
|Y2|
|X|

H(N (µY2 ,ΣY2)).

Proof. Let p = |Y1|/|X|. By the law of total (co-)variance, we have

ΣX = pΣY1 + (1− p)ΣY2

+ p(µX − µY1)(µX − µY1)T + (1− p)(µX − µY2)(µX − µY2)T︸ ︷︷ ︸
=:Σ̃

(18)
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where Σ̃ is the covariance matrix obtained from the sample mean vectors µY1 and
µY2 of Y1 and Y2. Consequently, we get

pH(N (µY1 ,ΣY1)) + (1− p)H(N (µY2 ,ΣY2))

=
Np

2
ln(2πe) +

p

2
ln(det ΣY1) +

N(1− p)
2

ln(2πe) +
(1− p)

2
ln(det ΣY2)

=
N

2
ln(2πe) +

1

2
ln
(
(det ΣY1)

p(det ΣY2)
(1−p))

(a)

≤ N

2
ln(2πe) +

1

2
ln(det(pΣY1 + (1− p)ΣY2))

(b)

≤ N

2
ln(2πe) +

1

2
ln(det(pΣY1 + (1− p)ΣY2 + Σ̃))

=
N

2
ln(2πe) +

1

2
ln(det Σ)

= H(N (m,ΣX))

where (a) follows because ΣY1 and ΣY2 are positive definite and from [16, Cor. 7.6.8],
and where (b) follows because Σ̃ is positive semi-definite and from, e.g., [16, Cor. 4.3.12].

Proof of Theorem 4.1. Since Y is proportional to Z and since the coarsening of a
proportional partition is proportional, we can apply the chain rule of entropy to get
(see D)

H(Y) +H(Z|Y) = H(Z,Y)

H(Ỹ) +H(Z|Ỹ) = H(Z, Ỹ).

We hence get

H(Y) +H(Z|Y) = H(Z,Y)
(a)
= H(Z,Y , Ỹ) = H(Z, Ỹ) +H(Y|Z, Ỹ)

(b)
= H(Z, Ỹ) = H(Ỹ) +H(Z|Ỹ) (19)

where (a) is because Ỹ is a coarsening of Y and (b) is because Y is a coarsening of
Z, respectively. In other words, for proportional coarsenings of Z, consistency with
Z (measured by the conditional entropy) can be freely traded for model simplicity
(measured by entropy).

For the remaining part of the RHS of (12), we write:

k∑
i=1

|Yi|
|X|

H(N (µYi ,ΣYi)) =
k′∑
j=1

|Ỹj|
|X|

∑
i:Yi⊆Ỹj

|Yi|
|Ỹj|

H(N (µYi ,ΣYi)).
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If the inner sums on the RHS consist of at most two terms, i.e. Ỹj = {Yi1 , Yi2}
or Ỹj = Yi, the inequality is established by Lemma E.1. If the inner sum consists of
more than two clusters, one needs to apply Lemma E.1 recursively. For example, if
Ỹ1 = {Y1, Y2, Y3},

3∑
i=1

|Yi|
|Ỹ1|

H(N (µYi ,ΣYi))

≤ |Y1 ∪ Y2|
|Ỹ1|

H(N (µY1∪Y2 ,ΣY1∪Y2)) +
|Y3|
|Ỹ1|

H(N (µY3 ,ΣY3))

≤ H(N (µỸ1 ,ΣỸ1
).

This completes the proof.

F Proof of Theorem 4.2

Note that, with (13) and (19) (since both Y and Ỹ are proportional coarsenings of
Z), we obtain

H(Ỹ) + βH(Z|Ỹ)−H(Y)− βH(Z|Y)

= H(Ỹ) + βH(Z|Ỹ)− (1− β)H(Y)− β(H(Ỹ) +H(Z|Ỹ))

= (1− β)
(
H(Ỹ)−H(Y)

)
= (β − 1)H(Y|Ỹ) = (β − 1)H

(
pk′

qk′
, . . . ,

pk
qk′

)
.

For i = 1, . . . , k′− 1, we have H(N (µYi ,ΣYi)) = H(N (µỸi ,ΣỸi
)), hence only the last

term remains. We obtain with the proof of Theorem 4.1,

H(N (µ,Σ))−
k∑

i=k′

pi
qk′
H(N (µYi ,ΣYi)) =

k∑
i=k′

pi
2qk′

ln

(
det Σ

det ΣYi

)
.

It follows that the two costs in the statement are equal for β0 such that

(β0 − 1)H

(
pk′

qk′
, . . . ,

pk
qk′

)
=

k∑
i=k′

pi
2qk′

ln

(
det ΣYi

det Σ

)
from which we get

β0 = 1 +

∑k
i=k′

pi
2qk′

ln
(

det ΣYi
det Σ

)
H
(
pk′
qk′
, . . . , pk

qk′

) . (20)
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The work of Marek Śmieja was supported by the National Science Centre (Poland)
grant no. 2016/21/D/ST6/00980. The work of Bernhard C. Geiger has been funded
by the Erwin Schrödinger Fellowship J 3765 of the Austrian Science Fund and by
the German Ministry of Education and Research in the framework of an Alexander
von Humboldt Professorship.

References

References

[1] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and
applications. Chapman and Hall/CRC, 2013.

[2] Christophe Ambroise, Thierry Denoeux, Gérard Govaert, and Philippe Smets.
Learning from an imprecise teacher: probabilistic and evidential approaches.
Applied Stochastic Models and Data Analysis, 1:100–105, 2001.

[3] LNF Ana and Anil K Jain. Robust data clustering. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), volume 2, pages II–128,
2003.

[4] S. Asafi and D. Cohen-Or. Constraints as features. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 1634–1641, Portland,
OR, June 2013.

[5] Sugato Basu. Semi-supervised clustering: Learning with limited user feedback.
PhD thesis, The University of Texas at Austin, 2003.

[6] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic frame-
work for semi-supervised clustering. In Proc. ACM Int. Conf. on Knowledge
Discovery and Data Mining (SIGKDD), pages 59–68, Seattle, WA, August
2004.

[7] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained clustering: Ad-
vances in algorithms, theory, and applications. CRC Press, 2008.

40



[8] Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn, et al. The
R package bgmm: mixture modeling with uncertain knowledge. Journal of
Statistical Software, 47(3):31, 2012.
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