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Abstract

We consider the binomial decomposition of generalized Gini welfare functions in terms of the binomial
welfare functions and the associated binomial inequality indices. We examine in detail the weights of
the binomial welfare functions and the coefficients of the associated binomial inequality indices which
progressively focus on the poorest sector of the population, and we illustrate the numerical behavior of
the binomial welfare functions and inequality indices in relation with a new parametric family of income
distributions. The main contribution of the paper is to investigate the analogy between the binomial
welfare functions and the S-Gini and Lorenzen parametric families of generalized Gini welfare functions,
particularly in the context of the binomial decomposition. Finally, we examine the orness of the para-
metric S-Gini and Lorenzen families of generalized Gini welfare functions.
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1. Introduction

The generalized Gini welfare functions introduced by Weymark [44] and the associated inequality in-
dices in Atkinson-Kolm-Sen’s (AKS) framework are related by Blackorby and Donaldson’s correspondence
formula [10, 11],

A(x ) = x̄−G(x ) (1)

where A denotes a generalized Gini welfare function, G is the associated absolute inequality index, and x̄
is the plain mean of the income distribution x = (x1, . . . , xn) ∈ Dn of a population of n ≥ 2 individuals,
with income domain D = [0,∞).

The generalized Gini welfare functions [44] have the form A(x ) =
∑n

i=1wi x(i) where x(1) ≤ x(2) ≤
· · · ≤ x(n) and, as required by the principle of inequality aversion, w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 with∑n

i=1 wi = 1. These welfare functions correspond to the Schur-concave class of the ordered weighted
averaging (OWA) functions introduced by Yager [47], which in turn correspond [24] to the Choquet
integrals associated with symmetric capacities.

In this paper we recall the binomial decomposition of generalized Gini welfare functions due to Calvo
and De Baets [17], and Bortot and Marques Pereira [15]. The binomial decomposition can be formulated
in terms of two equivalent functional bases, the binomial welfare functions and the Atkinson-Kolm-Sen
(AKS) associated binomial inequality indices, according to Blackorby and Donaldson’s correspondence
formula.

The binomial welfare functions, denoted Cj with j = 1, . . . , n, have null weights associated with the
j − 1 richest individuals in the population and therefore they are progressively focused on the poorest
part of the population. Correspondingly, the associated binomial inequality indices, denoted Gj with
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j = 1, . . . , n, have equal weights associated with the j − 1 richest individuals in the population and
therefore they are progressively insensitive to income transfers within the richest part of the population.

The main contribution of the paper is to investigate the analogy between the binomial welfare functions
and the S-Gini and Lorenzen parametric families of generalized Gini welfare functions, particularly in
the context of the binomial decomposition. Finally, we examine the orness of the parametric S-Gini and
Lorenzen families of generalized Gini welfare functions.

The paper is organized as follows. In Section 2 we review the fundamental notions of majorization, in-
come transfers, Shur-convexity / concavity, and generalized Gini welfare functions and inequality indices,
for populations of n ≥ 2 individuals.

In Section 3 we consider the binomial decomposition of generalized Gini welfare functions in terms of
the binomial welfare functions Cj , with j = 1, ..., n, and the associated binomial inequality indices Gj ,
with j = 1, ..., n. We examine in detail the weights of the binomial welfare functions Cj , with j = 1, ..., n,
and the coefficients of the associated binomial inequality indices Gj , with j = 1, ..., n, which progressively
focus on the poorest part of the population, and we illustrate the numerical behavior of the binomial
welfare functions and inequality indices in relation with a new parametric family of income distributions.

In Sections 4 and 5 we present the main contribution of the paper, which is an investigation on the
analogy between the binomial welfare functions and the S-Gini and Lorenzen families of welfare functions,
particularly in the context of the binomial decomposition. The S-Gini family, with a continuous parameter
δ ∈ [1,∞), interpolates between the first and the last binomial welfare functions C1 and Cn, and includes
the classical Gini welfare function. On the other hand, the Lorenzen family, with a parameter l = 1, . . . , n,
interpolates between the last binomial welfare function Cn and the classical Gini welfare function, which
combines the first two binomial welfare functions C1 and C2.

Finally, in Section 6 we examine the orness of the parametric S-Gini and Lorenzen families of gener-
alized Gini welfare functions, and in Section 7 we present some conclusive remarks.

2. Generalized Gini welfare functions and inequality indices

In this section we consider populations of n ≥ 2 individuals with income distributions represented
by points x ,y ∈ Dn over the income domain D = [0,∞). We briefly review the fundamental notions of
majorization, income transfers, Shur-convexity / concavity, and generalized Gini welfare functions and
inequality indices.

We begin by presenting notation and basic definitions regarding averaging functions on the domain
Dn, with n ≥ 2 throughout the text. Comprehensive reviews of averaging functions can be found in
Fodor and Roubens [25], Marichal [34], Marichal et al. [35], Calvo et al. [18], Beliakov et al. [6], Torra
and Narukawa [43], Mesiar et al. [38], Grabisch et al. [27, 28], and Beliakov et al. [7].

Points in Dn are denoted x = (x1, . . . , xn), with 1 = (1, . . . , 1), 0 = (0, . . . , 0) . For every x ∈ D ,
we have x · 1 = (x, . . . , x). Given x ,y ∈ Dn, by x ≥ y we mean xi ≥ yi for every i = 1, . . . , n,
and by x > y we mean x ≥ y and x ̸= y . Given x ∈ Dn, the increasing and decreasing reorderings
of the coordinates of x are indicated as x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In
particular, x(1) = min{x1, . . . , xn} = x[n] and x(n) = max{x1, . . . , xn} = x[1] . In general, given a
permutation σ on {1, . . . , n}, we denote xσ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic mean is denoted
x̄ = (x1 + · · ·+ xn)/n.

We recall the definition of the majorization relation on Dn and we discuss the central concept of
income transfer following the approach in Marshall and Olkin [36]. We refer the classical results relating
majorization, income transfers, and bistochastic transformations, see Marshall and Olkin [36, Ch. 4,
Prop. A.1].

The majorization relation ≼ on Dn is defined as follows: given x ,y ∈ Dn with x̄ = ȳ, we say that

x ≼ y if

k∑
i=1

x(i) ≥
k∑

i=1

y(i) k = 1, . . . , n (2)

where the case k = n is an equality due to x̄ = ȳ. As usual, we write x ≺ y if x ≼ y and not y ≼ x , and
we write x ∼ y if x ≼ y and y ≼ x . We say that y majorizes x if x ≺ y , and we say that x and y are
indifferent if x ∼ y .

Another traditional reading, which reverses that of majorization, refers to the concept of Lorenz
dominance: we say that x is Lorenz superior to y if x ≺ y , and we say that x is Lorenz indifferent to y
if x ∼ y .
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Given an income distribution x ∈ Dn, with mean income x̄, it holds that x̄·1 ≼ x since k x̄ ≥
∑k

i=1 x(i)

for k = 1, . . . , n. The majorization is strict, x̄ · 1 ≺ x , when x is not a uniform income distribution.
In such case, x̄ · 1 is Lorenz superior to x . Moreover, for any income distribution x ∈ Dn it holds that
x ≼ (0, . . . , 0, nx̄), which is strict when x ̸= 0.

The majorization relation is a partial preorder since, by definition, x ,y ∈ Dn are comparable only
when x̄ = ȳ, and x ∼ y is obtained if and only if x and y differ by a permutation.

In general, given income distributions x ,y ∈ Dn with x̄ = ȳ, it holds that x ≼ y if and only if there
exists a bistochastic matrix C (non-negative square matrix of order n where each row and column sums
to one) such that x = Cy . Moreover, x ≺ y if and only if the bistochastic matrix C is not a permutation
matrix.

An income transfer is a particular case of bistochastic transformation. Given x ,y ∈ Dn with x̄ = ȳ,
we say that x is derived from y by means of an income transfer if, for some pair i, j = 1, . . . , n with
yi ≤ yj , we have

xi = (1− ε) yi + εyj xj = εyi + (1− ε) yj ε ∈ [0, 1] (3)

and xk = yk for k ̸= i, j. The income transfer, from a richer to a poorer individual, concerns an income
amount of ε(yj − yi). The income transfer obtains xi ≤ xj if ε ∈ [0, 1/2] and xi ≥ xj if ε ∈ [1/2, 1], with
xi = xj for ε = 1/2.

In relation with the parameter ε ∈ [0, 1] the income transfer obtains x = y if ε = 0, and exchanges
the relative positions of donor and recipient in the income distribution if ε = 1, in which case x ∼ y . In
the intermediate cases ε ∈ (0, 1) the income transfer produces an income distribution x which is Lorenz
superior to the original y , that is x ≺ y .

In general, given income distributions x ,y ∈ Dn with x̄ = ȳ, it holds that x ≼ y if and only if x can
be derived from y by means of a finite sequence of income transfers. Moreover, x ≺ y if and only if at
least one of the income transfers is not a permutation.

Definition 1. Let A : Dn −→ D be a function. We say that

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x,y ∈ Dn. Moreover, A is strictly monotonic if
x > y ⇒ A(x) > A(y), for all x,y ∈ Dn.

2. A is idempotent if A(x · 1) = x, for all x ∈ D. On the other hand, A is nilpotent if A(x · 1) = 0,
for all x ∈ D.

3. A is symmetric if A(xσ) = A(x), for any permutation σ on {1, . . . , n} and all x ∈ Dn.

4. A is Schur-convex if x ≼ y ⇒ A(x) ≤ A(y) for all x,y ∈ Dn. Moreover, A is strictly Schur-convex
if x ≺ y ⇒ A(x) < A(y) for all x,y ∈ Dn.

5. A is Schur-concave if x ≼ y ⇒ A(x) ≥ A(y) for all x,y ∈ Dn. Moreover, A is strictly Schur-
concave if x ≺ y ⇒ A(x) > A(y) for all x,y ∈ Dn.

6. A is invariant for translations if A(x+ t · 1) = A(x), for all t ∈ D and x ∈ Dn. On the other hand,
A is stable for translations if A(x+ t · 1) = A(x) + t, for all t ∈ D and x ∈ Dn.

7. A is invariant for dilations if A(t · x) = A(x), for all t ∈ D and x ∈ Dn. On the other hand, A is
stable for dilations if A(t · x) = tA(x), for all t ∈ D and x ∈ Dn.

Notice that either Schur-convexity or Schur-concavity imply symmetry, since x ∼ xσ ⇒ A(x ) = A(xσ).

Definition 2. A function A : Dn −→ D is an averaging function if it is monotonic and idempotent. An
averaging function is said to be strict if it is strictly monotonic. Note that monotonicity and idempotency
implies that min(x) ≤ A(x) ≤ max(x), for all x ∈ Dn.

Particular cases of averaging functions are weighted averaging (WA) functions, ordered weighted
averaging (OWA) functions, and Choquet integrals, which contain WA and OWA functions as special
cases.

The Weighted Averaging (WA) function associated with the weighting vector w = (w1, . . . , wn) ∈
[0, 1]n, with

∑n
i=1 wi = 1, is the averaging function A : Dn −→ D defined as

A(x ) =
n∑

i=1

wi xi. (4)
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TheOrdered Weighted Averaging (OWA) function associated with the weighting vectorw = (w1, . . . , wn) ∈
[0, 1]n, with

∑n
i=1 wi = 1, is the averaging function A : Dn −→ D defined as

A(x ) =
n∑

i=1

wi x(i). (5)

The traditional form of OWA functions as introduced by Yager [47] is instead A(x ) =
∑n

i=1 w̃i x[i] where
w̃i = wn−i+1. In [48, 49] the theory and applications of OWA functions are discussed in detail.

The following are two classical results particulary relevant in our framework. The first result regards
a form of dominance relation between OWA functions and the associated weighting structures, see for
instance Bortot and Marques Pereira [15] and references therein.

Proposition 1. Consider two OWA functions A,B : Dn −→ D associated with weighting vectors u =
(u1, . . . , un) ∈ [0, 1]n and v = (v1, . . . , vn) ∈ [0, 1]n, respectively. It holds that A(x) ≤ B(x) for all x ∈ Dn

if and only if
k∑

i=1

ui ≥
k∑

i=1

vi for k = 1, . . . , n (6)

where the case k = n is an equality due to weight normalization.

The next result regards the relation between the weighting structure of an OWA function and its
Schur-convexity or Schur-concavity, see for instance Bortot and Marques Pereira [15].

Proposition 2. Consider an OWA function A : Dn −→ D associated with a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n. The OWA function A is Schur-convex if and only if the weights are non decreasing,
w1 ≤ · · · ≤ wn, and A is strictly Schur-convex if and only if the weights are increasing, w1 < · · · < wn.
Analogously, the OWA function A is Schur-concave if and only if the weights are non increasing, w1 ≥
· · · ≥ wn, and A is strictly Schur-concave if and only if the weights are decreasing, w1 > · · · > wn.

We will now review the basic concepts and definitions regarding generalized Gini welfare functions and
inequality indices. Their fundamental properties, which are generally considered to be inherent to the
concepts of welfare and inequality, are now accepted as basic axioms for welfare and inequality measures,
see Kolm [31, 32]. The crucial axiom in this field is the Pigou-Dalton transfer principle, which states
that welfare (inequality) measures should be non-decreasing (non-increasing) under income transfers.
This axiom translates directly into the properties of Schur-concavity and Schur-convexity in the context
of symmetric functions on Dn. In fact, a function is Schur-concave (Schur-convex) if and only if it is
symmetric and non-decreasing (non-increasing) under income transfers, see for instance Marshall and
Olkin [36].

Definition 3. An averaging function A : Dn −→ D is a welfare function if it is continuous and Schur-
concave. The welfare function is said to be strict if it is a strict averaging function which is strictly
Schur-concave.

Due to monotonicity and idempotency, a welfare function is increasing along the diagonal x = x ·1 ∈ Dn,
with x ∈ D and is non decreasing over Dn. Moreover, notice that Schur-concavity implies symmetry.
Due to Schur-concavity, a welfare function ranks any Lorenz superior income distribution with the same
mean as x as no worse than x , whereas a strict welfare function ranks it as better.

Given a welfare function A, the uniform equivalent income x̃ associated with an income distribution
x is defined as the income level which, if equally distributed among the population, would generate the
same welfare value, A(x̃ · 1) = A(x ). Due to the idempotency of A, we obtain x̃ = A(x ) for any income
distribution x ∈ Dn.

The uniform equivalent concept has been originally proposed by Chisini [19] in the general context
of averaging functions, see for instance Bennet et al. [9]. In the welfare context the uniform equivalent
income has been considered by Atkinson [5], Kolm [30], and Sen [40] and further elaborated by Blackorby
and Donaldson [10, 11, 12] and Blackorby et al. [14].

Since x̄ · 1 ≼ x for any income distribution x ∈ Dn, Schur-concavity implies A(x̄ · 1) ≥ A(x ) and
therefore A(x ) ≤ x̄ due to the idempotency of the welfare function. In other words, the mean income x̄
and the uniform equivalent income x̃ are related by 0 ≤ x̃ ≤ x̄.

4

Author’s Accepted Manuscript Information Sciences DOI http://dx.doi.org/10.1016/j.ins.2017.07.028



In the AKS framework introduced by Atkinson [5], Kolm [30], and Sen [40], a welfare function which
is stable for translations induces an associated absolute inequality index by means of the correspondence
formula A(x ) = x̄ − G(x ), see Blackorby and Donaldson [11]. The notion of absolute inequality index
has been introduced by Kolm [31, 32] and developed by Blackorby and Donaldson [11], Blackorby et
al. [14], and Weymark [44]. In the AKS framework, the welfare function and the associated absolute
inequality index are said to be ethical, see also Sen [42], Blackorby et al. [14], Weymark [44], Blackorby
and Donaldson [13], and Ebert [22].

Definition 4. Given a welfare function A : Dn −→ D which is stable for translations, the associated
Atkinson-Kolm-Sen (AKS) absolute inequality index G : Dn −→ D is defined as

G(x) = x̄−A(x) (7)

The welfare function properties of A, plus the fact that it is stable for translations, ensure that the asso-
ciated absolute inequality index G is continuous, nilpotent, Schur-convex, and invariant for translations.
The absolute inequality index is said to be strict if it is strictly Schur-convex.

Given an income distribution x ∈ Dn and its uniform equivalent income x̃ with respect to a welfare
function A, the associated absolute inequality index can be written as G(x ) = x̄− x̃ and represents the
per capita income that could be saved if society distributed incomes equally without any loss of welfare.

In relation with the properties of the majorization relation discussed earlier the following holds: over
all income distributions x ∈ Dn with the same mean income x̄, a welfare function has minimum value
A(0, . . . , 0, nx̄), and an absolute inequality index has maximum value G(0, . . . , 0, nx̄).

In the AKS framework, with A(x) = x̄−G(x), a welfare function A which is stable for both translations
and dilations is associated with both absolute and relative inequality indices G and GR, respectively, with
G(x ) = x̄ GR(x ) for all x ∈ Dn. For convenience, as the notation suggests, in what follows we will omit
the term “absolute” when referring to an absolute inequality index G.

A class of welfare functions which plays a central role in this paper is that of the generalized Gini
welfare functions introduced by Weymark [44], see also Mehran [37], Donaldson and Weymark [20, 21],
Yaari [45, 46], Ebert [23], Quiggin [39], Ben-Porath and Gilboa [8].

Definition 5. Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with w1 ≥ · · · ≥ wn ≥ 0 and∑n
i=1 wi = 1, the generalized Gini welfare function associated with w is the function A : Dn −→ D

defined as

A(x) =
n∑

i=1

wix(i) (8)

and, in the AKS framework, the associated generalized Gini inequality index is defined as

G(x) = x̄−A(x) = −
n∑

i=1

(
wi −

1

n

)
x(i) . (9)

According to Proposition 2, generalized Gini welfare functions are strict if and only if w1 > · · · > wn.
Moreover, generalized Gini welfare functions are clearly stable for both translations and dilations. For this
reason they have a natural role within the AKS framework and Blackorby and Donaldson’s correspondence
formula.

The classical Gini welfare function Ac
G(x ) and the associated classical Gini inequality index Gc(x ) =

x̄−Ac
G(x ) are important instances of the generalized Gini AKS framework,

Ac
G(x ) =

n∑
i=1

2(n− i) + 1

n2
x(i) Gc(x ) = −

n∑
i=1

n− 2i+ 1

n2
x(i) (10)

where the coefficients of Ac(x ) have unit sum,
∑n

i=1(2(n − i) + 1) = n2, and the coefficients of Gc(x )
have zero sum,

∑n
i=1(n− 2i+ 1) = 0.

This form of the classical Gini inequality index is obtained from the traditional definition as follows,

Gc(x ) =
1

2n2

n∑
i,j=1

|xi − xj | =
1

n2

n∑
i=2

i−1∑
j=1

(x(i) − x(i)) (11)
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which in fact corresponds to the expression of Gc in (10),

Gc(x ) = − 1

n2

(
(n− 1)x(1) + (n− 3)x(2) + · · ·+ (−n+ 1)x(n)

)
. (12)

Given an income distribution x ∈ Dn, the so-called Lorenz area measures the deviation from the
uniform income distribution and is related with the classical relative Gini inequality index. In a population
of n ≥ 2 individuals, the graphical representation of the classical relative Gini inequality index can be
described as follows (we review the traditional derivation).

Introducing the auxiliary functions

V (x ) =
n∑

i=1

(x(1) + · · ·+ x(i)) U(x ) =
n∑

i=1

(x(i) + · · ·+ x(n)) (13)

we obtain U(x )+V (x ) = n(n+1) x̄. Moreover, writing the classical Gini inequality index Gc as in (12),
we obtain n2Gc(x ) = U(x )− V (x ).

Consider now the area illustrated in Fig. 1, in which the diagonal pi values correspond to the cumula-
tive income distribution, whereas the qi values correspond to the actual cumulative income distribution,

pi =
i

n
qi =

x(1) + · · ·+ x(i)

x(1) + · · ·+ x(n)
(14)

assuming x ̸= 0. The Lorenz area L(x ) corresponds to the overall area difference between the two series of

i 1

n

i

n

i+1

n

1

1

0

qi-1

qi

qi+1
pi-1

pi

pi+1

Figure 1: Lorenz area.

vertical trapezia associated with each subinterval [ i−1
n , i

n ] with i = 1, . . . , n : the higher trapezia bounded
by the diagonal line associated with the uniform cumulative income distribution, and the lower trapezia
bounded by the piecewise linear curve associated with the actual cumulative income distribution,

L(x ) =
n∑

i=1

pi + pi−1

2n
−

n∑
i=1

qi + qi−1

2n
=

1

n

n∑
i=1

(
pi − qi

)
. (15)

Substituting for pi, qi with i = 1, . . . , n as in (14),

L(x ) =
1

n

n∑
i=1

( i

n
−

x(1) + · · ·+ x(i)

x(1) + · · ·+ x(n)

)
=

1

n2x̄

(n(n+ 1)

2
x̄− V (x )

)
=

1

2n2x̄

(
U(x )− V (x )

)
=

1

2
Gc

R(x ) (16)

we obtain that the Lorenz area is half the classical relative Gini inequality index Gc
R(x ) = Gc(x )/x̄.
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3. The binomial decomposition of generalized Gini welfare functions

In this section we review the binomial decomposition of generalized Gini welfare functions due to
Calvo and De Baets [17] and Bortot and Marques Pereira [15]. We examine the weighting structures of
the binomial welfare functions Cj , with j = 1, . . . , n, and the associated binomial inequality indices Gj ,
with j = 1, . . . , n, and we provide numerical and graphical illustrations thereof.

Definition 6. The binomial welfare functions Cj : Dn −→ D, with j = 1, . . . , n, are defined as

Cj(x) =
n∑

i=1

wji x(i) wji =

(
n−i
j−1

)(
n
j

) j = 1, . . . , n (17)

where the binomial weights wji, with i, j = 1, . . . , n, are null when i + j > n + 1, according to the usual
convention that

(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . .

Apart from C1(x ) = x̄, the binomial welfare functions Cj , with j = 2, . . . , n, have an increasing number
of null weights, the j − 1 weights in correspondence with x(n−j+2), . . . , x(n). The weight normalization
of the binomial welfare functions,

∑n
i=1 wji = 1 for j = 1, . . . , n, is due to the column-sum property of

binomial coefficients,
n∑

i=1

(
n− i

j − 1

)
=

n−1∑
i=0

(
i

j − 1

)
=

(
n

j

)
j = 1, . . . , n . (18)

The binomial welfare functions Cj , with j = 1, . . . , n, are continuous, idempotent, and stable for
translations, where the latter two properties follow immediately from

∑n
i=1 wji = 1 for j = 1, . . . , n.

Moreover, the Cj are Schur-concave: given x ,y ∈ Dn with x̄ = ȳ, we have that x ≼ y ⇒ Cj(x ) ≥ Cj(y)
for all x ,y ∈ Dn due to Proposition 2 and the fact that wj1 ≥ wj2 ≥ · · · ≥ wjn, for j = 1, . . . , n.

The following interesting result concerning the cumulative properties of binomial weights is due to
Calvo and De Baets [17], see also Bortot and Marques Pereira [15].

Proposition 3. The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the following cumulative
property,

k∑
i=1

wj−1,i ≤
k∑

i=1

wji k = 1, . . . , n (19)

for each j = 2, . . . , n.

If follows, according to Proposition 1, that the binomial OWA functions Cj , with j = 1, . . . , n, satisfy
the relations x̄ = C1(x ) ≥ C2(x ) ≥ · · · ≥ Cn(x ) ≥ 0, for any x ∈ Dn.

Proposition 4. Generalized Gini welfare functions A : Dn −→ D can be written uniquely as

A(x) = α1C1(x) + α2C2(x) + · · ·+ αnCn(x) (20)

where the coefficients αj, with j = 1, . . . , n, are subject to the following conditions,

α1 = 1−
n∑

j=2

αj ≥ 0 (21)

n∑
j=2

[
1− n

(
i−1
j−1

)(
n
j

) ]
αj ≤ 1 i = 2, . . . , n (22)

n∑
j=2

(
n−i
j−2

)(
n
j

) αj ≥ 0 i = 2, . . . , n . (23)
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The binomial welfare functions constitute therefore a functional basis for the generalized Gini welfare
functions, which can be uniquely expressed as A(x ) =

∑n
j=1 αj Cj(x ) where the coefficients αj , with

j = 1, . . . , n, satisfy the constraints (21)-(22)-(23) one of which is
∑n

j=1 αj = 1. However, the binomial
decomposition does not express a simple convex combination of the binomial welfare functions, as the
condition α1+ · · ·+αn = 1 might suggest. In fact, condition (21) ensures α1 ≥ 0 but conditions (22)-(23)
allow for negative α2, . . . , αn values.

In the Atkinson-Kolm-Sen (AKS) framework, the binomial welfare functions Cj , with j = 1, . . . , n,
are associated with the binomial inequality indices Gj , with j = 1, . . . , n, by means of Blackorby and
Donaldson’s correspondence formula.

Definition 7. Consider the binomial welfare functions Cj : Dn −→ D, with Cj(x) =
∑n

i=1 wjix(i) for
j = 1, . . . , n. The binomial inequality indices Gj : Dn −→ D, with j = 1, . . . , n, are defined as

Gj(x) = x̄− Cj(x) j = 1, . . . , n (24)

which means that

Gj(x) = −
n∑

i=1

vjix(i) = −
n∑

i=1

[
wji −

1

n

]
x(i) j = 1, . . . , n (25)

where the coefficients vji, with i, j = 1, . . . , n, are equal to −1/n when i + j > n + 1, since in such case
the binomial weights wji are null.

The weight normalization of the binomial welfare functions,
∑n

i=1 wji = 1 for j = 1, . . . , n, implies
that

∑n
i=1 vji = 0 for j = 1, . . . , n.

The binomial inequality indices Gj , with j = 1, . . . , n, are continuous, nilpotent, and invariant for
translations, where the latter two properties follow immediately from

∑n
i=1 vji = 0 for j = 1, . . . , n.

Moreover, the Gj are Schur-convex: given x ,y ∈ Dn with x̄ = ȳ, we have that x ≼ y ⇒ Cj(x ) ≥ Cj(y)
⇒ Gj(x ) ≤ Gj(y) for all x ,y ∈ Dn, due to the Schur-concavity of the Cj , with j = 1, . . . , n.

In correspondence with the analogous but inverse relations satisfied by the binomial welfare functions,
see note after Proposition 3, the binomial inequality indices satisfy the relations 0 = G1(x ) ≤ G2(x ) ≤
· · · ≤ Gn(x ) ≤ 1 for any x ∈ Dn.

Notice that C1(x ) = x̄ and G1(x ) = 0 for all x ∈ Dn. On the other hand, C2(x ) has n − 1 positive
linearly decreasing weights and one null last weight, and the associated G2(x ) has linearly increasing
coefficients. In terms of the classical Gini welfare function and inequality index, we have that

Ac(x ) =
1

n
C1(x ) +

n− 1

n
C2(x ) Gc(x ) =

n− 1

n
G2(x ) . (26)

The only strict binomial welfare function is C2(x ) and the only strict binomial inequality index is G2(x ).
The remaining Cj(x ), with j = 3, . . . , n, have n− j + 1 positive non-linear decreasing weights and j − 1
null last weights, and the associated Gj(x ), with j = 3, . . . , n, have n−j+2 non-linear increasing weights
and j − 1 equal last weights. These binomial welfare functions and inequality indices are therefore non
strict, in the sense that they are insensitive to income transfers involving only the j−1 richest individuals
of the population.

We now compute the weights of the binomial welfare functions and the coefficients of the associated
binomial inequality indices in dimensions n = 2, 3, 4, 5, 6, 7, 8.

In dimensions n = 2, 3, 4, 5, 6, 7, 8 the weights wij ∈ [0, 1], with i, j = 1, . . . , n, of the binomial welfare
functions Cj , with j = 1, . . . , n, and the coefficients −vij ∈ [−(n− 1)/n, 1/n], with i, j = 1, . . . , n, of the
binomial inequality indices Gj , with j = 1, . . . , n, are as follows,

n = 2
C1 : ( 12 ,

1
2 ) G1 : (0, 0)

C2 : (1, 0) G2 : (− 1
2 ,

1
2 )

n = 3
C1 : ( 13 ,

1
3 ,

1
3 ) G1 : (0, 0, 0)

C2 : ( 23 ,
1
3 , 0) G2 : (− 1

3 , 0,
1
3 )

C3 : (1, 0, 0) G3 : (− 2
3 ,

1
3 ,

1
3 )
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n = 4
C1 : ( 14 ,

1
4 ,

1
4 ,

1
4 ) G1 : (0, 0, 0, 0)

C2 : ( 36 ,
2
6 ,

1
6 , 0) G2 : (− 3

12 ,−
1
12 ,

1
12 ,

3
12 )

C3 : ( 34 ,
1
4 , 0, 0) G3 : (−2

4 , 0,
1
4 ,

1
4 )

C4 : (1, 0, 0, 0) G4 : (−3
4 ,

1
4 ,

1
4 ,

1
4 )

n = 5
C1 : ( 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ) G1 : (0, 0, 0, 0, 0)

C2 : ( 4
10 ,

3
10 ,

2
10 ,

1
10 , 0) G2 : (− 2

10 ,−
1
10 , 0,

1
10 ,

2
10 )

C3 : ( 6
10 ,

3
10 ,

1
10 , 0, 0) G3 : (− 4

10 ,−
1
10 ,

1
10 ,

2
10 ,

2
10 )

C4 : ( 45 ,
1
5 , 0, 0, 0) G4 : (− 3

5 , 0,
1
5 ,

1
5 ,

1
5 )

C5 : (1, 0, 0, 0, 0) G5 : (− 4
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 )

n = 6
C1 : ( 16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) G1 : (0, 0, 0, 0, 0, 0)

C2 : ( 5
15 ,

4
15 ,

3
15 ,

2
15 ,

1
15 , 0) G2 : (− 5

30 ,−
3
30 ,−

1
30 ,

1
30 ,

3
30 ,

5
30 )

C3 : ( 1020 ,
6
20 ,

3
20 ,

1
20 , 0, 0) G3 : (−20

60 ,−
8
60 ,

1
60 ,

7
60 ,

10
60 ,

10
60 )

C4 : ( 1015 ,
4
15 ,

1
15 , 0, 0, 0) G4 : (−15

30 ,−
3
30 ,

3
30 ,

5
30 ,

5
30 ,

5
30 )

C5 : ( 56 ,
1
6 , 0, 0, 0, 0) G5 : (−4

6 , 0,
1
6 ,

1
6 ,

1
6 ,

1
6 )

C6 : (1, 0, 0, 0, 0, 0) G6 : (−5
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )

n = 7

C1 : ( 17 ,
1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ) G1 : (0, 0, 0, 0, 0, 0, 0)

C2 : ( 6
21 ,

5
21 ,

4
21 ,

3
21 ,

2
21 ,

1
21 , 0) G2 : (− 3

21 ,−
2
21 ,−

1
21 , 0,

1
21 ,

2
21 ,

3
21 )

C3 : ( 1535 ,
10
35 ,

6
35 ,

3
35 ,

1
35 , 0, 0) G3 : (−10

35 ,−
5
35 ,−

1
35 ,

2
35 ,

4
35 ,

5
35 ,

5
35 )

C4 : ( 2035 ,
10
35 ,

4
35 ,

1
35 , 0, 0, 0) G4 : (−15

35 ,−
5
35 ,

1
35 ,

4
35 ,

5
35 ,

5
35 ,

5
35 )

C5 : ( 1521 ,
5
21 ,

1
21 , 0, 0, 0, 0) G5 : (−12

21 ,−
2
21 ,

2
21 ,

3
21 ,

3
21 ,

3
21 ,

3
21 )

C6 : ( 67 ,
1
7 , 0, 0, 0, 0, 0) G6 : (−5

7 , 0,
1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 )

C7 : (1, 0, 0, 0, 0, 0, 0) G7 : (−6
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 )

n = 8

C1 : ( 18 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ) G1 : (0, 0, 0, 0, 0, 0, 0, 0)

C2 : ( 7
28 ,

6
28 ,

5
28 ,

4
28 ,

3
28 ,

2
28 ,

1
28 , 0) G2 : (− 7

56 ,−
5
56 ,−

3
56 ,−

1
56 ,

1
56 ,

3
56 ,

5
56 ,

7
56 )

C3 : ( 2156 ,
15
56 ,

10
56 ,

6
56 ,

3
56 ,

1
56 , 0, 0) G3 : (− 14

56 ,−
8
56 ,−

3
56 ,

1
56 ,

4
56 ,

6
56 ,

7
56 ,

7
56 )

C4 : ( 3570 ,
20
70 ,

10
70 ,

4
70 ,

1
70 , 0, 0, 0) G4 : (− 105

280 ,−
45
280 ,−

5
280 ,

19
280 ,

31
280 ,

35
280 ,

35
280 ,

35
280 )

C5 : ( 3556 ,
15
56 ,

5
56 ,

1
56 , 0, 0, 0, 0) G5 : (− 28

56 ,−
8
56 ,

2
56 ,

6
56 ,

7
56 ,

7
56 ,

7
56 ,

7
56 )

C6 : ( 2128 ,
6
28 ,

1
28 , 0, 0, 0, 0, 0) G6 : (− 35

56 ,−
5
56 ,

5
56 ,

7
56 ,

7
56 ,

7
56 ,

7
56 ,

7
56 )

C7 : ( 78 ,
1
8 , 0, 0, 0, 0, 0, 0) G7 : (− 6

8 , 0,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 )

C8 : (1, 0, 0, 0, 0, 0, 0, 0) G8 : (− 7
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 )

The binomial welfare functions Cj , with j = 1, . . . , n, have null weights associated with the j − 1
richest individuals in the population and therefore, as j increases from 1 to n, they behave in analogy
with poverty measures which progressively focus on the poorest part of the population. Correspondingly,
the binomial inequality indices Gj , with j = 1, . . . , n, have equal coefficients associated with the j − 1
richest individuals in the population and therefore, as j increases from 1 to n, they are progressively
insensitive to income transfers within the richest part of the population.
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In the case n = 8, the weights of the binomial welfare functions Cj , with j = 1, . . . , 8, and the
coefficients of the binomial inequality indices Gj , with j = 1, . . . , 8, are graphically represented in Fig. 2
and Fig. 3.
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(a) Weights of C1, C2, C3, C4 with n = 8.

0.00

0.25

0.50
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1 2 3 4 5 6 7 8

i = 1,..., 8

C5

C6

C7

C8

(b) Weights of C5, C6, C7, C8 with n = 8.

Figure 2: Weights of the binomial welfare functions Cj , with j = 1, . . . , n, for n = 8.
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(a) Coefficients of G1, G2, G3, G4 with n = 8.

−0.75
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1 2 3 4 5 6 7 8

i = 1,..., 8

G5

G6

G7

G8

(b) Coefficients of G5, G6, G7, G8 with n = 8.

Figure 3: Coefficients of the binomial inequality indices Gj , with j = 1, . . . , n, for n = 8.

We now examine the binomial welfare functions and inequality indices in relation with a parametric
family of income distributions with n = 4, 6, 8. This family of income distributions, each with unit average
income, is defined on the basis of the parametric Lorenz curve associated with the generating function

fβ : [0, 1] → [0, 1] fβ(r) = re−β(1−r) r ∈ [0, 1] (27)

where the parameter β ≥ 0 is related with inequality. Fig. 4 provides a graphical illustration of the
parametric Lorenz curve for parameter values β = 0, 1, . . . , 8.

Consider a population with n individuals. The family of income distributions x = (x1, x2, . . . , xn)
with unit average income x̄ = 1 associated with the parametric Lorenz curve above is given by

x(i) = n
[
fβ

( i

n

)
− fβ

( i− 1

n

)]
i = 1, . . . , n. (28)
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Figure 4: Parametric Lorenz curve for parameter values β = 0, 1, . . . , 8.

We now compute the binomial welfare functions and inequality indices in relation to the family of
income distributions (28), with n = 4, n = 6 and n = 8 for β = 0, 1, . . . , 8.

The pattern of the numerical data in Fig. 5 reflects the dominance relations x̄ = C1(x ) ≥ C2(x ) ≥
· · · ≥ Cn(x ) ≥ 0 and 0 = G1(x ) ≤ G2(x ) ≤ · · · ≤ Gn(x ) ≤ x̄ for the income distributions considered
here, with x ∈ Dn and x̄ = 1.

Moreover, considering the parametric Lorenz curve depicted in Fig. 4, the values taken by the binomial
welfare functions and inequality indices with n = 4, n = 6 and n = 8 for β = 0, 1, . . . , 8, illustrate clearly
the effect of the parameter β ≥ 0 in relation with inequality.

4. The single paramether family of generalized Gini welfare functions

The binomial welfare functions and inequality indices bear some analogy with the S-Gini family of
welfare functions and inequality indices introduced by Donaldson and Weymark [20], and independently
by Kakwani [29] as an extension of a poverty measure proposed by Sen [41], see also Donaldson e Weymark
[21], Yitzhaki [50], Bossert [16], Aaberge [1, 2, 3]. The welfare functions of the S-Gini family are of the
form

AS
δ (x ) =

n∑
i=1

[(n− i+ 1

n

)δ

−
(n− i

n

)δ]
x(i) (29)

where δ ∈ [1,∞) is an inequality aversion parameter. In analogy with the binomial welfare functions,
AS

1 (x ) = x̄ and AS
2 (x ) = x̄−Gc(x ), where Gc is the classical Gini. As the inequality aversion parameter

increases, AS
δ tends to the limit case AS

∞(x ) = x(1). In other words, the full range of the inequality
aversion parameter, from δ = 1 to δ = ∞, corresponds to a continuous interpolation of the index
j = 1, . . . , n, with AS

1 = C1 and AS
∞ = Cn.

In Fig. 6 we depict the parameter value of the S-Gini welfare function whose weight distribution
more closely resembles (mean square differences) the one of each binomial welfare function Cj , with
j = 1, . . . , n. The S-Gini parameter values indicated in the vertical axis are expressed in the normalized
scale ∆ ∈ [1, n) according to the transformation

∆ = 1
( 2

δ + 1

)
+ n

(δ − 1

δ + 1

)
(30)

so that δ = 1 corresponds to ∆ = 1 and δ = ∞ corresponds to ∆ = n.
We can see that the normalized parameter value ∆ increases very rapidly with respect to the first

values of the binomial index j = 1, ..., n, a behavior which becomes more pronounced with increasing n.
The S-Gini welfare functions AS

δ can be written as

AS
δ (x ) =

n∑
i=1

wS
i (δ)x(i) δ ∈ [1,∞) (31)
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Figure 5: Values of the binomial welfare functions Cj and binomial inequality indices Gj , with j = 1, . . . , n, for n = 4, 6, 8
for Lorenz curve parameter β = 0, 1, . . . , 8.
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Figure 6: The normalized parameter ∆ of the S-Gini welfare function whose weight distribution is closest to the one of each
binomial welfare function Cj , with j = 1, . . . , n, for n = 8, 16, 32, 64.

where wS
i (δ) = ((n− i+ 1)/n)δ − ((n− i)/n)δ as in (29).

In the context of the binomial decomposition (20), each S-Gini welfare function AS
δ can be expressed

in terms of the binomial welfare functions C1, C2, . . . Cn as follows,

AS
δ (x ) = α1(δ)C1(x ) + α2(δ)C2(x ) + · · ·+ αn(δ)Cn(x ) δ ∈ [1,∞) (32)

which can be written as

n∑
i=1

wS
i (δ)x(i) = α1(δ)

n∑
i=1

w1i x(i) + α2(δ)

n∑
i=1

w2i x(i) + · · ·+ αn(δ)

n∑
i=1

wni x(i) δ ∈ [1,∞) . (33)

The expression of the binomial decomposition is unique and therefore, for each value of the parameter
δ ∈ [1,∞), we obtain a unique solution α1(δ), . . . , αn(δ) by solving the linear system

wS
1 (δ) = w11α1(δ) + w21α2(δ) + · · ·+ wn−1,1αn−1(δ) + wn1αn(δ)

wS
2 (δ) = w12α1(δ) + w22α2(δ) + · · ·+ wn−1,2αn−1(δ) + wn2αn(δ)

. . .

wS
n(δ) = w1nα1(δ) + w2nα2(δ) + · · ·+ wn−1,nαn−1(δ) + wnnαn(δ)

(34)

where the binomial weights wji, with i, j = 1, . . . , n, are as in (17). The linear system reduces to the
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triangular form

wS
1 (δ) = w11α1(δ) + w21α2(δ) + · · ·+ wn−1,1αn−1(δ) + wn1αn(δ)

wS
2 (δ) = w12α1(δ) + w22α2(δ) + · · ·+ wn−1,2αn−1(δ)

. . .

wS
n(δ) = w1nα1(δ)

(35)

due to the fact that the binomial weights wji, with i, j = 1, . . . , n, are null when i+ j > n+ 1.

Example 1. In the case n = 4 the linear system (35) corresponds to

wS
1 (δ) = w11α1(δ) + w21α2(δ) + w31α3(δ) + w41α4(δ)

wS
2 (δ) = w12α1(δ) + w22α2(δ) + w32α3(δ)

wS
3 (δ) = w13α1(δ) + w23α2(δ)

wS
4 (δ) = w14α1(δ)

(36)

and admits the unique solution

α1(δ) = 4 ·
[
1δ
]
/4δ

α2(δ) = 6 ·
[
2δ − 2 · 1δ

]
/4δ

α3(δ) = 4 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/4δ

α4(δ) =
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/4δ

(37)

in which the αj(δ), with j = 1, . . . , 4, are given explicitly as functions of the parameter δ ∈ [1,∞), as
illustrated in Fig. 7.

Example 2. In the case n = 6 the linear system (35) corresponds to

wS
1 (δ) = w11α1(δ) + w21α2(δ) + w31α3(δ) + w41α4(δ) + w51α5(δ) + w61α6(δ)

wS
2 (δ) = w12α1(δ) + w22α2(δ) + w32α3(δ) + w42α4(δ) + w52α5(δ)

wS
3 (δ) = w13α1(δ) + w23α2(δ) + w33α3(δ) + w43α4(δ)

wS
4 (δ) = w14α1(δ) + w24α2(δ) + w34α3(δ)

wS
5 (δ) = w15α1(δ) + w25α2(δ)

wS
6 (δ) = w16α1(δ)

(38)

and admits the unique solution

α1(δ) = 6 ·
[
1δ
]
/6δ

α2(δ) = 15 ·
[
2δ − 2 · 1δ

]
/6δ

α3(δ) = 20 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/6δ

α4(δ) = 15 ·
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/6δ

α5(δ) = 6 ·
[
5δ − 5 · 4δ + 10 · 3δ − 10 · 2δ + 5 · 1δ

]
/6δ

α6(δ) =
[
6δ − 6 · 5δ + 15 · 4δ − 20 · 3δ + 15 · 2δ − 6 · 1δ

]
/6δ

(39)

in which the αj(δ), with j = 1, . . . , 6, are given explicitly as functions of the parameter δ ∈ [1,∞), as
illustrated in Fig. 8.
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Figure 7: Coefficients of the binomial decomposition for n = 4.

Example 3. In the case n = 8 the linear system (35) admits the unique solution

α1(δ) = 8 ·
[
1δ
]
/8δ

α2(δ) = 28 ·
[
2δ − 2 · 1δ

]
/8δ

α3(δ) = 56 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/8δ

α4(δ) = 70 ·
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/8δ

α5(δ) = 56 ·
[
8δ − 5 · 4δ + 10 · 3δ − 10 · 2δ + 5 · 1δ

]
/8δ

α6(δ) = 28 ·
[
6δ − 6 · 5δ + 15 · 4δ − 20 · 3δ + 15 · 2δ − 6 · 1δ

]
/8δ

α7(δ) = 8 ·
[
7δ − 7 · 6δ + 21 · 5δ − 35 · 4δ + 35 · 3δ − 21 · 2δ + 7 · 1δ

]
/8δ

α8(δ) =
[
8δ − 8 · 7δ + 28 · 6δ − 56 · 5δ + 70 · 4δ − 56 · 3δ + 28 · 2δ − 8 · 1δ

]
/8δ

(40)

in which the αj(δ), with j = 1, . . . , 8, are given explicitly as functions of the parameter δ ∈ [1,∞), as
illustrated in Fig. 9.

In Fig. 7-9 we depict the solution α1(δ), . . . , αn(δ) as a function of the parameter δ ∈ [1,∞) in the
cases n = 4, 6, 8 and for various ranges of the parameter. We observe, as expected, that

• α1 = 1 and α2 = · · · = αn = 0 for parameter δ = 1,

• α1 = · · · = αn−1 = 0 and αn = 1 for parameter δ = ∞.
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Figure 8: Coefficients of the binomial decomposition for n = 6.

Moreover, each coefficient αj(δ), with j = 2, . . . , n, is null in correspondence with the integer values
δ = 1, . . . , j − 1. Finally, each αj(δ) shows an oscillating behavior as a function of δ up to δ = j − 1,
assuming positive and negative values in consecutive unit intervals, and ultimately assuming positive
values for δ > j − 1. The norm of the negative values is larger in the very first unit intervals of the
parameter range.

The welfare functions of the S-Gini family (29) are of the general form

Af (x ) =
n∑

i=1

[
f
(n− i+ 1

n

)
− f

(n− i

n

)]
x(i) (41)

where f is a continuous and increasing function on the unit interval, with f(0) = 0 and f(1) = 1. The
power functions with positive integer exponent f(t) = tk, with k = 1, . . . , n, can be seen in relation with
the k-additivity of the welfare function, as discussed in Gajdos [26]. In fact we observe in Fig. 7-9 that
for δ = k we have αk+1(δ) = · · · = αn(δ) = 0, as required by k-additivity.

5. The Lorenzen family of generalized Gini welfare functions

An alternative generalization of the classical Gini which again has some analogy with the binomial
welfare functions and inequality indices is that proposed by Lorenzen [33], see Weymark [44],

AL
l (x ) =

l∑
i=1

l + n− 2i+ 1

nl
x(i) =

l∑
i=1

1

n
x(i) +

l∑
i=1

n− 2i+ 1

nl
x(i) l = 1, . . . , n . (42)
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Figure 9: Coefficients of the binomial decomposition for n = 8.

The extreme cases are AL
1 (x ) = x(1) and AL

n(x ) = x̄ − Gc(x ) = Ac(x ), where Gc is the classical Gini.
As l increases from 1 to n, the Lorenzen welfare function AL

l involves only the l poorest individuals
in the population, to whom it assigns linearly decreasing positive weights. Analogously, the binomial
welfare functions Cn−j+1, for j = 1, . . . , n−1, also involve only the j poorest individuals but assign them
non-linear binomial weights, from Cn(x ) = x(1) to C2(x ) = Ac(x )− 1

n−1 G
c(x ), where Gc is the classical

Gini and Ac is the associated welfare function.
In Fig. 10 we depict the index value associate with the Lorenzen welfare function whose weight

distribution more closely resembles (mean square differences) the one of each binomial welfare function
Cj , with j = 1, . . . , n.

We can see that the Lorenzen index l decreases very rapidly with respect to the first values of the
binomial index l = 1, ..., n, a behavior which becomes more pronounced with increasing n.

The Lorenzen welfare functions AL
l , with l = 1, . . . , n, can be written as

AL
l (x ) =

n∑
i=1

wL
i (l)x(i) l = 1, . . . , n (43)

where wL
i (l) = (l + n− 2i+ 1)/nl for i ≤ l as in (42), and wL

i (l) = 0 otherwise.
In the context of the binomial decomposition (20), each Lorenzen welfare function AL

l can be expressed
in terms of the binomial welfare functions C1, C2, . . . Cn as follows,

AL
l (x ) = α1(l)C1(x ) + α2(l)C2(x ) + · · ·+ αn(l)Cn(x ) l = 1, . . . , n (44)
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Figure 10: The index value l(j) of the Lorenzen welfare function whose weight distribution is closest to the one of each
binomial welfare function Cj , with j = 1, . . . , n, for n = 8, 16, 32, 64.
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which can be written as
n∑

i=1

wL
i (l)x(i) = α1(l)

n∑
i=1

w1i x(i) + α2(l)
n∑

i=1

w2i x(i) + · · ·+ αn(l)
n∑

i=1

wni x(i) l = 1, . . . , n . (45)

The expression of the binomial decomposition is unique and therefore, for each value of the Lorenzen
index l = 1, . . . , n, we obtain a unique solution α1(δ), . . . , αn(δ) by solving the triangular linear system

wL
1 (l) = w11α(l)1 + w21α2(l) + · · ·+ wn−1,1αn−1(l) + wn1αn(l)

wL
2 (l) = w12α1(l) + w22α2(l) + · · ·+ wn−12αn−1(l)

. . .

wL
n (l) = w1nα1(l)

(46)

where the binomial weights wji, with i, j = 1, . . . , n, are as in (17).

Example 4. In the case n=4 the linear system (46) corresponds to

wL
1 (l) = w11α1(l) + w21α2(l) + w31α3(l) + w41α4(l)

wL
2 (l) = w12α1(l) + w22α2(l) + w32α3(l)

wL
3 (l) = w13α1(l) + w23α2(l)

wL
4 (l) = w14α1(l)

(47)

and admits the unique solution

α1(l = 1, . . . , 4) =
(
0, 0, 0, 1

4

)
α2(l = 1, . . . , 4) =

(
0, 0, 1, 3

4

)
α3(l = 1, . . . , 4) =

(
0, 3

2 , 0, 0
)

α4(l = 1, . . . , 4) =
(
1,− 1

2 , 0, 0
)

(48)

in which the αj(l), with j = 1, . . . , 4, are given explicitly as functions of the parameter l = 1, . . . , 4, as
illustrated in Fig. 11 (left).

Example 5. In the case n=6 the linear system (46) corresponds to

wL
1 (l) = w11α1(l) + w21α2(l) + w31α3(l) + w41α4(l) + w51α5(l) + w61α6(l)

wL
2 (l) = w12α1(l) + w22α2(l) + w32α3(l) + w42α4(l) + w52α5(l)

wL
3 (l) = w13α1(l) + w23α2(l) + w33α3(l) + w43α4(l)

wL
4 (l) = w14α1(l) + w24α2(l) + w34α3(l)

wL
5 (l) = w15α1(l) + w25α2(l)

wL
6 (l) = w16α1(l)

(49)

and admits the unique solution

α1(l = 1, . . . , 6) =
(
0, 0, 0, 0, 0, 1

6

)
α2(l = 1, . . . , 6) =

(
0, 0, 0, 0, 1, 5

6

)
α3(l = 1, . . . , 6) =

(
0, 0, 0, 5

2 , 0, 0
)

α4(l = 1, . . . , 6) =
(
0, 0, 10

3 ,− 5
2 , 0, 0

)
α5(l = 1, . . . , 6) =

(
0, 5

2 ,−
10
3 , 5

4 , 0, 0
)

α6(l = 1, . . . , 6) =
(
1,− 3

2 , 1,−
1
4 , 0, 0

)
(50)
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in which the αj(l), with j = 1, . . . , 6, are given explicitly as functions of the parameter l = 1, . . . , 6, as
illustrated in Fig. 11 (right).

−0.5

0.0

0.5

1.0

1.5

1 2 3 4

Lorenzen l = 1, 2, 3, 4

α1

α2

α3

α4

(a) α1(l), ..., α4(l), with l = 1, ..., n, for n = 4.

−2

0

2

1 2 3 4 5 6

Lorenzen l = 1,..., 6

α1

α2

α3

α4

α5

α6

(b) α1(l), ..., α6(l), with l = 1, ..., n, for n = 6.

Figure 11: Coefficients of the binomial decomposition for n = 4, 6.

Example 6. In the case n=8 the linear system (46) admits the unique solution

α1(l = 1, . . . , 8) =
(
0, 0, 0, 0, 0, 0, 0, 1

8

)
α2(l = 1, . . . , 8) =

(
0, 0, 0, 0, 0, 0, 1, 7

8

)
α3(l = 1, . . . , 8) =

(
0, 0, 0, 0, 0, 7

2 , 0, 0
)

α4(l = 1, . . . , 8) =
(
0, 0, 0, 0, 7,−35

6 , 0, 0
)

α5(l = 1, . . . , 8) =
(
0, 0, 0, 35

4 ,−14, 35
6 , 0, 0

)
α6(l = 1, . . . , 8) =

(
0, 0, 7,− 63

4 , 63
5 ,− 7

2 , 0, 0
)

α7(l = 1, . . . , 8) =
(
0, 7

2 ,−
28
3 , 21

2 ,− 28
5 , 7

6 , 0, 0
)

α8(l = 1, . . . , 8) =
(
1,− 5

2 ,
10
3 ,− 5

2 , 1,−
1
6 , 0, 0

)

(51)

in which the αj(l), with l = 1, . . . , 8, are given explicitly as functions of the parameter l = 1, . . . , 8, as
illustrated in Fig. 12.

In Fig. 11-12 we depict the solution α1(l), . . . , αn(l) as a function of the Lorenzen index l = 1, . . . , n,
in the cases n = 4, 6, 8. We observe, as expected, that

• α1 = · · · = αn−1 = 0 and αn = 1 for Lorenzen index l = 1,

• α1 = 1/n, α2 = (n− 1)/n, and α3 = · · · = αn = 0 for Lorenzen index l = n.

Moreover, we observe that the higher coefficients αj(l) assume significant an alternating positive and
negative values in the upper central range of the Lorenzen index l. The norm of these alternating
positive and negative values increases considerably with the population size n.

6. Orness of generalized Gini welfare functions

Generalized Gini welfare functions have non increasing weights, see Definition 5, and therefore their
orness [47] takes values in the interval [0, 1/2]. In this section we write the orness of a generalized Gini
welfare function A in terms of the coefficients αj , with j = 1, . . . , n, of its binomial decomposition, and
we examine the orness of the S-Gini and Lorenzen welfare functions.
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Figure 12: α1(l), ..., α8(l), with j = 1, ..., n, for n = 8.

Definition 8. Let A be the generalized Gini welfare function associated with the weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n. The orness of A is defined as

Orness (A) =
1

n− 1

n∑
i=1

(i− 1)wi . (52)

The orness of A coincides with the value A(x 0), where x0
i = (i− 1)/(n− 1),

Orness (A) =
1− 1

n− 1
w1 +

2− 1

n− 1
w2 + · · ·+ (n− 1)− 1

n− 1
wn−1 +

n− 1

n− 1
wn . (53)

Proposition 5. In relation with the binomial decomposition, the orness of a generalized Gini welfare
function A : Dn −→ D is given by

Orness (A) =

n∑
j=1

(n− j)

(n− 1)(j + 1)
αj (54)

Proof : We begin by showing that the orness of the binomial welfare functions Cj , with j = 1, . . . , n, is
given by

Orness (Cj) =
n− j

(n− 1)(j + 1)
j = 1, . . . , n . (55)

From the definition of Cj (17) and the general definition of orness (52), we have

Orness (Cj) = Cj(x 0) =

n∑
i=1

(
n−i
j−1

)(
n
j

) i− 1

n− 1
j = 1, . . . , n . (56)

Using the formula
n∑

i=1

(
n− i

j − 1

)
(i− 1) =

(
n

j + 1

)
j = 1, . . . , n (57)
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and substituting in (56), we obtain

Orness (Cj) =
1

n− 1

(
n

j+1

)(
n
j

) =
n− j

(n− 1)(j + 1)
j = 1, . . . , n . (58)

Notice that the orness of the binomial welfare function is strictly decreasing with respect to j = 1, . . . , n,
from Orness (C1) = 1/2 to Orness (Cn) = 0.

Considering the binomial decomposition of a generalized Gini welfare function,

Orness (A) = A(x 0) =

n∑
j=1

αj Cj(x 0) =

n∑
j=1

(n− j)

(n− 1)(j + 1)
αj (59)

where we have used that Cj(x 0) = Orness (Cj). 2

In the following figures we illustrate the orness of the S-Gini and Lorenzen families of welfare functions
in terms of their respective parameters, δ ∈ [1,∞) and l = 1, . . . , n.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

δ

0

0.1

0.2

0.3

0.4

0.5

O
rn

es
s(

A
)

n = 4

n = 6

n = 8

Figure 13: Orness of S-Gini welfare functions for n = 4, 6, 8.
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Figure 14: Orness of Lorenzen welfare functions for n = 4, 6, 8.

The orness values taken by the S-Gini and Lorenzen welfare functions in terms of their respective
parameters express the nature of these families of welfare functions. The S-Gini family, with its continuous
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parameter δ ∈ [1,∞), interpolates between the first and the last binomial welfare functions C1 and
Cn, with orness 1/2 and 0, respectively. On the other hand, the Lorenzen family, with its parameter
l = 1, . . . , n, interpolates between the last binomial welfare function Cn with null orness and the classical
Gini welfare function, whose orness is given by 1/3− 1/6n, see for instance Aristondo et al. [4].

7. Conclusions

We consider the binomial decomposition of generalized Gini welfare functions in terms of the binomial
welfare functions Cj , with j = 1, ..., n, and the associated binomial inequality indices Gj , with j = 1, ..., n,
for all income distributions x ∈ Dn.

We illustrate the weights of the binomial welfare functions Cj , with j = 1, ..., n, and the coefficients
of the associated binomial inequality indices Gj , with j = 1, ..., n. The binomial welfare functions Cj ,
with j = 1, . . . , n, have null weights associated with the j − 1 richest individuals in the population and
therefore, as j increases from 1 to n, they behave in analogy with poverty measures which progressively
focus on the poorest part of the population. Correspondingly, the binomial inequality indices Gj , with
j = 1, . . . , n, have equal coefficients associated with the j − 1 richest individuals in the population and
therefore, as j increases from 1 to n, they are progressively insensitive to income transfers within the
richest part of the population.

We introduce a family of income distributions described by a parameter β ≥ 0 related with inequality
and we examine the binomial welfare functions and inequality indices with n = 4, 6, 8 for β = 0, 1, . . . , 8.
The data obtained reflects the dominance relations regarding binomial welfare functions and inequality
indices and illustrates the effect of the parameter β ≥ 0 in relation with inequality. We illustrate the
numerical behavior of the binomial welfare functions and inequality indices in relation with the parametric
family of income distributions.

The central and main contribution of the paper, in the context of the binomial decomposition, regards
the investigation of the analogy between the binomial welfare functions and two well-known families of
generalized Gini welfare functions: the S-Gini and the Lorenzen welfare functions. In particular, the
coefficients of the binomial decomposition of the S-Gini and Lorenzen welfare functions in terms of the
binomial welfare functions show interesting patterns of behavior. Finally, we have examined the orness
of the parametric S-Gini and Lorenzen families of generalized Gini welfare functions.
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