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Abstract 

The deregulation of electricity retail markets requires the development of new modeling approaches for 

the optimal setting of dynamic tariffs, in which consumers’ responses according to their flexibility to 

schedule demand are considered. Retailers and consumers have conflicting goals: the former aim to 

maximize profits and the latter aim to reduce electricity bills. Also, there is a hierarchical relation 

between them, as retailers (upper-level decision makers) determine the pricing strategy and consumers 

(lower-level decision makers) react by scheduling their loads according to price signals and comfort 

requirements. This is a bi-level optimization problem. In this paper, typical residential loads are 

considered and three scenarios of feasible windows of appliance operation are established. Two new 

population-based approaches, an evolutionary algorithm and a particle swarm optimization algorithm, are 

developed to solve the bi-level problem. The results obtained are then compared with a hybrid algorithm 

that solves the lower-level problem exactly. 

 

Keywords: Bi-level optimization; Particle swarm optimization; Evolutionary algorithms; Demand 

response; Electricity retail markets.  

 

1. Introduction 

In liberalized electricity markets, retailers procure energy in, for instance, intraday, day-ahead or future 

markets, with some dependence on purchase time and peak demand. Then retailers sell electricity to their 

clients who buy the necessary amount to satisfy demand, which may be adjusted according to budgetary 

constraints and comfort requirements. The further deregulation of the retail market requires the 

development of new modeling approaches for the optimal setting of dynamic tariffs, in which consumers’ 

reactions in the framework of demand response (DR) programs are considered. Consumers aim to 

minimize their electricity bill by using their flexibility to schedule demand of shiftable appliances and the 

settings of thermostatically-controlled loads in the face of dynamic (time-of-use) tariffs established by the 

retailer. 

Modern communication technologies play a central role in smart grids, which are characterized by bi-

directional interaction between retailers and consumers. Smart grids provide the technological basis to 

implement effective DR programs, enabling consumers to react to price. The management of residential 

loads has many beneficial effects on the grid. It contributes to improving use efficiency of available 

infrastructure capacity, decreasing peak load demand, reducing GHG emissions levels (by increasing the 

share of supply from renewable energy sources under “load follows supply” strategies), providing 

ancillary services and enhancing overall grid sustainability. 

Models using time-variant pricing schemes have been proposed to induce a shift in the peak load and 

smooth the load diagram, offering the system operator additional means for demand-supply balancing and 

constraint management purposes. A strategy often used is day-ahead pricing, in which the consumer 

receives tariff information one day or some hours before. The consumer may then react by scheduling 

load operation, i.e., changing the load profile by (optimally) deferring the use of some appliances, to set a 

trade-off between minimizing their electricity bill and maximizing their welfare in terms of comfort 

associated with the energy services provided (hot water, laundry, electric vehicle charging, etc.). 
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Some authors use bi-level programming models to address the interaction between retailers and 

consumers aiming to find an equilibrium solution. In a bi-level problem, the upper-level decision maker 

(leader) decides first. The goal of the leader is to optimize his/her objective function while considering the 

reaction of the lower-level decision maker (follower), since the follower’s decision affects the leader’s 

optimal solution. Meng and Zeng [7] converted the bi-level problem into a single-objective constrained 

model using Karush-Kuhn-Tucker conditions, solved with a branch-and-bound algorithm. Zugno et al. 

[16] proposed a bi-level model in which the retailer’s objective is the maximization of profits and the 

consumer’s objective is the minimization of cost and discomfort. In the upper level (retailer), stochastic 

variables are used to determine wholesale prices, whereas in the lower level (consumer), flexible and 

inflexible load appliances are considered and discomfort is measured against a range of indoor 

temperatures considered comfortable. Zhang et al. [15] presented a bi-level model with multiple objective 

functions at the upper level aimed at maximizing supply company profits. The consumers can choose the 

supply company to minimize their electricity bill.  

Sekizaki et al. [10] proposed a bi-level model that included the network tariff cost in the evaluation of 

expected retailer profit and disutility cost for the consumer, which is proportional to the suppressed load 

of the corresponding ideal level (i.e., the one that maximizes their utility). Each type of consumer 

(residential, commercial, industrial and a mixed type resulting from the combination of these) has an 

objective function resulting from a weighted sum of the cost of purchasing power from the retailer plus 

the disutility associated with load reduction. Different scenarios to address the uncertainty of spot prices 

are also considered by Sekizaki et al. [10].  

Meng and Zeng [8] considered non-shiftable, interruptible, non-interruptible and curtailable loads. The 

relation between one retailer and N consumers is modeled by a bi-level multi-follower problem. The 

retailer’s problem is solved by a genetic algorithm. The consumer’s problem is linear and solved exactly 

by a linear solver. Meng and Zeng [9] split the customer load into interruptible and non-interruptible 

appliances. A learning model is developed to identify the usage pattern of each appliance. Customers may 

solve their problem automatically by means of a smart meter or making energy decisions themselves. 

Bu et al. [3] proposed a game-theoretic decision-making scheme in which the retailer purchases energy 

from two distinct sources, choosing the amount of energy to buy from each option considering different 

scenarios. The consumer’s objective is to maximize a utility function based on the amount of energy 

purchased and the price paid. Yang et al. [14] developed a game-theoretic approach in which the 

consumer’s objective is a satisfaction function relative to the difference between effective and nominal 

load, defining a time-of-use pricing strategy and comparing results with flat and hourly pricing strategies. 

A survey of multi-level optimization problems related to hierarchical decision-making in many fields is 

presented by Lu et al. [6]. The survey includes the description of different types of bi-level problems and 

practical applications, including strategic bidding in electricity markets.   

To obtain a more realistic load characterization, the working cycles of appliances should be defined, 

which was not done in the bi-level models referred to above. The most common household appliances are 

characterized by Soares et al. [12], presenting typical load cycles for each appliance and establishing its 

potential to be controlled. Soares et al. [13] used this information to develop a multi-objective model for 

domestic load scheduling.  

In the present paper, the interaction between retailers (which establish dynamic tariffs) and consumers 

(who adjust consumption by changing habitual load scheduling) is formulated as a bi-level programming 

problem. In the upper level, the objective function is the maximization of retailer profit, while the 

objective function at the lower level is the minimization of the consumer’s electricity bill. The lower-level 

problem is based on the model proposed by Soares et al. [13]. Two novel bi-level population-based 

algorithms are proposed, one based on an evolutionary algorithm (BLEA) and the other on particle swarm 

optimization (BLPSO), both of which make the most of the problem structure since generic bi-level 

algorithms do not give acceptable solutions. Given that consumers have different profiles concerning the 

acceptance of potential discomfort associated with load shifting, depending on the appliance, feasible 

working windows are defined for each appliance. Three profiles are considered for this purpose. These 

profiles aim to model the willingness of different types of consumers to engage in DR programs, which is 

reflected in more or less stringent constraints of the lower-level problem regarding allowable load 

operation time slots, and thus in the difficulty of computing optimal solutions to this problem (i.e., 

feasible solutions to the bi-level problem). The performance of the algorithms is assessed under these 



distinct conditions. A base profile represents the typical operational periods of each appliance. The two 

remaining profiles consider more restricted and more extended periods of operation. In addition, we 

develop two other scenarios, which displace the windows of appliance operation defined in each profile 

along the planning period, so that there is a higher simultaneity. The results are compared with the 

solutions obtained by a hybrid algorithm presented by Alves et al. [1], in which the lower-level problem is 

formulated by means of a mixed integer linear programming (MILP) model. No other approaches have 

been found in the literature to deal with a model with these characteristics.  

The structure of the paper is as follows. In section 2, bi-level programming is introduced and the bi-level 

model for the interaction between retailers and consumers is presented. In section 3, the BLEA and 

BLPSO algorithms are described. Experimental results and their discussion are presented in section 4. In 

section 5, we draw the main conclusions.  

 

2. A bi-level model for the electricity retail market problem 

The electricity supply chain encompasses producers, transmission and distribution network operators, and 

retailers that supply consumers. Retailers buy electricity in the wholesale market and then sell it to end-

users to power a diversity of appliances, fulfilling the need for energy services (hot water, 

acclimatization, entertainment, etc.). In general, wholesale market prices are variable and set by auctions 

or bilateral contracts. Wholesale electricity markets may include forward markets for future generation 

and acquisition, on-demand (spot, day-ahead) markets with a daily contracting component and an 

adjusted intraday component, and (real-time) ancillary services markets dealing with balancing electricity 

generation and consumption.  

Electricity prices as seen by consumers may be static or dynamic. Static pricing includes flat rates 

(uniform price €/kWh, sometimes with a contracted power component €/kW), in which the retailer takes 

on the risk of market price uncertainty, and time-of-use rates, in which prices are established (long) in 

advance for specific time periods, thus already offering some economic signals to consumers. Dynamic 

pricing involves price schemes that can change on short notice, including critical peak pricing in which 

the retailer can sporadically establish a very high retail price for a limited period of time. Thus, it is 

possible to send economic signals to consumers in periods of generation shortage and/or network 

congestion, offering real-time tariffs reflecting the actual hourly price during that period. Time-of-use, 

critical peak pricing and real-time pricing schemes require advanced electricity meters, whose massive 

deployment is expected in the implementation of smart grids.  

It is expected that dynamic tariffs will become the relevant pricing scheme in smart grids. Residential 

consumers are expected to react to the prices sent by the retailer by adjusting the operation cycle of some 

loads to time periods with more favorable tariffs within a planning period, considering their comfort 

requirements. 

We have modeled the relation between retailers and consumers as a bi-level problem where the retailer is 

the leader and the consumer is the follower.  

 

2.1 Bi-level programming 

A bi-level programming problem consists of two embedded optimization problems, which may arise in 

many real-life situations where two decision-making entities are hierarchically related and have different 

goals. 

The general bi-level programming problem, with the objective function of the upper level to be 

maximized and the objective function of the lower level to be minimized, can be stated as follows: 
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where X  ℝn
1 (n1 being the number of upper-level variables) and Y  ℝn

2 (n2 being the number of lower-

level variables) are closed sets. The upper-level decision maker (the leader) controls variables 𝑥𝑢while the 



lower-level decision maker (the follower) controls 𝑥𝑙 . 𝐹(𝑥𝑢, 𝑥𝑙) and 𝑓(𝑥𝑢, 𝑥𝑙)are the leader’s and the 

follower’s objective functions, respectively. Since the follower optimizes 𝑓(𝑥𝑢, 𝑥𝑙) after 𝑥𝑢 has been 

selected, 𝑥𝑢 is a constant vector whenever 𝑓(𝑥𝑢, 𝑥𝑙) is optimized.  
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 is called the follower’s rational reaction set to a given 𝑥𝑢. The 

feasible set of Problem (1), also called the induced region, is 

 )(,0),(,:),( ulluulu xxxxGXxxxIR  .  

Bi-level programming problems are very difficult to solve due to their inherent non-convexity. Even the 

linear bi-level problem is NP-hard [4]. Theory and methodology on bi-level programming can be found in 

[2,4]. 

 

2.2 Model 

In the bi-level model for the electricity retail market problem, the planning period is divided into sub-

periods 𝑃𝑖 (𝑖 = 1, ⋯ , 𝐼) and the retailer should determine the price of electricity 𝑥𝑖(€/kWh) for each sub-

period i. To guarantee competitiveness, prices set by the retailer are limited to minimum (𝑥𝑖) and 

maximum (𝑥𝑖) values in each sub-period and an average price(𝑥𝐴𝑉𝐺) relative to the entire planning 

period is imposed [16]. The consumer has a base load, corresponding to non-controllable appliances, and 

a set of shiftable loads (appliances), whose cycles of operation can be set within acceptable time slots 

specified according to consumer preferences, habits and comfort requirements regarding the provision of 

energy services. Reacting to energy prices, the consumer wants to determine the time (𝑧𝑗) each appliance 

j must start its work cycle to minimize the electricity bill, ensuring that the entire work cycle is within the 

corresponding comfort time slot  𝑇𝑗. 

Notation: 

T = number of intervals (minutes, quarter-hour, half-hour or other period of time) the planning period is 

divided into (t =1,…,T). Let T = {1,…, T }. 

J = number of shiftable loads to be scheduled by the consumer’s energy management system (j =1,..,J). 

Ct = contracted power at time t of the planning period (kW). 

πt = energy price on the spot market at time t of the planning period (€/kWh), where h is the duration of 

one interval (to accommodate the most convenient discretization of the planning period in face of the 

problem at hand). 

bt = non-controllable base load at time t of the planning period (kW). 

dj = duration (h) of the operation cycle of load j. 

gj(r) = power requested by load j at time r of its work cycle (r =1,…,dj) (kW). 

𝑇𝑗 = [𝑇1𝑗, 𝑇2𝑗] ⊆ T: time slot in which load 𝑗 is allowed to operate.  

I = number of sub-periods of time𝑃𝑖 ⊂ Tin which different electricity prices (time-of-use tariffs) are 

charged by the retailer to the consumer (i=1,…,I).  

𝑃1𝑖, 𝑃2𝑖: time intervals delimiting each sub-period𝑃𝑖 , 𝑖 = 1, ⋯ , 𝐼, such that 𝑃𝑖 = [𝑃1𝑖, 𝑃2𝑖] and 

⋃ 𝑃𝑖 = T𝐼
𝑖=1 . 𝑃𝑖 denotes the amplitude of 𝑃𝑖, i.e. 𝑃𝑖 = 𝑃2𝑖 − 𝑃1𝑖 + 1. 

𝑥𝑖= maximum price charged to the consumer in sub-period 𝑃𝑖 (€/kWh). 

𝑥𝑖= minimum price charged to the consumer in sub-period 𝑃𝑖 (€/kWh).  

xAVG= average price charged to the consumer in the planning period(€/kWh).  

Upper-level decision variables: 

xi= price charged to the consumer during sub-period 𝑃𝑖 (€/kWh); i=1,…,I. 



Lower-level decision variables: 

zj = starting time of the working cycle of load j; j =1,..,J. 

Auxiliary lower-level variables: 

ujt= binary variable representing whether the working cycle of load j is “on” or “off” at time t of the 

planning period; j =1,..,J; t =1,…,T. 

pjt = power requested from the grid by load j at time t of the planning period (kW); j =1,..,J; t =1,…,T. 

 

The objective function of the upper-level decision maker in Eq. (2) is the maximization of the retailer’s 

profit (revenues from selling electricity to consumers minus cost of purchasing the electricity in the spot 

market). The 𝑥 and 𝑧 variables, upper- and lower-level decision variables in this model, correspond to the 

𝑥𝑢 and 𝑥𝑙variables in the general bi-level formulation in Section 2.1, respectively.  

Eq. (3) – (4) define the upper and lower bounds for the electricity prices charged to the consumer in each 

sub-period Pi. The constraint in Eq. (5) sets an average price in planning period T. 

Eq.(6) is the objective function of the consumer, who aims to minimize the electricity bill (to supply non-

controllable and shiftable loads). 

Eq. (7) defines the value of the auxiliary binary variables ujt as a function of decision variables zj 

regarding the operation period of load j. Variables ujt are then used in Eq. (8) to obtain the value of the 

power requested from the grid by load j at each time t of the planning period, i.e., time t-zj+1 of the load 

operation cycle initiated in zj. Constraints in Eq. (9) ensure that the contracted power is never exceeded. 

Constraints in Eq.(10) establish the time slots allowed for the operation of each load j according to the 

consumer’s preferences. 
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(2) 

s.t.  

𝑥𝑖 ≤ 𝑥𝑖i =1,…, I (3) 

𝑥𝑖 ≥ 𝑥 𝑖i =1,…, I (4) 

1

𝑇
∑ 𝑃̅𝑖𝑥𝑖 = 𝑥𝐴𝑉𝐺𝐼

𝑖=1   (5) 

min 𝑓 =  ∑ ∑ 𝑥𝑖 (𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽

𝑗=1

)

𝑡∈𝑃𝑖

𝐼

𝑖=1

 (6) 

s.t.  

𝑢𝑗𝑡 = {
1 if𝑧𝑗 ≤ 𝑡 ≤ 𝑧𝑗 + 𝑑𝑗 − 1 

0 otherwise
j=1,…,J ; t=1,…,T (7) 

𝑝𝑗𝑡 = 𝑔𝑗(𝑡 − 𝑧𝑗 + 1)𝑢𝑗𝑡j=1,…,J ; t=1,…,T 

 
(8) 

∑ 𝑝𝑗𝑡
𝐽
𝑗=1 + 𝑏𝑡 ≤ 𝐶𝑡   t=1,…,T (9) 

𝑇1𝑗 ≤ 𝑧𝑗 ≤ 𝑇2𝑗 − 𝑑𝑗 + 1 j=1,…,J (10) 

 

Note: If there are different possible disjoint slots for the operation of load j, constraints in Eq. (10) should 

be replaced by disjunctive constraints such as (𝑇1𝑗
1 ≤ 𝑧𝑗 ≤ 𝑇2𝑗

1 − 𝑑𝑗 + 1) ⋁ (𝑇1𝑗
2 ≤ 𝑧𝑗 ≤ 𝑇2𝑗

2 − 𝑑𝑗 +

1) ⋁ …, where [𝑇1𝑗
𝑘, 𝑇2𝑗

𝑘], 𝑘 = 1, 2, …, are the different time slots in which load j is allowed to operate. 



 

3. Population-based algorithms 

Two algorithms are proposed to solve the bi-level model presented in Section 2 using population-based 

meta-heuristics at both upper and lower levels. Population-based algorithms allow for the simultaneous 

exploration of different electricity prices to charge to the consumer (upper-level solutions) and, for each 

of them, different scheduling plans for shiftable appliances (lower-level solutions). The proposed 

approaches are a bi-level evolutionary algorithm (BLEA) and a bi-level particle swarm optimization 

algorithm (BLPSO). Alves et al. [1] proposed a hybrid algorithm (H-BLEA) to solve a model equivalent 

to the one in Eq. (2) – (10), in which the lower-level problem in Eq. (6) – (10) is transformed into a MILP 

model. The upper-level problem is solved using a genetic algorithm and a MILP solver is used to obtain 

the (exact) optimal solution to the lower-level problem for each upper-level setting (electricity prices 

charged to the consumer along the planning period). However, transforming the lower-level problem into 

a MILP requires a very high number of binary variables, which leads H-BLEA to become impracticable 

for large-scale problems. Therefore, BLEA and BLPSO are also aimed at overcoming this limitation of 

hybrid approaches integrating an exact solver. 

The proposed algorithms use the same structure to represent the populations. In both cases, the population 

consists of 𝑁 individuals split into 𝑛𝑠 sub-populations, each one containing 𝑁𝑙 individuals (see Fig. 1). 

All individuals (𝑥, 𝑧) of a sub-population have the same values for the upper level variables (i.e., same x). 

The upper level real-valued vector 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝐼) represents an electricity price setting and the lower 

level integer-valued vector 𝑧 = (𝑧1, 𝑧2, ⋯ , 𝑧𝐽) represents the time interval in which each load starts its 

working cycle. Both algorithms are described below.  

 

 

Fig.1 – Structure of the population: 𝑁 individuals split into 𝑛𝑠 sub-populations with 𝑁𝑙 individuals each; xs, s= 

1,…,ns, denotes the sth  upper-level component and 𝑧𝑠,𝑛𝑙 ,nl=1,..., Nl denotes the nl 
th  lower-level component of each 

individual in the sub-population s. 

 

3.1. Bi-level Evolutionary Algorithm (BLEA) 

The BLEA solves the bi-level problem by applying genetic operators to individuals of the population at 

both upper- and lower-level sub-problems. The algorithm consists of three steps (see BLEA pseudocode 

below). In step 1, a new population Pop1 (as represented in Fig. 1) is created through selection, crossover 

and mutation operators. The population individuals are initially created randomly within the pre-defined 

ranges; first, the values of the upper-level variables are generated, and then the values of the lower-level 

variables are obtained. In order to obtain a feasible price setting 𝑥, the vector generated undergoes the 

repairing procedure described below to satisfy the constraint in Eq. (5) regarding average price 

compliance during the planning period.  
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Repairing procedure(x) 

𝑆 = ∑ 𝑃̅𝑖𝑥𝑖

𝐼

𝑖=1

 

Set 𝐴 = {1,2, ⋯ , 𝐼}, the set of indices 𝑖 of 𝑥 that are allowed to be changed 

While (𝑆 ≠ 𝑇𝑥𝐴𝑉𝐺) and (𝐴 ≠ ∅)do 

 ∆ = 𝑇𝑥𝐴𝑉𝐺 − 𝑆 

 𝑃 =  ∑ 𝑃̅𝑖𝑖∈𝐴  

 For each 𝑥𝑖, 𝑖 ∈ 𝐴 

  𝑥𝑖 ←  𝑥𝑖 +  ∆/𝑃 

 End For 

 For 𝑖 = 1 to 𝐼 

  If 𝑥𝑖 < 𝑥𝑖 then 

   𝑥𝑖  ←  𝑥𝑖 

   𝐴 = 𝐴\{𝑖} 

  Else If 𝑥𝑖 > 𝑥𝑖 then 

   𝑥𝑖  ←  𝑥𝑖 

   𝐴 = 𝐴 \ {𝑖} 

  End If 

 End For 

 𝑆 = ∑ 𝑃̅𝑖𝑥𝑖
𝐼
𝑖=1  

End While 

If 𝑆 = 𝑇𝑥𝐴𝑉𝐺 then Return 𝑥 

Else Discard 𝑥  /*  𝐴 =  ∅   */ 

End If 

If it is not possible to obtain a feasible 𝑥 vector, a new 𝑥 vector is generated and the repairing procedure is 

reinitiated. After obtaining a feasible 𝑥 vector, the lower-level vector 𝑧 is generated, satisfying the bounds 

in Eq. (10). If it does not satisfy constraints in Eq. (9), which occurs when the contracted power is 

exceeded during some interval of time, a new 𝑧 vector is generated. Steps 2 and 3 of BLEA constitute the 

main cycle of the algorithm.  

In step 2, a new population Pop2 is created using the selection, crossover and mutation operators to obtain 

the upper- and lower-level solution vectors. For each sub-population of Pop2, the upper-level vector 𝑥 is 

firstly created, which is the same for all individuals of that sub-population, and then the lower-level 

vector z for each individual is obtained.  

To obtain the upper-level vector 𝑥, two parents from different sub-populations of Pop1are selected: one is 

obtained by binary tournament, selecting the solution with the best value for the upper-level objective 

function, and the other one is randomly chosen. A one-point crossover operator is applied to generate 

vector 𝑥𝑐, with an equal chance of each parent vector giving the first or the second part of 𝑥𝑐. 

Then, the mutation operator is applied to each variable 𝑥𝑖
𝑐  with probability Pm, consisting of adding or 

subtracting a positive perturbation randomly generated in the range [0, 0.2(𝑥𝑖 − 𝑥𝑖)] to generate 𝑥𝑖
𝑚. If 

any variable of the vector 𝑥𝑚 is outside the bounds imposed by Eq. (3) and Eq. (4), then it is pushed to 

the closest bound. The index of this variable is excluded from set 𝐴 of indexes that correspond to 

variables allowed to be changed in the repairing procedure. If the individual obtained is feasible, then it is 

accepted as an 𝑥 vector of Pop2; otherwise, the process is repeated to achieve a feasible individual.  

To obtain the optimal lower-level vector 𝑧 for the 𝑥 vector of each sub-population of Pop2, the lower-

level algorithmic operations are performed during 𝑘𝑙 iterations, evolving individuals of the sub-

population through selection, crossover and mutation. These operators are performed in a similar manner 

to those of the upper-level. After obtaining 𝑧𝑐 by one-point crossover, the mutation operator is applied to 

each variable 𝑧𝑗
𝑐  with probability Pm, consisting of adding or subtracting a positive integer perturbation 

randomly generated in the range [0, 0.2(𝑇2𝑗 − 𝑑𝑗 + 1 − 𝑇1𝑗)] to generate 𝑧𝑗
𝑚. If any variable of the 

𝑧𝑚 vector is out of bounds concerning the admissible time slots for load operation defined by Eq. (10), it 

is pushed to the closest bound. If 𝑧𝑚 leads to the violation of constraints in Eq. (9), due to Eq. (7) and Eq. 

(8), the process is repeated, generating a new 𝑧 vector until a feasible individual is obtained.  



In each lower-level iteration, this process is repeated for the 𝑁𝑙 individuals of each sub-population, thus 

generating the Offspring. The Offspring will compete with the current Pop2 to generate the new 

population Pop2f or the next lower-level iteration.  

In step 3, populations Pop1 and Pop2 are merged and the best lower-level solution for each sub-

population is identified. Then, among the solutions identified, the best solution according to the upper-

level objective function is selected, and the sub-population containing this solution is included in the new 

Pop1 for the next iteration, thus accounting for some elitist pressure. The remaining 𝑛𝑠 − 1 sub-

populations are then chosen by binary tournament, without replacement, between Pop1 and Pop2. The 

binary tournaments are performed between the best solutions identified in each sub-population according 

to the upper-level objective function.  

The pseudocode of BLEA is presented below. 

BLEA pseudocode 

(Step 1) Initialize 𝑃𝑜𝑝1 containing 𝑛𝑠 sub-populations 𝑃𝑜𝑝1𝑠 with 𝑁𝑙 individuals each: 

randomly generate ns feasible x and, for each one, randomly generate Nl feasible 

z vectors.  

 Assess each population individual (𝑥, 𝑧) evaluating 𝐹(𝑥, 𝑧) and 𝑓(𝑥, 𝑧). 

For 𝑘 = 1, … , 𝐾 

(Step 2) 

  For 𝑠 = 1, … , 𝑛𝑠 

 Repeat 

  Select 𝑥𝑎 and 𝑥𝑏from 𝑃𝑜𝑝1, one randomly and the other by   

  binary tournament 

  𝑥𝑐𝑟𝑜𝑠𝑠  Crossover of 𝑥𝑎 and 𝑥𝑏 

  𝑥𝑚𝑢𝑡  Mutation of 𝑥𝑐𝑟𝑜𝑠𝑠 

  Repairing procedure (𝑥𝑚𝑢𝑡) 

 Until 𝑥𝑚𝑢𝑡 is feasible for the upper level 

  Create 𝑃𝑜𝑝2𝑠 with 𝑥𝑚𝑢𝑡 and all z in 𝑃𝑜𝑝1𝑠: 

  𝑃𝑜𝑝2𝑠 = {(𝑥𝑚𝑢𝑡, 𝑧𝑠,1), (𝑥𝑚𝑢𝑡, 𝑧𝑠,2), … , (𝑥𝑚𝑢𝑡, 𝑧𝑠,𝑁𝑙)} 

 For 𝑘𝑙 = 1, ⋯ , 𝐾𝑙 do  

  Offspring𝑠=  

  For 𝑛𝑙 = 1, … , 𝑁𝑙 

  Repeat 

   Select 𝑧𝑠,𝑎 and 𝑧𝑠,𝑏 from 𝑃𝑜𝑝2𝑠, one randomly and   

   the other by binary tournament  

   𝑧𝑠,𝑐𝑟𝑜𝑠𝑠 Crossover of 𝑧𝑠,𝑎 and 𝑧𝑠,𝑏 

   𝑧𝑠,𝑚𝑢𝑡  Mutation of 𝑧𝑠,𝑐𝑟𝑜𝑠𝑠 

  Until 𝑧𝑠,𝑚𝑢𝑡 is feasible for the lower level 

   Insert (𝑥𝑚𝑢𝑡, 𝑧𝑠,𝑚𝑢𝑡) as (𝑥𝑠, 𝑧𝑠,𝑛𝑙) into the sub-population Offspring𝑠 

  End For 𝑛𝑙 

  Select the best 𝑁𝑙 individuals from 𝑃𝑜𝑝2𝑠 and Offspring𝑠 according to f 

to create the new Pop2s for the next iteration (𝑘𝑙 + 1). 

 End For 𝑘𝑙 

 End For s 

/* select the population for the next generation */ 

(Step 3) Update 𝑃𝑜𝑝1 for generation 𝑘 + 1 by copying the sub-population of 

𝑃𝑜𝑝1 𝑃𝑜𝑝2 containing the best solution according to F found so far, and 

performing 𝑛𝑠 − 1 binary tournaments without replacement between the sub-

populations of 𝑃𝑜𝑝1 and 𝑃𝑜𝑝2. 

End For k 

 



3.2. Bi-level Particle Swarm Optimization Algorithm(BLPSO) 

While many evolutionary algorithms create a new population in each generation, in PSO, the individuals 

(particles) of the population are moved from one iteration to the next, changing their positions. In each 

iteration of a PSO algorithm, the individuals are moved according to Eq. (11) and Eq. (12). 

𝑣𝑞 ← 𝑤𝑣𝑞 + 𝑐1𝑟𝑎𝑛𝑑( )(𝑝𝑏𝑒𝑠𝑡𝑞 − 𝑦𝑞) + 𝑐2𝑟𝑎𝑛𝑑( )(𝑔𝑏𝑒𝑠𝑡 − 𝑦𝑞) (11) 

𝑦𝑞 ← 𝑦𝑞 + 𝑣𝑞 , 𝑞 = 1, … , 𝑛 (12) 

In these equations, 𝑦 denotes the position of the particle (solution vector), 𝑣 is the velocity vector, 𝑤 is the 

inertia weight, 𝑐1 and 𝑐2 are the cognitive and social parameters, 𝑟𝑎𝑛𝑑( ) is a random uniform value in 

the interval [0, 1], q is the index of the particle and 𝑛 is the number of particles in the population. The 

𝑝𝑏𝑒𝑠𝑡𝑞 represents the best fitness position (solution) achieved by individual 𝑞, and 𝑔𝑏𝑒𝑠𝑡 represents the 

best position achieved by all individuals of the population during the iterations performed so far. The 

𝑤 parameter is set linearly decreasing, as presented in Shi and Eberhart [11]. This aims at increasing the 

exploration ability of the algorithm at earlier iterations and the exploitation ability at later iterations. The 

BLPSO algorithm is developed using the PSO approach to solve the bi-level problem (see BLPSO 

pseudocode below). 

The algorithm starts by initializing a population of 𝑁 individuals split into 𝑛𝑠 sub-populations, each one 

with 𝑁𝑙 =
𝑁

𝑛𝑠
 individuals (see Fig. 1). Each individual has two components, the upper level 𝑥 and the 

lower level 𝑧 . For each sub-population, the upper-level vector is the same and randomly generated; the 

repairing procedure described for the BLEA to guarantee that 𝑥 satisfies the constraint in Eq. (5) is 

applied. If the repairing procedure fails to yield a feasible 𝑥, the process is repeated until a feasible upper-

level vector is obtained. Then, the lower-level vectors 𝑧 for the individuals of the sub-population are also 

randomly generated. If the 𝑧 vector of an individual does not satisfy constraints in Eq. (9), a new attempt 

is made and the process is repeated until a feasible 𝑧 is obtained. 

The best position achieved by an individual in the main (upper-level) cycle, 𝑝𝑏𝑒𝑠𝑡1, is initialized with its 

current position and the best solution found in the population is saved in the temporary vector 𝑝𝑟𝑒_𝑔𝑏𝑒𝑠𝑡, 

to be used in the first iteration of the algorithm. This solution is provisional because the lower-level 

optimization phase has not yet been executed.  

The main cycle of the algorithm is executed for 𝐾 iterations. Firstly, the upper-level part 𝑥 of each 

individual is updated using the PSO operators in Eq. (11)-(12) with 𝑦 = 𝑥 and the bounds in Eq. (3)-(4) 

and constraint (5) are checked to ensure the feasibility of the resulting individual. If any of the bounds is 

violated, the corresponding variable is pushed to the closest bound; for the constraint in Eq. (5), the 

repairing procedure referred to above is performed.  

After obtaining the upper-level vector of each sub-population, the lower-level algorithmic operations are 

executed for 𝑘𝑙 iterations aiming at obtaining the lower-level optimal solution for each sub-population. 

The lower-level search uses 𝑔𝑏𝑒𝑠𝑡𝑠 (the best solution of each sub-population s according to f) and a local 

personal best 𝑝𝑏𝑒𝑠𝑡2 is defined for each individual. At each lower-level iteration, the lower-level vectors 

of the 𝑁𝑙 individuals are also updated using Eq. (11)-(12) with 𝑦 = 𝑧 and the feasibility of each individual 

is checked. If the updated individual does not satisfy the bounds established in Eq. (10) and/or violates 

constraints in Eq. (9), a repairing process is performed during a maximum of 𝐿 trials. This lower-level 

repairing process consists of pushing the particle to the closest bounds defined in Eq. (10), and it is 

moved according to Eq. (11)-(12). Then the constraints in Eq. (9) are checked again. If the particle 

remains infeasible for more than 𝐿 trials, it is randomly reinitialized and the update process is repeated 

until a feasible position is achieved. After concluding the update process of lower-level individuals, 

𝑝𝑏𝑒𝑠𝑡2 of each individual and 𝑔𝑏𝑒𝑠𝑡𝑠 are updated according to f. 

At the end of the lower-level optimization stage, 𝑝𝑏𝑒𝑠𝑡1 of each individual is updated according to F in 

the main cycle. This step also updates the best solution found so far (𝑔𝑏𝑒𝑠𝑡) considering the entire 

population. It should be noted that, after the first iteration, the best solution of the entire population 

replaces the temporary 𝑝𝑟𝑒_𝑔𝑏𝑒𝑠𝑡 solution. The 𝑝𝑏𝑒𝑠𝑡1 and 𝑔𝑏𝑒𝑠𝑡 update process starts by analyzing the 

value associated with each particle position regarding the upper level objective function F and, if the new 

position is better, it replaces the former. Otherwise, if both positions have the same F value, then the 

comparison is performed relative to the lower-level objective function f; if the new position has a better 



value according to f, it replaces the former. It is worth noting that only the individuals that hold as sub-

population 𝑔𝑏𝑒𝑠𝑡𝑠 for at least 𝑟0 lower-level iterations are tested to replace the 𝑔𝑏𝑒𝑠𝑡 solution of the 

entire population. In the experiments performed, this parameter has been found to be of great relevance 

for improving the ability of the algorithm to achieve better solutions to the problem. This process imposes 

some elitist pressure, as a 𝑔𝑏𝑒𝑠𝑡𝑠 of a sub-population s must prove to be the best for some iterations until 

it can be elected as the global 𝑔𝑏𝑒𝑠𝑡 for the entire population. 

The pseudocode of the BLPSO algorithm as well as the procedure to update 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡1 are 

presented below.  

 

BLPSO algorithm pseudocode 

Initialize Pop containing 𝑛𝑠 sub-populations Pops with 𝑁𝑙 individuals each: randomly 

generate ns  feasible x vectors and, for each one, randomly generate Nl feasible z vectors.  

Assess each population individual (𝑥, 𝑧) evaluating 𝐹(𝑥, 𝑧) and 𝑓(𝑥, 𝑧). 

Initialize the best position of each individual: 𝑝𝑏𝑒𝑠𝑡1𝑠,𝑛𝑙 = (𝑝𝑏𝑒𝑠𝑡1𝑥
𝑠 , 𝑝𝑏𝑒𝑠𝑡1𝑧

𝑠,𝑛𝑙) =
(𝑥𝑠, 𝑧𝑠,𝑛𝑙), 𝑠 = 1, … , 𝑛𝑠, 𝑛𝑙 = 1, … , 𝑁𝑙. 

Assign to 𝑝𝑟𝑒_𝑔𝑏𝑒𝑠𝑡 the best individual of Pop according to F, to be used as 𝑔𝑏𝑒𝑠𝑡 in 

the first iteration. 

For 𝑘 = 1, ⋯ , 𝐾 

 For 𝑠 = 1, … , 𝑛𝑠 

 Repeat 

Update the component 𝑥𝑠 of the individual using Eq. (11) and (12) with 

𝑦 = 𝑥𝑠, 𝑝𝑏𝑒𝑠𝑡1𝑥
𝑠  and 𝑔𝑏𝑒𝑠𝑡𝑥 

Repairing procedure (𝑥𝑠) 

 Until 𝑥𝑠  is feasible for the upper level 

 Initialize the best solution 𝑔𝑏𝑒𝑠𝑡𝑠 of Pops according to 𝑓 

 Initialize 𝑝𝑏𝑒𝑠𝑡2𝑠,𝑛𝑙 = (𝑝𝑏𝑒𝑠𝑡2𝑥
𝑠 , 𝑝𝑏𝑒𝑠𝑡2𝑧

𝑠,𝑛𝑙) = (𝑥𝑠, 𝑧𝑠,𝑛𝑙), 𝑛𝑙 = 1, … , 𝑁𝑙  

 For 𝑘𝑙 = 1, ⋯ , 𝐾𝑙   
  For 𝑛𝑙 = 1, … , 𝑁𝑙 

 𝑙=0 

 Repeat 

 𝑙 ←  𝑙 +  1 

Update the component 𝑧𝑠,𝑛𝑙 of each individual using Eq. (11) and (12) 

with 𝑦 = 𝑧𝑠,𝑛𝑙, 𝑝𝑏𝑒𝑠𝑡2𝑧
𝑠,𝑛𝑙 and 𝑔𝑏𝑒𝑠𝑡𝑧

𝑠 

If 𝑧𝑠,𝑛𝑙 does not satisfy the bounds in Eq. (10), then push it to the 

closest bounds 

If 𝑧𝑠,𝑛𝑙 does not satisfy constraint in Eq. (9) and 𝑙 > 𝐿, then 𝑧𝑠,𝑛𝑙 is 

reinitialized and  𝑙=0 

 Until 𝑧𝑠,𝑛𝑙  is feasible for the lower level 

Update the best position 𝑝𝑏𝑒𝑠𝑡2𝑠,𝑛𝑙 achieved by individual nl of Pops 

according to f: if 𝑓(𝑥𝑠, 𝑧𝑠,𝑛𝑙) < 𝑓(𝑝𝑏𝑒𝑠𝑡2𝑠,𝑛𝑙) then 𝑝𝑏𝑒𝑠𝑡2𝑧
𝑠,𝑛𝑙 ← 𝑧𝑠,𝑛𝑙 

  End For 𝑛𝑙 

  Update the best individual 𝑔𝑏𝑒𝑠𝑡𝑠 of Pops  according to f 

 End For 𝑘𝑙 

 End For s 

 Update procedure of 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡1 

End For k 

 

 



Update 𝒈𝒃𝒆𝒔𝒕 and 𝒑𝒃𝒆𝒔𝒕𝟏 

For 𝑠 = 1, … , 𝑛𝑠 

  /* update 𝑝𝑏𝑒𝑠𝑡1 of each individual */ 

   For 𝑛𝑙 = 1, … , 𝑁𝑙  

If [𝐹(𝑥𝑠, 𝑧𝑠,𝑛𝑙) > 𝐹(𝑝𝑏𝑒𝑠𝑡1𝑠,𝑛𝑙)] 𝑜𝑟  
[𝐹(𝑥𝑠, 𝑧𝑠,𝑛𝑙) = 𝐹(𝑝𝑏𝑒𝑠𝑡1𝑠,𝑛𝑙)  𝑎𝑛𝑑 𝑓(𝑥𝑠, 𝑧𝑠,𝑛𝑙) < 𝑓(𝑝𝑏𝑒𝑠𝑡1𝑠,𝑛𝑙)]  then 

  𝑝𝑏𝑒𝑠𝑡1𝑠,𝑛𝑙 ←  (𝑥𝑠, 𝑧𝑠,𝑛𝑙) 

End For 𝑛𝑙 

  /* update 𝑔𝑏𝑒𝑠𝑡 */ 

Let 𝑟 be the number of times 𝑔𝑏𝑒𝑠𝑡𝑠 was kept in Pops  

 If 𝑟 > 𝑟0 

 Update the 𝑔𝑏𝑒𝑠𝑡 of the whole population Pop using 𝑔𝑏𝑒𝑠𝑡𝑠 according to F 

End For s 

 

 

4. Comparison of algorithms - Experimental results and discussion  

4.1. Problem data and parameter setting 

To perform a comparative analysis between BLPSO, BLEA and the hybrid genetic algorithm (H-BLEA) 

proposed by Alves et al. [1], a case study with three profiles for the windows of appliance operation is 

considered. Most data were obtained from actual audit information and some values were estimated. 

A planning period of 24 hours split into 15-minute intervals is considered, leading to T={1,…,96}. The 

load is composed of a base load (depicted in Fig. 2; see also the table in Appendix), which is associated 

with appliances that cannot be controlled, and of five shiftable appliances (J=5): laundry machine, 

dishwasher, electric water heater (EWH), drying machine and electric vehicle. The work cycles of these 

appliances are displayed in Fig. 3, which shows the power gj(r) requested by load j at time r of its work 

cycle (r =1,…,dj). 

The contracted power Ct is 4.6 kW for t =28,…,84 and 3 kW for the other t  T. 

 

 

Fig. 2. Power requested from the grid by the base (non-controllable) load. 



 

 

Fig. 3 – Operation cycles of the shiftable appliances 

 

The minimum and maximum electricity prices that can be charged to the consumer in each of the seven 

sub-periods of time (I=7) are displayed in Table 1. The average energy price for the overall planning 

period is set to 𝑥𝐴𝑉𝐺=0.116 €/kWh. The electricity prices seen by the retailer at the spot market are 

displayed in Fig. 4. All prices are in €/kWh, so they were then converted to periods of quarter-hours 

(h = 1/4 h) to feed the model. 

 

Table 1.Minimum (𝑥
𝑖
) and maximum (𝑥𝑖)electricity prices that can be charged to the consumer in each sub-period 

Sub-period Start interval (t) End interval (t) Minimum price (€/kWh) Maximum price (€/kWh) 

1 1 28 0.04 0.10 

2 29 38 0.08 0.24 

3 39 44 0.03 0.12 

4 45 60 0.10 0.28 

5 61 76 0.03 0.12 

6 77 84 0.08 0.24 

7 85 96 0.04 0.10 

 

 

 

Fig. 4.Prices at spot market seen by the retailer. 

 



The work cycle of the five shiftable appliances can be scheduled within the planning period, i.e., their 

habitual operational slot can be shifted according to electricity prices and consumer preferences. Three 

different profiles of consumer behavior are considered regarding the width of the time slots in which load 

operation is allowed. In addition to a base profile, reflecting the most habitual load scheduling pattern, a 

restricted profile with a lower tolerance for load shifting, and an extended profile with a higher tolerance 

for complying with load operation in larger time slots, are considered. These profiles are associated with 

more or less stringent search spaces regarding constraints in Eq. (10) and therefore with the number of 

potential lower-level solutions. The time slots allowed for appliance operation relative to each profile are 

shown in Table 2. 

Table 2.Comfort time slots [earliest interval T1j latest intervalT2j] allowed for the operation of each appliance in 

the base, restricted and extended profiles. 

 Appliances 

Profile Dishwasher Laundry machine EWH Electric vehicle Clothes dryer 

Base [1 – 36] [32 – 60] [24 – 40] [1 – 48] [76 – 96] 

Restricted [1 – 34] [32 – 50] [24 – 36] [1 – 45] [70 – 82] 

Extended [1 – 44] [28 – 65] [24 – 45] [1 – 48] [70 – 96] 

 

In BLEA, a population of 𝑁 = 240 individuals split into 𝑛𝑠 = 12 sub-populations, each containing 𝑁𝑙 =
20 individuals, was considered. BLEA was run for 𝑇 = 100 generations, each performing the lower-level 

optimization task for 𝑇𝑙 = 40 iterations. In the BLPSO algorithm, the parameters 𝑁 = 240, 𝑁𝑙 = 30, 𝑇 =
100 and 𝑇𝑙 = 60 were considered and the 𝑟0 parameter was set to 4. The parameter 𝑤 was set to decrease 

linearly from 0.9 (at the beginning of the algorithm) to 0.4 (at the end of the algorithm). 

The algorithm presented by Alves et al. [1], H-BLEA, was also implemented for comparison with BLEA 

and BLPSO algorithms. All algorithms were implemented in Matlab running on an Intel Core i7 3.2 GHz 

32 GB RAM machine. The upper-level search of H-BLEA is similar to that of BLEA, and the lower-level 

problem is exactly solved using Cplex for each instantiation of x. Thus, the lower-level optimal solutions 

obtained by H-BLEA enable us to assess the ability of BLEA and BLPSO algorithms to determine good 

quality solutions to the problem. It is worth mentioning that a feasible solution to the bi-level problem 

must be an optimal solution to the lower-level problem.  

In H-BLEA, a population of 𝑁 = 30 individuals (in this case 𝑛𝑠 = 𝑁 because a single lower-level 

solution is associated with each upper-level solution) was considered. H-BLEA was run for 𝑇 = 100 

generations. 

 

4.2. Results 

The problem was solved for the three profiles shown in Table 2 using BLEA, BLPSO and H-BLEA 

algorithms. The experimentation consisted of running the three algorithms to obtain 60 valid solutions for 

each profile. At the end of each run, solutions are checked for validity. A solution is valid if it is truly 

optimal to the lower-level problem for the price configuration set in the upper level. Therefore, in H-

BLEA, 60 runs were required, since the lower level is exactly solved. In BLPSO, just 60 runs were 

necessary in the extended profile; in the other profiles, a few more runs (76 in the base profile and 75 in 

the restricted profile) were required to obtain 60 valid solutions. BLEA displayed difficulties in obtaining 

optimal lower-level solutions in the extended profile, in which on average only 1 solution was valid in 

every 8 runs. BLEA only needed 60 runs in the restricted profile and it required 64 runs in the base 

profile. In the extended profile, the search space is larger, and BLEA had difficulty in escaping from sub-

optimal solutions to the lower-level problem. 

Information about the 60 valid solutions obtained for the base, restricted and extended profiles is 

presented in Tables 3-5 and in Fig. 5. Table 3 displays the best (maximum), worst, mean and standard 

deviation for retailer profit (F); it also shows the consumer’s electricity bill (f) in the best solution, i.e., 

with maximum F. The consumer’s electricity bill and retailer profit are both expressed in €. The results 

refer to a period of 24 hours and correspond to a cluster of 1,000 consumers with similar energy 

consumption and demand response patterns. Fig. 5 shows box plots for retailer profit (F), providing a 

comparison of the median and interquartile ranges of F in valid solutions obtained with the three 



algorithms in the three profiles. Table 4 displays the energy prices (upper-level variables) and Table 5 

displays the ranges of working intervals (lower-level solution) in the best solution obtained with each 

algorithm for each profile. 

In comparison with the base profile, the main difficulty in the restricted profile is obtaining feasible 

lower-level solutions, whereas the major difficulty in the extended profile relates to the existence of local 

optimal lower-level solutions. Note also that the contracted power constraint in Eq. (9) and the 

characteristics of the load operation cycles (Fig. 3) introduce additional difficulties in determining 

optimal solutions. 

BLPSO obtains the best solutions in all profiles regarding the maximum and the median values of F, as 

well as the best mean of F in the base and extended profiles (cf. Table 3 and Fig. 5). BLPSO is the 

algorithm that displays the highest variability across runs, as measured by standard deviation. This 

variability is mainly due the presence of outliers (see Fig. 5), which justifies why the mean of F computed 

by BLPSO is not always the best in all profiles. The largest variation of the maximum F given by any 

algorithm with respect to the maximum F of all algorithms is just 0.50% in the base profile, 0.41% in the 

restricted profile and 1.13% in the extended profile. The largest variation in the mean of F is 0.68% 

across all profiles. For the 60 valid solutions, the deviation between the maximum F and the worst F 

across the 3 profiles ranges between 8.8% and 9.7% in BLPSO, 2.5%-4.5% in BLEA and 2.3%-4.9% in 

H-BLEA. These values denote the robustness of the algorithms to obtain consistently good solutions. 

H-BLEA gives the best standard deviation of F in the base and restricted profiles and is not far from the 

best in the extended profile, in which BLEA displays the best value. 

The Kruskal-Wallis statistical test was performed to assess the significance of the differences in retailer 

profit F across the three algorithms. At the level of significance =0.05, these differences are statistically 

significant for all profiles. 

 

Table 3. Retailer profit and customer cost (for the best solution according to F) for 60 valid solutions obtained in the 

base, restricted and extended profile models. 

Profile Algorithm Maximum F Worst F Mean F Std dev F f 

Base BLPSO 

BLEA 

H-BLEA 

1827.639 

1826.810 

1818.490 

1649.959 

1743.808 

1757.000 

1803.529 

1796.915 

1801.506 

50.922 

18.268 

13.337 

3357.584 

3356.755 

3351.680 

Restricted BLPSO 

BLEA 

H-BLEA 

1825.732 

1818.161 

1818.500 

1656.247 

1771.928 

1776.000 

1805.484 

1803.582 

1812.874 

29.504 

12.713 

6.882 

3378.776 

3329.201 

3329.500 

Extended BLPSO 

BLEA 

H-BLEA 

1493.347 

1476.473 

1481.960 

1361.399 

1437.628 

1409.000 

1469.164 

1459.160 

1462.371 

26.726 

11.108 

14.769 

3047.809 

3039.473 

3040.170 

 

Table 4. Energy prices xi (€/kWh) for each sub-period in the best solution obtained for the base, restricted and 

extended profile models. 

  Pricing sub-periods 

Profile Algorithm P1 

[1, 28] 

P2 

[29, 38] 

P3 

[39, 44] 

P4 

[45, 60] 

P5 

[61, 76] 

P6 

[77, 84] 

P7 

[85, 96] 

Base BLPSO 

BLEA 

H-BLEA 

0.10 

0.10 

0.099843 

0.24 

0.24 

0.239843 

0.12 

0.12 

0.119835 

0.101 

0.100103 

0.101761 

0.03 

0.030897 

0.031761 

0.24 

0.24 

0.235828 

0.10 

0.10 

0.10 

Restricted BLPSO 

BLEA 

H-BLEA 

0.10 

0.10 

0.09999 

0.24 

0.24 

0.23999 

0.12 

0.12 

0.11999 

0.10 

0.120143 

0.120020 

0.066648 

0.048983 

0.051141 

0.24 

0.24 

0.23999 

0.052470 

0.049166 

0.046493 

Extended BLPSO 

BLEA 

H-BLEA 

0.10 

0.10 

0.099989 

0.24 

0.24 

0.239989 

0.12 

0.12 

0.119950 

0.10 

0.100642 

0.100067 

0.060571 

0.058904 

0.060634 

0.24 

0.24 

0.239926 

0.060571 

0.061939 

0.060507 

 



Table 5. Appliance work intervals in the best solution obtained for the base, restricted and extended profile models. 

The first value of each interval for each appliance is zj (starting time of load j). 

  Appliances 

Profile Algorithm Dishwasher Laundry machine EWH Electric vehicle Clothes dryer 

Base BLPSO 

BLEA 

H-BLEA 

1-5 

1-5 

1-5 

45-50 

45-50 

48-53 

36-40 

36-40 

36-40 

5-40 

5-40 

5-40 

85-87 

85-87 

85-87 

Restricted BLPSO 

BLEA 

H-BLEA 

5-9 

1-5 

1-5 

39-44 

39-44 

39-44 

28-32 

28-32 

28-32 

9-44 

5-40 

5-40 

74-76 

73-75 

74-76 

Extended BLPSO 

BLEA 

H-BLEA 

39-43 

39-43 

39-43 

60-65 

60-65 

60-65 

39-43 

41-45 

41-45 

1-36 

1-36 

1-36 

85-87 

74-76 

85-87 

 

 

 
 

  

Fig. 5. Box plots of retailer profit (F) for the base, restricted and extended profile models (the symbols “o” and “*” 

denote outliers, i.e., values beyond 1.5 and 3 times the interquartile range, respectively). 

 

In the base profile, the lower-level optimal solutions obtained by the three algorithms only differ in the 

time range the laundry machine operates, although this occurs in the same pricing sub-period P4. In the 

restricted profile, the lower-level solutions differ in the operation time range of three appliances; for the 

dishwasher and clothes dryer, the different schedules are within the same pricing sub-periods (P1 and P7, 

respectively) and the operation schedule for the electric vehicle spans three pricing sub-periods (P1 to P3) 

with distinct intersection degrees. As expected, the algorithms obtain different lower-level solutions in the 

extended profile because the search space is larger due to the wider time slots for load operation. Notably, 

the clothes dryer operates in P5 in the solution obtained by BLEA and in P7 in the solutions obtained by 

BLPSO and H-BLEA. This is because the price set by BLEA in sub-period P7 is higher than the price in 

sub-period P5 and the reverse relation holds for H-BLEA, being equal for BLPSO. 

Indicators of run times (in seconds) of each algorithm over 60 runs, considering the base profile, are 

presented in Table 6. The run times of the two algorithms proposed in this paper, BLPSO and BLEA, are 

similar, although BLEA takes slightly more time to solve the problem. H-BLEA takes more time because 

it calls on an external solver to compute the optimal solution to the lower-level problem. The 

computational effort of each algorithm is measured and balanced in terms of run time instead of the 

number of function evaluations because the latter is difficult to obtain for H-BLEA. The relations 

between the computational times of the three algorithms are similar for the remaining profiles. 

 



Table 6. Run time (in seconds) of the algorithms for the base profile model. 

Algorithm Maximum Median Mean std. deviation 

BLPSO 552.90 528.10 530.20 9.77 

BLEA 639.47 627.32 627.67 3.99 

H-BLEA 1133.52 1107.16 1109.25 10.43 

 

The load diagrams associated with the best solution for each profile are depicted in Figs. 6-8 in stacked 

area charts. All these solutions were obtained by BLPSO. In the best solution for the restricted profile, 

peak consumption is higher due to the reduction of the available operation range for the laundry machine, 

which is the appliance with the highest maximum consumption, although this is partially compensated by 

shifting the operation of the EWH to a period with lower consumption. In the extended profile, the higher 

flexibility in load operation leads to more diversified shifts to obtain better lower-level solutions in face 

of the prices set by the retailer. 

 

 

Fig. 6. Load diagram of the best solution for the base profile model, obtained by BLPSO 

 

Fig. 7. Load diagram of the best solution for the restricted profile model, obtained by BLPSO 

 



 

 

Fig. 8. Load diagram of the best solution for the extended profile model, obtained by BLPSO 

 

Two other scenarios have been tested, which consider the same data but change the allowable time slots 

for load operation in each profile (base, restricted and extended), maintaining the width of the time slots. 

Therefore, six additional problems were tested. In both scenarios, a higher simultaneity of slots was 

considered, which is more challenging for the algorithms. In scenario 1, the allowable time slots were 

more concentrated in the middle of the planning period, in which the lower/upper bounds of prices 

charged to the consumer are higher. In scenario 2, the allowable time slots were more concentrated at the 

end of the planning period, in which the uncontrollable load is higher and the spot market prices seen by 

the retailer are also higher. Scenario 2 is less favorable for retailer profit.  

In scenario 1, BLPSO displays the best values of F for all profiles, while the best mean value is obtained 

by BLEA for all profiles. BLEA gives the best mean value of F and H-BLEA gives the best standard 

deviation for all profiles. In scenario 2, BLPSO only presents the best value of F for the extended profile, 

while BLEA gives the best F value for the restricted profile and H-BLEA for the base profile. BLEA 

gives the best mean and standard deviation values for all profiles. In both scenarios 1 and 2, BLPSO 

presents the highest standard deviation for all profiles. H-BLEA presents the worst value for the 

maximum F for all profiles in scenario 1. However, the largest variation of the maximum F given by any 

algorithm with respect to the maximum F of all algorithms is 2.11% (given by H-BLEA) across all 

profiles, in the two scenarios. 

The analysis of the nine problem instances (3 profiles × 3 scenarios) leads to the following main 

conclusions. BLPSO found the best solution (maximum F) in 7 of the 9 instances, whereas BLEA and H-

BLEA computed the best solution in just one instance each; yet in the 2 instances BLPSO does not give 

the maximum F, it never deviates more than 0.47% from it. BLEA experiences some difficulties in 

obtaining lower-level optimal solutions for the extended profiles. H-BLEA and BLEA display the worst 

of the maximum F in 4 of the 9 instances each. H-BLEA shows the lowest standard deviation in 5 out of 

9 instances, and BLEA is in this position in the remaining 4 instances. BLPSO shows a larger variability 

than BLEA and H-BLEA, as measured by the standard deviation in the 9 instances, i.e., it obtains very 

good solutions in some runs but also worse solutions than those obtained by the other algorithms in other 

runs. This variability seems to result from the higher repair rate required by infeasible lower-level 

solutions due to the specificities of particle movement in particle swarm optimization, in comparison with 

the other algorithms. 

We also attempted to solve this model with a recent generic bi-level optimization algorithm, Bilevel 

Evolutionary Algorithm based on Quadratic Approximations – BLEAQ-II, for which a Matlab code is 

publicly available [17]. Sixty runs of BLEAQ-II have been carried out for the base profile model. 

BLEAQ-II could not find feasible solutions to the upper-level problem due to the constraint in Eq. 5 in 

the mathematical model, which imposes an average price in the planning period. Moreover, BLEAQ-II 

was not able to find true optimal solutions to the lower level problem for any setting of the upper level 

variables. This justifies the need to develop algorithms for bi-level optimization models with specific 

features, such as the ones presented in section 2.2, making the most of the model characteristics to design 



efficient algorithms able to deal effectively with the computational difficulties arising in bi-level 

optimization, even for simple problems. BLPSO, BLEA and H-BLEA algorithms were endowed with a 

customized repairing procedure to deal with the upper-level equality constraint. In addition, these 

algorithms were able to guarantee the optimality of the lower-level solutions in almost all cases, except 

for BLEA in the extended profile. 

 

5. Conclusions  

Two bi-level population-based algorithms were proposed in this paper, one based on an evolutionary 

algorithm and the other on particle swarm optimization, to determine the optimal electricity prices a 

retailer can set to maximize profit in the face of demand response strategies set by consumers minimizing 

their electricity bills. The load scheduling of appliances depends on the prices set by the retailer and 

consumer comfort requirements, established by more or less stringent time slots for load operation. This 

bi-level model was also solved by the hybrid algorithm H-BLEA. This algorithm uses an exact solver to 

obtain an optimal solution to the lower-level problem, formulated as a mixed-integer linear programming 

problem. Since this model generally has multiple alternative optimal solutions to the lower-level problem 

for a given upper-level solution, the use of population-based meta-heuristics enables the algorithm to 

explore them. In addition, H-BLEA becomes impracticable for higher dimensional problems, for which 

BLPSO and BLEA approaches present a good computational performance. 

To assess the ability of the algorithms to obtain practical solutions, three profiles based on consumer 

willingness to shift load operation were considered, which are reflected on more or less stringent 

constraints of the lower-level problem. Two additional scenarios were also considered, which were more 

challenging due to changes in the allowable load operation time slots in each profile leading to a higher 

simultaneity of slots. BLPSO performed better than BLEA and H-BLEA in most cases in terms of 

providing the best solution within 60 valid solutions obtained from independent runs of the 9 instances, 

but it also displayed higher variability. The capability of BLPSO and BLEA to exploit multiple 

alternative optimal solutions to the lower-level problem, which may present different retailer profit values 

for the same consumer cost, justifies why these algorithms generally obtain better values for retailer profit 

than H-BLEA regarding the maximum value computed in all runs. 

Further work will consider an explicit objective function in the lower-level problem, assessing consumer 

discomfort associated with scheduling loads outside their habitual time slots. This increases the 

complexity of the model, which becomes a semi-vectorial bi-level problem, enabling us to assess the 

trade-offs between economic and quality of service axes of evaluation. Future work will also include 

different clusters of consumers, leading to a bi-level multi-follower decision problem [6]. 
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Appendix – Base load data 

 

Table A.1 - Power requested from the grid by the base (non-controllable) load (cf. Fig. 2) 

t b(t) (W) t b(t) (W) 

1-32 166 82-83 1528 

33-34 700 84-85 742 

35-36 170 86 249 

37-44 92 87 452 

45-54 156 88-90 280 

55-64 133 91 1064 

65-80 159 92-96 241 

81 522   

 

 


