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ABSTRACT

Most welkknownblind image quality assessment (BIQA) modelsaligifollow a two-stageframework whereby
various types of features are first extracted asel as an input to a regressor. The regression algorithm is used
to model human perceptual measures based on a training set of disbaiged.iHowever, this approach requires
an inteng/e training phase to optimise the regression paramdte this paper, wevercome this limitation by
proposing an alternative BIQA rdel that predicts image qualitising nearest neighbour methadsich have
virtually zero training cosfThe model, termed PATCH based blind Image Qualitges®nt (PATCHIQ), has

a learningramework that operates e patch level. This enables PATAR to provide not only a global image
quality estimation but also a local image quality estimaf@ased orthe assumgbn that the perceived quality
of a distorted image will be best predicted by features drawn fragaswith the same distortion class, PAFCH
IQ also introduces distortion identification stage in its frameworkhis enables PATCHQ to identify the
distortion affecting the image, a property that can be useful for further loceégsing stageRATCH-IQ is
evaluated on the standard IQA databases, angdrthided scores ataighly correlated to human perception of
image quality. It also delivers competitive prediction accuracy and datignal performance in relationship to
other stateof-the-art BIQA models.

KEYWORDS

Image quality assessment, blind image quality assessment, intengisdetaction, spatial domain features,
nearest neighbowlassification and regression.

1. INTRODUCTION

Image quality assessment (IQA) aiatsquantifying the quality afiatural image with objectivequality
metrics. Formultimedia appliations which the end user ishaman consumetQA anticipates through such
metrics themage quality as perceived by human obseni€¥A. metrics based on human perception are often
considered as the gold standard fmrceptual assessment of image quality. These subjective metrics are
commonly obtaied by conducting image quality experiments where participating hunservebs rate the
quality of images presented to them. The ratings are then averaged aobssrairs yielding a mean opinion
score (MOS) or differential mean opinion score (DMOS). The MOS/DMOStitaes a subjective metric of
perceivediinage quality. Howevethese subjective metrics murstolve human observers makes them expensive,
time-consuming, and unfeasible for deployment in most real world applicatiandQA model that an
automatically provide objective image quality measurement consisteéht hwiman percdapal measures
(MOS/DMOS) ispreferred.

Objectivel QA models can generally be skified into three categoriesd]: full-reference IQA (FRQA),
reducedreference IQARR-IQA) and blind IQA (BIQA). FRIQA models evaluate the quality of a natural image
by comparing the entire information difference between the image andeitsneé image. A reference image
refers to a similar imageonsidered distorticfree and of pdect quality. The simplest FRQA metrics to be used
are mean squared error (MSE) and peak sitgrabise ratio (PSNR). However, they do not correlate well with
human perceptual measures [30]. Sevémgiroved FRIQA modds were then proposed based oniouzs
mechanism such as human visual system (HVS) [2], image stru@}li82],[40], or image statisticH]. RR-IQA
models do not require full information of the reference image. A set afrfmers relevant to visual perception
of image quality are firstelected from the reference image before being used with the test image ébeeissim
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quality. Weltknown RRIQA models include RRED [27], RBSIM [23, and OSVP [33. High correlation with
human perceptual measures are obtained by thed®&Rnd RRIQA models. But full or partial reference
image information may not be available in some applications. In such a®&A model thaheed noreference
information is more favourable.

BIQA models can be further classified into two main categ§ii®k distortionspecific (DS) models and
generalpurpose models. DS BIQA models usgecific distortion modelto estimate quality based on an
assumption that theistortion affecting the image is known beforehfic[15],[39]. However, these models can
only beemployed in specific application domains wherein the specific degradatmeaningful but cannot be
used in a more general setfiwithout substantial redesign. On the other side, no prior knowledgedistogion
affecting the image is required iemeralpurpose BIQA models. Instead, ineaguality is derived solely assuming
theimage is degraded by the same distortion mechanism that affects a databesgeafxemplars. Such image
exemplars can be obtained from standard IQA databases such a2BIMESIQ [13] and TID2008 [Z2 Using
such exemplars and their provided MOS / DMOS values, the models are thed toaprdict the MOS / DMOS
of theimage.

Some readers may notice the terms ‘quality’ and ‘distortion’ beirggl.u¥hey are difficult to pgecify
unambiguously as there is no universal or formal dédimito them. Fothis paper, weise the terms dsllows:
‘Image quality’ is the integrated perception of the overall degree oflesce of an image [7while ‘image
distortion’ refers to anylegradation to the appearance of an image that occurs during the imagegi@equis
communication or processing systems [31]. The perception of imagg/gndlimage distortiordiffer depending
ontheapplication. This work foceson an image commueation system. In this context, the quality of an image
is associated to how well the image is acquired, processbdommunicated ovére transmission network. In
a typical image communication system, the image usually uneleiiy® processes of acqiisn, compression
and transmission before being presented to the end users. These processgsdoagmnanydistortions to the
image. For examples, the acquisition stey mroduceblurring and/or noise artefacts, the compression step may
generate JPEG compression artefactéasthe transmission step may introducese and/or peket loss artefacts.
This work only deawith distortions that are normally encountered in acgidmage communication system

The remainder of the paper is organisedfalfows. In Section 2, we review previous approaches in
developing BIQA models and explain the motivation behind our proposed nBmdibn 3 then describethe
framework of our model. In Section 4, experimental setup and reselsesented followed blater analysis.
The paper is then concluded in Section 5

2. PREVIOUS BIQA MODELS AND MOTIVATION

The majority of previous generplrpose BIQA models focus oaextracting features that carry
discriminative information@out image quality. Mostodels emplg handcrafted featuredesigned based on the
natural scene statistics (NSS) approach. NSS based models assumedimastedidtical properties of natural
images will be changed with the presence of distortionstladmage perceptual quality can be irderiby
appropriately quantifying the changes. The models catiffezentiated by théeatures used. For instance, BIQI
[20] and DIIVINE [21] employ features derived from wavelet transf® while BLIINDSII [24] uses DCT
features. Other models, such as BRUE [19], GMLOG [34] and DESIQUE [41] utilise features obtained in the
spatial domain while CBIQ [35] uses Gabor features. Features based on thé aadowr statistics (NCS) are
also explored in [29]. Recently, NFEQM [38] and NFERM [8] derive their featoased on free energy principle.

Meanwhile, several BIQA models use features learned directly from raw imeg® fihe first work using
this approach was proposed by CORNIA [36]. Its promising performance feaather variations such as
supervisd CORNIA [37] and CNN [2]. Theextracted features are then used as an input to regression algorithms
to learn the mapping between the features’ space and the image quality scor&Kepaaidased learnig
methods are used usualBupport vector machif&VM) and support vector regression (SVR) with linear/radial
basis function are frequently used to this effect.

Features employelly thesemodels are generally invariant to distortidfigh prediction performanse
correlatedwith human perceptual measurase eported by thesenodek when tested owarious typs of
distortions instandard IQA database®ur model, however, tackldbe BIQA taskfrom an alternative angle.
Rather than designing new quality predictive features, we contewpimadesigning a learning framework that
needs n@xplicit training phasewhich isoften required by previous BIQA mode¥khe proposed model, dubbed



PATCH based Image Quality assessment (PATQM is based on #ive-stage framework. Given matural
image, PATCHIQ first samples local patches at the locations of the image’s inteiaest.pAt the second stage,

it then extracts spatial domain BIQA features from those patéhesstortion identification process isext
performed at the thirdtagebased on assumptidhat the perceived quality of a distorted image will be best
predicted by features drawn from images with the same distarées PATCH-IQ uses a nearest neighbour
classifier to perform such a task. The patches correspond igetitéied distortion class are then utilised in the
fourth stage to predict local image quality. This is done vienaadeest neighbour regression that associates the
local image quality with the DMOS of the annotated patches constrained detiifiéd distortion class. Finally,

an overall image quality score is derived by pooling the local scores ofdaikegadh the image

PATCH-IQ brings thesé&ey propertieso IQA. First, PATCH-IQ predicts an image quality directly from
a set of annotated patches using a nearest neighbour technique. Tots/édech by the fact that the cost of
learning for the technique is virtually zero where its training @eoaly involves storindhe feature vectors and
the labels of the patches. While previous BIQA models requitrairing when images with new distortion types
are introdued, these images (viz ipgtches) types care simply added to the salteviating the need of explicit
training phase. Second, most of the previous models accumulate stafestitabs over thenéire image.
Therefore, they caonly provide a global estimate of image quality. By first operatimgasth level, PATCHQ
canprovide local imge quality predictn anda global oneThird, PATCHIQ can also identify thelistortion
affecting the image, a property that is not available in most of the pseBIQUA models. The last two properties
can be useful for further local processing stages such as filterstgraton or enhancement.

Theproposed model is motivated by promising results achieved by our previousrBd@& NPNJ17].
However, there are two substantial differences. First, PAT@€Employs an interest poiatmsed patch sampling
strategy as opposed to the previous-owerlapping sampling strategy. SedpRATCHIQ also utilises different
spatial domain features to perform distortion identification and BIQAstdskaddition, the previous work was
tested only on IQA databases with single distortion with limited resultsaaalysis. Further experimentsda
analysis including tests on multiple distorted images are included iraghés fo further demonstrate the capability
of the proposed model.

3. FRAMEWORK FOR DISTORTION IDENTIFICATION AND BLIND IMAGE QUALITY
ASSESSMENT

Figure 1 illustrates the proposedrnework for PATCHQ. There are 5 main stages: 1) Patch extraction;
2) Feature extraction; 3) Distortion identification; 4) Locat@h) quality estimation; and 5) Global (image)
quality estimation. These five stages are described as follows.

Labelled
dataset

Patch Feature Distortion Locgl Glopal
extraction extraction identification q‘_la"“,’ q%‘a"tY
estimation estimation

Figure 1: Proposed PATGH) framework

3.1 Patch Extraction

A patch sampling strategy based on interest pahan image isonsideredInterest points of an image
generallyreferto pointsdetected in the image to simplify further processing in a visistem. They are normally
at regions of interest, the regions within an image with lmfdrmation content [2B The mainapplication of
interest points in computer vision and image processing field is tpdimds / regias in the image domalikely
to represent objects. Therefore, they are often employed in proceséiaguiah as object recognition and image
matching.PATCH-IQ tries to extend interest points’ application to a BI@AK. It has been shown thabst of
the time human focus on objdikte regions, i.e. the ggons around interest points when looking at an image [11].
In that respect, PATCHQ assumes thatny distortion applied to those regions will carry greater impact on how
human perceived image quality than the distortion in any other imaigasesyich as background. By first finding
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the location of interest points in an image, patches that contam mel@vant information on perceptual image
quality can be identifiednd selected. PATGH) achieves this by using an interest point detector.

A wide variety of interest point detectors exist in the literature. In this M@K [L4] is chosen due to its
simplicity ard good performanceé&IFT takes an image and transforms it into a large collection of local feature
vectors containing descriptors that are useful to identify objects inageirihere are 4 stages involved in SIFT:
1) Scalespace extrema detion; 2) Keypoint localisation; 3) Orientation assignment; and 4) Keypointipiesc
The first two stages aim at identifying the locations of stable keypointsielh image features / descriptors will
be extracted. The third stage assigns consistent orientation to thpsénkeypased on local image properties
while the last stage uses local gradient information to create the desciip@resulting SIFT descriptors may
not be useful in estimating image quality. PAT-GB{ however, does not require the use of SIFT descriptors.
Instead, it only utilises the first two stages of SIFT to help find the locattomkieh patches will be extracted.
Based on the above assumption that the regions surrounding the keypoits ga#ter information on image
quality, PATCHIQ samples patches ok x w size using the provided keypoints’ coordinates as centres. One
may argue that an imagdfected by distortion can givets of false keypoints as edges lose sharpness. These
false keypoints obviously are not useful for object recognition or detectipngrsFor quality assessmetthese
keypoints are still usefudince, usually, the whole irga is distortedThe extracted image patches still carry
information on image qualityAn example of this process is shoimrFigure 2. Note that PATGH) only extracts
patches at the identified keypoint locations. If there is no keypetatted at any particular image area, no patch
is extracted at that area

® SIFT Detector

Figure 2: Patclextraction using interest point sampling strate:

3.2 Feature Extraction

Two main factorsffect the choice of features. First, it is dalito employ features witlow computational
requirements since they are to be extraetedatch level. PATCHQ utilises patial domain featuret® avoid
expensive computation normally encountered by image trandfased features. Second, the selected features
should carry information not only on pepteal quality but on the distortion the image. Tie same features as
implemented in the BRISQUE modeld] are adopted by PATCHD. Specifically PATCH-IQ utilises the
empirical distributions of locally normalised luminance coefficientsgaidvise products of these coefficients to
design 18statistical features for both tasks. Given an image ftds locally normalised luminance is first
obtained by computing local mean subtraction and divisive normatisattieach locatio(y, j) :

ﬁ(i,j) _ PAH-n) , (1)

o(i,j)+e
where thdocal mean fieldu(i, j) is defined as:
WG, ) = Xkmmk Dimmr, Wit Pt (1) (2

and the local variance fielsl(i, j) is given by:

2
0(i) = |35 By o (Puai ) — i) @
In theseequationsj € 1,2, ...,h andj € 1,2, ...,w are spatial indices with andw being the patch height
and width respectively. Herejs a constant to prevent the denominator in Equation (1) from fallingaonxtele
w is a Gaussian weighting function sampled with 3 standard deviatidnmescadd to unit sum anfl = L is the
function window size. The empirical distribution of these coefficients is thedelled by a generalised Gaussian
distribution (GGD) with zero meaas in [2Q:

fOsuo?y) = aexp[—(blx —uD'], 4)
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with a = by/2T(1/y), (5)

b= (1/0)yTB/)/TA/Y) | (6)
and I'(x) = fooo t*letdt x>0. 7

In Equation (4)u,s? andy are the mean, the variance and the shape parameter of the distribution respectively
wheread (x) is the @mma function. The estimated parametefsandy are then chosen as the first two features.

Next, he empirical distributions of pairwise products of neighbouring luminandgaieets are computed
on four orientations: horizontal, vertical, malmgmal, and secondaiagonal. Instead of GGD, the
distributions are modelled by an asymmetric generalised Gaussidbutiistr (AGGD). The AGGD with zero
mode is defined g49]:

. 2 2\ _ Y _(— Y
f@y, 07,08 = G epl=(=x/b)"] x <0, ®)

and f(x; Y, O'IZ,O'TZ) = (bﬁbjT/y)eXp[_(x/bT)V] x>0, (9)

where b, = 0,y/T(1/y)/T(3/y) andb, = o,/ (1/y)/T(3/y) . (10)

In these equationg, o anda;? are the shape parameter, the left variance and the right variance of the wistribut
respectively. The three parameters and the mean of the best AGGD fit are then s¢leatddorientation to
obtain another 16 features. In agreement with BRISQUE imaieation, PATCHQ extracts these 1&dtures
over two scales. fotal of 36 features are used by PAT-GBIto perform both distortion identification and quality
estimation Table 1summarises the extracted features.

Table 1 List of extracted features

Feature ID | Scale Orientation Feature Description
1-2 Shape parameter and variance of GGD model of normalised luminance
coefficients
3-6 1 Horizontal
7-10 Vertical Shape parameter, mean, left variance and right variance of AGGD model|of
11-14 Main-diagonal pairwise products
1518 Secondandiagonal
1920 Shape parameter and variance pf_ GGD model of normalised luminance|
coefficients
21-24 5 Horizontal
2528 Vertical Shape parameter, mean, left variance and right variance of AGGD model |of
2932 Main-diagonal pairwiseproducts
3336 Secondandiagonal

3.3 Labelled Dataset Construction

SincePATCH-IQ employsa nearesheighbour techniqye labelled datas& consisting of BIQA features
extraded from patch exemplars mum constructed. Most of BIQA models employ the 80:20-teshratios to
train their regression models. PAT@8 follows the same partition setting to build the dataset, i.e. patches from
80% of the randomly selected reference images from a standarddt@aBase and their distorted versions are
used to extract the features for the data@@ieen an image, patches bfx w size are first sampled at the interest
point locatons. BIQA features, da section 3.2, are then extracted on those patches. However, insteatyjof usi
all the extracted features, only features frBgg.; patches are utilised in each image. This is done to ensure all
images contribute the i@ number of features ata redue the computational demands of the framework. The
selected features are then combined over all images to forefathset. Denote the totaf labelled images
by Niapers the size of feature matrix for the dataset is:

D = [NiapeiPiaber X 36] . (11)

PATCH-IQ assigns the daset patches with twabels. The first label is the distortion class. Each patch is
labelled accortig to the distortion typ@ its source image. The second label is the subjective score. Each patch
is assigned with its source images’ subjective score, provided ahtisen IQA database. Assigning the score in
this way is acceptable as the distortion levels across the database imagé®iane An example of a dataset
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built from the distorted veimsns of one reference image is shown in Figure 3. There is no need wifxiathe
number of distortion classes in the dataset. If the images from isewtidn classes are provided, they can be
added directly to the datdse

Distortion Distortion Distortion Distortion
Class 1 Class 2 Class 4

Patch sampling

<

Feaure extraction $ ® $ Labelled dataset

Figure 3: Example of labelled dataset construction

3.4 Distortion Identification

Our intuition in predicting image quality is that the quality of a distarteye will be best predicted using
the images from the same distortion class. Therefore, we icgddu distortion identification stage prior to the
guality estimation stage. Note thaetBRISQUE features utilised in this work were mainly develdpeevaluate
the quality of an image. However, wbserved that the features could also be utilised for distortion identification
To show that the utilisefiéaturescapture image distton, a 2D scatter plot between the shape and the variance
parameters of the GGD model of the normalised luminance coefficientsasated Figure 4 shows the results
for the undistorted reference images and their corresponding distorsézhgdronthe LIVE IQA databasg5].

The database consists of 5 distortion types: JPEG2000 compression (JEZKLafpression (JPEG), additive
white noise (WN), Gaussian blur (GB), and simulated fast fading ch@#felt is easy to visualesfrom Figure

4 thatimages containindifferent types of distorticsare well separated the GGD parameter spastowing the
suitability of using these two features to perform distortion classdita

Meanwhile, in Figure 5, a-B scatter plot of the shape, the right variance and the left variance parameters
of the AGGD model of the horizontally paired products is plotted usiagame set of images. Again, it shows
that different distortions occupyftérent regions of the parameter space. This justifies the use of thesB AGG
parameters as the features for distortion classification purp®sasar patterns could be observed for other
features extracted from different orientations and scales. We sheubsection 4.7 how the classification
performance varies when different groups of featuresmpdoyed
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Figure 4: 2D scatter plot between the shape and the scale parameters of the GGD modemofidtised luminance
coefficients for the LIVE I@ database imaaes.

log(y)
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Figure 5: 3D scatter plot of the shape, the left variance and the right variancegparsuof the AGGD model of the
pairwise product in horizontal orientation for the LIMBA database images

Givena testimagé®, PATCHIQ extracts the images’ BIQA featwesing the same procedimeSections
3.1 and 3.2To further reduce computational time, only features fRam patches are chosen to form the image’s
feature matrid¥;. PATCHIQ then identifies the distortion typesasiated with the image by employing a nearest
neighbour based classifier. In a nearest neighbour classification casepidn shown that the optimal distance
measurement igmageto-class [2C) distance rather than the usually used imtgenage (121) distance. A
popular 12C based classifier, the Naivey8a nearest neighbour (NBNN)][lis utilised here. PATCHQ
computes the distance betwdgrand the feature matrix from each of the distortion classes in the datades
predicted distortionlass¢ for the image is then represented by the class with the minimum |2@akstlue:

¢ = argmin||F; — NN.(F)|I* , 12)
[

whereNN, (Fy) is the NNdescriptor off; in the distortion class.
3.5 Local Quality Estimation

The next stage is ®stimate the quality of the image patcH®&TCH-1Q works based on the intuition that
the quality of a patctvould be best predicted by patches of the same distortion type. Thereforerinpeuality
estimation utilising only the labelled patches within the distortion @lesgified in the previous stage. PATEH
IQ also assumes that patches with similar features are perceived to have the siynéHqualbetter quality



prediction can be achieved by utilising a set of labelled patches that aae sintile test patch in feature space.
PATCH-IQ performs this through leNN regression algorithm

Foreach test patchy, i = 1,2, ..., P the Euclidean distances between the patch and the selected labelled
patches from the datasbtis first calculated in the feature space. The labelled patches are then rearranged in
ascending order according to the computed distances. The latstlled patches are then utilised torestie the
patch quality. However, instead of using common inverse distance weigitheme, the patch quality is
estimated through a simple linear regression:

ap; = 0(f,) (13)
wherew are the optimised weights for the patch feature veftorhe weights can be calculated as:
o=X"X)"X"s, (14)
whereX is the feature matrix of the selected labelled patches agyiesents their corresponding DMOS scores.
3.6  Global Quality Estimation

Thefinal stage of the framework is basically a pooling stage. The patches5ssmer pooled to yield the
global quality score for the image. Instead of typical average or max poBWICHIQ employs an inverse
weighting rule to pool all the patches’ scores. Each local score is assignedha hvesigd on their minimum
Euclidean distancd; computed in the previous local quality estimation stage. The weagéquality score for
the image is given as:

Ptest
_ Zizg

@iqp;
“= Z?:t?twi ' (15)
Ptest 4.
where w; = s & (16)

d;

4, EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Evaluation Protocol

Databases. Performance evaluation of BIQA models is usually conducted usintatated image
databases. Each image in these databases is assigned with a M@3S/alue, which cameasure correlation
between a quality score predicted by a BIQA model and a quality score given &y.Htrare are many subjective
image databases available within the IQA research area. Three of the widely abedeatlVE [25], CSIQ
[13] and LIVEMD [1Q are employed in this work:he UVE database contair®82 images of which 779 images
are distorted. These distorted images are generated when 29 referages ame subjected to types of
distortions at 5 to 6 degradation levelkeTs distortions in the database are: JP2K, JPEG, WN, GB, and FF. Each
image is provided with a DMOS value in the range betwBeand 130. Meanwhile, the CSIQ database consists
of 30 reference images. Each reference image is distorted wyiffes of distortions at 4 to 5 degradatlevels,
yielding 866 distorted images. DMOS values assigned to these images are in thdetmgen 0 and 1. All
distorted images in the LIVE and G3%ldatabases are subjected to a singbe tyf distortion. hie LIVEMD
database also provides examples of multiple distorted images. 15 refenaiges iare first blurred at 4 levels.
The images are then subjectedi® oftwo different distortions at levels: JPEG oWN. A total of225 single /
multiple distorted images are generated for each of the two cases, GBJPEG ahd BBWII three databases,

a lower DMOS value indicates a higher quality image.

Framework parameters: The parameters are empirically determined. The number of patches for each
labelled imageP,,,; and the number of test image patcBgs are set at 30 and 100 respectively while the patch
sizeh = w is 256. For the feature extraction stage, the local windowiGsizél. is 3 and constat € is 1 as in the
BRISQUE model. Meanwhile, the number of NN patches for linearssigrein the local quality estimation stage
is set at 1000.



Performance metrics. Three metrics are commonly used to evaluate the performance of any Bl@smod
Theyare: the linear correlation coefficient (LCC), the Spearman rank order cametatfficient (SROCC), and
the root mean square (RMSE). The LCC is used to measure a model’s predicticacy anthe SROCC is used
to measure the prediction monotonicitiytbe model.The final metric RMSE can alsevalwate the prediction
accuracy of the modeA value closer to 1 (orl) for both LCC and SROCC and a value closer to 0 for RMSE
indicate higher correlation with human subjective score.

Benchmarked models: We compare®ATCH-1Q with three FRIQA models: BNR, SSIM and FSIM and
four stateof-the-art BIQA models: BIQI, BRISQUE, GMLOG and CORNIA, whose smsucodes are publicly
available. Our previous BIQA model, NPNO is also included in the congpar&ncethe four BIQA models
require training, the databases are first divided into two subsets: a traghiagdsa test set. The training set is
generated from 80% randomly selected reference images and their associated disagres while the remaining
20%reference images and their distorted versions are used for testing. Tihe@verlap between the two sets.
The same training set is used to construct the labelled dataset requre@CH-IQ and NPNO. LIBSVM [3],

[4] is used to perform regression fdrettrainingbased BIQA models where their parameters are determined
through cross validation in accordance to their papers

4.2  Evaluation on Single Databases

Two experiments were performed to ascertain the overall performance andttingodispecific (DS)
performance. In the overall performance experiment, the-teatrrun is conducted across all distorted images
regardless of their classes. This is to evaluate how well the modlmpgiacross all distortion types. In the DS
performance experiment, tlexperiment is only carried out on images in a single distortiors.cldss is to
evaluate how well it performs for one particular distortion. Theliame results across 1000 runs for both
expeiments are tabulated in Tables 2 and 3, respectivelysiFgalicity, only the SROCC results are shown for
the DS performance experiment. Similar patterns can be observed for the LEM&kdresults. Note thébr
the CSIQ database, viclude result®nly from four distortionslso present in the LIVE databas€2K, JPEG,
WN and GB. The top BIQA models are in bold.

Table 2 Median values across 1000 runs of the overall performamqeziment

I0A model LIVE CSIQ
LCC SROCC RMSE LCC SROCC RMSE
PSNR 0.8821 0.8829 12.8983 0.8562 0.9292 0.1444
SSIM 0.9464 0.9486 8.8035 0.9347 0.9362 0.0990
FSIM 0.9612 0.9639 7.5461 0.9675 0.9629 0.0710
BIQI 0.8486 0.8427 15.4068 0.8089 0.7491 0.1867
BRISQUE 0.9431 0.9421 9.3953 0.9304 0.9101 0.1073
GMLOG 0.9505 0.9503 8.8290 0.9394 0.9249 0.0997
CORNIA 0.9394 0.9416 9.9204 0.9110 0.8873 0.1254
NPNO 0.9525 0.9540 8.6407 0.9535 0.9384 0.0876
PATCH-1Q 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813
Table 3 Median SROCC values across 1000 runs of the DS performapegreent
IQA LIVE CSIQ
model JP2K JPEG WN GB FF JP2K JPEG WN GB
PSNR 0.8954 0.8809 0.9854 0.7823 0.8907 0.9363 0.8882 0.9363 0.9289
SSIM 0.9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609
FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729
BIQI 0.8303 0.9062 0.9328 0.8656 0.6885 0.7635 0.9102 0.5397 0.7826

BRISQUE 0.9164 0.9640 0.9791 0.9446 0.8872 0.8977 0.9212 0.9207 0.9186
GMLOG 0.9268 0.9630 0.9831 0.9288 0.9012 0.9161 0.9364 0.9408 0.9083
CORNIA 0.9205 0.9359 0.9608 0.9519 0.9052 0.8942 0.8820 0.7862 0.9041

NPNO 0.9497 0.9725 0.9853 0.9448 0.8745 0.9395 0.9314 0.9591 0.9230
PATCHIQ 0.9331 0.9732 0.9867 0.9697 0.8821 0.9326 0.9533 0.9654 0.9430

In the overall performance experiment, PATEQ has the best values for all three performance metrics
among the competing BIQA models when tested in the LIVE databaséarSesults are obtained for the CSIQ
database. For the DS performance experiment, PAKZhRAs the highest SROCC value among the competing
BIQA models for images distorted by JPEG compression arsefédéil or GB. It also gives the second best



performance in JP2K cases while giving comparable performance in FF Casgzaredo FRIQA models,
PATCH-IQ also achieves better overall performance compared to PSNR and SSIMpyiridaching FSIM. In
individual distortions, it outperforms PSNR and yields competitive pedoom to SSIM and FSIM. It also
outperforms both models for WN imag®ATCH-IQ’s performance is promisingiven it requires noeference
image as its input as opposed to thelR models.

4.3  Evaluation on Multiple Distortion Database

To further investigate the effectiveness of the proposed frameworkeatiotinpeting BIQA models are
tested on the LIVEMD database. The database is more challenging as it also cordgies tinat underwent
multiple distortions. A similar experimental procedure is implemented #e single distortion database. The
results are presented in TaldleThe first five columns show the results from the DS performance experiment
while the last column represents the results from the overall performgpegneant. The top two models are in
bold. The results suggest that PAT-0BI generally has good prediction parfance in the overall performance
experiment where it consistently produces the top LCC, SROCC M®ERalues. In the DS performance
experiment, it again performs the best in WN and GB cases while comes sed®itiGncases. For multiple
distortions casesPATCHIQ is among the top two BIQA models for images distorted bya@8 WN. For
GBJPEG images, it has the second best SROCC value and gives compafabied RMSE values

Table 4 Median values across 1000 iterations on the LIVEMD datba

LCC

GBJPEG GBWN GB JPEG WN ALL
BIQI 0.7417 0.1291 0.8629 0.1005 0.5434 0.3312
BRISQUE 0.8311 0.8359 0.8932 0.6287 0.9353 0.9188
GMLOG 0.8118 0.7803 0.7712 0.6743 0.8451 0.8693
CORNIA 0.8250 0.8658 0.8537 0.5301 0.8026 0.9133
NPNO 0.8458 0.7141 0.8917 0.7619 0.8144 0.8749
PATCH-1Q 0.8205 0.8551 0.8948 0.7264 0.9475 0.9311

SROCC

GBJPEG GBWN GB JPEG WN ALL
BIQI 0.7515 0.0617 0.8585 0.0833 0.5505 0.3570
BRISQUE 0.8172 0.8327 0.8834 0.6667 0.8833 0.9003
GMLOG 0.8107 0.7619 0.7755 0.6667 0.8000 0.8451
CORNIA 0.8089 0.8551 0.8349 0.4833 0.7667 0.9017
NPNO 0.8382 0.6628 0.8797 0.7667 0.8000 0.8459
PATCH-1Q 0.8239 0.8640 0.8842 0.7167 0.8833 0.9106

RMSE
GBJPEG GBWN GB JPEG WN ALL
BIQI 8.8770 44.3462 9.4397 10.3556 12.7309 25.8004
BRISQUE 7.9994 8.4818 8.7194 7.2798 6.3376 8.4282
GMLOG 8.3557 9.9733 12.4358 7.4688 9.7714 10.2195

CORNIA 7.8099 8.0264 10.1168 8.1784 9.3534 8.6813
NPNO 7.9912 10.3441 9.2250 5.2061 13.0281 9.9040
PATCH-1Q 8.2604 8.4084 8.5511 5.7410 5.8369 8.1425

4.4  Statistical Significance and Hypothesis Testing

The differences in median correlations between the competing BIQA modgisnatabe statistically
significant. Therefore, a hypothesis test to evaluate the statistindlcsigce difference between each model is
conducted. As the SROCC and LCC values follow rlt@wed unimodal distributions, the Wilcaxoanksum
test is employedvoiding the normality assumption required by a typitakt[26]. The Wilcoxon ranksum test
measures the equivalence of the medaoes of two independent samples. The test is performed on the SROCC
values obtained from the 1000 runs of experiments at a significance i@&@LoThe null hypothesis is that the
SROCC values of the two BIQA models are drawn from the populatiohsgital median while the alternative
hypothesis is that the median of one model is greater than the other.

The results are shown in Tablefscore of ‘1’ implesthere is a statistically significant difference between
both models and the model in row teasarger median than the model in columnsadre of 1’ also implies
there is a statistically significant difference between the modelhiéutddel in column now has a larger median
than the model in row. A score of ‘0’ indicates the nulpdihesiscannot be rejectedhere is no statistically
significant difference between both row and column models. On thé& ldstabase, PATGHQ has no
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statistically significant difference to NPNO but diffetis the rest. However, on the CSIQ and the LIVEMD
datdbags, PATCHIQ is different to all models.

Table 5 Results of the Wilcoxon rarsum test using the SROCC values of competing BIQA models

LIVE

BIQI BRISQUE GMLOG CORNIA NPNO PATCHIQ
BIQI 0 -1 1 1 1 -1
BRISQUE 1 0 -1 1 -1 -1
GMLOG 1 1 0 1 1 -1
CORNIA 1 -1 -1 0 -1 -1
NPNO 1 1 1 1 0 0
PATCH-1Q 1 1 1 1 0 0

CsIQ

[e] BRISQUE GMLOG CORNIA NPNO PATCHIQ
BIQI 0 -1 -1 -1 -1 -1
BRISQUE 1 0 1 1 1 -1
GMLOG 1 1 0 1 -1 -1
CORNIA 1 -1 1 0 1 -1
NPNO 1 1 1 1 0 -1
PATCH-1Q 1 1 1 1 1 0

LIVEMD

BIQI BRISQUE GMLOG CORNIA NPNO PATCHIQ
BIQI 0 -1 1 1 1 -1
BRISQUE 1 0 1 0 1 -1
GMLOG 1 -1 0 -1 0 -1
CORNIA 1 0 1 0 1 -1
NPNO 1 -1 0 -1 0 -1
PATCH-1Q 1 1 1 1 1 0

4.5 Influence of Framework Parameter on Its Performance

To investigate the effect afarying the number of images in the labelled dataset, all three databases are
patitioned under threrain-test ratios: 80:20, 50:50 and 30:70. The remaining five competing BIQAlsnaxde
also evaluated under the same settings. The number of selected patches for dedlintaigel and test image
andthe patch size are fixed as before. The SROCC results for the overall pederexperiment are shown in
Table6. As expected, the performances of all tested BIQA models decrease as the ofusalngpleseduces.
On the LIVE database, PATGHD has the second best SROCC values after NPNO at 50% and 30% training
ratios. However, when tested on the CSIQ and the LIVEMD databas@§HREQ produces the best SROCC
values at all three training ratios. This shows it has better generalisation tiaitit NPNO. Comparet the
remaining four BIQA models, it is also interesting to note that PATQI4till gives better SROCC values at 50%
ratio than the other models’ results at 80% ratio on the CSIQ andMD/&hile dightly lags behind GMLOG
on the LIVE database. This proves that the PATIQHramewok works well whenthe number of training

samples is small.

Table 6 SROCC comparison for different training (labelled) samples ratio

Database LIVE CSIQ LIVEMD
Ratio 80% 50% 30% 80% 50% 30% 80% 50% 30%
BIQI 0.8427 0.8346 0.8147 0.7491 0.7369 0.7182 0.3570 0.3421 0.3218
BRISQUE 0.9421 0.9274 0.9033 0.9101 0.8951 0.8722 0.9003 0.8921 0.8828
GMLOG 0.9503 0.9402 0.9251 0.9249 0.9091 0.8870 0.8451 0.8121 0.7760
CORNIA 0.9416 0.9374 0.9290 0.8873 0.8812 0.8734 0.9017 0.8984 0.8933
NPNO 0.9540 0.9510 0.9452 0.9384 0.9295 0.9143 0.8459 0.8427 0.8331
PATCHIQ 0.9540 0.9471 0.9346 0.9430 0.9320 0.9151 0.9106 0.9056 0.8950

The results of varying the number of patchesdnh labelled image on the LIVE database at 80% training
ratio are shown in Tablé and Figure Grespectively. Ahigher number of utilised patches will lead to higher
SROCC and LCC values. However, it will lead to longer computation tmiiaé identifi@ationof the distortion.
Here PATCHIQ chooses the lowest number of patches that outperforms theftateart BIQA models while

has acceptable processing time.
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Figure 6: LCC and SROCC comparison for different numbeatches in a labelledhage on LIVE database

Table 7 LCC and SROCC comparison for different number of patchadabelled image

Patch No 10 20 30 40 50 75 100 150 200
LCC 0.9483 0.9507 0.9562 0.9562 0.9598 0.9628 0.9591 0.9633 0.9632
SROCC 0.9473 0.9500 0.9540 0.9540 0.9572 0.9608 0.9568 0.9616 0.9612

The effect of the number of the nearest neighbour patches used for linear regression modél
performance is investigated. All other parameters are again fixed at tabvalties. The performance variation
of PATCHIQ when tested on the LK/ database is shown irable 8 Based on the results, there is a small
variation on the obtainegalues,ndicating that the effect dhe number of labelled patches is not significant. The
number that provides the optimum performaneamsirically chosen. Her¢he optimum pdormance is achieved
when the number is set at 1000.

Table 8 Performance variations for different numbers of NN patches used issegre

Patch No. 5 10 50 100 500 1000 2000 3000 ALL
LCC 0.9456 0.9493 0.9280 0.9502 0.9530 0.9562 0.9529 0.9496 0.9450
SROCC 0.9420 0.9458 0.9336 0.9486 0.9516 0.9540 0.9514 0.9487 0.9441
RMSE 9.1137 8.8202 10.3455 8.6313 8.4352 8.1490 8.4401 8.7318 9.0979
1
0.95
0.9 = [W Rule
0.85 - = Average
0.8 - W
LCC SROCC
LIVE
1
0.95
0.9 4 = IW Rule
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Figure 7 LCC and SROCC comparison for different pooling methmu&IVE and CSIQ databases
The quality prediction performance of PATCI® also depends on how the scores from test patches are

pooled. In Section 3.6, PATGH pools all the patches’ scores by assigning weight to each score according to
an inverse weighting rulélwo other pooling methods: average pooling and max poal@gested and the results
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are $iown in Table 9 and Figure Among the three pooling methods, we can observe that the irweiglted
based pooling method based consistently produces the highest SROCQ)/d_.RMSE vales. It provides slight
improvement to avage pooling whildetter than max pooling

Table9: Performance comparison for different pooling methods

Database LIVE CSIQ
Metrics LCC SROCC RMSE LCC SROCC RMSE
IW Rule 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813
Average 0.9540 0.9514 8.4809 0.9574 0.9333 0.0850
Max 0.8646 0.8717 19.4673 0.9001 0.8842 0.1790

4.6 Distortion Identification Accuracy

Anotheruseful property of PATCHQ is its ability to identify thelistortion affecting the image. To show
thatthe chosen NBNN classifier is capable to provide good classificatioorpenfice, the median classification
accuracy over 1000 runs of experiments on all three databases is reportestulitrane tabulated in Table .10
The chosen classifier consisterdiyhieves gooderformance across madigtortions with the minimum accuracy
value of 80%Since the classifier uses the extracted spatial domain features as itdesguiptors, the results
indicate that the features are not only suitable for quaditynation but also suitable for distortion identification
purposs.

Table D: Median classification accuracy across 1000 iterations

LIVE JP2K JPEG WN GB FF ALL
Accuracy 88.57 97.22 100 96.67 80 91.98
CSIQ JP2K JPEG WN GB FF ALL
Accuracy 90 86.67 93.33 90 - 89.17
LIVEMD GBJEG GBWN GB JPEG WN ALL
Accuracy 100 99.98 99.99 93.76 91.97 98.56

IP2K
IP2K

JPEG
JPEG

WN
WN

GB
F GB

IP2K JPEG WN GB FF IP2K JPEG WN GB

(@) (b)

Figure 8 Mean confusion matrix across 1000 runs of experiments fartist classification: (a) LIVE and (b) CSIQ

To allow visualisation of the classification fi@mance, Figure &lots the confusion matrix for each
distortion classes in bothe LIVE and the CSIQ databases. We can use the confusion matrix to AgeCifiP
IQ is confusing twodistortion classes. Each column of the matrix re@ns the instances in the predicted
distortion class while each row represents the instances in tred disttortion class. Each row adds ud.tand
the values represent the mean percentage for the 1000 runs of experhiigings. value indicates greate
confusion.In the LIVE database, we can see that WN, GB and JPEG are generally well classifiendiy-R)
and not confused with other distortion. JP2K and FF are most confusedaelitiotner whereby about 11% of
FF images are misclassified as JP2K images and about 4% of JP2K ineagesdasted as FF imag. This is
becausd-F images in the database are essentially JP2K compressed images followekiebpgs errors [25].
In the CSIQ database, good classification performance is achieved by Pi®I@ith less than 6% of the WN
images are misclassified. JPEG is the most confused distortiod ®t of the images are misclassified as JP2K
or WN images while another 4% are wrongly predicted as GB images
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4.7 Feature Analysis

To visualise the relationshipetween the extracted features and the human perception of image quality,
the SROCC values between each featanel DMOS values for the LIVE database images are plotted in Figure 9.
We can see that each feature capture quality information differenthhepnddry depending on distortionh&
proposed features correlate well with the human perceptiqnality for images affected by noise. Mésitures
are also useful for quality predictionldfirred imagesrimagedistorted by JP2K compression artéa¢n each
distortion case, we can observe that the variance parameters of both thedé€und the AGGD model have
better correlation with subjectvscores compared the shape parameters of the models. Meanwhile, among all
the proposed features, theean parameters of the AGGD models capture quality information the leathieAno
observation we can mads the same features extracted in different orientations generally hawe soniklation
values.
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Figure 9: Correlation of the extracted featuwdth the DMOS for different distorted images in the LIVE database

To evaluate the contributions of different features on both the ftilistarlassification and the quality
predicton performances, fivgroups of feature are tested on the framework;lllfeAtures (denoted as PATCH
1Q), 2) The GGD modebased features (denoted as PAFIQ2), 3) The AGGD modebased features (denoted
as PATCHIQ3), 4) All features except the mean parameter of the AGGD models (PAT@Hand 5) The
variance parameters obth the GGD model and the AGGD model (PAT-C@)5). PATCHIQ2 shouldstudy the
contribution of features derived directly from the locally nornealieiminance coefficients whereas PAT-GPB
is to evaluate the effects of features derived from the pairwise producesefabefficients. Meanwhile, features
for PATCH-1Q4 and PATCHIQ5 are selected based on the previous discussions.

The median classification accuracy values over 1000 runs of experimetis fimetPATCHIQ versions
tested on the LIVE database are tabulated in Table 11. We can see that the bigsatadassesults for both the
overall and the DS experiments are achieved when all 36 features are utiliSEGH®#@3 has better
classification accuracy than PATE@R2 showingthat the AGGD modeébased features contribute more to a
distortion identification task than the GGD mothalsed features. We can also observe that removing the mean
parameters of the AGGD models as in PATT}H has little effect to the classification pamhance. This
indicates that the mean parameters of the AGGD models have smallwationistio such a task. The classification
accuracy also drops when only variance parameters are utilised as in H@5CH

Table 11: Median classification accuracy valfgedifferent group of features on the LIVE database

PATCHIQ PATCH-1Q2 PATCH-1Q3 PATCH-1Q4 PATCH-1Q5
JP2K 88.57 82.35 88.57 88.24 79.42
JPEG 97.22 88.57 97.22 96.92 94.29
WN 100 96.67 100 100 100
GB 96.67 96.67 96.67 96.67 93.33
FF 80 66.67 79.42 80 66.67
ALL 91.98 85.80 91.93 91.82 85.80
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Table 12 shows the median SROCC values over 1000 trials obtairteel $gnte five PATCHIQ versions
when tested on the LIVE database. Few similar observations can be madérsirtherbest qualitprediction
performances for both experiments are produced when PATCHilised all the proposed features. Second,
PATCH-IQ3 has better correlation values in most distortion cases than PAQZHThis indicates that the
AGGD modetbased features have better correlation to human perceptual measures than thed@8iased
features. Third, PATCHQA4 achieves similar prediction performances to PATIQHor images affected by noise
and compression artefacts while only suffers a slight degradationformpance for GB and FF images. This
shows that the mean parameters of the AGGD models contribute littleuslity gprediction task. Meanwhile,
PATCH-IQ5 also achieves close prediction performance to PATQIh both experiments. This suggests that,
while the \ariance parameters of both the GGD model and the AGGD models may niaabke daatures for a
distortion classification task, they are useful features for imagkty prediction.

Table 12: Median SROCC values for different group of feston the LIVEdatabase

PATCHIQ PATCHI1Q2 PATCH-1Q3 PATCH-104 PATCH-1Q5
JP2K 0.9331 0.9090 0.9241 0.9331 0.9187
JPEG 0.9733 0.9591 0.9733 0.9733 0.9720
WN 0.9867 0.9671 0.9867 0.9867 0.9867
GB 0.9697 0.9406 0.9666 0.9671 0.9693
FF 0.8821 0.8665 0.8661 0.8729 0.8732
ALL 0.9540 0.9319 0.9481 0.9534 0.9465

4.8 Computational Complexity

Having a fast computation speed is always desirable especially for appbddiat require online quality
assessment like adaptive coding in videeaming PATCH-1Q’s processingimeis analysedn this subsection
There are three major stages that consume most of the processin¢ljimpatch and feature extraction; (2)
distortion identification; and (3) locgluality estimation. B cessing timgare based onnroptimised MATLAB
R2011b code on an 8GB RAM computer with an Intel i5 3.20 GHz processor.

ExtractinglQA features is the most time consungipart of the model framework Besatures are extracted
at the patch level rather than at the image level. A higher number of patithiead to longer extraction time.
Additional computation time is also required for interest points’ detectioaddlition, the choice of statistical
features to be utilised also plays important roles in keeping acceptabisgirg time. On averagetjlising
spatial domain features described in-sebtion 3.2 and setting the number of test patches as-sestibn 4.1,
PATCH-IQ requires 1.03 seconds to extract the features in a typicak 568 image. Processing time of the
distortion identificaibn stage is determined by the 12C distance computation. It depends on tHalszaloelled
dataset. The dataset size is determined by the number of labelled imatjes mmehber of patches within those
images. A larger dataset will require longerdito compute the 12C distance between the test patches and their
nearest neighbour labelled patches. However, a larger database will lead toplestietion performance.
Therefore, there is a clear trad# between the prediction performance and the diXtance computation time.
Choosing an appropriate dataset size is essential to ensure fast computhilenachievingcompetitive
prediction performance. At 80% ratio, PATE@8 requires an additional 0.05 second to perform distortion
identification.

Finally, the local quality estimation processing time is directly relateatoutmber of NN patches selected
for linear regression. Aigher number of patches will lead to longer quality estimation Bating thgparameters
asin subsection 4.1, an extra 0.08 secqmatforns quality estimation for all test patch&¥e do not consider the
time to constructhe labelleddatasefs it is assumed that it is already available prior to the testing stage. The
average rusiime comparison between PATA@R andthe competing BIQA models is shown in Table 13. BIQI
is the fastest but has the worst performance among all the compared. RédalHIQ is slower than others
except CORNIA. However, given its superior performance, PATQHan bea better option for IQA
applications when real time computation is not a key requirement.

Table 13: Average rutime

BIQA model BIQI BRISQUE GMLOG CORNIA NPNO PATCH-1Q
Rurttime (s) 0.08 0.18 0.10 2.43 0.19 1.16
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5. CONCLUSION AND FUTURE WORK

In this papera simple bueffective BIQA model that estimates image quality without the presence of a
reference image is presented. The model, PATQHSs based on a fivetage framework that operates in a spatial
domain. In contrast to many previous BIQA models, PATIQHpredictsthe quality of an image directly from a
set of annotated patches using nearest neighbour methods. The approacbsalfevia¢ed of any prior training
phase. PATCHQ can alscestimate image qualitytally and identify thalistortion affecting the imag two
useful properties that are not available in most of current BIQA mobleésmodel is tested extensively on three
subjectrated image databases. The experimental results demonstrated that the ialhgesstimates of
PATCH-IQ are highly correlatwith human perceptual measures of image quality across variouokinusge
distortions. PATCHQ also has greater performance to athpeting BIQA models iquality prediction accuracy
and robustness. PATCGH) also generalises well across differeatabases including the one with multiple
distorted images.

Despite thee promising results, several stepsld be taken to improve PATCI). PATCH-IQ relies on
alabelled dataset artths only beindested on distortionis the standard 1Q databases. Inbducingnew types
of distortions will increase the dataset size, leading to higher meamorprocessingme requirements. Here
the use of parallel computing or less computational expensive feature extraetioods could be explored to
speedup the praess. We could also integrate incremental learning techniques in the datesteiction to help
dealing with an increasing number of new distortion classes. lIri@ddibtaining accurate image distort class
is essentiato provide PATCHIQ with better regression inputs for quality estimation stages. WhileOMAIQ
uses spatial domain features and a NBNN classifier to perform thdéfictdsm, different features and other
nearest neighbour classifiers could also be tested to obtain better @tgsificcuracy.
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