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Abstract: In this paper, a novel fully data-driven algorithm, named Self-Organised Direction Aware (SODA) 

data partitioning and forming data clouds is proposed. The proposed SODA algorithm employs an extra cosine 

similarity-based directional component to work together with a traditional distance metric, thus, takes the 

advantages of both the spatial and angular divergences. Using the nonparametric Empirical Data Analytics 

(EDA) operators, the proposed algorithm automatically identifies the main modes of the data pattern from the 

empirically observed data samples and uses them as focal points to form data clouds. A streaming data 

processing extension of the SODA algorithm is also proposed. This extension of the SODA algorithm is able to 

self-adjust the data clouds structure and parameters to follow the possibly changing data patterns and processes. 

Numerical examples provided as a proof of the concept illustrate the proposed algorithm as an autonomous 

algorithm and demonstrate its high clustering performance and computational efficiency. 

Keywords: autonomous learning, nonparametric, clustering, Empirical Data Analytics (EDA), cosine similarity, 

traditional distance metric. 

1. Introduction 

Tremendous increase in the volume and complexity of the data (streams) combined with rapid 

development of computing hardware capabilities requires a fundamental change of the existing data processing 

methods. Developing advanced data processing methods that have elements of autonomy and deal with 

streaming data is now becoming increasingly important for industry and data scientists alike [4], [11]. 

Data partitioning and clustering techniques have been widely used in different areas of the economy and 

society [3], [16], [35] However, despite being considered to be an unsupervised form of machine learning, 

traditional clustering techniques require prior knowledge and handcrafting to operate. Users need to define a 

number of parameters and make assumptions in advance, i.e. bandwidth [16], number of clusters [18], [25], 

[40],  radii [15], [21], [28], [41], grid size [31], type of the distance metric [18], [26], [40],  kernel type [10], 



 

 

[16], [42], etc. Moreover, the parameters and thresholds that are required to be pre-defined are often problem- 

and sometimes user-specific, which inevitably leads to the subjective results; this is usually ignored and 

neglected portraying clustering and related data partitioning techniques as unsupervised.  

Generally, clustering algorithms may use miscellaneous distances to measure the separation between data 

samples. However, the well-known Euclidean and the Mahalanobis [27], [33] distance metrics are the most 

frequently used ones. In some fields of study such as natural language processing (NLP), for example, the 

derivatives of the cosine (dis)similarity, which is a pseudo metric, are also used in the machine learning 

algorithms for clustering purpose [3], [38], [39]. Nevertheless, once a decision is made, only one type of 

distance/dissimilarity can be employed by the clustering algorithms.  

Empirical Data Analytics (EDA) [5]-[7] is a recently introduced nonparametric, assumption free, fully 

data driven methodological framework. Unlike the traditional probability theory or statistic learning approaches 

[9], EDA is conducted entirely based on the empirical observation of the data alone without the need of any 

prior assumptions and parameters.  It has to be stressed that the concept of “nonparametric” means our 

algorithms is free from  user- or problem- specific parameters and presumed models imposed for the data 

generation, but this does not mean that our algorithms do not have meta-parameters to achieve data processing. 

In this paper, we introduce a new autonomous algorithm named Self-Organised Direction Aware (SODA) 

data partitioning. In contrast to clustering, a data partitioning algorithm firstly identifies the data distribution 

peaks/modes and uses them as focal points [7] to associate other points with them to form data clouds [8] that 

resembles Voronoi tessellation [34]. Data clouds [8] can be generalized as a special type of clusters but with 

many distinctive differences. They are nonparametric and their shape is not pre-defined and pre-determined by 

the type of the distance metric used (e.g. in traditional clustering the shape of clusters derived using the 

Euclidean distance is always hyper-spherical; clusters formed using Mahalanobis distance are always hyper-

ellipsoidal, etc.). Data clouds directly represent the local ensemble properties of the observed data samples. 

The SODA partitioning algorithm employs both a traditional distance metric and a cosine similarity based 

angular component. The widely used traditional distance metrics, including Euclidean, Mahalanobis, Minkowski 

distances, mainly measure the magnitude difference between vectors. The cosine similarity, instead, focuses on 

the directional similarity. The proposed algorithm that takes into consideration both the spatial and the angular 

divergences results in a deeper understanding of the ensemble properties of the data. 

Using EDA operators [6], [7] the SODA algorithm autonomously identifies the focal points (local peaks of 

the typicality, thus, the most representative points locally) from the observed data based on both, the spatial and 



 

 

angular divergences and, based on them, discloses the ensemble properties and mutual distribution of the data. 

The possibility to calculate the EDA quantities incrementally enables us to propose computationally efficient 

algorithms. 

Furthermore, a version of the SODA algorithm for streaming data is also proposed, which is capable of 

continuously processing data streams based on the offline processing of an initial dataset. This version enables 

the SODA algorithm to follow the changing data pattern in an agile manner once primed/initialised with a seed 

dataset. The numerical examples in this paper demonstrate that the proposed autonomous algorithm constantly 

outperforms the state-of-the-art methods, producing high quality clustering results and has high computational 

efficiency. 

The remainder of this paper is organised as follows. Section 2 introduces the theoretical basis of the 

proposed methodology and approach. Section 3 presents the main procedure of the proposed SODA partitioning 

algorithm. The streaming data processing extension is described in section 4. Numerical examples and 

performance evaluations are given in section 5. This paper is concluded by section 6. 

2. Theoretical Basis 

Firstly, let us consider the real data space m
R  and assume a data set/stream as  1 2 3, , ...x x x , where 

T

,1 ,2 ,, ,..., m

i i i i mx x x    Rx  is a m dimensional vector, 1,2,3,...i  ; m  is the dimensionality; subscript i

 1,2,3,...i   indicate the time instances at which the i
th

 data sample arrives. In real situations, data samples 

observed at different time instances may not be exactly the same, however, with a given granularity of 

measurement, one can always expect that the values of some data samples repeat more than ones. Therefore, 

within the observed data set/stream at the thn  time instance denoted by  1 2, ,..., nx x x , we also consider the set 

of sorted unique values of data samples  1 2, ,...,
unu u u  (

T

,1 ,2 ,, ,..., m

i i i i mu u u    Ru ) from  1 2, ,..., nx x x  and 

the corresponding normalised numbers of repeats  1 2, ,...,
unf f f , where un  ( 1 un n  ) is the number of 

unique data samples and 
1

1
un

i

i

f


 . The following derivations are conducted at the thn  time instance as a default 

unless there is a specific declaration.  

2.1. Distance/Dissimilarity Components in SODA 

As it was described in section 1, the SODA approach employs: 

i) a magnitude component based on a traditional distance metric; 



 

 

ii) a directional/angular component based on the cosine similarity; 

and, thus, it is able to take advantage of the information extracted within a metric space and within a pseudo-

metric, similarity oriented one, namely, the spatial and directional divergences.  

The magnitude component can be, but is not limited to, the well-known Euclidean or Mahalanobis 

distances as well as other known full metric types of distances. For the clarity of the derivation, the most widely 

used Euclidean distance metric will be used in this paper as the magnitude component, and thus, the magnitude 

component is expressed as: 

   
2

, ,

1

, ; , 1,2,...,
m

M i j i j i l j l

l

d x x i j n


    x x x x                                                                         (1) 

The angular component is based on the cosine similarity and expressed as: 

   ,, 1 cos ; , 1,2,...,
i jA i jd i j n  

x x
x x                                                                                            (2) 

where  ,

,
cos

i j

i j

i j

 
x x

x x

x x
, 

,i j


x x
 is the angle between ix and jx .  

In the Euclidean space, since , ,

1

,
m

i j i l j l

l

x x


x x and ,i i ix x x , the directional component 

 ,A i jd x x  can be rewritten as follows: 

 

2 2

, , , , , ,

1 1 1 1

2 2

2

,,

1

,
, 1 1

2 2
; , 1,2,...,

1 1

2 2

m m m m

i l j l i l j l i l j l
i j l l l l

A i j

i j i j i ji j

m
j l ji l i

l i ij j

x x x x x x

d

i j n

xx

   



      



 
    
 
 

   



x x
x x

x x x x x xx x

xx

x xx x

             (3) 

One can notice that, if x or y  are equal to 0 , then  , 0A i jd x x .  

Using the two components, Md and Ad , together, any high-dimensional problem can be projected to a 

convenient for visualisation 2D plane which we call the direction-aware (DA) plane (see Fig.1). The horizontal 

axis on the DA plane represents the magnitude component and the vertical axis represents the angular 

component. A simple illustrative example is depicted in Fig. 1 where the data sample 1x  is selected as the 

origin of the coordinate system within the DA plane, and the data samples 2 3 4, ,x x x  are projected to the DA 

plane based on both, their magnitude and angular components. Note, that the original dimensionality, m of the 

four (n=4) data points illustrated in Fig.1 does not matter and the visualisation is always 2D. This characteristic 

of the proposed DA plane can be very useful for high dimensional problems such as NLP [3], [38], [39], 



 

 

genome decoding [43], spectroscopy [19],  fault detection of aviation data [32], image recognition [27], [30], 

etc.  

 

Fig. 1. Illustrative example of the DA plane 

2.2. EDA Operators 

The recently introduced Empirical Data Analytics (EDA) is an alternative methodology for machine 

learning which is entirely based on actual empirically observed data samples [5]-[7]. It estimates the ensemble 

properties of the empirically observed discrete data based on their relative proximity in the data space; thus, 

EDA is free from user- and problem- specific parameters and entirely data-driven.  

The main EDA operators are described in [5]-[7], which are also suitable for streaming data processing. 

The EDA operators include: 

i) Cumulative Proximity  

The cumulative proximity,  of  ix  ( 1,2,...,i n ) is defined as [5]-[7]: 

   2

1

,
n

n i i j

j

d


x x x                                                                                                                                 (4) 

where  ,i jd x x  denotes the distance/dissimilarity between ix and jx . 

With the Euclidean component Md , the cumulative proximity can be calculated recursively as [6]: 

     2 2
2

1

,
n

M M M M

n i M i j i n n n

j

d n X


      x x x x                                                                            (5) 

where 
M

n is the mean of  1 2, ,..., nx x x  and 
M

nX  is the mean of  2 2 2

1 2, ,..., nx x x ; they can be updated 

recursively as [4]: 

 
1 1 1

1 1
;M M M

n n n

n

n n



    x x                                                                                                               (6) 
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1 1 1

1 1
;M M M

n n n

n
X X X

n n



  x x                                                                                                     (7) 

Using the angular component, the cumulative proximity can be rewritten as: 

   
2 2

2 2
2

1

, 1
2 2

n
A A A A A Ai i

n i A i j n n n n n

j i i

n n
d X



   
           
   
   

    
x x

x x x
x x

                          (8) 

where 
M

n is the mean of 1 2

1 2

, ,..., n

n

  
 
  

xx x

x x x
 and 1A

iX  ( 1,2,...,i n ), and similarly: 

1

1 1

1

1 1
;A A An

n n

n

n

n n



    

x x

x x
                                                                                                          (9) 

ii) Local Density 

Local density D  is defined as the inverse of the normalised cumulative proximity and it directly indicates 

the main pattern of the observed data [6], [7]. The local density, D  of ix ( 1,2,...,i n ; 1un  )  is defined as 

follows [6], [7]: 

 
 

 
1

2

n

n j

j

n i

n i

D
n








 x

x
x

                                                                                                                                (10) 

One can see that, with the Euclidean distance metric,  
1

n

n j

j




 x  gets the form of [6], [7]: 

   2
2

1

2
n

M M M

n j n n

j

n X


  x                                                                                                                (11) 

For the angular component,  
1

n

n j

j




 x  can be re-written as: 

   2
2

1

1
n

A A

n j n

j

n


  x                                                                                                                         (12) 

Thus, for the case of Euclidean distance, the local density reduces to the following Cauchy type function 

[6], [7]: 

  2

2

1

1

M

n i
M

i n

M M

n n

D

X











x
x

                                                                                                                       (13) 

And for the angular component, the local density has a similar form: 



 

 

  2

2

1

1
1

A

n i
A

i n

A

n

D 









x
x

                                                                                                                           (14) 

In the proposed SODA data partitioning approach, since both components, the magnitude (metric) and the 

angular one are equally important, the local density of ix ( 1,2,...,i n ; 1un  ) is defined as the sum of the 

metric/Euclidean-based local density (  M

n iD x ) and the angular-based local density (  A

n iD x ): 

      2 2

2 2

1 1

1 1
1

M A

n i n i n i
M A

i n i n

M M A

n n n

D D D

X

   
 

 
 

 

 

x x x
x x

                                                             (15) 

iii) Global Density 

The global density is defined for unique data samples together with their corresponding numbers of 

repeats in the data set/stream. It has the ability of providing multi-modal distributions automatically without the 

need of user decisions, search/optimisation procedures or clustering algorithms. The global density of a 

particular unique data sample, iu  ( 1,2,..., ui n ; 1un  ) is expressed as the product of its local density and its 

number of repeats considered as a weighting factor [7] as follows: 

   G

n i i n iD f Du u                                                                                                                                    (16) 

As we can see from the above equations, the main EDA operators: cumulative proximity (  ), local 

density ( D ) and global density ( GD ) can be updated recursively, which shows that the proposed SODA 

algorithm is suitable for online processing of streaming data. 

3. SODA Algorithm for Data Partitioning 

In this section, we will describe the proposed SODA algorithm. The main steps of the SODA algorithm 

include: firstly, form a number of DA planes from the observed data samples using both, the magnitude-based 

and angular-based densities; secondly, identify focal points; finally, use the focal points to partition the data 

space into data clouds. The detailed procedure of the proposed SODA partitioning algorithm is as follows. 

3.1. Stage 1: Preparation  

At this stage, we calculate the average values between every pair of data samples,  1 2, ,..., nx x x  for both, 

the square Euclidean components, Md  and square angular components, Ad : 
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                                                                (17) 
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


xx
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                                                                       (18) 

Then, we can obtain the global density,  G

n iD u ( 1,2,..., ui n ) of the unique data samples  1 2, ,...,
unu u u  

using equation (16). After the global densities of all the unique data samples are calculated, they are ranked in a 

descending order and renamed as  1 2
ˆ ˆ ˆ, ,...,

unu u u . 

3.2. Stage 2: DA Plane Projection  

The DA projection operation begins with the unique data sample that has the highest global density, 

namely 1û . It is initially set to be the first reference, 1 1
ˆ u , which is also the origin point of the first DA 

plane, denoted by 1P   ( 1L  , L  is the number of existing DA planes in the data space). For the rest of the 

unique data samples ˆ
ju  ( 2,3,..., uj n ), the following rule is checked sequentially: 

Condition 1 

   

 

ˆ ˆ, ,1 1

ˆ

M l j A l j

M A

l j

d d
IF AND

d d

THEN

 

   
    
   
   

P

 u u

u

                                                                 (19) 

where 1,2,...,l L ;    is set to decide the granularity of the clustering results and relates to the Chebyshev 

inequality [37]; here 6   is used for all the datasets and problems.  

If two or more DA planes satisfy Condition 1 (equation (19)) at the same time, ˆ
ju  will be assigned to the 

nearest of them: 

   
1,2,...,

ˆ ˆ, ,
arg min

M l j A l j

l L
M A

d d
i

d d

 
  
 
 

 u u
                                                                                                     (20) 

 The meta-parameters (mean i , support/number of data samples, denoted by iS  and sum of global 

density, denoted by iD ) of the i
th 

DA plane are being updated as follows: 

1
ˆ

1 1

i

i i j

i i

S

S S
 

 
  u                                                                                                                           (21a) 

1i iS S                                                                                                                                                 (21b) 



 

 

 ˆG

i i n jD D D u                                                                                                                                   (21c) 

If Condition 1 is not met, ˆ
ju  is set to be a new reference and a new DA plane 1LP  is set up as follows: 

1L L                                                                                                                                                   (22a) 

ˆ
L j u                                                                                                                                                    (22b) 

1LS                                                                                                                                                        (22c) 

 ˆG

L n jDD u                                                                                                                                          (22d) 

After all the unique data samples are projected onto the DA planes, the next stage can start. Fig. 2 is an 

illustrative example of the DA planes that divide the whole data space while still being independent from each 

other, where the black dots stand for data samples, the blocks in different colours represent different DA planes 

in the data space. As one may also notice, some data samples are located in several DA planes at the same time, 

and their affiliations are decided by the distances between them and the origin points of the nearby DA planes. 

 

Fig. 2 Illustrative example of the individual DA planes 

3.3. Stage 3: Identifying the Focal Points 

In this stage, for each DA plane, denoted as eP , we consider the following rule, which find the 

neighbouring DA planes, denoted by  
n

e
P   ( 1,2,..., ,l L l e  ): 

Condition 2 

   

      

, ,2 2M e l A e l

M A

n n

le e

d d
IF AND

d d

THEN

 

   
       

   

 P P P

   

                                                                 (23) 

This condition can be related to the Chebyshev inequality [37]. 



 

 

Let the corresponding D  of   
n

e
P   be denoted by  

n

e
D ,  if the following rule (Condition 3) is met, we 

can claim that 
eP  stands for the main mode/peak of the data density. 

Condition 3      max /
n

e ee
IF THEN is a mode peak ofD D P D                                              (24) 

By using Conditions 2 and 3 to examine each existing DA planes, one can find all the modes/peaks of the 

data density. 

3.4. Stage 4: Forming Data Clouds 

After all the DA planes standing for the modes/peaks of the data density are identified, we consider their 

origin points, denoted by  o , as the focal points and use them to form data clouds according to Condition 4 

(equation (25)) as a Voronoi tessellation [34]. It is worth to stress that the concept of data clouds is quite similar 

to the concept of clusters, but differs in the following aspects: i) data clouds are nonparametric; ii) data clouds 

do not have a specific shape; iii) data clouds represent the real data distribution.  

Condition 4 

   

 

1,2,...,

, ,
arg min

o o

M l j A l j

j C
M A

th

l

d d
IF v

d d

THEN is assigned to the v data cloud



  
   
  

  

 x x

x

                                                                     (25) 

where C  is the number of the focal points. 

3.5. SODA Data Partitioning Algorithm Summary 

In this subsection, the main procedure of the proposed SODA partitioning algorithm is summarised in a 

form of pseudo code as follows. 

SODA data partitioning algorithm 

i. Calculate 
Md  and 

Ad using equations (17) and (18); 

ii. Calculate the global density over the set  1 2, ,...,
unu u u using equation (16); 

iii. Rank  1 2, ,...,
unu u u based on their global density and obtain  1 2

ˆ ˆ ˆ, ,...,
unu u u ; 

iv. 1L  ; 

v. 1 1
ˆ u ; 

vi. 1 1
ˆP u ; 

vii. 1 1S  ; 

viii.  1 1
ˆG

nDD u ; 



 

 

ix. While there are unassigned data samples in  2 3
ˆ ˆ ˆ, ,...,

unu u u  

             1.  IF (Condition 1 is met) 

                    - Find the nearest DA plane using equation (20); 

                    - Update 
i ,

iS  and 
iD  using equations (21a)-(21c); 

             2. Else 

                    - Create a new DA plane 
1LP ; 

                    - Update L , L , LS  and LD  using equations (22a)-(22d); 

             3. End If 

x. End While 

xi. Identify the neighbours of every existing DA plane using Condition 2; 

xii. Identify the DA planes representing the modes/peaks using Condition 3; 

xiii. Use the origin points of the identified DA planes as  o  and form the data clouds using Condition 4. 

4. Extension of the SODA Algorithm for Processing Streaming Data 

Many real problems and applications concern data streams rather than static datasets. In this section, an 

extension to the proposed SODA algorithm will be introduced to allow the algorithm to continue to process the 

streaming data on the basis of the partitioning results initiated by a static dataset. As a result, the main procedure 

of the SODA algorithm for streaming data processing will be built based on a structure initiated by an offline 

priming (does not start “from scratch”).  

The main procedure of the SODA algorithm for the streaming data processing is as follows. 

4.1. Stage 1: Meta-parameters Update 

After the static dataset has been processed, for each newly arrived data sample from the data stream, 

denoted by 1nx , 
M

n , 
M

nX and 
A

n  are updated to 1

M

n , 1

M

nX  and 1

A

n  using equations (6), (7) and (9). The 

values of the Euclidean components, Md  and the angular components, Ad  between 1nx  and the centres l  (

1,2,...,l L ) of the existing DA planes are calculated using equations (1) and (2), denoted as   1,M n ld  x  and 

 1,A n ld  x , 1,2,...,l L . 

Then, Condition 1 and equation (20) are used to find the DA plane 1nx  is associated with. If Condition 1 

is met and 1nx  is associated with the existing DA plane, denoted by iP , 1nx  is assigned to iP  and the 



 

 

corresponding meta-parameters 
i ,

iS  will be updated using equation (21a) and (21b). Otherwise, a DA plane 

1LP  is set up by 
1nx  and we update L ,

L ,
LS  using equations (22a)-(22c). 

4.2. Stage 2: Merging Overlapping DA Planes 

After the Stage 1 is finished, Condition 5 is checked to identify the heavily overlapping DA planes in the 

data space ( , 1,2,...,i j L ,1 i j L   ): 

Condition 5 

   

 

, ,1 1

2 2

M i j A i j

M A

i j

d d
IF AND

d d

THEN and are heavily overlapping

 

   
    
   
   

P P

   

                                                            (26) 

If iP and jP ( , 1,2,...,i j L , 1 i j L   ) meet condition 5, we merge them together to create a new DA 

plane on the basis of jP  using the following principle: 

1L L                                                                                                                                                    (27a) 

j i

j j i

j i j i

S S

S S S S
 

 
                                                                                                                      (27b) 

j j iS S S                                                                                                                                               (27c) 

Meanwhile, the meta-parameters of iP are deleted. The merging process repeats until all the heavily 

overlapping DA planes have been merged. Then, the algorithm goes back to Stage 1 and waits for the newly 

coming data sample. If there is no new data sample anymore, the algorithm goes to the final stage. 

4.3. Stage 3: Forming Data Clouds 

Once there are no new data samples available, the SODA algorithm will quickly identify the focal points 

from the centres of the existing DA planes.  

Firstly, the global densities of the centres l  ( 1,2,...,l L ) of the DA planes are calculated using equation 

(16), where the support lS  ( 1,2,...,l L ) of each DA plane is used as the corresponding number of repeats. 

Here, the obtained global density is denoted as:  G

n lD   ( 1,2,...,l L ). 

Secondly, for each existing DA plane, eP , Condition 2 (equation (23)) is used to find the neighbouring 

DA planes around it, denoted as  
n

e
P . Condition 3 (equation (24)) is used to check whether  G

n eD   is one of 

the local maxima of  G

n lD  ( 1,2,...,l L ). 



 

 

Finally, for all the identified local maxima of  G

n lD  ( 1,2,...,l L ), the centres of the corresponding DA 

planes, denoted as  o , will serve as the focal points to form the data clouds using Condition 4. 

4.4. Algorithm Summary 

In this subsection, we summarise and present the main procedure of the proposed SODA partitioning 

algorithm for streaming data processing in a form of pseudo-code as follows. 

SODA partitioning algorithm extension for streaming data processing 

i. Start with the SODA algorithm for a priming data set and then 

ii. While the new data sample nx  is available 

             1. Update 1

M

n  and 1

M

nX   to 
M

n  and 
M

nX  using equations (6) and (7); 

             2. Calculate  ,M n ld x and  ,A i jd x x using equations (1) and (2) 

             3. If (Condition 1 is met) 

                    - Find the nearest DA plane using equation (20); 

                    - Update i , iS  and iD  using equations (21a)-(21c); 

             4. Else 

                    - Create a new DA plane 1LP ; 

                    - Update L , L , LS  and LD  using equations (22a)-(22d); 

             5. End If 

             6. IF (Condition 5 is met) 

                    - Merge iP and jP  using equations (27a)-(27c); 

                    - Remove the meta-parameters of iP ;  

             7. End If 

iii. End While 

iv. Calculate  G

n lD   ( 1,2,...,l L ) using equation (16); 

v. Identify the neighbours of every existing DA plane using Condition 2; 

vi. Identify the DA planes representing the modes/peaks using Condition 3; 

vii. Obtain the focal points  o ; 

viii. Form the data clouds using Condition 4. 



 

 

5. Numerical Examples for the Proof of Concept 

In this section, we will evaluate the performance of the proposed SODA partitioning algorithm on various 

challenging benchmark clustering problems and compare it with the performance of a number of “state-of-art” 

clustering algorithms. All the algorithms were implemented within MATLAB 2017a; the performance was 

evaluated on an ASUS laptop with dual i3 core processor with clock frequency 2.3GHz each and 8 GB RAM. 

The following benchmark datasets are used in the experiments, where the abbreviations of the datasets 

used in the tables of this paper are also given: 

i) S1 dataset [23]; 

ii) S2 dataset [23]; 

iii) Dim1024 dataset (D1024) [24]; 

iv) Dim15 dataset (D15) [29]; 

v) Fisher iris dataset (FI) [22];  

vi) Wine dataset (WI) [1]; 

vii) Steel plate faults dataset (SP) [12];  

viii) Occupancy detection dataset (OD) [14], where we removed the time stamps; 

ix) Pen-based recognition of handwritten digits dataset (PB) [2]. 

The details of the datasets are tabulated in Table I.  

For different applications, one may also consider to rescale the value range of the data into  0,1  or 

standardise the data with   and   to make the majority located in the range of  3,3  as pre-processing, 

which may simplify the problems and improve the performance of the SODA data partitioning approach. 

Without loss of generality, in this paper, no pre-processing technique is used. 

Table I. Datasets used for evaluation 

Dataset 

Number of 

Features 

Number of 

Samples 

Number of 

Actual Classes 

Maximum 

Cluster Size 

Minimum 

Cluster Size 

S1 [23] 2 5,000 15 350 300 

S2  [23] 2 5,000 15 350 300 

D1024 [24] 1,024 1,024 16 64 64 

D15 [29] 15 10,125 9 1,125 1,125 

FI [22] 4 150 3 50 50 



 

 

WI [1] 13 178 3 71 48 

ST [12] 27 1,941 7 673 55 

OD [14] 5 20,560 2 15,810 4,750 

PB [2] 16 10,992 10 1,144 1,055 

 

5.1. Evaluation of the SODA Partitioning Algorithm and the Streaming Data Processing Extension 

In this subsection, we will demonstrate the performance of the proposed SODA partitioning algorithm. For 

visual clarity, we only present the results of the S1, S2, D15 and OD datasets in Fig. 3, where the dots in 

different colours denote different data clouds. For D15 and OD datasets, which have more than 3 dimensions, 

we present the 3D partitioning results of the first 3 attributes. As one can see from Fig. 3, the proposed SODA 

algorithm successfully partitions the data samples based on their ensemble properties and groups similar data 

samples together. 

 

                                        (a) S1 dataset                                                            (b) S2 dataset 

 

                                        (c) Dim 15 dataset                                        (d) Occupancy detection dataset 



 

 

Fig.3. Partitioning results 

The S1 and S2 datasets are further used to demonstrate the performance of the streaming data processing 

version of the SODA partitioning algorithm. In the following examples, 75% of the total data samples of two 

datasets are used as a static priming dataset for the SODA algorithm to generate the initial partitioning results. 

The rest of the data samples are transformed into data streams for the algorithm to continue to build upon the 

priming results. The overall results are presented in Figs. 4 and 5 where the black circle, “o” denotes the origin 

of the coordinates of the existing DA planes and the black asterisk, “*” represents the focal points extracted 

from the origins of the DA planes.  The change of the number of direction-aware (DA) planes is also depicted in 

Fig. 6. 

 

                  (a) Offline result                           (b) Online result                                  (c) Final result  

Fig. 4 The streaming data processing version of the SODA algorithm (S1 dataset) 

 

                 (a) Offline result                           (b) Online result                                  (c) Final result  

Fig. 5 The streaming data processing version of the SODA algorithm (S2 dataset) 



 

 

 

                                            (a) S1 dataset                                                            (b) S2 dataset 

Fig. 6. The evolution of the number of the DA planes during the processing of the data stream 

As we can see from Figs. 4(a) and 5(a), with the 75% of the data samples of the two datasets being 

processed statically, a number of DA planes are set up initially. Based on this initial result, the streaming data 

processing version can continue to assign the rest of the data samples and form data clouds when needed. With 

the arrival of new data samples, new DA planes will be set up along with the originally existing DA planes due 

to the dynamically evolving data pattern, see Fig. 4(b), 5(b). Once, there are no new data samples available, the 

focal points are identified by the SODA algorithm and the data clouds are formed around them, see Fig. 4(c) and 

5(c). Thus, one can see that, using the results of the static datasets processing as a priming, the extension of the 

SODA algorithm can continue to process the streaming data in a “one-pass” mode. In contrast, the traditional 

offline clustering approaches lacks such ability and have to conduct clustering operation again based on all the 

previously observed data samples. 

5.2. Comparison and Discussion 

In this subsection, we will analyse and compare the performance of the proposed SODA partitioning 

algorithm versus the following “state-of-art” algorithms, where the short abbreviations of the algorithms used 

also in the tables of this paper are given as: 

i) Subtractive clustering algorithm (SUB) [15]; 

ii) DBScan clustering algorithm (DBS) [21]; 

iii) Random swap algorithm (RS) [25]; 

iv) Message passing clustering algorithm (MP) [26]; 

v) Mixture model clustering algorithm (MM) [10]; 

vi) Density peak clustering algorithm (DP) [36]; 



 

 

vii) Evolving local means clustering algorithm (ELM) [20]; 

viii) Clustering of evolving data streams algorithm (CEDS) [28]. 

In the experiments, due to the very limited prior knowledge, the settings of the free parameters of the 

comparative algorithms are based on the recommendations from the published literature. The experimental 

setting of the free parameters of the algorithms are presented in Table II.  

Table II. Experimental Setting of the Algorithms 

Algorithm Parameter(s) Setting(s) 

SUB initial cluster radius, r r=0.3, as published in [15] 

DBS 

i) cluster radius, r 

ii) minimum number of data samples within the 

radius, m 

i) the value of the knee 

point of the sorted m-dist graph, 

ii) m=4, as published in [21] 

RS number of actual classes as published in [25] 

MP 

i) maximum number of iterative refinements 

ii) termination tolerance 

iii) dampening factor 

as published in [26] 

MM 

i) prior scaling parameter 

ii) kappa coefficient 

as published in [10] 

DP 

i) minimum distance, ρ 

ii) local density, δ 

i) relatively high ρ and 

ii) high, δ, as published in [36] 

ELM initial radius, r r=0.15, as published in [20] 

CEDS 

i) microCluster radius, r 

ii) decay factor, ω 

iii) min microCluster threshold, φ 

i) r= 0.15 and  

ii) ω=500 and 

iii) φ=1, as published in [28] 

 

For a better comparison, we consider the following quality measures to evaluate the clustering results: 

i) Number of clusters (C). Ideally, C should be as close as possible to the number of actual classes (ground 

truth) in the dataset. However, this would mean one cluster per class and is only the best solution if each class 

has a very simple (circular) hyper-spherical pattern. However, this is not the case in the vast majority of the real 

problems. In most of the cases, data samples from different classes are mixed with each other (see Fig. 7, where 

we only use 3% of the data samples in each class in the Pen-based recognition of handwritten digits dataset for 



 

 

visual clarity and one can see that data samples from different classes have no obvious boundaries). The best 

way to cluster/partition the dataset of this type is to divide the data into smaller parts (i.e. more than one cluster 

per class) to achieve a better separation. At the same time, having too many clusters per class is also reducing 

the generalization capability (leading to overfitting) and the interpretability. Therefore, in this paper, we 

consider that the reasonable value range of C as 0.1   number of actual classes C number of samples  . If C 

is smaller than the number of actual classes in the dataset or is more than 10% of all data samples, the clustering 

result is considered as an invalid one. The former case indicates that there are too many clusters generated by 

the clustering algorithm, which makes the information too trivial for users, and the latter case indicates that the 

clustering algorithm fails to separate the data samples from different classes.  

 

(a) 3D visualization of the first 3 attributes           (b) 2D visualization of all the attributes 

Fig. 7. Visualization of the Pen-based recognition of handwritten digits dataset (dots and lines in different 

colour represent data samples of different classes) 

ii) Purity (P) [20],  which is calculated based on the result and the ground truth: 

1

N
i

D

i

S

P
K




                                                                                                                                                  (28) 

where 
i

DS  is the number of data samples with the dominant class label in the i
th

 cluster. Purity directly indicates 

separation ability of the clustering algorithm. The higher purity a clustering result has, the stronger separation 

ability the clustering algorithm exhibits.   

iii) Calinski-Harabasz index (CH) [13], the higher the Calinski-Harabasz index is, the better the clustering 

result is;  

iv) Davies-Bouldin index (DB) [17], the lower Davies-Bouldin index is, the better the clustering result is. 

v) Time: the execution time (in seconds) should be as small as possible. 



 

 

The comparison results using the datasets in Table I are tabulated in Table III. 

Table III. Performance comparison 

Dataset Algorithm C P CH DB Time (s) Validity 

S1 

SODA 15 0.9860 20,618.4318 0.3752 1.64 YES 

SUB 10 0.6732 8,360.6375 0.5729 3.07 NO 

DBS 32 0.9146 1,256.2090 1.2679 2.84 YES 

RS 15 0.3462 85.2312 23.3317 3.80 YES 

MP 2,297 0.9584 123.9501 0.8424 194.97 NO 

MM 6 0.3952 2,966.1273 0.6952 345.40 NO 

DP 3 0.2100 2,356.1843 0.8905 4.54 NO 

ELM 1 0.0700 NaN NaN 1.11 NO 

CEDS 21 0.6048 1,285.7427 1.0851 11.85 YES 

S2 

SODA 15 0.9290 9,547.8991 0.5295 1.46 YES 

SUB 10 0.6642 6,265.4817 0.6630 2.90 NO 

DBS 35 0.7788 686.9831 2.0510 2.76 YES 

RS 15 0.3240 37.6422 30.1067 4.58 YES 

MP 1,283 0.9168 229.2614 1.4833 205.14 YES 

MM 10 0.4652 2,207.0915 2.3866 407.10 NO 

DP 2 0.1400 1,764.3864 1.4709 4.55 NO 

ELM 1 0.0700 NaN NaN 1.11 NO 

CEDS 26 0.6580 1,324.1078 0.9463 12.96 YES 

D1024 

SODA 16 1.0000 718,469.7967 0.0132 1.15 YES 

SUB 16 1.0000 718,469.7967 0.0132 16.32 YES 

DBS 16 0.8721 381.3919 0.9975 0.56 YES 

RS 16 0.1270 1.0518 15.1481 88.30 YES 

MP 1,024 1.0000 NaN 0.0000 1.34 NO 

MM 3 0.1875 69.6915 3.1523 11,827.25 NO 

DP 14 0.8750 529.5497 0.6965 3.26 NO 

ELM 1 0.0625 NaN NaN 0.49 NO 



 

 

CEDS 8 0.5000 139.4129 1.4281 52.41 NO 

D15 

SODA 9 1.0000 302,436.3684 0.1177 2.99 YES 

SUB 9 1.0000 302,436.3684 0.1177 25.15 YES 

DBS 9 0.9586 20,602.057 1.2317 15.92 YES 

RS 9 0.2455 129.4692 9.3269 10.28 YES 

MP System Crashed NO 

MM 4 0.4444 2,412.1759 1.4420 649.05 NO 

DP 4 0.4444 4,533.2627 0.6696 13.65 NO 

ELM 2 0.2222 3,319.7039 0.6205 2.58 NO 

CEDS 76 0.6126 289.8403 2.2719 874.35 NO 

FI 

SODA 4 0.9533 398.2076 0.7570 0.38 YES 

SUB 9 0.9533 288.7665 1.1278 0.21 YES 

DBS 2 0.6600 226.6532 3.0295 0.15 NO 

RS 3 0.7200 42.0557 2.2776 0.90 YES 

MP 5 0.9133 440.6378 0.9267 0.34 YES 

MM 1 0.3333 NaN NaN 6.50 NO 

DP 2 0.6667 501.9249 0.3836 2.43 NO 

ELM 1 0.3333 NaN NaN 0.17 NO 

CEDS 16 0.6667 168.2046 1.5277 0.24 YES 

WI 

SODA 9 0.6966 400.2223 1.2734 0.83 YES 

SUB 178 1.0000 NaN 0.0000 1.76 NO 

DBS 4 0.6685 139.8891 1.9340 0.03 YES 

RS 3 0.4775 0.5575 36.6770 1.06 YES 

MP 51 0.8090 45.9785 0.5056 0.56 NO 

MM 1 0.3988 NaN NaN 9.50 NO 

DP 3 0.6461 321.3938 0.4782 2.49 YES 

ELM 54 0.9719 7.6683 0.6812 0.70 NO 

CEDS 178 1.0000 NaN 0.0000 0.08 NO 

ST SODA 23 0.5095 2,219.4197 0.9323 1.21 YES 



 

 

SUB 4 0.3988 494.1967 0.9100 4.37 NO 

DBS 18 0.4858 57.8279 1.7112 0.51 YES 

RS 7 0.4096 1.1539 24.1123 3.28 YES 

MP 1,477 0.8563 6.9878 0.4486 33.37 NO 

MM 2 0.3472 21.9988 0.1474 96.48 NO 

DP 3 0.3478 1,224.2338 0.4226 2.40 NO 

ELM 7 0.3730 84.1426 1.2951 2.88 YES 

CEDS 2 0.3467 2.0546 18.6821 17.73 NO 

OD 

SODA 25 0.9762 8,993.6575 0.6526 4.81 YES 

SUB 9 0.9498 19,878.6811 1.1872 30.81 YES 

DBS 208 0.8514 134.4039 1.4789 190.85 YES 

RS 2 0.7690 638.5256 3.6008 5.69 YES 

MP System Crashed NO 

MM 3 0.7691 4,420.7364 0.5037 1,062.11 YES 

DP 2 0.7690 5,495.9202 0.5548 30.49 YES 

ELM 1 0.7689 NaN NaN 3.18 NO 

CEDS 13 0.8484 1,555.1093 3.3988 42.22 YES 

PB 

SODA 131 0.9006 510.4931 1.3721 9.05 YES 

SUB 187 0.8454 382.6055 1.9995 100.09 YES 

DBS 38 0.6209 312.9177 1.4997 16.11 YES 

RS 10 0.1143 1.0495 75.16 13.30 YES 

MP System Crashed NO 

MM 41 0.9325 1,010.81 2.2504 3,727.38 YES 

DP 7 0.5993 2,559.6071 1.3044 17.32 NO 

ELM 9 0.3092 634.1555 2.1794 20.67 NO 

CEDS 1 0.1041 NaN NaN 2,466.47 NO 

 

Analysing the results shown in Table III, we can compare the proposed algorithm with the other clustering 

algorithms listed above as follows.  

1) SODA data partitioning algorithm 



 

 

The proposed SODA algorithm is one of the most accurate and efficient algorithms among the ones 

considered in the thorough comparison. Its partitioning results constantly exhibit very high quality in all 9 

benchmark problems. In addition, the SODA algorithm is autonomous, parameter-free (there is no problem- or 

user- specific parameters involved) partitioning algorithm and it does not require prior knowledge and 

assumptions about the data distribution or pattern. The algorithm generates the results based entirely on the 

ensemble properties of the observed data. In addition, the computation efficiency of the SODA algorithm does 

not deteriorate with the increase of dimensionality as well as the size of the dataset.  

2) Subtractive clustering algorithm [15] 

It is very accurate if the data has a Gaussian distribution. However, for the datasets with non-Gaussian 

distribution, the performance of the subtractive clustering algorithm decreases significantly. Moreover, its 

computation efficiency is largely influenced by the size of the dataset. It is not very efficient in dealing with 

large-scale datasets. 

3) DBScan clustering algorithm [21] 

This algorithm is one of the fastest algorithms. However, similarly to the subtractive clustering algorithm, 

its computational efficiency decreases with the growing size of the dataset. In addition, with the given pre-

defined free parameters, its performance is not very good. 

4) Random swap algorithm [25] 

It requires the number of actual classes in the dataset to be known in advance, which is often impractical in 

real cases. Its performance and efficiency is also not high compared with other algorithms. 

5) Message passing clustering algorithm [26] 

This algorithm produces very good results on small-scale and simple datasets. However, its performance 

on large and complex datasets is very limited. In addition, this algorithm consumes a much larger amount of 

computation resources compared with other algorithms used in the comparison. The system crashed after a few 

minutes if the number of data samples in the dataset exceeds a certain threshold. 

6) Mixture model clustering algorithm [10] 

It can produce good results on some datasets. However, its computation efficiency is very low. It is also 

not good in handling high dimensional datasets. 

7) Density peak clustering algorithm [36] 

The computation efficiency of this algorithm is less influenced by the dimensionality and the size of the 

data. Nonetheless, based on the recommended input selection, the algorithm failed to separate data samples from 



 

 

different classes in many cases. In addition, with the growth of the number of data samples, the difficulty of 

deciding the input selection for the users is also increasing. 

8) Evolving local means (ELM) clustering algorithm [20] 

ELM [20] was introduced as a dynamically evolving extension of the mean-shift algorithm. It is highly 

efficient as an evolving algorithm. However, with the recommended setting of free parameters, it failed to 

separate the data from different classes in many problems considered in this paper.  

9) Clustering of evolving data streams algorithm [28] 

This algorithm was the recently introduced in [28] for streaming data  processing. It is able to follow the 

evolving data pattern of the data stream and group the samples into arbitrary shaped clusters. Nonetheless, based 

on the recommended experimental settings, this algorithm only produces effective clustering results on datasets 

with simpler structures, and it often fails in complex ones.  

6. Conclusion 

In this paper, we proposed a new autonomous data partitioning algorithm, named “Self-Organised 

Direction Aware (SODA)”. The SODA partitioning algorithm takes both the traditional distance metric and the 

angular similarity into consideration, thus, takes advantages of the spatial and angular divergence at the same 

time. By employing the nonparametric EDA operators, the proposed SODA algorithm can extract the ensemble 

properties and disclose the mutual distribution of the data merely based on the empirically observed data 

samples. Moreover, a streaming data processing extension is also proposed for the SODA algorithm, which 

enables the algorithm to partition the data streams starting with a brief offline set of data and using the obtained 

partitioning result of the static dataset and continuing on a per data sample basis further. Numerical examples 

have demonstrated that the proposed algorithm is able to perform clustering autonomously with very high 

computation efficiency and produces high quality clustering results in various benchmark problems. 

The proposed SODA algorithm takes one step further compared with the traditional clustering/partitioning 

algorithms by considering both spatial and angular divergence, therefore, it can exhibit good performance on 

large-scale and high-dimensional problems without user- and data- dependent parameters, which are of 

paramount importance for real applications, where prior knowledge are more often insufficient. 

As future work, we will analyse the convergence of the SODA partitioning algorithm and apply it to the 

more complicated problems including natural language processing, remote sensing scene recognition, video 

analysis, etc.  
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