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Abstract

Optimistic methods have been applied with success to single-objective
optimization. Here, we attempt to bridge the gap between optimistic
methods and multi-objective optimization. In particular, this paper is
concerned with solving black-box multi-objective problems given a fi-
nite number of function evaluations and proposes an optimistic approach,
which we refer to as the Multi-Objective Simultaneous Optimistic Opti-
mization (MO-SOO). Popularized by multi-armed bandits, MO-SOO follows
the optimism in the face of uncertainty principle to recognize Pareto opti-
mal solutions, by combining several multi-armed bandits in a hierarchical
structure over the feasible decision space of a multi-objective problem.
Based on three assumptions about the objective functions smoothness
and hierarchical partitioning, the algorithm finite-time and asymptotic
convergence behaviors are analyzed. The finite-time analysis establishes
an upper bound on the Pareto-compliant unary additive epsilon indicator
characterized by the objectives smoothness as well as the structure of the
Pareto front with respect to its extrema. On the other hand, the asymp-
totic analysis indicates the consistency property of MO-SOO. Moreover, we
validate the theoretical provable performance of the algorithm on a set of
synthetic problems. Finally, three-hundred bi-objective benchmark prob-
lems from the literature are used to substantiate the performance of the
optimistic approach and compare it with three state-of-the-art stochas-
tic algorithms, namely MOEA/D, MO-CMA-ES, and SMS-EMOA in terms of two
Pareto-compliant quality indicators. Besides sound theoretical properties,
MO-SOO shows a performance on a par with the top performing stochastic
algorithm, viz. SMS-EMOA.
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1 Introduction

Many real-world application and decision problems involve optimizing two or
more objectives at the same time (see, e.g., [17, 1]). These problems are often
referred to as Multi-Objective Optimization (MOO). In the general case, MOO
problems are hard because the objective functions are often conflictual, and it
is difficult to design strategies that are optimal for all objectives simultaneously.
Furthermore, with conflicting objectives, there does not exist a single optimal
solution but a set of incomparable optimal solutions: each is inferior to the other
in some objectives and superior in other objectives. This induces a partial order
on the set of feasible solutions to an MOO problem. The set of optimal feasible
solutions according to this partial order is referred to as the Pareto optimal set
and its corresponding image in the objective space is commonly named as the
Pareto front of the problem. The task of MOO algorithms therefore becomes
finding the Pareto front or producing a good approximation of it (referred to as
an approximation set of the problem).

Generally, certain assumptions are made about the objective functions being
optimized (e.g., its continuity or differentiability). However, these assumptions
are not necessarily satisfied by real-world problems. Sometimes, the only infor-
mation available about the objective functions are their point-wise evaluations:
computing their derivatives or other measures are either expensive, unreliable,
or even impossible. Such problems are called black-box multi-objective optimiza-
tion problems and appear very often in real-world settings [23]. In this paper,
we study the problem of black-box MOO given a finite number of objective
functions evaluations (often referred to as the evaluation budget).

Conventionally, solving a multi-objective optimization problem follows one
of two principles, namely preference-based and ideal principles [15]. Following
the preference-based principle, the MOO problem is transformed into a single-
objective optimization problem (through an aggregation/scalarization function
that exploits a priori information), which then can be solved using one of many
available single-objective optimizers [25, 37, 36]. While preference-based algo-
rithms converge to a single solution in each run, ideal-based algorithms search for
a set of solutions at once. One example in this approach is evolutionary multi-
objective algorithms [16, 60] in which a population of solutions evolves, following
a crude analogy with Darwinian evolution, towards better solutions. Recently,
there has been a growing interest of formulating multi-objective problems within
the framework of reinforcement learning (see, for instance, [21, 40, 6, 33, 45]).

Among the several lessons learned from the aforementioned MOO solvers
over the past decades is that, in order to generate a dense and good approx-
imation set, one must maintain the set diversity. Furthermore, one must not
discard inferior solutions too easily, as some of them may pave the way towards
rarely-visited regions of the Pareto front [34]. In other words, the exploration-
vs.-exploitation trade-off in search for the Pareto optimal set should be thought
carefully about, at the algorithmic design level. With this regard, in this paper,
we are motivated to address the problem of multi-objective optimization within
the framework of optimistic sequential decision-making methods. i.e., methods
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that implement the optimism in the face of uncertainty principle. Such principle
finds its foundations in the machine learning field addressing the exploration-
vs.-exploitation dilemma, known as the multi-armed bandit problem (introduced
independently by [50] and [44]).

Within the context of single-objective optimization, optimistic sequential
decision-making approaches formulate the complex problem of global optimiza-
tion over the decision space X as a hierarchy of simple bandit problems over
subspaces of X and look for the optimal solution through X -partitioning search
trees: each leaf corresponds to a subspace of X , with the root corresponding
to X and nodes at depth h ∈ N0 represent a partition of X at scale h. At step
t, such algorithms optimistically expand a leaf node (i.e., partition the corre-
sponding subspace) that may contain the optimum. In other words, optimistic
algorithms consider partitions of the search space at multiple scales in search
for the optimal solution [38, 9, 58]. Recently, the optimistic optimization al-
gorithm, Naive Multi-scale Search Optimization [2], has been shown to be a
viable alternative to solve black-box optimization problems—see the results of
the Black-Box Optimization Competition (BBComp) within the Genetic and
Evolutionary Computation Conference (GECCO’2015) [35].

On the other hand, two observations can be made about optimistic methods
within the context of multi-objective optimization. First, there has been very
little/limited yet slowly growing research reported on optimistic methods for
multi-objective optimization. For instance, the focus of multi-objective multi-
armed bandit problems has been distinctly on a discrete set of arms [18], or
solving a subproblem (e.g., selecting a genetic operator in evolutionary multi-
objective algorithms [32]). Second, the algorithmic development and validation
have been dominantly empirical (see, for instance, [54, 56, 53]).

Being one of the simplest single-objective optimistic methods with a theo-
retically provable performance, this paper is inspired by the Simultaneous Op-
timistic Optimization (SOO) [38] to develop an optimistic algorithm for multi-
objective problems. We refer to this algorithm as the Multi-Objective Simul-
taneous Optimistic Optimization (MO-SOO). In order to find a good approxima-
tion set of the Pareto front, MO-SOO employs—similar to optimistic methods
—hierarchical bandits over the decision space. Represented by a divide-and-
conquer tree structure, the hierarchical bandits are realized by partitioning the
decision space over multiple scales. At each step, MO-SOO expands leaf nodes
(partitions the corresponding subspaces) that may optimistically contain Pareto
optimal solutions. Based on three assumptions about the function smoothness
and partitioning strategy, we analyze the finite-time and asymptotic conver-
gence behaviors of MO-SOO. The finite-time study is based on quantifying how
much exploration is required to achieve near-optimal objective-wise solutions.
As a result, we are able to upper bound the loss of the obtained solutions with
respect to the objective-wise optimal solutions. Using this objective-wise loss
bound, an upper bound on the Pareto-compliant unary additive epsilon indi-
cator [61] is established as a function of the number of iterations. The bound
is characterized by the objectives smoothness as well as the structure of the
Pareto front with respect to its extrema. First time in the literature, a deter-
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ministic upper bound on a Pareto-compliant indicator is presented for a solver
of continuous MOO problems. However, the presented bound holds down to a
problem-dependent constant. Furthermore, the systematic sampling nature of
the decision space in MO-SOO helps in analyzing the asymptotic behavior, which
indicates its consistency, viz. optimality in the limit. Using symbolic maths,
the theoretical provable performance of the algorithm has been validated on a
synthetic problem.

Complementing the theoretical results, an empirical validation study has
been conducted using 300 bi-objective benchmark problems from the litera-
ture [8]. The test suite considers problems with various objective functions cat-
egories reflecting real-world scenarios such as separability and multi-modality.
It can also be used to validate the algorithms scalability with the decision space
dimension.

Furthermore, MO-SOO has been compared with 3 state-of-the-art stochastic
algorithms, namely MOEA/D [59], MO-CMA-ES [55] , and SMS-EMOA [7] in terms
of two Pareto-compliant quality indicators [28]: the hypervolume (I−H) and the
unary additive ε-indicator (I1

ε+). The results are presented in form of data
profiles, which adequately capture the convergence behavior of the algorithms
over the number of function evaluations used. MO-SOO shows a comparable
performance with the top performing stochastic algorithm, viz. SMS-EMOA.

The rest of the paper is organized as follows. Section 2 discusses briefly re-
lated formal background. Section 3 presents the MO-SOO algorithm and provides
a worked example. Then, the algorithm’s finite-time and asymptotic conver-
gence is studied in Section 4 with supporting illustrations. Numerical assess-
ment of MO-SOO is discussed in Section 5. Section 6 concludes the paper.

2 Formal Background

This section introduces the main notations and terminology used in the rest of
the paper. Furthermore, it provides a brief description of the multi-objective
optimization problem and the optimistic approach in optimization.

2.1 Multi-Objective Optimization

Without loss of generality, the multi-objective minimization problem with n
decision variables and m objectives, has the form:

minimize y = f(x) = (f1(x), . . . , fm(x))

where x = (x1, . . . , xn) ∈ X
y = (y1, . . . , ym) ∈ Y

(1)

and where x is called the decision vector (solution), y is called the objective

vector,1 X is the feasible decision space, and Y =×1≤j≤mYj is the corre-
sponding objective space, where Yj is the jth-objective space and we write the

1For brevity, we sometimes omit the word objective when referring to an objective vector.
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corresponding image in the objective space for any region X̂ ⊆ X as f(X̂ ) ⊆ Y.
It is assumed that: the derivatives of the functions involved are neither symboli-
cally nor numerically available; nevertheless, f can be evaluated point-wise; and
that evaluating it is typically expensive, requiring some computational resources
(e.g., time, power, money). More specifically, the task is to best approximately
solve (in a sense to be defined later) Eq. (1) using a computational budget of v
function evaluations.

A vector y1 is more preferable than another vector y2, if y1 is at least as
good as y2 in all objectives and better with respect to at least one objective. y1

is then said to be dominating y2. This notion of dominance is commonly known
as Pareto dominance [41], which leads to a partial order on the objective space,
where we can define a Pareto optimal vector to be one that is non-dominated
by any other vector in Y. Nevertheless, y1 and y2 may be incomparable to
each other, because each is inferior to the other in some objectives and superior
in other objectives. Hence, there can be several Pareto optimal vectors. The
following definitions put these concepts formally, in line with [34, 61].

Definition 1 (Pareto dominance). The vector y1 dominates the vector y2, that
is to say, y1 ≺ y2 ⇐⇒ y1

j ≤ y2
j for all j ∈ {1, . . . ,m} and y1

k < y2
k for at least

one k ∈ {1, . . . ,m}.
Definition 2 (Strict Pareto dominance). The vector y1 strictly dominates the
vector y2 if y1 is better than y2 in all the objectives, that is to say, y1 ≺≺
y2 ⇐⇒ y1

j < y2
j for all j ∈ {1, . . . ,m}.

Definition 3 (Weak Pareto dominance). The vector y1 weakly dominates the
vector y2 if y1 is not worse than y2 in all the objectives, that is to say, y1 �
y2 ⇐⇒ y1

j ≤ y2
j for all j ∈ {1, . . . ,m}.

Definition 4 (Pareto optimality of vectors). Let ŷ ∈ Y be a vector. ŷ is Pareto
optimal ⇐⇒ @y ∈ Y such that y ≺ ŷ. The set of all Pareto optimal vectors is
referred to as the Pareto front and denoted as Y∗. The corresponding decision
vectors (solutions) are referred to as the Pareto optimal solutions or the Pareto
set and denoted by X ∗.

In other words, the solution to the MOO problem (1) is its Pareto optimal
solutions (Pareto front in the objective space). Practically, MOO solvers aim
to identify a set of objective vectors that represent the Pareto front (or a good
approximation of it). We refer to this set as the approximation set.

Definition 5 (Approximation set). Let A ⊆ Y be a set of objective vectors. A
is called an approximation set if any element of A does not dominate or is not
equal to any other objective vector in A. The set of all approximation sets is
denoted as Ω. Note that Y∗ ∈ Ω.

Furthermore, denote the ideal point (vector) (not necessarily reachable) by

y∗
def
= (miny∈Y∗ y1, . . . ,miny∈Y∗ ym). Likewise, let us denote the (or one of the)

global optimizer(s) of the jth objective function by x∗j , i.e., y∗j = fj(x
∗
j ). Note

that x∗j ∈ X ∗. On the other hand, we define the nadir point of a region in the

objective space Ŷ ⊆ Y as ynadir(Ŷ)
def
= (maxy∈Ŷ y1, . . . ,maxy∈Ŷ ym).
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2.2 Optimistic Optimization

The optimism in the face of uncertainty principle recommends following the
optimal strategy with respect to the most favorable scenario among all possible
scenarios that are compatible with the obtained observations about the problem
at hand [39]. This principle has been applied primarily within the framework
of multi-armed bandit problem [5] and later was extended to many (possibly
infinite) arms under a probabilistic or structural (smoothness) assumption about
the arm rewards. An algorithmic instance was the Monte Carlo tree search,
which witnessed an experimental success in computer GO [57].

With this regard, global continuous optimization can be modeled as a struc-
tured bandit problem where the objective value is a function of some arm pa-
rameters [4, 47]. Based on the observations and the smoothness assumption, an
optimistic strategy would compute a bound on the objective (reward) value at
each solution (arm) x ∈ X and choose the arm with the best bound. Examples
of global continuous optimization algorithms with a closely related approach
are Lipschitzian optimization techniques [42]. However, this approach poses
two problems: i) the computational complexity of computing the bounds over
X at each step; ii) the restriction that the smoothness assumption puts on the
objective functions that can be optimized. While the second issue can be ad-
dressed with weak, yet effective assumptions on the function smoothness, e.g.,
local (rather than global) smoothness; the first issue can be alleviated by trans-
forming the problem from a many-arm bandit to a hierarchy of multi-armed
bandits (often referred to as hierarchical bandits [29]). Hence, an optimistic
optimization algorithm can be regarded as a tree-search divide-and-conquer al-
gorithm that iteratively constructs finer and finer partitions of the search space
X at multiple scales h ∈ N0. Given a scale h ≥ 0 and a partition factor K ≥ 2, X
can be partitioned into a set of Kh cells/hyperrectangles/subspaces Xh,i where
0 ≤ i ≤ Kh − 1 such that ∪i∈{0,...,Kh−1}Xh,i = X . These cells are repre-
sented by nodes of a K-ary tree T (as shown in Figure 1), where a node (h, i)
represents the cell Xh,i (the root node (0, 0) represents the entire search space
X0,0 = X ). A parent node possesses K child nodes {(h + 1, ik)}1≤k≤K , whose
cells {Xh+1,ik}1≤k≤K form a partition of the parent’s cell Xh,i. The set of leaves
in T is denoted as L ⊆ T . Attributes of a node (h, i) are indexed by its h and
i. Accordingly, each node is associated with a representative state xh,i ∈ Xh,i
at which the objective function may be evaluated as a part of the sequential
framework and out of the v-evaluation budget. Based on this evaluation, an
optimistic bound of the function over Xh,i, denoted by bh,i in analogy to the
B-value in multi-armed bandits, is defined. The optimistic bound bh,i governs
when (h, i) gets expanded. Clearly, only evaluated leaf nodes are expandable
and we denote them by E ⊆ L. The process of evaluating the function at xh,i is
referred to as evaluating the node (h, i); and the process of splitting a cell Xh,i,
whose node (h, i) ∈ E , into K subcells (resp., K child nodes) as expanding the
node (h, i).

Among the several single-objective optimistic optimization algorithms that
have been proposed and validated in the literature [38, 52, 43, 35]; the Simul-
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h = 3

•| |(0, 0)

h = 2

•| |(1, 0) •| |(1, 1) •| |(1, 2)
h = 1

•| |(2, 0) •| |(2, 1) •| |(2, 2) •| |(2, 3) •| |(2, 4) •| |(2, 5) •| |(2, 6) •| |(2, 7) •| |(2, 8)

h = 0

•| |•| |•| |
(3, 3)
•| |

(3, 4)
•| |

(3, 5)
•| |•| |•| |•| |•| |•| |•| |•| |•| |•| |

(3, 15)
•| |

(3, 16)
•| |

(3, 17)
•| |•| |•| |•| |•| |•| |•| |•| |•| |•| |

X
•

x∗1
•

x∗2

Figure 1: Hierarchical partitioning of the decision space X with a partition
factor of K = 3 at iteration t represented by a K-ary tree. Consider a multi-
objective problem where m = 2 and the global optimizers of the first and sec-
ond objective functions (x∗1 and x∗2, respectively) are shown. Thus, the nodes
{(3, 4), (2, 1), (1, 0), (0, 0)} and {(2, 6), (1, 2), (0, 0)} are 1- and 2-optimal nodes,
respectively. Furthermore, h∗1,t = 3 and h∗2,t = 2 (more in Section 4).

taneous Optimistic Optimization (SOO) is the simplest, which makes it easy to
implement efficiently. Furthermore, it is a rank-preserving algorithm, with the-
oretically provable finite-time performance [38], hence we are inspired by SOO to
solve the multi-objective optimization problem (1), optimistically.

2.3 Simultaneous Optimistic Optimization (SOO)

The optimistic method, SOO, was originally introduced in [38] and falls in the
family of global single-objective optimizers. It assumes local smoothness around
the function’s global minimum(a), i.e., f(x) − f∗ ≤ `(x, x∗) where ` : X ×
X → R+ is a semi-metric. With this assumption, an optimistic lower bound
of the objective function values over the cells of the search-space hierarchical
partitioning can be defined, mathematically:

bh,i = f(xh,i)− sup
x∈Xh,i

`(x,xh,i),∀(h, i) ∈ T (2)

Consequently, SOO would expand simultaneously all the nodes (h, i) of its tree
T whose b-values (Eq. 2) would be the least with respect to a semi-metric `.
However, in practice, the knowledge of ` is not always present. Instead, SOO
simulates the effect of Eq. (2) by iteratively expanding at most a leaf node per
depth if such node has the least f(xh,i) with respect to leaf nodes of the same
or lower depths. In addition to that, the algorithm takes a function hmax(t), as
a parameter, such that after t node expansions only nodes at depth h ≤ hmax(t)
can be expanded.
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Algorithm 1: SOO

Input : function to be minimized f ,
search space X ,
partition factor K,
evaluation budget v,
maximal depth function t→ hmax(t)

Initialization: T1 ← {(0, 0)}
t← 1

Output : approximation of minx∈X f(x)

1 while evaluation budget is not exhausted do
2 v ←∞
3 for h← 0 to min(hmax(t), depth(Tt)) do
4 Among all leaves (h, j) ∈ Lt of depth h, select

(h, i) ∈ arg min(h,j)∈Lt f(xh,j)
5 if f(xh,i) ≤ v then
6 t← t+ 1
7 v ← f(xh,i)
8 Expand the node (h, i): add to Tt and evaluate its K children,

Tt ← Tt−1 ∪ {(h+ 1, ik)}1≤k≤K

9 return minxh,i:(h,i)∈Tt f(xh,i)

As outlined in Algorithm 1, SOO grows a tree T over X by expanding at
most one leaf node per depth in an iterative sweep across T ’s depths/levels. At
depth h ≥ 0, a leaf (h, i) is expanded if its function value f(xh,i) is the(or one of
the) lowest (with respect to minimization) among the leaves at depth h as well
as all the expanded nodes at depths < h in the current sweep. Splitting a node
is worked out by partitioning its subspace along one dimension of X , which can
be chosen among X ’s dimensions either in a random (any one dimension out of
the n) or sequential (one dimension after the other in a fixed sequence) manner.
In SOO, E = L, i.e., leaf nodes are evaluated once they are created.

3 Optimistic Optimization for Multi-Objective
Problems

This section presents the Multi-Objective Simultaneous Optimistic Optimiza-
tion (MO-SOO) algorithm to solve multi-objective optimization problems. MO-SOO
partitions the search space over multiple scales to find a good approximation
set of the Pareto front. First, we describe a template for optimistic methods to
address multiple objectives instead of a single objective and then present the
MO-SOO algorithm along with a worked example.
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Algorithm 2: Template for Optimistic Optimization

Initialization: Tt = {(0, 0)}
t← 0

Output : approximation of optimal solutions

1 while evaluation budget is not exhausted do
2 Assess the nodes ∈ Pt
3 Expand the nodes ∈ Qt & add their child nodes in Tt
4 t← t+ 1

5 return the best solutions found

3.1 From Single- to Multi-Objective Optimization

The class of optimistic methods encodes the search for optimal solutions as a
tree of bandits, where the B-value of each arm represents an optimistic bound
on the values of the objective function values over tree’s nodes. In an iterative
manner: an optimistic method assesses a set of leaf nodes of its tree on the
search space X and selectively expands a set of them. In other words, opti-
mistic algorithms differ only in their strategies of growing and using the tree
further to provide a good approximation of the optimal solutions. Based on
this view, a generic template of optimistic algorithms for optimization problems
can be derived (shown in Algorithm 2), where the set of leaf nodes to be as-
sessed at iteration t are denoted by Pt. Likewise, the set of leaf nodes to be
expanded at iteration t are denoted by Qt ⊆ Pt. In essence, Pt represents the
subset of nodes that can be expanded at iteration t, which may depend on its
depth/level. On the other hand, Qt are the potentially optimal nodes according
to their representative states that are expanded at iteration t. These two sets
are algorithm-dependent.

With regard to SOO, Pt is the set of leaf nodes at the depth considered
at iteration t (Algorithm 1, line 4), whereas Qt is at most one node ∈ Pt
that satisfies the conditions in Algorithm 1, lines 4–5. On this notion of sets,
optimistic methods can be extended to multi-objective settings by defining the
corresponding P and Q.

In other words and with regards to problem (1), at the sth step, choosing
a node (resp., its representative state xs) depends on the previous s − 1 cho-
sen nodes (resp., their representative states and corresponding objective vec-
tors {(x1, f(x1)), . . . , (xs−1

, f(xs−1))}). Consequently, the algorithm constructs a sequence of v points and
returns its approximation set, denoted by Yv∗ ∈ Ω.

In accordance with the single-objective loss measure for optimistic methods,2

we introduce the following vectorial loss measure for MOO:

r(v) = yv∗ − y∗ (3)

2The quality of the returned solution for single-objective settings is evaluated by the loss
measure: r(v) = minx∈{x1,...,xv} f(x)−minx∈X f(x)
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where yv∗
def
= (miny∈Yv∗ y1, . . . ,miny∈Yv∗ ym) is the empirical ideal point found so

far.

3.2 The MO-SOO Algorithm

Based on the generic template of optimistic optimization (Algorithm 2), an
MOO algorithmic instance whose aim is to recognize Pareto optimal solutions
can be realized. Taking inspiration from SOO, we refer to it as the Multi-
Objective Simultaneous Optimistic Optimization (MO-SOO). MO-SOO iteratively
considers leaf nodes, one depth at a time, starting from the root. The sets P
and Q are defined as follows. Denote T ’s depth considered at iteration t by ht,
we have:

• Pt
def
= {leaf nodes at depth ht}.

• Qt
def
= the subset of nodes ∈ Pt that are non-dominated with respect to Pt

as well as all the expanded nodes in the previous ht iterations, based on
their representative objective vectors. Finding this set is captured by the
operator ND(·), which is defined next.

Definition 6 (The non-dominated operator ND(·)). Let A ⊆ Y be a set of
objective vectors. The operator ND(·) is defined such that ND(A) is the set of all
non-dominated vectors in A, i.e.,

ND(A)
def
= arg max
B∈Ω,B⊆A

|B| , (4)

where Ω is the set of all possible approximation sets as stated by Definition 5.

The pseudo-code of the proposed scheme is outlined in Algorithm 3. MO-SOO
comes with three parameters, viz. i) the partition factor K, ii) the maximal
depth function hmax(t), iii) the splitting dimension per depth. All of these
parameters contribute to the algorithm exploration-vs.-exploitation trade-off.
Nevertheless, as it will be shown later, hmax(t) has the most compelling impact
on MO-SOO convergence.

3.3 A Worked Example

For a better understanding of the MO-SOO algorithm, we show its application to
the following problem:

minimize y = f(x) = (f1(x), f2(x))

s.t. x = (x1, x2) ∈ X = [−1, 1]2 ,
(5)

where f1(x) = (x1−0.25)2 +(x2−0.66)2 and f2(x) = (x1 +0.25)2 +(x2−0.66)2.
Figure 2 shows the convergence of MO-SOO’s approximation set A towards a
sampled set (numerically-obtained) of the Pareto front at different stages of the
algorithm iterations. The reader can refer to Figure 2 as we briefly describe the
first stages of the algorithm.
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Algorithm 3: MO-SOO

Input : vectorial function to be minimized f ,
search space X ,
partition factor K,
evaluation budget v,
maximal depth function t→ hmax(t)

Initialization: T1 = {(0, 0)}
t← 1

Output : approximation set of minx∈X f(x), Yv∗
1 while evaluation budget is not exhausted do
2 V ← ∅
3 for h← 0 to min(hmax(t), depth(Tt)) do
4 Pt ← {leaf nodes at depth h}
5 V ← ND(Pt ∪ V)
6 Qt ← Pt ∩ V
7 Expand all the nodes in Qt; evaluate and add to Tt their K · |Qt|

children,

Tt+1 = Tt ∪
(
∪(h,i)∈Qt {(h+ 1, ik)}1≤k≤K

)
8 t← t+ 1

9 return ND
(
{f(xh,i)}(h,i)∈Tt

)
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Figure 2: An illustration of MO-SOO. The algorithm expands its leaf nodes to
look for Pareto optimal solutions by partitioning their cells along the decision
space coordinates one at a time in a sequential manner, with a partition factor
of K = 3. Sweeping its tree from the root node depth till the maximal depth
specified by hmax(t). MO-SOO expands a set of leaf nodes per depth if they
are non-dominated with respect to other leaf nodes in the same level and with
respect to those expanded at lower depths in the current sweep. Subsequently,
none or more nodes can be expanded in one iteration; at the third iteration, for
instance, only one node is expanded (whose representative state is point 4) into
its children (whose representative states are the points 4, 6, and 7). On the other
hand, at the fourth iteration three nodes are expanded (resp., representative
states are the points 4, 6, and 7) into their children nodes (resp., representative
states are the points 4, 6, 7, 8, 9, 10, 11, 12, and 13). After 20 iterations,
MO-SOO’s approximation set A closely coincides on a sampled set of the Pareto
front Y∗ of problem (5).
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Initialization. MO-SOO starts by initializing its tree with a root node (0, 0)
whose cell represents the decision space, i.e., X0,0 = X . The root’s representative
state x0,0 = (0, 0)—point 2 in Figure 2—is evaluated and f(x0,0) is obtained.

Iteration 1. At this iteration, leaf nodes at depth h = 0 are considered
for expansion. In other words, the root node is expanded by partitioning its
cell along the first dimension of the decision space into K = 3 cells. Here,
P1 = Q1 = {(0, 0)}. For convenience, we shall refer to the nodes by their
representative states, i.e., P1 = Q1 = {2}. The newly generated leaf nodes are
added to the tree and evaluated at their representative states viz. the points 1,
2, and 3 in Figure 2. Note that having an odd partition factor (K = 3) saves one
function evaluation for each node expansion (point 2 was already evaluated).

Iteration 2. At this iteration, leaf nodes at depth h = 1 are considered
for expansion. We have P2 = {1, 2, 3} and V = {2}. Along with Lines 4–8 of
Algorithm 3, Q2 becomes {2}, because point 2 dominates both points 1 and 3 as
it can noted in the function space. Thus, node 2 is expanded and the tree grows
to have the leaves L = {1, . . . , 5}, each being evaluated at its representative
state. The case is the same for iteration 3 which considers nodes at h = 2
generating a new set of leaves L = {1, . . . , 7}.

Iteration 4. At this iteration, leaf nodes at depth h = 3 are considered
for expansion. Here, P4 = {4, 6, 7} and V = {4, 6, 7}. Along with Lines 4–
8 of Algorithm 3, Q4 becomes {4, 6, 7}, because the points 4, 6, and 7 are
non-dominated with respect to the nodes in P4 and V as it can seen in the
function space. Thus, they all are expanded and the tree grows to have the
leaves L = {1, . . . , 13}.

Next Iterations. The same holds for the next iterations until the maximal
depth—specified by hmax(t)—is reached. Then, V is set to ∅ and the tree is
swept again from its root. After some iterations, MO-SOO closely approximates
the Pareto front as shown in Figure 2.

4 Convergence Analysis

The analysis of multi-objective solvers is hindered by several issues; namely the
diversity of approximation sets, the complexity of the Pareto front, and the con-
vergence of approximation sets to the Pareto front [11]. While most theoretical
convergence studies have addressed finite-set and/or discrete problems [46, 30],
others have provided probabilistic guarantees [22], assumed a total order on the
solutions [21], or studied their asymptotic behavior [14]. In this paper, we take
a different approach and study MO-SOO’s convergence in terms of two aspects:
i). finite-time; and ii). asymptotic behavior.

First, the finite-time convergence of MO-SOO is studied with respect to the
Pareto-compliant quality indicator,3 the unary additive epsilon indicator I1

ε+ [61],

3The quality of an approximation set is measured by a so-called (unary) quality indicator
I : Ω → R, assessing a specific property of the approximation set. Likewise, an l-ary quality
indicator I : Ωl → R quantifies quality differences between l approximation sets [61, 14]. A
quality indicator is not Pareto-compliant if it contradicts the order induced by the Pareto-
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based on three assumptions. We do this in a two-step approach. First, we up-
per bound the loss measure introduced in Section 3.1, viz. r(v) of Eq. (3). The
loss measure captures the convergence of MO-SOO’s approximation set Yv∗ to m
points—on the Pareto front—that contribute to the problem’s ideal point y∗.
Second, based on the presented loss bound and an intrinsic measure of the Pareto
front (we refer to this measure as the conflict dimension Ψ), an upper bound on
the unary additive epsilon indicator I1

ε+ is established. Second, the convergence
of MO-SOO’s approximation set towards the Pareto front given unlimited number
of function evaluations is addressed. In the light of the assumptions made for
the finite-time analysis, MO-SOO’s consistency is investigated. An algorithm is
said to be consistent if it asymptotically converges to the Pareto front.

In general, the design of optimistic algorithms is driven by assumptions about
the function smoothness. Here, we make three assumptions about the function
f and the hierarchical partitioning, based on those presented in [38, 52, 58] for
single-objective settings. In essence, these assumptions let us express the qual-
ity of MO-SOO solutions in relation to the number of iterations, by quantifying
how much exploration is needed to expand nodes that contain objective-wise
optimal solutions. The rest of this section is organized as follows. First, these
assumptions are stated in Section 4.1. Then, in Section 4.2, the finite-time per-
formance of MO-SOO is analyzed, where we first upper bound the loss (3) as a
function of the number of iterations t.4 Second, this objective-wise loss bound is
employed to establish an upper bound on the I1

ε+ indicator, which holds down to
the conflict dimension of the problem at hand. After presenting the main result
on the finite-time performance of the algorithm, MO-SOO’s consistency property
is proved in Section 4.3 and illustrative examples are given in Section 4.4. To-
wards the end of this section, an empirical validation of the theoretical findings
is presented.

4.1 Assumptions

There exists a vector-valued function ` : X × X → R+m such that each entry
{`j}1≤j≤m is a semi-metric such that:

A1 (Hölder continuity of f1, . . . , fm):

|fj(x)− fj(y)| ≤ `j(x,y), ∀x,y ∈ X , j = 1, . . . ,m .

A2 (bounded cells diameters): For j = 1, . . . ,m and ∀(h, i) ∈ T , ∃ a
non-increasing sequence δj(h) > 0 such that

sup
x∈Xh,i

`j(xh,i,x) ≤ δj(h)

dominance relations.
4Typically, v in Eq. (3) and the approximation set Yv∗ represents the number of sampled

points (function evaluations). Nevertheless, one can express the loss (and likewise the ap-
proximation set) with other growing-with-time quantities (e.g., the number of iterations, the
number of node expansions). In the rest of this paper, we refer to the number of the: function
evaluations and iterations, by v and t, respectively, where one iteration represents executing
the lines 4–8 of Algorithm 3, once.



Abdullah Al-Dujaili, S. Suresh 15

and limh→∞ δj(h) = 0. Thus, ensuring the regularity of the cells’ sizes
which decrease with their depths in T .

A3 (well-shaped cells): For j = 1, . . . ,m and ∀(h, i) ∈ T , ∃ sj > 0 such
that a cell Xh,i contains an `j-ball of radius sjδj(h) centered in xh,i. Thus,
ensuring that the cells’ shapes are not skewed in some dimensions.

Remark 1. The class of functions that satisfies Assumption A1 is very broad.
In fact, it has been shown in [42, 20] that among the Lipschitz-continuous func-
tions (which are a subset of such functions) are convex/concave functions over
a closed domain and continuously differentiable functions.

4.2 Finite-Time Performance

In this section, we characterize the finite-time performance of MO-SOO in terms of
the Pareto-compliant unary additive epsilon indicator based on the assumptions
presented in Section 4.1. To this end, we upper bound the loss measure (3) with
respect to the number of iterations t. This provides the basis upon which a
bound for the ε-indicator is established with respect to the same.

4.2.1 Bounding the Loss Measure

In order to derive a bound on the loss, we employ a measure of the quantity of
objective-wise near-optimal solutions (states in X ), called the near-optimality
dimension, which is closely related to similar measures (see, e.g.,[27, 10, 38]).
Before defining the near-optimality dimension, some terminology, which will be
used in the analysis besides the terminology of Section 2.1, is introduced.

For j = 1, . . . ,m; and for any ε > 0; let us denote the set of ε-optimal states
according to fj , {x ∈ X : fj(x) ≤ fj(x

∗
j ) + ε}, by X εj , as depicted in Figure 3.

Subsequently, denote the set of nodes at depth h whose representative states are

in X δj(h)
j by Ihj , i.e., Ihj

def
= {(h, i) ∈ T : 0 ≤ i ≤ Kh − 1,xh,i ∈ X

δj(h)
j }. A node

(h, i) is Pareto optimal ⇐⇒ ∃x ∈ X ∗ : x ∈ Xh,i. Furthermore, a Pareto opti-
mal node (h, i) is j-optimal ⇐⇒ it is optimal with respect to fj , i.e., x∗j ∈ Xh,i.
After t iterations, one can denote the depth of the deepest expanded j-optimal
node by h∗j,t (as illustrated in Figure 1). Now, we define the near-optimality
dimension for fj :

Definition 7 (sj-near-optimality dimension). The sj-near-optimality dimen-
sion for {fj}1≤j≤m is the smallest dsj ≥ 0 such that there exists Cj > 0 and for
any ε > 0, the maximal number of disjoint `j-balls of radius sjε and center in

X εj is less than Cjε
−dsj .

One can note that dsj is characterized by: the function fj , the semi-metric `j ,
and the scaling factor sj , i.e., it depends on the objectives smoothness and
related to the partitioning strategy of the space through the scaling factor sj .
Based on Assumption A3 and Definition 7, we have:
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Yj

fj

X

δj (h)

.x∗
j

X
δj(h)
j

. fj(x∗
j

)

supX fj(x)

{fj (x) : x ∈ X δj (h)
j
}

Figure 3: The feasible decision space and the corresponding jth objective space
(Yj ⊆ R). The global optimizer x∗j and any solution x whose image under the

jth objective lies within {fj(x) ≤ fj(x∗j ) + δj(h)} are denoted by X δj(h)
j .

|Ihj | ≤ Cjδj(h)
−dsj .5 (6)

Now, let us assume for simplicity that the ND(·) operator in Algorithm 3 is
replaced by NDmin(A) = ∪1≤j≤m arg miny∈A yj ; that is to say, in each iteration,
m or less nodes are expanded whose representative objective vectors f(xh,i)
have the minimum entries with respect to the m objectives. Furthermore, for
j = 1, . . . ,m; assume that h∗j,t = h́ and denote the j-optimal node at depth

h́ + 1 by (h́ + 1, j∗). Since (h́ + 1, j∗) has not been expanded yet, any node at

depth h́ + 1 that is selected at later iterations and expanded before (h́ + 1, j∗)
(line 6 in Algorithm 3) must satisfy the following:

fj(xh́+1,i) ≤ fj(xh́+1,j∗)

fj(xh́+1,i) ≤ fj(x
∗
j ) + δj(h́+ 1) (7)

where inequality (7) comes from combining Assumptions A1 and A2: fj(xh́+1,j∗) ≤
fj(x

∗
j ) + `j(xh́+1,j∗ ,x

∗
j ) ≤ fj(x∗j ) + δj(h́+ 1). As defined earlier, X δj(h)

j satisfies

Eq. (7) (depicted in Figure 4, for m = 2). Thus, from the definition of Ihj
and since all the objectives are considered simultaneously, we are certain that

{(h́ + 1, j∗)}1≤j≤m get expanded after
∑m
j=1 |I

h́+1
j | node expansions at depth

5 See the proof of [38, Lemma 1]. We reproduce and adapt the proof here for completeness:
From Assumption A3, each cell Xh,i contains a ball of radius sjδj(h) centered in xh,i, thus if

|Ihj | = |{xh,i ∈ X
δj(h)

j }| exceeded Cjδj(h)
−dsj , this would mean that there exists more than

Cjδj(h)
−dsj disjoint `j-balls of radius sjδj(h) with center in X δj(h)j , which contradicts the

definition of sj-near-optimality-dimension.
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h́ + 1 in the worst-case scenario. Nevertheless, such definition of the NDmin(·)
operator favors exploring {X δj(h)

j }1≤j≤m over other regions, which delays the
search for other Pareto points outside these regions (see, for instance, the cir-
cled region in Figure 4). Using the ND(·) operator from Definition 6 rectifies
this behavior: by expanding non-dominated nodes, MO-SOO explores as well the

region {x : f(x) ≺ ynadir(f(∪j=1,2X
δj(h)
j ))} − ∪j=1,2X

δj(h)
j denoted by X hND

(see Figure 4). While we are able to quantify—based on the near-optimality

dimension—the number of nodes within {X δj(h)
j }1≤j≤m, similar analysis gets

unnecessarily complicated for X hND. However, since ND(·) expands—besides
other nodes—the same set of nodes that would have been selected by NDmin(·),
we know that at most |I h́+1

j | iterations at depth h́+ 1 are needed to expand the

optimal node (h́+1, j∗). From this observation, the following lemma is deduced.

Lemma 1. In MO-SOO, after t iterations, for any depth 0 ≤ h ≤ hmax(t) when-
ever

hmax(t) ·
h∑
l=0

max
1≤j≤m

|Ilj | ≤ t , (8)

we have {h∗j,t}1≤j≤m ≥ h.

Proof. We know that {h∗j,t}1≤j≤m ≥ 0 and hence the above statement holds for
h = 0. For 0 < h ≤ hmax(t), we are going to prove it by induction.

Assume that the statement holds for 0 ≤ h ≤ ĥ < hmax(t). Let us then

prove it for h ≥ ĥ + 1. Let hmax(t) ·
∑ĥ+1
l=0 max1≤j≤m |Ilj | ≤ t, and hence,

hmax(t) ·
∑ĥ
l=0 max1≤j≤m |Ilj | is less than or equal to t for which we know by our

assumption that {h∗j,t}1≤j≤m ≥ ĥ. Here, we have two cases: (i) {h∗j,t}1≤j≤m ≥
ĥ + 1, for which the proof is done; (ii) {h∗j,t}1≤j≤m = ĥ, for this case, the

set of nodes expanded at depth ĥ + 1 at each iteration, before the {j}1≤j≤m-
optimal nodes at the same depth, belong to m+ 1 sets (possibly overlapped) of

nodes. Among theses sets, m sets are from {I ĥ+1
j }1≤j≤m, respectively; while the

remaining set of nodes have their representative states in X ĥ+1
ND −∪mj=1X

δj(ĥ+1)
j .

As a result, at each iteration, there could be at least one node to be expanded

from {I ĥ+1
j }1≤j≤m, respectively. Since expanding all of these nodes takes at

most max1≤j≤m |I ĥ+1
j | iterations at depth ĥ+ 1; with a tree of depth hmax(t),

we are certain that the {j}1≤j≤m-optimal node at depth ĥ+1 are expanded after

at most hmax(t) max1≤j≤m |I ĥ+1
j | iterations. Therefore, we have {h∗j,t}1≤j≤m ≥

h.

In other words, the size of Ihj gives a measure of how much exploration is
needed, provided that the j-optimal node at depth h−1 has expanded; and this
exploration is quantified by the near-optimality dimension. The next theorem



Abdullah Al-Dujaili, S. Suresh 18

builds on Lemma 1 to present a finite-time analysis of MO-SOO in terms of a
bound on the loss of Eq. (3) as a function of the number of iterations t.

Theorem 1 (r(t) for MO-SOO). Let us define h(t) as the smallest h ≥ 0 such
that:

hmax(t)

h(t)∑
l=0

max
1≤j≤m

Cjδj(l)
−dsj ≥ t (9)

where t is the number of iterations. Then the loss of MO-SOO is bounded as:

rj(t) ≤ δj(min(h(t), hmax(t) + 1)) , j = 1, . . . ,m . (10)

Proof. Since |Ihj | ≤ Cjδj(h)
−dsj from Eq. (6); from the definition of h(t) (9),

we have:

hmax(t)

h(t)−1∑
l=0

|Ilj | ≤ hmax(t)

h(t)−1∑
l=0

max
1≤j≤m

Cjδj(l)
−dsj < t

Thus, from Lemma 1 and since hmax(t) is the maximum depth at which nodes
can be expanded, we have {h∗j,t}1≤j≤m ≥ min(h(t) − 1, hmax(t)). Now, let
(h∗j,t + 1, j∗) be the deepest non-expanded j-optimal node (which is a child
node of the deepest expanded j-optimal node at depth h∗j,t and its representa-
tive state xh∗

j,t+1,j∗ has been evaluated), then the loss with respect to the jth
objective is bounded, based on Assumption A2, as:

rj(t) ≤ f(xh∗
j,t+1,j∗)− f(x∗j ) ≤ δj(h∗j,t + 1) .

Since {h∗j,t}1≤j≤m ≥ min(h(t)−1, hmax(t)), we have rj(t) ≤ δj(min(h(t), hmax(t)+
1)), for j = 1, . . . ,m.

4.2.2 Bounding the Additive Epsilon Indicator

Within the context of multi-objective optimization and after t iterations, the
vectorial loss r(t) of Eq. (3) does not explicitly capture the quality of MO-SOO’s
approximation set Yt∗ with respect to the whole Pareto front Y∗. Here, we
investigate whether there is an implicit connection between the two concepts.
Particularly, we study the relationship between r(t) (as well as its bound of
Eq. 10) and the Pareto-compliant additive ε-indicator of MO-SOO’s approxima-
tion set Yt∗ with respect to the Pareto front Y∗ (or the unary additive ε-indicator
of Yt∗): I1

ε+(Yt∗). In essence, I1
ε+(Yt∗) measures the smallest amount ε needed to

translate each element in the Pareto front Y∗ such that it is weakly dominated
by at least one element in the approximation set Yt∗. This notion is put formally
in the next definition.
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Definition 8. (Additive ε-indicator [61]) For any two approximation sets A,B ∈
Ω, the additive ε-indicator Iε+ is defined as:

Iε+(A,B) = inf
ε∈R
{∀y2 ∈ B, ∃y1 ∈ A : y1 �ε+ y2} (11)

where y1 �ε+ y2 ⇐⇒ y1
j ≤ ε + y2

j for all j ∈ {1, . . . ,m}. If B is the
Pareto front Y∗ (or a good—in terms of diversity and closeness to the Pareto
front—approximation reference set R ∈ Ω if Y∗ is unknown) then Iε+(A,B) is
referred to as the unary additive epsilon indicator and is denoted by I1

ε+(A), i.e.,

I1
ε+(A)

def
= Iε+(A,Y∗).

A negative value of Iε+(A,B) indicates that A strictly dominates B: every
element in B is strictly dominated by at least one element in A. Note that

I1
ε+(Yt∗)

def
= Iε+(Yt∗,Y∗) ≥ 0 as no element in Yt∗ strictly dominates any element

in Y∗. Thus, the closer I1
ε+(Yt∗) to 0, the better the quality of Yt∗. Figure 5

illustrates the two quantities, viz. r(t) and I1
ε+(Yt∗), and highlights their explicit

relationship for m = 2. From this observation, the following lemma is deduced.

Lemma 2. For any MOO solver, we have I1
ε+(Yt∗)≥ max1≤j≤m rj(t).

Proof. From the definition of the vectorial loss measure (3), the m closest ele-
ments on the approximation set Yt∗ to them extrema of the Pareto front Y∗—i.e.,
{f(x∗j )}1≤j≤m—differ by {rj(t)}1≤j≤m along the corresponding jth objective,
respectively. Therefore, an objective-wise translation of at least max1≤j≤m rj(t)
is needed so as each of the translated Pareto front extrema is weakly dominated
by at least one element in the approximation set Yt∗. Thus, from Definition 8,
I1
ε+(Yt∗) ≥ max1≤j≤m rj(t).

While Lemma 2 provides a lower bound on the indicator I1
ε+(Yt∗), one is

more interested in an upper bound so as to capture the convergence of the
approximation set to the whole Pareto front. To this end, we propose a measure
of conflict of the Pareto front extrema with respect to the rest of its elements,
called conflict dimension.

Definition 9. (conflict dimension) The conflict dimension Ψ ≥ 0 for an MOO
problem with m objectives and Pareto front Y∗ is the unary additive epsilon
indicator of the approximation set that consists of the extrema of Y∗ (m or less
elements). Mathematically:

Ψ
def
= I1

ε+({f(x∗j )}1≤j≤m)
def
= Iε+({f(x∗j )}1≤j≤m,Y∗) (12)

Figure 6 illustrates the proposed measure. Note that Ψ is an intrinsic prop-
erty of the MOO problem’s Pareto front Y∗. In essence, the conflict dimen-
sion Ψ captures the proximity of Pareto front extrema to the rest of its ele-
ments, where Ψ = 0 ⇐⇒ |Y∗| ≤ m. We now provide our upper bound on the
indicator I1

ε+(Yt∗).
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Theorem 2 (I1
ε+(Yt∗) for MO-SOO). Let us define h́(t)

def
= min(h(t), hmax(t) + 1)

where t is the number of iterations and h(t)—as in Theorem 1—is the small-
est h ≥ 0 such that Eq. (9) holds. Then for an MOO problem with conflict
dimension Ψ, the indicator I1

ε+(Yt∗) of MO-SOO is bounded as:

I1
ε+(Yt∗) < Ψ + max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) . (13)

Proof. From the loss bound (10) established in Theorem 1, MO-SOO’s approxi-
mation set after t iterations Yt∗ lies in a portion of the function space, namely

{f(X δ1(h́(t))
1 ), . . . , f(X δm(h́(t))

m )} and possibly f(X h́(t)
ND ) (defined before Lemma 1

in Section 4.2.1 and depicted in Figure 4, for m = 2). Therefore, in the worst-
case scenario, Yt∗ consists of m (or less) elements that contribute to the nadir

point of f(X h́(t)
ND ) (e.g., Yt∗ = {y1,y2} in Figure 4, where their objective-wise

values constitute y3). For brevity, let us denote this worst-case approximation
set and the set of the Pareto front extrema {f(x∗j )}1≤j≤m by Yt,w∗ and Y∗,e,
respectively.

Now, for all j ∈ {1, . . . ,m}, the maximum objective-wise translation between

the element Yt,w∗ ∩ f(X δj(h́(t))
j ) (e.g., y1 in Figure 4 for j = 1) and f(x∗j ) ∈ Y∗,e

is upper bounded as follows (see Figure 4 for illustration).

max
1≤̄≤m

y1∈Yt,w∗ ∩f(X
δj(h́(t))

j )

y1
̄ − f̄(x∗j ) ≤ max

(
max

1≤l≤m
l 6=j

from Eq. (6)︷ ︸︸ ︷
Cjδj(h́(t))

−dsj · 2δl(h́(t))︸ ︷︷ ︸
from A1 and A2

,

from Eq. (10)︷ ︸︸ ︷
δj(h́(t))

)

≤ max
1≤k≤m

(
max

(
max

1≤l≤m
l 6=k

2Ckδk(h́(t))
−dsk δl(h́(t)), δk(h́(t))

))

< max
1≤k,l≤m

(1 + 2Ckδk(h́(t))
−dsk ) · δl(h́(t)) . (14)

Put it differently, elements in Yt,w∗ differ objective-wise by a value less than
the right-hand side of (14) with respect to their corresponding closest elements
in Ye∗ . On the other hand, Definition 9 implies that there exists at least one
element y2 ∈ Y∗,e for every element y3 ∈ Y∗ such that y2 �Ψ y3. Consequently,
we have

y2
j + max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) ≤

Ψ + max
1≤k,l≤m

(1 + 2Ckδk(h́(t))
−dsk ) · δl(h́(t)) + y3

j , (15)

for all j ∈ {1, . . . ,m}. Combining (14) and (15) indicates that for every element
y3 ∈ Y∗, there exists at least one element y1 ∈ Yt,w∗ such that

y1
j < Ψ + max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) + y3
j , (16)
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for all j ∈ {1, . . . ,m}. In other words,

I1
ε+(Yt,w∗ ) ≤ Ψ + max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk )δl(h́(t))

. Since maxy4∈Yt∗ y
4
j ≤ maxy1∈Yt,w∗

y1
j for all j ∈ {1, . . . ,m}, we have

I1
ε+(Yt∗) < Ψ + max

1≤k,l≤m
(1 + 2Ckδk(h́(t))

−dsk ) · δl(h́(t)) .

Theorem 2 describes the bound on I1
ε+(Yt∗) by a non-increasing function,

viz. max1≤k,l≤m(1+2Ckδk(h́(t))
−dsk ) ·δl(h́(t)) reflecting the objectives smooth-

ness with an offset dependent on the structure of the Pareto front with regard
to its extrema {f(x∗j )}1≤j≤m—i.e., the conflict dimensionality Ψ. Section 4.4
gives some illustrative examples about the characteristics of the non-increasing
function in relation to the theoretical bounds presented. In Section 4.5, these
theoretical bounds are calculated via symbolic computation and validated on a
set of synthetic problems. It should be noted that as the rightmost term—of the
Eq. 9—diminishes to zero, the presented upper-bound holds down to Ψ and fails
to characterize/follow I1

ε+(Yt∗) afterwards. This does not imply that I1
ε+(Yt∗) will

not decrease henceforth but rather does not guarantee the same. Nevertheless,
the result of the next section indicates that in the limit I1

ε+(Yt∗) decreases to
zero, since MO-SOO’s approximation set converges asymptotically to the Pareto
front, as supported by the empirical validation of Section 4.5.

4.3 Asymptotic Performance

Theorem 1 addressed the finite-time performance of MO-SOO with respect to m
points on the Pareto front, whereas Theorem 2 established it with respect to
the additive ε-indicator as the number of iterations t grows. Here, we consider
the asymptotic behavior of MO-SOO, that is, its approximation set given an
infinite budget of function evaluations. Asymptotic analysis has been the core
of convergence studies of several established algorithms (see, e.g., [51, 12, 48,
26, 24, 31, 19, 3, 13, 49]).In this section, we show that MO-SOO asymptotically
converges to the whole Pareto front.

MO-SOO guarantees that no portion of X is disregarded ⇐⇒ hmax(t)→∞
as t → ∞. Accordingly, if a Pareto optimal node happens to be a leaf node
at iteration t́, then it will definitely get expanded in one of the next iterations
≥ t́+ 1. As the number of iterations t grows bigger, the base points sampled by
MO-SOO form a dense subset of X such that for an arbitrary small ε ≥ 0: ∀x́ ∈
X ∗,∃ a base point x such that |f(x)− f(x́)| ≤ ε. The next theorem establishes
formally our proposition about the consistency property of MO-SOO.

Theorem 3 (MO-SOO Consistency). MO-SOO is consistent, if hmax(t) → ∞ as
t→∞, where t is the number of iterations.
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Proof. Let us denote the deepest Pareto optimal node that has the Pareto op-
timal solution x́ ∈ X ∗ by (hx́(t), ix́). i.e., x́ ∈ Xhx́(t),ix́ . From Assumption A2
and the definition of the semi-metric `j ,

0 ≤ `j(xhx́(t),ix́ , x́) ≤ δj(hx́(t)) ,∀x́ ∈ X ∗, j = 1, . . . ,m .

Since hmax(t)→∞ as t→∞, the depths of all the Pareto optimal nodes tends
to ∞, mathematically:

0 ≤ lim
t→∞

`j(xhx́(t),ix́ , x́) ≤ lim
hx́(t)→∞

δj(hx́(t)) ,∀x́ ∈ X ∗, j = 1, . . . ,m .

Then, with Assumption A2:

lim
t→∞

`j(xhx́(t),ix́ , x́) = 0 ,∀x́ ∈ X ∗, j = 1, . . . ,m ,

and from the coincidence axiom satisfied by `j as a semi-metric:

lim
t→∞

xhx́(t),ix́ = x́ ,∀x́ ∈ X ∗ .

Thus, as the number of iterations t grows bigger, MO-SOO asymptotically con-
verges to the Pareto front.

4.4 Illustration

In this section, insights on the loss bound (10) is presented and illustrated
through some examples.6 For j = 1, . . . ,m; let δj(h) = cjγ

h
j for some constants

cj > 0 and 0 < γj < 1; hmax(t) = tp for p ∈ (0, 1). Putting this in (10), two
interesting cases can be noted:

• Consider the case where {dsj}0≤j≤m = 0, denote max1≤j≤m Cj by Ĉj .
From Theorem 1:

t ≤ hmax(t)

h(t)∑
l=0

max
1≤j≤m

Cjδj(l)
−dsj = hmax(t) · Ĉj(h(t) + 1) .

Thus, for j = 1, . . . ,m:

rj(t) ≤ O(γ
min(t1−p, tp)
j ) , (17)

i.e., the loss is a stretched-exponential function of the number of iterations
t.

6As the indicator bound (13) is dependent on the loss bound (10), similar analysis holds
true for the indicator bound as well.
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• Consider the case where ∃k ∈ {1, . . . ,m} such that

∀l, Ckδk(l)−dsk = max
1≤j≤m

Cjδj(l)
−dsj

and dsk > 0, then from Theorem 1, we have:

t ≤ hmax(t)

h(t)∑
l=0

Ckδk(l)−dsk = Ck · c
−dsk
k · tp ·

γ
−dsk (h(t)+1)

k − 1

γ
−dsk
k − 1

,

(1− γdskk )

Ck
· t1−p ≤ c

−dsk
k γ

−dskh(t)

k ,(
Ck

1− γdsk

)1/dsk

· t−
1−p
dsk ≥ ckγ

h(t)
k .

Hence, h(t) is of a logarithmic order in t, making h(t) < hmax(t) + 1 as t
grows bigger. Thus, with δj(h) = Θ(δk(h)) for j = 1, . . . ,m;

rj(t) ≤ O(t
− 1−p
dsk ) , (18)

i.e., the loss is a polynomially-decreasing function of the number of itera-
tions t.

One can deduce that the performance (in terms of the loss (3)) is influenced
by two main factors, viz. the near-optimality dimension of the objectives
{dsj}0≤j≤m , and the maximal depth function hmax(t).

The Maximal Depth Function hmax(t). From Theorem 1, the maximal depth
function hmax(t) acts as a multiplicative factor in the definition of h(t) (Eq. 9)
as well as a limiting factor on the loss bound (Eq. 10). This effect of hmax(t)
elegantly captures the exploration-vs.-exploitation trade-off. Larger hmax(t)
makes the algorithm more exploitative (deeper tree) and h(t) smaller, while
smaller hmax(t) makes the algorithm more exploratory (broader tree) and h(t)
larger; the inverse proportionality between hmax(t) and h(t) evens out the loss
bound in both situations.

The Near-Optimality Dimensions {dsj}0≤j≤m. While hmax(t) is a parameter
of the algorithm, {dsj}0≤j≤m are dependent on the multi-objective problem
at hand and are related to the algorithm’s partitioning strategy through the
scaling factors {sj}1≤j≤m. Consider the near-optimality dimensions for the bi-
objective problem (depicted in Figure 7 for n = 1) where X = [0, 1]n, f1(x) =
||x − 0.25||α1

∞ , and f2 = ||x − 0.75||α2
∞ for α1 ≥ 1, α2 ≥ 1; and let MO-SOO

have a partition factor of K = 3n. Furthermore, assume the semi-metrics to be
`1(x,y) = ||x−y||β1

∞ , `2(x,y) = ||x−y||β2
∞ where β1 ≤ α1, β2 ≤ α2 in line with

Assumption A1. In the light of Assumption A2, δ1(h) and δ2(h) may be written
as 2−β1 ·3−hβ1 and 2−β2 ·3−hβ2 , respectively; and from Assumption A3, we have

s1 = 1 and s2 = 1. The region X δ1(h)
1 (resp., X δ2(h)

2 ) is the L∞-ball of radius
δ1(h)1/α1 (resp., δ2(h)1/α2) centered in 0.25 (resp., 0.75). In line of Definition 7,
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these regions can be packed by
(
δ1(h)1/α1

δ1(h)1/β1

)n
(resp.,

(
δ2(h)1/α2

δ2(h)1/β2

)n
) L∞-balls of

radius δ1(h)1/β1 (resp., δ2(h)1/β2). Thus the near-optimality dimensions are
ds1 = n(1/β1 − 1/α1) and ds2 = n(1/β2 − 1/α2). Without loss of generality,
three scenarios are present with respect to the first objective:

1. α1 = β1 =⇒ ds1 = 0; the cardinality of the set Ih1 is a constant regardless
of the depth h and the decision space dimensionality n. This presents
a balanced trade-off between exploration and exploitation as the semi-
metric `1 is capturing the function f1 behavior precisely.

2. α1 > β1 =⇒ ds1 > 0 ; the cardinality of the set Ih1 becomes an increasing
function of the depth h and the decision space dimensionality n. This
presents a bias towards exploration as the semi-metric `1 underestimates
the behavior of the function f1.

3. α1 < β1; this violates Assumption A1. With this regards, the algorithm
becomes more exploitative falling for local optimal solutions as the semi-
metric `1 is overestimating f1’s smoothness.

The first two scenarios coincide with the two cases discussed earlier in this
section. As t grows larger and the near-optimality dimensions are zero (reflect-
ing a balance in the exploration-vs.-exploitation dilemma), setting p = 0.5 in
hmax(t) = tp results in a faster decay of the loss bound (Eq. 17). On the other
hand, when more exploration is needed, setting p → 0 (broader tree) gives a
faster loss bound decay (Eq. 18).

Remark 2. It is important to reiterate here that MO-SOO does not need the
knowledge of the functions smoothness and the corresponding near-optimality
dimensions, it only requires the existence of such smoothness. These measures
help only in quantifying the algorithm’s performance.

Remark 3. The case of zero near-optimality dimension covers a large class of
functions. In fact, it has been shown by [52] that the near-optimality dimension
is zero for any function defined over a finite-dimensional and bounded space,
and whose upper- and lower-envelopes around the global optimizer are of the
same order.

4.5 Empirical Validation of Theoretical Bounds

In this section, the loss r(t) and the indicator I1
ε+(Yt∗) bounds of (10) and (13),

respectively, are validated empirically for the bi-objective problem defined in
Section 4.4 and depicted in Figure 7. We compute these quantities using the
Symbolic Math Toolbox from The MathWorks, Inc. and compare them with
respect to the numerical loss and indicator values obtained by running MO-SOO

with an evaluation budget of v = 104 function evaluations.
With a partition factor of K = 3, the decreasing sequence δ1(h) (resp., δ2(h))

can be defined as 2−α1 ·K−3α1bh/nc (resp., 2−α2 ·K−3α2bh/nc) as the search space
is partitioned coordinate-wise per depth. Moreover, from Assumption A3, we
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have s1 = 1 (resp., s2 = 1). C1 and C2 of Definition 7 are set to 2 as the cell

centers may lie on the boundary of X δ1(h)
1 and X δ2(h)

2 , respectively.
To assess the effect of the conflict dimension Ψ (defined in Definition 9),

eight instances of the problem are tested, where n ∈ {1, 2}, and the j-optimal
solutions (x∗1, x

∗
2) are set in one of four configurations—reflecting among others

the maximum and minimum Ψ values. The Pareto front Y∗ and the conflict
dimension Ψ of the problem are estimated numerically from 106 uniformly-
sampled points. While the maximal depth function hmax(t) acts as a very
conservative multiplicative factor in (9) for the number of depths visited in each
iteration. In our experiments, we have recorded the number of depths visited
in each iteration and used the recorded values as the multiplicative factor in
computing the theoretical bounds of (10) and (13).

The numerical and theoretical measures are presented in Figure 8. First,
one can easily verify Lemma 2. Second, whilst having the same evaluation
budget v, the conflict and decision space dimensions have a clear impact on
the corresponding number of iterations t. Recall that one iteration repre-
sents executing the lines 4–8 of Algorithm 3, once. Though with some off-
set, one can note how the theoretical measures upper bound the numerical
measures with a similar trend. The code for generating the data presented in
this section is available at https://www.dropbox.com/s/ssiq1m52hczuj7a/

mosoo-theory-validation.rar?dl=0.

5 Experimental Assessment

Due to space limitations, the experimental validation of MO-SOO and its compar-
ison with several state-of-the-art algorithms is presented in detail in the online
supplement, which is available at https://www.dropbox.com/s/lifnnz0ajzjxdks/

mosoo-supplement-quantiles.pdf?dl=0.

6 Conclusion

This paper presents the Multi-Objective Simultaneous Optimistic Optimization
(MO-SOO): an optimistic approach to solve multi-objective optimization problems
given a finite number of function evaluations. Using a tree of bandits, MO-SOO
hierarchically partitions the feasible decision space in search for Pareto optimal
solutions using the non-dominated Pareto relation among its tree nodes. MO-SOO
performance in terms of finite-time rate as well as asymptotic convergence has
been studied, based on three basic assumptions about the function smoothness
and hierarchical partitioning. While existing theoretical analysis of MOO solvers
either considers finite-set/discrete problems, provides probabilistic guarantees,
or asymptotic local stationarity convergence, the theoretical analysis of MO-SOO
establishes a deterministic upper bound on the Pareto-compliant ε-indicator for
continuous MOO problems that holds down to a problem-dependent measure,
namely the conflict dimension, which captures the structure of the problem’s

https://www.dropbox.com/s/ssiq1m52hczuj7a/mosoo-theory-validation.rar?dl=0
https://www.dropbox.com/s/ssiq1m52hczuj7a/mosoo-theory-validation.rar?dl=0
https://www.dropbox.com/s/lifnnz0ajzjxdks/mosoo-supplement-quantiles.pdf?dl=0
https://www.dropbox.com/s/lifnnz0ajzjxdks/mosoo-supplement-quantiles.pdf?dl=0
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Pareto front with respect to its extrema. Furthermore, it has been shown that
MO-SOO converges asymptotically to the Pareto front.

The empirical performance of MO-SOO in approximating Pareto fronts has
been evaluated using 300 benchmark MOO problems and their results are com-
pared with three state-of-the art MOO solvers, namely MOEA/D, MO-CMA-ES, and
SMS-EMOA. The performance of MO-SOO is comparable with best results of the
top performing SMS-EMOA algorithm. From results, we observe that problems
with weakly-structured multi-modal objectives impose a challenge for MO-SOO.
This can be attributed to two factors: theoretical foundation of the algorithm
(the near-optimality dimension) in scaling the exploration proportionally with
the number of objective-wise global optima and the fact that sequential parti-
tioning scheme may not adapt well in case of weakly-structured objectives. In
addition, the nature of the used ND(·) operator overlooks the diversity of the
selected nodes for expansion.
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versité Paris Sud - Paris XI ; Institut national de recherche en informatique
et en automatique - INRIA, Jan. 2013.

[35] I. Loshchilov and T. Glasmachers, Black-box optimization competi-
tion (BBComp). http://bbcomp.ini.rub.de/.

[36] S. Mannor and N. Shimkin, A geometric approach to multi-criterion re-
inforcement learning, The Journal of Machine Learning Research, 5 (2004),
pp. 325–360.

[37] K. Miettinen, Nonlinear multiobjective optimization, Kluwer, Boston,
MA, USA, 1999.

[38] R. Munos, Optimistic optimization of deterministic functions without the
knowledge of its smoothness, in Advances in neural information processing
systems, 2011.

[39] R. Munos, From bandits to Monte-Carlo Tree Search: The optimistic prin-
ciple applied to optimization and planning, Foundations and Trends in Ma-
chine Learning, 7(1) (2014), pp. 1–130.

[40] S. Natarajan and P. Tadepalli, Dynamic preferences in multi-criteria
reinforcement learning, in Proceedings of the 22nd international conference
on Machine learning, ACM, 2005, pp. 601–608.

[41] V. Pareto, Manual of political economy, Augustus M. Kelley Publishers,
New York, 1971.

[42] J. Pintér, Global optimization in action: continuous and Lipschitz opti-
mization: algorithms, implementations and applications, vol. 6, Springer
Science & Business Media, 1995.

[43] P. Preux, R. Munos, and M. Valko, Bandits attack function optimiza-
tion, in Evolutionary Computation (CEC), 2014 IEEE Congress on, IEEE,
2014, pp. 2245–2252.

[44] H. Robbins et al., Some aspects of the sequential design of experiments,
Bulletin of the American Mathematical Society, 58 (1952), pp. 527–535.

[45] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, A survey
of multi-objective sequential decision-making, Journal of Artificial Intelli-
gence Research, (2013).

[46] G. Rudolph, Evolutionary search for minimal elements in partially
ordered finite sets, in Evolutionary Programming VII, Springer, 1998,
pp. 345–353.

[47] P. Rusmevichientong and J. N. Tsitsiklis, Linearly parameterized
bandits, Mathematics of Operations Research, 35 (2010), pp. 395–411.



Abdullah Al-Dujaili, S. Suresh 30

[48] Y. D. Sergeyev, On convergence of ”divide the best” global optimization
algorithms, Optimization, 44 (1998), pp. 303–325.

[49] Y. D. Sergeyev, M. S. Mukhametzhanov, D. E. Kvasov, and
D. Lera, Derivative-free local tuning and local improvement techniques
embedded in the univariate global optimization, Journal of Optimization
Theory and Applications, (2016), pp. 1–23.

[50] W. R. Thompson, On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples, Biometrika, (1933), pp. 285–
294.

[51] A. Torn and A. Zilinskas, Global optimization, Springer-Verlag New
York, Inc., 1989.

[52] M. Valko, A. Carpentier, and R. Munos, Stochastic simultaneous op-
timistic optimization, in Proceedings of the 30th International Conference
on Machine Learning (ICML-13), 2013, pp. 19–27.

[53] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
Empirical evaluation methods for multiobjective reinforcement learning al-
gorithms, Machine Learning, 84 (2011), pp. 51–80.

[54] K. Van Moffaert, K. Van Vaerenbergh, P. Vrancx, and A. Nowé,
Multi-objective χ-armed bandits, in Neural Networks (IJCNN), 2014 Inter-
national Joint Conference on, IEEE, 2014, pp. 2331–2338.

[55] T. Voß, N. Hansen, and C. Igel, Improved step size adaptation for
the MO-CMA-ES, in Proceedings of the 12th annual conference on Genetic
and evolutionary computation, ACM, 2010, pp. 487–494.

[56] W. Wang and M. Sebag, Multi-objective Monte-Carlo Tree Search, in
Asian Conference on Machine Learning, S. C. Hoi and W. Buntine, eds.,
vol. 25, Singapour, Singapore, Nov. 2012, pp. 507–522.

[57] Y. Wang and S. Gelly, Modifications of UCT and sequence-like simu-
lations for Monte-Carlo Go., CIG, 7 (2007), pp. 175–182.

[58] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas, Bayesian multi-scale
optimistic optimization, arXiv preprint arXiv:1402.7005, (2014).

[59] Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm
based on decomposition, Evolutionary Computation, IEEE Transactions on,
11 (2007), pp. 712–731.

[60] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization, in
Evolutionary Methods for Design, Optimisation and Control with Appli-
cation to Industrial Problems (EUROGEN 2001), K. G. et al., ed., Inter-
national Center for Numerical Methods in Engineering (CIMNE), 2002,
pp. 95–100.



Abdullah Al-Dujaili, S. Suresh 31

[61] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
Da Fonseca, Performance assessment of multiobjective optimizers: an
analysis and review, IEEE Transactions on Evolutionary Computation, 7
(2003), pp. 117–132.



Abdullah Al-Dujaili, S. Suresh 32

f1(x)

Y
f 2

(x
)

δ 1
(h

)

δ2(h)f(X δ2(h)
2 )

f(
X
δ

1
(h

)
1

)

Y∗

×
y2

×
y1

×
y4

×
y5

C
1δ

1(
h

)−
d

s
1

·2
δ 2

(h
)

C2δ2(h)−ds2 · 2δ1(h)

×f(x∗
1 )

×
f(x∗

2 )

×
y3

f(X hND)

Figure 4: The objective space Y for a multi-objective optimization problem
(m = 2). The solid curve marks the Pareto front Y∗. At depth h, assuming
the {j}j=1,2-optimal nodes are not expanded yet, one can use the NDmin(·)
operator, which causes nodes whose representative states lie in the decision

space portion ∪j=1,2X
δj(h)
j to be expanded before others. However, this may

hold up discovering other parts of the Pareto front (the circled region). This is
not the case with the ND(·) operator, where another region X hND—whose image
in the objective space is bounded by the Pareto front and the points y1, y2, and

y3 = ynadir(f(∪j=1,2X
δj(h)
j ))—is as well considered. Let the considered depth

at iteration t be h and the depth of the deepest {j}j=1,2-optimal nodes be h−1.
Then, prior to expanding the {j}j=1,2-optimal nodes at depth h, the set Qt (of
Algorithm 3) comprises of at most 3 types of nodes whose representative states

lie in X δ1(h)
1 ,X δ2(h)

2 , and X hND, respectively. Furthermore, one can note from
Eq. (6) as well as Assumptions A1 and A2 that the point y1 is greater than or
equal y4, and hence f(x∗1), along f2 by at most C1δ1(h)−ds1 · 2δ2(h), that is to
say y1

2 − f2(x∗1) ≤ C1δ1(h)−ds1 · 2δ2(h); similar argument can be made between
the points y2 and y5 along f1. This observation is the main ingredient in the
proof of Theorem 2 (more in Section 4.2.2).
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Figure 5: Illustration of the vectorial loss r(t) of Eq. (3) and its relation to
the unary additive epsilon indicator I1

ε+(Yt∗) (Definition 8) for a multi-objective
problem (m = 2) whose objective space Y is shown in two scenarios: (i) non-
conflicting objectives and (ii) conflicting objectives. The gray square (resp.,
curve) in the first (resp., second) scenario represents the least-translated Pareto
front so as every translated element is weakly dominated by at least one ele-
ment in the approximation set Yt∗, i.e., {(y1 + I1

ε+(Yt∗), . . . , ym + I1
ε+(Yt∗))}y∈Y∗ .

Mathematically, I1
ε+(Yt∗) ≥ max1≤j≤m rj(t) where equality sufficiently holds

when |Yt∗| = 1 (see Lemma 2).
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Figure 6: The objective space Y for a multi-objective optimization problem
(m = 2) with conflict dimension Ψ ≥ 0 (Definition 9). The solid curve marks
the Pareto front Y∗. The faded curve represents the Ψ-translated Pareto front,
i.e., {(y1 +Ψ, . . . , ym+Ψ)}y∈Y∗ . Every element of the Ψ-translated Pareto front
is weakly dominated by at least one element in the set {f(x∗j )}1≤j≤m ⊆ Y∗.
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Figure 7: Bi-objective problem (m = 2, n = 1) over X = [0, 1] with f1(x) =
||x − 0.25||α1

∞ , f2 = ||x − 0.75||α2
∞ , `1(x,y) = ||x − y||β1

∞ , `2(x,y) = ||x − y||β2
∞

where β1 ≤ α1, β2 ≤ α2. The region X ε1 (resp., X ε2 ) is the interval centered
around x∗1 (resp., x2

∗) of length 2 · ε1/α1 (resp., 2 · ε1/α2). They can be packed
with ε1/α1−1/β1 (resp., ε1/α2−1/β2) intervals of length 2 · ε1/β1 (resp., 2 · ε1/β2).
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(b) Ψ = 2.99e− 01, n = 1
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(d) Ψ = 0, n = 1
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(e) Ψ = 5.12e− 01, n = 2
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2

4

6

8

h
m

a
x
(t
)

50 100 150 200 250 300

10−2

10−1

100

t

p
ro
bl
em

m
ea
su
re
s
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Figure 8: Empirical validation of MO-SOO’s finite-time analysis for eight instances {a, . . . , h} of the bi-objective problem of
Figure 7. Each plot shows the problem measures, namely the loss measures r1(t), r2(t) and the indicator I1

ε+(Yt∗), as well as
their upper bounds (denoted by r̄1, r̄2, and Ī1

ε+, respectively) as a function of the number of iterations t with a computational
budget of v = 104 function evaluations. The upper bounds are obtained via symbolic computation of the (10) and (13)
equations using MATLAB’s Symbolic Math Toolbox. The header of each instance’s plot reports the decision space dimension n
and the conflict dimension Ψ. The j-optimal solutions (x∗1, x

∗
2) are fixed as follows: (0,1) for (a) and (e), (0.21,0.81) for

(b) and (f), (0.47,0.61) for (c) and (g), and (0.57,0.57) for (d) and (h).
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