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Abstract 
 

Recently, the permutation paradigm has been proposed in data anonymization to describe any 
micro data masking method as permutation, paving the way for performing meaningful 
analytical comparisons of methods, something that is difficult currently in statistical disclosure 
control research. This paper explores some consequences of this paradigm by establishing some 
class of universal measures of disclosure risk and information loss that can be used for the 
evaluation and comparison of any method, under any parametrization and independently of the 
characteristics of the data to be anonymized. These measures lead to the introduction in data 
anonymization of the concepts of dominance in disclosure risk and information loss, which 
formalise the fact that different parties involved in micro data transaction can all have different 
sensitivities to privacy and information. 
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1. Introduction 

Data on individual subjects are increasingly collected and exchanged. By their nature, they 
provide a rich amount of information that can inform statistical and policy analysis in a meaningful 
way. However, due to the legal obligations surrounding these data, this wealth of information is often 
not fully exploited in order to protect the confidentiality of respondents. In fact, such requirements shape 
the dissemination policy of micro data at national and international levels. The issue is how to ensure a 
sufficient level of data protection to meet releasers’ concerns in terms of legal and ethical requirements, 
while offering to users a reasonable richness of information. Moreover, over the last decade the role of 
micro data has changed from being the preserve of National Statistical Offices and government 
departments to being a vital tool for a wide range of analysts trying to understand both social and 
economic phenomena. As a result, more parties, often very heterogeneous in their privacy and 
information requirements, are now involved in micro data transactions. This has opened a new range of 
questions and pressing needs about the privacy/information trade-off and the quest for best practices 
that can be both useful to users but also respectful of respondents’ privacy. 

Statistical disclosure control (SDC) research has a rich history in addressing those issues, by 
providing the analytical apparatus through which the privacy/information trade-off can be assessed and 
implemented. SDC consists in the set of tools that can enhance the level of confidentiality of any data 
while preserving to a lesser or greater extent its level of information (see [8] for an authoritative survey). 
Over the years, it has burgeoned in many directions. In particular, techniques applicable to micro data, 
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which are the focus of this paper, offer a wide variety of tools to protect the confidentiality of 
respondents while maximizing the information content of the data released, for the benefits of society 
at large. 
 Streaming from the the large variety of practical cases that can occur in micro data exchange is 
the diversity of techniques available for data anonymization. Such diversity is undoubtedly useful but 
has however one major drawback: a lack of agreement and clarity on the appropriate choice of tools in 
a given context, and as a consequence a lack of general view (or at best an incomplete one) across the 
relative performances of the techniques available. In fact, the cross-evaluation of current micro data 
masking methods is a challenging task for at least two reasons. The first is analytical: the evaluation of 
utility and privacy for each method is metric and data-dependent ([10]). As a result, there is no common 
language for comparing different mechanisms, all with potentially varying parametrizations applied on 
the same data set or different data sets. Moreover, there is also a variety of definition for privacy and 
information loss, and picking some is often related to the context in which they are used and/or can 
result from an arbitrary choice. The fact that all evaluations can only be practical in nature and context-
specific is clearly an issue, not least precluding a sound and simple communication on data 
anonymization as well as a wider democratization of the field that could allow for more data to be 
disseminated. 
 A second reason is related to the variety of parties involved in micro data exchange. Indeed, it 
is natural to assert that across each party different sensitivities to privacy and information prevail. Some 
may place greater emphasis on the preservation of privacy, e.g. typically the data releasers, while others 
are relatively more concerned by the extent to which information is preserved, e.g. typically the 
researchers. Additionally, these sensitivities can differ also within groups, e.g. one researcher can have 
a low sensitivity to information loss and consider a release better than no release at all, while another 
could simply disregard the data above a certain threshold of loss set according to his intended use of 
the data. 
 A step toward the resolution of such limitations has been recently proposed ([11] and [3]), by 
establishing that any micro data masking method can be viewed as functionally equivalent to a 
permutation of the original data plus eventually a small noise addition. This insight, called the 
permutation paradigm, unambiguously establishes a common ground upon which any masking method 
can be gauged. It is independent of the underlying parameters of the masking mechanism and the 
characteristics of the data. Moreover, it presents the advantage of being meaningful and easy to grasp 
and implement, as the only necessary and sufficient information for the comparative evaluation of some 
methods, being under different parametrizations and/or different data sets, is a distribution of 
permutation distances. Thus, the permutation paradigm is also a tremendous simplifier for data 
anonymization. 

While this paradigm is not considered by its author as a new anonymization method per se (a 
statement that can be reconsidered, see later), it offers the potential to re-interpret all the techniques 
available through the same lens. It remains however to develop a set of appropriate measures of 
disclosure risk and information loss based on permutation distances. This is the objective of this paper, 
which explores some consequences of the permutation paradigm. Notably, it proposes some universal 
measures of disclosure risk and information loss that can be computed in a simple fashion and used for 
the evaluation of any anonymization methods, independently of the context under which they operate. 
The construction of these measures allows introducing in data anonymization the notions of dominance 
in disclosure risk and information loss, which formalise the fact that different parties involved in micro 
data release can all have different sensitivity to privacy and information, and can inform about the 
methods that can reach a consensus among all parties involved. These two notions of dominance can in 
fact characterize which methods, under any tastes for privacy and information, always perform better 
than others. 

This paper first starts in Section 2 with a brief reminder of the permutation paradigm and one 
of its first, simple consequence, which establishes permutation matrices as an encompassing tool in data 
anonymization. From permutation matrices, Section 3 derives a general class of disclosure risk 
measures and introduces the concept of dominance in disclosure risk. Section 4 then develops a general 
class of information loss measures as well as the related concept of dominance in information. Section 
5 proceeds with possible extensions of the measures introduced in this paper. Finally, conclusions and 
paths for future research are gathered in Section 6. 
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2. Centrality of permutation matrices in data anonymization 
2.1 Restatement of the permutation paradigm 

  The current state of the literature on data anonymization offers a wide variety of techniques 
suited to different circumstances in terms of data, utility preservation and privacy requirement ([8]). 
But as outlined above, this diversity in techniques also entails some difficulties in comparing the level 
of utility and privacy achieved through different methods on different data sets, as all of them are 
ultimately tied to the analytical framework selected, in particular their parameters which are data-
dependent, and the underlying metrics used. This makes the comparison of different mechanisms such 
as e.g. additive vs. multiplicative perturbations, or the same mechanism applied on different data sets, 
an awkward task. However, a recent contribution in the literature (see [11] and its subsequent 
development in [3]) proposed a general functional equivalence to describe any data masking method. 
From the observation that any anonymized data set can be viewed as a permutation of the original data 
plus a non-rank perturbative noise addition, the authors established that all masking methods can be 
thought of in term of a single ingredient, i.e. permutation. The so-called permutation paradigm has 
clearly far reaching conceptual and practical consequences, in the sense that it provides a single and 
easily understandable reading key, independent of the model parameters, the risk measures or the 
specific characteristics of the data, to interpret the utility/protection outcome of an anonymization 
procedure. 

To illustrate the permutation paradigm, we introduce a simple running example which consists 
(without loss of generality) of five records and three attributes X=(X1, X2, X3) generated by sampling 
N(10,102), N(100,402) and N(1000,20002) distributions, respectively. Noise is then added to obtain 
Y=(Y1, Y2, Y3), the three masked version of the attributes, from N(0,52), N(0,202) and N(0,10002) 
distributions, respectively. One can see that the masking procedure generates a permutation of the 
records of the original data (Table 1). 

 

 
 

 Now, as long as the attributes’ values of a dataset can be ranked, which is obvious in the case 
of numerical and categorical ordinal attributes, but also feasible in the case of nominal ones ([5]), it is 
always possible to derive a dataset Z that contains the attributes X1, X2 and X3, but ordered according 
to the ranks of Y1, Y2 and Y3, respectively, i.e. in Table 1 re-ordering (X1, X2, X3) according to (Y1R, 
Y2R, Y3R). This can be done following the post-masking reverse procedure outlined in [3]. Finally, the 
masked data Y can be fully reconstituted by adding small noises (E1, E2, E3) (small in the sense that 

X1 X2 X3 Y1 Y2 Y3

13 135 3707 8 160 3248
20 52 826 20 57 822
2 123 -1317 -1 122 248
15 165 2419 18 135 597
29 160 -1008 29 164 -1927

X1R X2R X3R Y1R Y2R Y3R

4 3 1 4 2 1
2 5 3 2 5 2
5 4 5 5 4 4
3 1 2 3 3 3
1 2 4 1 1 5

Original dataset X Masked dataset Y

Table 1. An illustration of the permutation paradigm

Rank of the original attribute Rank of the masked attribute
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they cannot re-rank Z while they can still be large in absolute values) to each observation in each 
attribute (Table 2). 

 
By construction, Z has the same marginal distribution as X, which is an appealing property. 

Moreover, under a maximum-knowledge intruder model of disclosure risk evaluation, the small noise 
addition turns out to be irrelevant ([3]): re-identification via record linkage can only come from 
permutation, as by construction noise addition cannot alter ranks. Reverse mapping thus establishes 
permutation as the overarching principle of data anonymization, allowing the functioning of any method 
to be viewed as the outcome of a permutation of the original data, independently of how the method 
operates. This functional equivalence leads to the following proposition: 

 
Proposition 1: For a dataset3 X(n,p) with n records and p attributes (X1,..,Xp), its anonymized version 
Y(n,p) can always be written, regardless of the anonymization methods used, as: 

𝑌(#,%) = 𝑃)𝑋), … , 𝑃%𝑋% (#,%)
+ 𝐸(#,%) 

where P1,..,Pp is a set of p permutation matrices and E(n,p) is a matrix of small noises. 
 
In the example of Table 2 one can indeed easily verify that: 
 

𝑃) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

	𝑃1 =

0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

	𝑃2 =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 

 
and E(n,p) is given by the lower-left matrix of table 2. 

Proposition 1 is simply a restatement of the permutation paradigm. It has however several 
implications. The first is that it characterises permutation matrix as an encompassing tool for data 
anonymization: the analytical framework of anonymization mechanisms can in fact be viewed as 
functionally equivalent to a set of permutation matrices. Clearly, this formalizes the common basis of 
comparison for different mechanisms that the permutation paradigm originally proposed. Whatever the 
differences in the natures of the methods to be compared and the distributional features of the original 
data, the methods can fundamentally always be viewed as the application of different permutation 
matrices to the original data. And as a standard tool in linear algebra, permutation matrices are 

                                                
3	In	the	remainder	of	this	paper,	the	subscript	in	parenthesis	describes	the	number	of	rows	and	columns	for	a	
matrix.	Here	for	example	X(n,p) is	a	matrix	with	n	rows	and	p	columns.	

X1 X2 X3 Z1 Z2 Z3

13 135 3707 13 160 3707
20 52 826 20 52 2419
2 123 -1317 2 123 -1008
15 165 2419 15 135 826
29 160 -1008 29 165 -1317

E1 E2 E3 Y1 Y2 Y3

-5 0 -459 8 160 3248
0 5 -1597 20 57 822
-3 0 1256 -1 122 248
2 0 -229 18 135 597
0 -1 -610 29 164 -1927

Table 2. Equivalence in anonymisation: postmasking reverse 
mapping plus noise addition

Original dataset X Reverse mapped dataset Z

Noise E Masked dataset Y(=Z+E)
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meaningful, readable and practical in comparison to the sometimes quite complex analytical apparatus 
of some masking methods. 

Second, it is clear that P1,..,Pp are independent of the data characteristics, as each permutation 
matrix can be dealt with in isolation of the data set to be anonymized. So while Proposition 1 doesn’t 
describe a new anonymization method, but instead a way of seeing any anonymization method, nothing 
precludes, conceptually or practically, to think about data anonymization only in term of permutation. 
Approaching data anonymization in this way could offer several advantages. Given the fact that this 
can be done independently of the data, one could consider for example data releasers to be equipped 
with an arsenal of permutation matrices, to be applied to different data sets and configurations of data 
utility/privacy streaming from the demands that are addressed to them, or to the different stringency of 
the rule of law for data dissemination that they face. Also, ex-post evaluation of disclosure risk (in a 
utility-first approach to anonymization) or of data utility (in a privacy-first approach to anonymization), 
which can lead to several re-runs of methods to reach the appropriate settings, can potentially all be 
carried out ex-ante in the permutation paradigm. This has the potential to provide a more efficient and 
less costly approach to anonymization for data releasers. 

 
2.2 A new roadmap for data anonymization 

The broad conceptual implication of the permutation paradigm can also potentially pave the 
way for changes in the way data anonymization is practiced. Now, any procedure used can be 
systematically translated into the permutation paradigm to report the outcomes in terms of permutation. 
Indeed, several paths for future research were proposed by the original authors of the paradigm ([11], 
[3]). Among them, this paper addresses particularly the formal characterisation of permutation distances 
and the derivation of appropriate disclosure risk and information loss measures. We argue that the 
proposals put forward in the remainder of this paper can fit in a new general scheme for data 
anonymization, where current methods (and their different parametrizations) can all be judged through 
the same lens (Figure 1). 

 

 
 
The current practice is schematised on the left of Figure 1, where a data set is anonymized 

according to a given method in order to deliver the masked version of the data set. This masked version 
is then evaluated in terms of disclosure risk and information loss according to currently existing metrics, 
which are generally specific to the environment. In the permutation paradigm, on the right of Figure 14, 
permutation matrices are identified from the anonymized data set, from which can be retrieved, as will 
be developed below, vectors of rank displacements and relative rank displacements, which can in turn 
be used to compute universal measures of disclosure risk and information loss. We qualify these 
measures as universal for two reasons. The first is that they allow performing comparison across 
different methods and data sets. They are not specific to the environment. The second is that they can 

                                                
4	Note	that	for	the	same	reasons	outlined	above,	permutation	matrices	can	potentially	be	considered	as	a	
direct	input	for	anonymization,	replacing	the	choice	of	method.	

INPUT: Original 
data set

INPUT: Selected masking 
method IDENTIFICATION: permutation matrices

OUTPUT: Anonymised 
data set IDENTIFICATION: rank displacements IDENTIFICATION: relative rank 

displacements

EVALUATION: specific 
disclosure risk and 

information loss 
measures

EVALUATION: universal measure of 
disclosure risk

EVALUATION: universal measure of 
information loss

Approach in the permutation paradigmTraditionnal approach

Figure 1. Data anonymisation roadmaps
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incorporate different judgments on disclosure risk and information loss. In that sense, they are able to 
account for the different preferences that can co-exist in a data exchange process. 

 
3. A class of universal measures of disclosure risk based on permutation distances 

As we saw, permutation matrices offer a single metric from which data utility and privacy can 
be assessed. From such matrices we start by formalizing a preliminary, simple measure of disclosure 
risk: 

 
Proposition 2: For any attribute j=1,…,p of Y(n,p), a qualitative measure of disclosure risk in the 
permutation paradigm is given by: 

𝑇4 = 1 −
𝑡𝑟𝑎𝑐𝑒 𝑃4

𝑛
 

with  𝑇4=1 when all records have been permuted at least one time (low disclosure risk), and 0 when 
no permutation occurred (high disclosure risk; in that case Pj is the identity matrix). 
 
The trace of a permutation matrix is the number of fixed points in the permutation. Thus, 𝑇4 measures 
the extent of permutation of attribute j in a qualitative way, in the sense that it informs about 
permutations as a proportion of the total number of records, but doesn’t convey any information on the 
magnitudes of the permutations. It allows nonetheless in a simple fashion to do a first screening of 
protection against disclosure risk. In the example of Table 2, 𝑇)=0, 𝑇1=0.6 and 𝑇2=0.8; of the three 
attributes, the first has no protection against disclosure risk while the third has the highest protection, 
according to  𝑇4.  

While the overall amount of permutation performed by an anonymization method matters, 
permutation distances are crucial to assess protection against disclosure risk; even if all records have 
been permuted, the closest they have been the higher will be disclosure risk. For a given attribute j and 
its associated permutation matrix Pj, permutation distances can be retrieved by the computation of a 
vector of rank displacement rj, i.e. a vector measuring for each record the amount of rank shifting that 
a permutation matrix contains. Note that to avoid some unnecessary technical difficulties, in what 
follows zero values in rj will be assigned, without loss of generality, a infinitesimally small value ε>0. 

In order to build rj, one can count, columns by columns of Pj, how many times the 1s have been 
moved, using the identity matrix as a starting point (which is a particular case of a permutation matrix 
with no permutation applied), then assigning a negative (resp. positive) sign if the 1 has been moved up 
(resp. down). For the matrices P1, P2 and P3, one gets:  

 

𝑟) =

ε
ε
ε
ε
ε

	𝑟1 =

3
ε
ε
1
−4

	𝑟2 =

ε
2
2
−2
−2

 

 
Now, rj has to be evaluated in some way for assessing disclosure risk based on permutation distances. 
A natural choice is to gauge rj by assigning a magnitude, taking its Euclidean norm and adopting the 
rule that the higher the norm, the lower the disclosure risk (as the larger will be the permutation distances 
contained in rj). But other cases are possible. In general, any L(p)-norm is acceptable: for example, for 
r1, r2 and r3, the ∞-norm (or Chebyshev distance) would give ε, 4 and 2, respectively. This variety of 
choice to evaluate vectors generally depends on the problem at hand, as one will select a L(p)-norm 
adapted to the meaning of the object that is meant to be quantified. In the case of a vector of permutation 
distances, it is not clear why a Euclidean length would be more suitable and meaningful than a 
Chebyshev length, or why all the norms in-between can or cannot be considered. Thus, there can be a 
fundamental arbitrariness in this choice. However, we argue that in the permutation paradigm, such 
choice can be given an intuitive interpretation in term of disclosure risk.  

To illustrate further this arbitrariness, consider the following example: if in r3 the third record 
is now permuted one rank more and the second one rank less, r3 will be viewed as identical to r2 
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according to the ∞-norm. It is however not totally clear if the situation has really improved in term of 
disclosure risk for the third attribute. On the contrary, it can be reasonably considered that the new 
situation is more problematic as having now a record permuted only one time increases the disclosure 
risk in a way that may not be offset by the additional permutation of an already sufficiently permuted 
record. In fact, being able to evaluate if the situation has improved necessitates a notion of aversion to 
disclosure risk, which, to the best of the author knowledge, is not present or formalized in the literature 
on SDC. The permutation paradigm allows in a simple way to introduce this notion: 
 
Definition 1: In the permutation paradigm, aversion to disclosure risk is the preference toward less 
permuted records for the evaluation of this risk. 
 
Aversion to disclosure risk accounts for the fact that different data releasers or subjects can all have 
potentially different appreciations of disclosure risk (alternatively, this can also be viewed as different 
levels of privacy awareness). Some releasers may consider that achieving a certain average level of 
permutation is sufficient, while from a contributing subject’s point of view, or from the point of view 
of other data releasers (say for example when several ones are involved in the release of a data set), this 
could be judged as not enough. Because the permutation paradigm reduces the relevant information 
needed for the evaluation of any method to permutation, aversion to disclosure risk can be modelled by 
assuming that different permutation distances have different weights. On the one hand, a strongly averse 
data releaser/subject may put relatively more weight on the lowest permutation distances achieved; on 
the other hand, a weakly averse releaser/subject may consider different permutation distances the same 
way and focuses only on the average amount of permutations. 

In fact, already existing measures of disclosure risk entail generally some implicit assumptions 
regarding how the risk is assessed. This can be illustrated by considering the formula for rank order 
correlation coefficient, previously used in the permutation paradigm for the assessment of disclosure 
risk ([11], [3]), which for a non-masked attribute Xj and its reverse mapped version Zj can be written as 
(where di is the difference between the ranks of each record): 

 

𝜌AB,CB = 1 − D EF
GH

FIJ
# #GK)   

 
It is apparent that the rank order correlation coefficient implies specific preferences on the permutation 
distances, as the square of the ranks’ differences magnifies the impact of large permutations compared 
to small ones. One could even argue that the rank order correlation coefficient is not an appropriate 
measure, as for the assessment of disclosure risk it is small, not large, permutation distances that matter. 
For example, according to 𝜌AB,CB an anonymization method permuting only one record 10 times will be 
judged as having reduced disclosure risk more than another method permuting 3 records 5 times. Once 
again, it is hard to rank the two situations in terms of disclosure risk. To overcome this, the following 
proposition establishes a measure of disclosure risk sensitive to different aversions, with an adjustable 
degree of focus on small permutation distances: 
 
Proposition 3: For any attribute j=1,…,p of Y(n,p), a quantitative measure of disclosure risk in the 
permutation paradigm is given by: 

𝐷4(𝛼) =
1
𝑛

𝑎𝑏𝑠(𝑟4 P )Q
#

PR)

)/Q

	𝑓𝑜𝑟	𝛼 ≤ 1	𝑎𝑛𝑑	𝛼 ≠ 0 

𝑎𝑛𝑑	𝐷4(𝛼) = 𝑎𝑏𝑠(𝑟4 P ))/#
#

PR)

	𝑓𝑜𝑟	𝛼 = 0 

where rj(i) denotes the elements of rj and α the parameter of aversion to disclosure risk. 
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 𝐷4(α) makes use of a power mean5 (see [7] for a discussion of its various properties) for the 
aggregation of the components of rj, with the parameter 𝛼 substantiating the notion of aversion to 
disclosure risk. The arithmetic mean becomes a special case (α = 1) of 𝐷4(α), which forms a natural 
starting point by computing the average level of permutation distances. In that case, all distances are 
given the same weight and there is a one-to-one substitution between them, e.g. two records permuted 
two ranks are equivalent to one record permuted four ranks. From this benchmark, the more α decreases, 
the more weight is given to the smallest permutation distances6. In fact, the more α approaches -∞, the 
more 𝐷4(α) converges towards the smallest permutation distance in rj

 7. As a result, for a given rj and 
𝛼′ < 	α, we have 𝐷4(α′) ≤ 𝐷4(α): the lower is α, the stronger is the aversion to disclosure risk. Table 3 
below illustrates some computations of 𝐷4(α) on the running example: 
 

   
 

For attribute 1, the anonymization method used doesn’t protect against disclosure risk, as 𝐷)(α) is equal 
to zero for any α. For attribute 2 and 3, the average level of permutation distances is the same, i.e. 
𝐷1 α = 𝐷2 α = 1.6. However, different levels of aversion to disclosure risk lead to different 
diagnoses: for a mild aversion (α = 0.5) the third attribute is judged to be better protected than the 
second while for a strong aversion (α = −4) the two attributes re-become equivalent. Note that as a 
general case of average, 𝐷4(α) is independent of the number of records, which eases the comparison 
across different data sets. Moreover, for an attribute of n records, the maximum permutation distance 
for a record is abs(n-1). Thus, re-scaling 𝐷4(α) by 1/n-1 will produce a measure of risk that ranges 
between 0 and 1, which is an appealing property for performing comparisons and quantifying the 
utility/privacy trade-off ([8]). 
 The reader might be tempted to think that the notion of aversion to disclosure risk adds an 
unnecessary layer of complexity to the evaluation of this risk. We argue however that it provides a 
better grasp with the reality of micro data exchange. In the current state of the literature, it is not a notion 
that can be made analytically tractable in a straightforward way for most methods (or as we saw is 
embodied implicitly rather than explicitly). But in the permutation paradigm, permutation distances are 
the only meaningful quantities under scrutiny, which makes natural the fact that these distances can be 
judged by different individuals differently. Given the number of parties implied in data dissemination, 
e.g. several data releasers and respondents, it is very unlikely that all of them will have the same 
judgment. The 𝐷4(α) measures are a way to incorporate this diversity. In practice, by computing the 
measure for several α, a data releaser can for example communicate on the prevention against disclosure 
risk through different points of view. This circumvents the issue involved in the empirical assessment 
of disclosure risk (see [10]), where a score based on different measures of disclosure risk is computed 
using an ad-hoc weighting scheme. Under such approach, weights can drive the overall assessment that 
is made. But using the current proposal, a single measure can be computed on a continuum of weights 
which all carry an interpretation in term of disclosure risk. 

The measure 𝐷4(α) can also be used to characterize in an unambiguous way which data 
anonymization methods perform better than others through the concept of disclosure risk dominance 
that we introduce below. The concept of dominance comes originally from the notion of stochastic 

                                                
5	In	linear	algebra	power	mean	is	also	the	formula	for	the	computation	of	p-norms	([1]).	
6	𝐷4(0)	is	the	geometric	mean	and	𝐷4(−1)	the	harmonic	mean.	
7	The	limit	case	𝐷4(−∞)	is	strictly	equal	to	the	shortest	permutation	distance	in	rj.	

Aversion to 
disclosure risk r1 r2 r3

α=1 0 1.60 1.60
α=0.5 0 0.97 1.06
α=-4 0 0 0

Note: ε is assumed equal to 1E-08

Table 3. Example of quantitative measures of disclosure 
risk in the permutation paradigm
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dominance (see [9]), which is widely used in economics (in particular for the study of risk and 
inequality). It can however be applied to any distribution, which is done here for the distribution of 
permutation distances. To the best of the author’s knowledge this is the first time it is considered in the 
context of data anonymization: 

 
Definition 2: For an attribute j, an anonymization method A is said to dominate (i.e. unanimously 
performs better than) another method B for the protection against disclosure risk if it holds that 
𝐷4 α ` ≤ 𝐷4 α 	∀	𝛼 ≤ 1	(where 𝐷4(α) (resp. 𝐷4 α `) are the measures of Proposition 3 computed from 
A (resp. B)). 
 
Disclosure risk dominance characterizes anonymization methods that will consistently ensure greater 
levels of permutation distances (and thus levels of protection against disclosure risk) from the mean to 
the bottom of their distribution. In practice, that means that whatever the aversion any agents being 
involved in data dissemination can have, a dominant method will ensure unanimity regarding its 
performance against disclosure risk; in the running example, the third attribute can be judged as having 
a greater level of protection than the second for any level of aversion (Table 3). 

Obviously, dominance may not always be reached in practice. For example, a method A can 
happen to dominate B over -4≤ α ≤ 1 but being dominated by B over -∞ ≤ α < −4. In that case, that 
means that the use of A is advisable for small up to medium disclosure risk aversion, while for strong 
aversion B is more advisable. As a result, on can learn on the relative performance of methods by 
investigating where dominance holds but also eventually where it ceases to hold. 

One final remark is in order on 𝐷4(α). The domain of variation of the disclosure risk aversion 
parameter has been set to range from one and below, which doesn’t define a L(p)-norm strictly speaking. 
In fact, it would be 𝐷4(α) with α > 1 that would rigorously define a L(p)-norm, up to a factor 𝑛c  (see 
[1]), leading to a standard notion of distance for the vector rj. However, we argue that in the context of 
data anonymization, the interpretation of the parameter α is not suited in that case. With α > 1, the 
more α increases, the more weight is given to the largest permutation distances (and the more α 
approaches +∞, the more 𝐷4(α) converges towards the largest permutation distance in rj, i.e. a 
Chebyshev distance is computed). That would mean that large permutations make up for the bulk of 
protection against disclosure risk, but it is small permutations that can lead to greater disclosure risk. 
As a result, 𝐷4(α) makes use of the aggregation structure of a p-norm but doesn’t define one strictly. 
This has no incidence on the validity and interpretation of the measure. 

In this section, the measure 𝐷4(α) and the concept of dominance have been introduced with the 
aim of offering a more granular view of disclosure risk, with an easy-to-grasp notion of disclosure risk 
aversion. Given that in the permutation paradigm all the necessary information is reduced to 
permutation distances as conveyed by the underlying permutation matrices, they provide a common and 
understandable language for performing meaningful comparisons of anonymization methods, 
independently of their analytical environment or the distributional features of the data. The class of 
𝐷4(α) measures formalizes the tool for such comparisons and is very general in its scope, in the sense 
that it allows to incorporate different judgments about disclosure risk and to characterise methods that 
can be viewed as unanimously better than others. From these proposals more measures can be 
elaborated. For example, one could think in combining 𝑇4 and 𝐷4(1) to get: 

 
𝑇𝐷4 = 𝑇4 	∗ 𝐷4(1)  

 
𝑇𝐷4 measures the average permutation distances for attribute j, but discounted by the proportion of non-
permuted records. 𝑇𝐷4 would then force data releasers to focus both on distances but also on the number 
of records permuted, which is an alternative way to gauge disclosure risk in the permutation paradigm. 

The next step of this paper is to establish a general class of information loss measures. A key 
feature of the permutation paradigm is that it preserves exactly the marginal distributions of the data (as 
Z is simply a permutation of X). Thus, information loss can only come from the alteration of the 
dependency among attributes. This necessitates a view on how multivariate anonymization methods 
operate in the permutation paradigm.  
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4. A class of universal measures of information loss based on relative permutation 

distances 

We start by adapting Proposition 1 to outline how a multivariate distribution can be preserved 
in the permutation paradigm: 

 
Proposition 4: For a dataset X(n,p) with n records and p attributes (X1,.., Xj,…, Xj’,…Xp), its anonymized 
version Y(n,p) preserving exactly the joint distribution of Xj and Xj’ can always be written, regardless of 
the anonymization methods used, as: 

𝑌(#,%) = 𝑃)𝑋), … , 𝑃e𝑋4, … , 𝑃e𝑋4`, … , 𝑃%𝑋% (#,%)
+ 𝐸(#,%) 

where P1,.., Pk,…,Pp is a set of p-1 distinct permutation matrices and E(n,p) is a matrix of small noises. 
 
In the permutation paradigm, the exact preservation of multivariate distributions (here bivariate 
distributions) can be achieved by applying to some block of attributes the same permutation matrix. In 
Proposition 4 the block of X formed by the two attributes j and j’ is permuted with the same matrix Pk

8
 

and the joint distribution of the block is exactly preserved. This proposition shows that any multivariate 
anonymization method can be viewed as a block permutation of attributes. It is a simpler view in 
comparison to the current multivariate anonymization methods available in the literature, which can be 
analytically complex (see [8]). Of course, the exact preservation of a multivariate distribution may 
impinge on the level of privacy achieved by the anonymized data. Additionally, it has been previously 
established empirically that obtaining a safe anonymized data set that can resist to an attack via record 
linkage necessitates an amount of masking (or equivalently of permutations) proportional to the 
dependency between the attributes of the original data set ([4]). Expressed in the permutation paradigm, 
that means that the more dissimilar have to be the permutation matrices. 

In practice then, the question turns out to be more about the extent of preservation of 
multivariate distributions and an inescapable trade-off: the less preservation there is, the more the 
anonymized data set will be judged as safe. For a dataset with a strong dependence between its 
attributes, the trade-off may be particularly arduous. But for a dataset with weak attributes dependence 
it is also a non-trivial issue, as it can be conceived (while very less likely to occur in practice) that an 
anonymization method can create an artificial dependence between the attributes, which in a way is also 
a loss of information. For example, it is possible that two completely independent attributes in the 
original data happen to be, through a peculiar permutation, both ranked in increasing order of 
magnitudes in the anonymized version, fooling the data user on the real strength of the relationship. 

To assess information loss, a first avenue is to compare the rank order correlations between 
attributes j and j’ in the anonymized data and the original data set ([11]). The most likely case is that 
the former will be lower than the latter, indicating an alteration of the attributes’ relationship and thus 
a loss of information by a weakening of the dependence (but in less likely cases the reverse can also 
happen). For such comparison, the original level of rank order correlation provides the starting point 
from which information loss is assessed. As a result, it will differ according to each couple of attributes 
considered, which is not really convenient. Also, and for the same reason outlined above, an implicit 
and specific weighting structure is given to large ranks differences when using rank order correlation. 
Again, different data users can have different views about distances when assessing information loss. 
As for disclosure risk, this can be formalized through the concept of aversion to information loss (or 
stated otherwise, of information awareness): 

 
Definition 3: For two attributes j and j’ in the permutation paradigm, aversion to information loss is 
the preference toward large relative permutation distances for the evaluation of this loss. 
 
Thus, a more general approach is to consider the degree of similarity between the permutations that 
took place for the two attributes and allowing different weights for different relative distances. To do 

                                                
8	It	can	be	noted	that	substituting	Pk	by	the	identity	matrix	leads	exactly	to	the	same	result:	the	other	
attributes	in	X	are	in	that	case	permuted	around	j	and	j’,	who	then	remain	fixed.	
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so, it can be observed that a vector Δ(rk) of differences between the vectors rj and rj’ is a vector of 
dissimilarity between the anonymization procedures that have been applied to the couple of attributes 
k=(j, j’) (with j≠ j’). When each of the components of Δ(rk) are equal to zero, this depicts the case of 
Proposition 4 with j and j’ having been permuted the same way; the permutation matrices applied to 
them are identical, despite the fact that the anonymization methods used can be different in practice. 
There is no loss of information as the joint distribution of j and j’ is preserved. But when Δ(rk) has some 
non-zero elements information has been modified. This leads to the following proposition: 
 
Proposition 5: For two attribute j and j’ of Y(n,p), a quantitative measure of information loss in the 
permutation paradigm is given by: 

𝐼e(𝜃) =
1
𝑛

𝑎𝑏𝑠(Δre P )j
#

PR)

)/j

	𝑓𝑜𝑟	𝜃 ≥ 1	 

where Δre P  denotes the elements of Δ(rk)  and 𝜃 the parameter of aversion to information loss. 
 
The measure 𝐼e(𝜃) bears strong analytical similarities with 𝐷4(α), but while the latter is concerned 
about average or small permutation distances across records for a given attribute, the former considers 
average or large relative permutation distances between two attributes across records. On the running 

example, we have Δ(r(2,3))=

3
−2
−2
3
−2

, which thus gives 𝐼(1,2)(1) = 2, 𝐼(1,2)(4) = 2,49 and 𝐼(1,2)(+∞) =

3. Note that this measure delivers a diagnosis independently of the direction of the alteration of 
dependence between attributes, i.e. if dependence has been weakened or strengthened as a result of 
anonymization. 𝐼e(𝜃) = 0 means no information loss while for a given 𝜃, the larger is 𝐼e(𝜃), the more 
the relationship between attributes has been altered (and thus the more information has been lost in the 
process). It thus provides a general measure of information loss than can be applied to any 
anonymization methods. Note that 𝐼e(𝜃) is a power mean but also denotes strictly a L(p)-norm of the 
vector Δ(rk)  up to the factor 𝑛m . This factor allows performing comparison independently of the size 
of the data set. Moreover, for two attributes with n records each, the maximum relative permutation 
distance for a record is n-1. Thus, re-scaling 𝐼e(𝜃) by 1/n-1 will produce a measure of information loss 
that ranges between 0 and 1, which is convenient for comparison with 𝐷4(α) as it can also range on the 
same scale (see above). 

𝐼e(𝜃)  aims at measuring the extent of dissimilarity that anonymization introduced for j and j’, 
with 𝜃 capturing different emphasis on relative permutation distances; the greater 𝜃, the stronger the 
focus on large distances9. In a similar fashion to disclosure risk, aversion to information loss accounts 
for the fact that different agents involved in data dissemination can all have different perceptions of 
information loss. Typically, this aversion is likely to be stronger for data users than for data releasers. 
The parameter 𝜃 formalizes such diversity in tastes. As for 𝐷4(α), it can also be used to rank 
unambiguously couples of anonymization methods (or the same anonymization method with two 
different parametrizations) that perform better than others, by introducing the concept of dominance in 
information: 

 
Definition 4: For two attributes j and j’, two anonymization methods A and B are said to dominate (i.e. 
perform better than) two other methods C and D for the preservation of information if it holds that 
𝐼e 𝜃 ` ≤ 𝐼e 𝜃 		∀	𝜃 ≥ 1,	where 𝐼e 𝜃 `	(resp. 𝐼e 𝜃  ) are the measures of Proposition 5 computed on A 
and B (resp. C and D)). 
 
Information dominance characterizes anonymization methods that, when applied on two attributes, will 
consistently ensure lower levels of relative permutation distances (and thus a greater preservation of 
information) from the mean to the top of their distribution. In practice, that means that whatever the 
                                                
9	The	limit	case	𝐼e(+∞)	is	strictly	equal	to	the	largest	relative	permutation	distance	in	Δ(rk).	
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aversion to information loss any agents being involved in data dissemination can have, a dominant 
couple of methods compared to others will ensure unanimity regarding its performance in term of 
information preservation. 

Beyond establishing which couple of methods does best in preserving information, 𝐼e 𝜃  and 
information dominance can also be used to tune the extent of information to be preserved. Under 
different scenario of aversion to information loss, two anonymization methods can be evaluated ex-post 
in term of information preservation through 𝐼e 𝜃 	and then re-run to obtain the desired information loss. 
However, as any anonymization methods can be viewed as functionally equivalent to permutation, 
nothing precludes the data administrators to select a set of permutation matrices that will target a level 
of information preservation ex-ante, then applying it to the dataset. The permutation paradigm 
simplifies the implementation of multivariate scenario and the quantification of information loss in 
comparison to the current available techniques. 
 

5. Extensions 
5.1 Remarks on local anonymization methods in the permutation paradigm 

Multivariate scenario in the permutation paradigm can be viewed as permutation of block of 
attributes. Similarly, local anonymization methods, which operate locally by adding noise to a subset 
of records, can be viewed as permutation of blocks of records. As an illustration, let’s assume that in 
Table 1 only the second and third records have been masked (Table 4). Clearly, the effects of local 
anonymization can also be viewed as the result of a set of permutation matrices10 which in turn can be 
analyzed using the measures developed above. One can in particular confront local methods against 
global methods to assess their relative performances in term of disclosure risk and information loss. 

 

 
 

Moreover, the measures introduced in this paper, which all relies on the use of power means, 
are in fact particularly suitable, as power means have the property of sub-block consistency ([7]). In the 
context of data anonymization, that means that if according to the measures developed above, 
information loss increases and disclosure risk decreases over some sub-groups of m<n records, while 
remaining constant on the others n-m records, then the measures of disclosure risk and information loss 

                                                

10	For the first and second attributes it is the identity matrix and for the third it is  

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

.	

X1 X2 X3 Y1 Y2 Y3

13 135 3707 13 135 3707
20 52 826 20 57 822
2 123 -1317 -1 122 248
15 165 2419 15 165 2419
29 160 -1008 29 160 -1008

X1R X2R X3R Y1R Y2R Y3R

4 3 1 4 3 1
2 5 3 2 5 3
5 4 5 5 4 4
3 1 2 3 1 2
1 2 4 1 2 5

Z1 Z2 Z3 E1 E2 E3

13 135 3707 0 0 0
20 52 826 0 5 -4
2 123 -1008 -3 0 1256
15 165 2419 0 0 0
29 160 -1317 0 0 309

Table 4. Local anonymisation in the permutation paradigm

Original dataset X Masked dataset Y

Rank of the original attribute Rank of the masked attribute

Reverse mapped dataset Z Noise E
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computed on the n records will also respectively strictly increase and decrease. This coherency makes 
a compelling argument for the use of the measures developed above.  

 
5.2 Measures of disclosure risk and information loss at the data set level  

The class of disclosure risk measures introduced in Section 3 operates by attributes taken in 
isolation. While this is a standard approach, one may also be interested in having a quantification of the 
overall disclosure risk for a data set of p attributes. This kind of measure is in a way complementary to 
an assessment of disclosure risk attribute by attribute: while the latter is necessary to have a detailed 
view on the level of protection applied, which is likely to vary according to each attribute’s specificity 
and sensitivity, having a global view of the anonymized data set can be useful, not least for 
communication purposes. Considering as a starting point the measure 𝐷4(α), which as outlined above 
bears close similarity with a L(p)-norm (i.e. a vector norm), for a data set with p attributes a possible 
overall measure can be constructed from a L(p,q)-norm (i.e. a matrix norm, see [6]): 

 
Proposition 6: For a data set Y(n,p), an overall quantitative measure of disclosure risk in the permutation 
paradigm is given by: 

D(α, β) 	=
1
𝑝

𝐷4(α)q
%

4R)

)
q

	𝑓𝑜𝑟	𝛼 ≤ 1, 𝛽 ≤ 1	𝑎𝑛𝑑	𝛽 ≠ 0 

𝑎𝑛𝑑	D(α, β) = 𝐷4(α))/%
%

4R)

	𝑓𝑜𝑟	𝛼 ≤ 1	𝑎𝑛𝑑	𝛽 = 0 

 
 D(α, β) operates in two stages: it first measures disclosure risk for each attributes with 𝐷4(α), 
then summarizes these p measures into a single one. Equivalently, it first aggregates the columns of the 
matrix formed by the collection of the p vectors of rank displacements rj and then aggregates the p 
measures. N α, β  is based on the expression of a L(p,q)-norm but doesn’t define one strictly due to the 
𝑛c  and 𝑝t  factors and also the range of variation of (𝛼; 𝛽): following the same reasoning than for 𝛼 

in 𝐷4(α), 𝛽 is set to range from one and below. This constraint is attached to the interpretation that can 
be given to the parameter 𝛽 in the context of data anonymization. 𝛽 = 1	is the benchmark case where 
all attributes in the data set are weighted equally: from a disclosure risk perspective, all attributes matter 
the same way. But when 𝛽 decreases, more weight is given to the lowest protected attributes in the 
dataset; in the limit case with 𝛽 → −∞, the overall disclosure risk of the data set is assessed through 
the perspective of the least protected attribute (i.e. the one having the lowest 𝐷4(α) value). As for 𝛼 in 
𝐷4(α), 𝛽 in D α, β  substantiates the variety of preferences in disclosure risk that users or releasers can 
have, but here this variety is expressed across attributes in the context of an overall diagnosis of 
disclosure risk for a data set.  

Along the same line, it can be constructed an overall measure of information loss for a data set. 
Assuming that if in Y(n,p) its p attributes are to be masked, there are 𝑗 𝑗 − 1 /2 potential sources of 
information loss (i.e. k distinct couples of attributes). Aggregating all these sources can be done by 
taking the norm of the matrix formed by the collection of the 𝑗 𝑗 − 1 /2 relative permutation distances 
vectors Δ(rk), which gives: 

 
Proposition 7: For a data set Y(n,p) with p attributes to be protected against disclosure risk, an overall 
quantitative measure of information loss in the permutation paradigm is given by: 

𝐼 𝜃, 𝜋 =
1

𝑗 𝑗 − 1 /2
𝐼e 𝜃 y

4 4K) /1

eR)

)
y

	𝑓𝑜𝑟	𝜃 ≥ 1	𝑎𝑛𝑑	𝜋 ≥ 1 

 
 𝐼 𝜃, 𝜋  operates also in two stages: it first measures information loss for every possible distinct 
couples of attributes, then summarizes these 𝑗 𝑗 − 1 /2 measures into a single one. Equivalently, it first 
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aggregates the columns of the matrix formed by the 𝑗 𝑗 − 1 /2 vectors of relative rank displacement 
Δ(rk) and then aggregates the collection of 𝑗 𝑗 − 1 /2 measures. 𝐼 𝜃, 𝜋  is also based on the expression 
of a L(p,q)-norm and in fact does define one up to the 𝑛m  and 𝑗 𝑗 − 1 /2z  factors. In particular, the 
range of variation of 𝜋 is interpretable in term of information loss. 𝜋 = 1	is the benchmark case where 
every attributes in the data set are weighted equally and matter the same way in term of information 
loss. When 𝜋 increases, more weight will be given to the couple of attributes with the largest information 
loss; in the limit case with 𝜋 → +∞, the overall information loss of the data set is assessed through the 
perspective of the least preserved couple of attribute (i.e. the ones having the highest 𝐼e(𝜃) value). As 
for 𝜃 in 𝐼e(𝜃), 𝜋 in 𝐼 𝜃, 𝜋  substantiates the variety of preferences in information loss that users or 
releasers can have, but here such variety is expressed across attributes in the context of an overall 
diagnosis of information loss for a data set. 
 

5.3 Remarks on intruder models and the Kerckhoff’s principle 

In the context of the permutation paradigm, it is considered in [3] a scenario of known-plaintext 
attack in anonymization, which defines an intruder who knows both the original data set and its entire 
corresponding anonymized version. This a rather extreme configuration, unlikely to be mirrored by 
concrete situations, not least because the intruder has nothing to gain except the disclosure of the method 
used by the data protector. However, at first glance it is conceptually very insightful, as anonymization 
that can pass the test of such situation will in fact be able to pass any test. 

Under this scenario, the attacker can eliminate the small noise matrix of Proposition 1 ([3]). 
The random seed for the noise is thus irrelevant, which leaves to uncover the random seed for 
permutation. As the intruder has maximum knowledge, some permutation matrices can also be retrieved 
easily. But they can only be random in nature, as for an attribute j with n records, n! possible permutation 
matrices are possible and only one of them will be the true Pj. This result streams from the fact that the 
data releaser knows, through the ID attached to each records, which particular collection of attribute 
values in the disseminated, anonymized data, is linked to a specific collection of attribute values in the 
original data. The attacker has no knowledge of this and the purpose of the attack is to uncover the exact 
Pj’s, as only them will allow to show which anonymized records derive from which original record 
values. 

  This leads to two consequences. An immediate, trivial one is that the task of an intruder will 
be harder on larger dataset. Thus, the permutation paradigm makes explicit the fact that large micro 
data happen to be better suited for protection than small ones. A second consequence is that SDC can 
spare to itself to work under the “security through obscurity” principle which is generally embraced by 
cryptographers. With the permutation paradigm, it is evident that the use of SDC techniques can be 
conceptually viewed as secure cryptosystems even if everything about the system, except the key, is 
public knowledge. The key happens to be the collection of Pj’s or, equivalently, of rank displacements 
matrices. 

Further exploration of the Kerckhoff’s principle in future research are however required under 
less stringent, and thus more realistic, intruder scenario, and in particular appropriate and realistic 
background knowledge assumptions about the intruder. We argue that the concepts of aversion to 
disclosure risk and information loss developed in this paper are a step in the right direction, insofar as 
they allow conveying information on the way data have been anonymized for different preferences. 
 

6. Conclusions and future research 
 

 As rightfully recognized by its original authors, the permutation paradigm opens several new 
directions in data anonymization. This paper has tried to explore some them.  

First, by a simple restatement of the permutation paradigm, we have characterized permutation 
matrices as an encompassing tool in data anonymization. Based on this observation, we have derived 
two general classes of disclosure risk and information loss measures, which we argued are easy to 
compute for every methods and data sets and are meaningful. These two classes are based on the 
aggregative structure of p-norms (albeit they don’t always define p-norms strictly), and the degrees of 
these norms can be harnessed with an interpretation in term of aversion. In the case of disclosure risk, 
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the aversion translates in different emphasis on the lowest permutation distances achieved among 
records for one attribute. For information loss, the aversion translates in different emphasis on the 
highest relative permutation distances among records between two attributes. While every data releasers 
and users alike would like to achieve the unfeasible ideal of data with maximum protection against 
disclosure risk and minimal information loss, in practice they all have different judgments and 
utility/risk trade-offs. The measures developed in this paper allow to incorporate such diversities and 
also importantly to communicate on them. In addition, they allow deriving unanimity of judgments 
following the concepts of dominance introduced in this paper. The incorporation of these judgments 
can be viewed as a step toward the application of the Kerckhoff’s principle in data anonymization under 
realistic intruder scenario. 

This paper opens new future research lines in the permutation paradigm and data anonymization 
in general, including: 

• Establish an inventory of popular methods under different parametrizations and data 
contexts, using the class of measures developed in this paper, in particular for 
benchmarking the values of these measures into existing practices 

• Characterize the methods that are dominant in term of disclosure risk and information 
loss  

• In particular, establish in practice if some methods can be both dominant in terms of 
disclosure risk and information loss, which could provide a strong rational for their 
uses 

• Following the development of co-utility games in data anonymization ([12], [2]), 
determine if dominant equilibriums can be reached in these models 

• Elaborate some graphical tools for the display of disclosure risk and information loss, 
in particular the representation through dominance curves 

• Explore further the possibility of using permutation matrices as direct input to data 
anonymization 
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