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Abstract

Belief reliability is a newly developed, model-based reliability metric which con-

siders both what we know (expressed as reliability models) and what we don’t

know (expressed as epistemic uncertainty in the reliability models) about the

reliability. In this paper, we show that due to the explicit representation of

epistemic uncertainty, belief reliability should not be regarded as a probability

measure; rather, it should be treated as an uncertain measure in uncertainty

theory. A minimal cut set-based method is developed to calculate the belief

reliability of coherent systems. A numerical algorithm is, then, presented for

belief reliability analysis based on fault tree models. The results of application

show that the developed methods require less computations than the structure

function-based method of classical reliability theory.

Keywords: Reliability, epistemic uncertainty, uncertainty theory, belief

reliability, fault tree,

1. Introduction1

Modern reliability engineering is increasingly looking at the model-based2

methods (cf. physics-of-failure (PoF) methods [5], structural reliability methods3
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[6], etc.), where reliability is predicted exploiting deterministic failure behavior1

models whose parameter variations are assumed to be the only source of un-2

certainty [37]. In practice, however, apart from the random variations in the3

model parameters (often referred to as aleatory uncertainty [1]), the predicted4

reliability is also subject to the influence of epistemic uncertainty due to incom-5

plete knowledge on the degradation and failure processes [20]: for example, the6

developed failure behavior model might not be able to accurately describe the7

actual failure process; besides, the precise values of the model parameters might8

not be accurately estimated [2, 4], etc. In most existing model-based reliability9

assessment methods, however, the effect of epistemic uncertainty has not been10

considered.11

Recently, a new metric of reliability, the belief reliability, has been defined to12

explicitly account for epistemic uncertainty in model-based reliability analysis13

and assessment [10, 35, 37]. The new reliability metric integrates the contri-14

butions of design margin, aleotory uncertainty and epistemic uncertainty and15

provides a more comprehensive and systematic description of reliability. Zeng16

et al. [37] presented a framework to evaluate the belief reliability where epis-17

temic uncertainty is quantified by the effectiveness of the engineering analysis18

and assessment activities that contribute to the state of knowledge on the fail-19

ure causes and processes. Belief reliability has been applied successfully on the20

reliability evaluation of hydraulic servo-actuators [35, 37], DC regulated pow-21

er supplies [10] and printed circuit boards [17], all of which are subject to the22

influence of epistemic uncertainty.23

Currently, the belief reliability of a component or a system can only be e-24

valuated from its definition (i.e., based on design margin, aleotory uncertainty25

and epistemic uncertainty) [35]. In practice, we often need to calculate the26

belief reliability of a system based on the structure of the system and the be-27

lief reliabilities of its components (referred to as system reliability analysis in28

conventional reliability theories [31]). To address this problem, a mathematical29

theory should be determined as the mathematical foundation of belief reliability,30

based on which the system belief reliability analysis method can be developed.31
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In literature, various mathematical theories have been used to describe epistemic1

uncertainty, e.g., probability theory (subjective interpretation [7]), evidence the-2

ory [29], possibility theory [8] and uncertainty theory [26], etc. Kang et al. [18]3

reviewed the theories and concluded that among them, uncertainty theory is4

the most suitable one for modeling belief reliability since it satisfies the Duality5

Axiom and adopts minimum operation as the Product Axiom, which are two6

essential requirements for a mathematical theory qualified to describe reliability7

under the influence of epistemic uncertainty. If either requirement is violated,8

misleading results might be reached when belief reliability is applied in practical9

applications (see Section 3.2 for a detailed discussion).10

Uncertainty theory, proposed by Liu in 2007 [21] and refined by Liu in 201011

[24], is a branch of axiomatic mathematic founded on four axioms, the Normal-12

ity, Duality, Subadditivity and Product Axiom. Currently, uncertainty theory13

has been widely applied in various fields, including portfolio selection [38], net-14

work science [14], option pricing [16], graph theory [13], transportation [32],15

supply chain [15], etc. The research of reliability in uncertainty theory started16

from [23], where Liu defined the reliability index and showed how to calculate17

the system reliability index from the system structure functions. In [27], the18

reliability indexes for redundant systems were calculated for the case in which19

the lifetimes of the components are uncertain variables. Zeng et al. [36] defined20

time-static and time-variant reliability in the context of uncertainty theory and21

developed calculation methods for the reliability indexes. Wen and Kang [30]22

developed an approach to calculate the reliability index when both uncertain23

variables and random variables are considered. Gao and Yao [12] investigated24

the importance index in the context of uncertainty theory. Age replacement25

and block replacement policies were also investigated with lifetimes described26

as uncertain variables [19, 39, 40].27

Most existing system reliability analysis methods in uncertainty theory are28

based on structure functions (e.g., see [23] and [30]). Since they require enumer-29

ating all the possible combination of system states, the computational efficiency30

of the structure function-based methods are often unsatisfactory, especially for31
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large and complex systems. In a previous study, minimal cut sets have been used1

to alleviate the computational burdens of the structure function-based method-2

s [36]. However, the method developed in [36] requires independence among3

the minimal cut sets, which is a strong condition and restricts its application.4

In this paper, we show that the restriction is unnecessary and develop a min-5

imal cut set-based method to calculate the belief reliability for a system with6

independent components.7

The rest of this paper is organized as follows. Section 2 reviews the definition8

of belief reliability. In Section 3, we justify the choice of uncertainty theory as9

the mathematical foundation of belief reliability and give the definition of belief10

reliability in the context of uncertainty theory. Then, a system belief reliability11

analysis method is developed based on minimal cut sets in Section 4. In Section12

5, a numerical algorithm is presented for belief reliability analysis based on fault13

tree models. The paper is concluded in Section 6 with discussions on possible14

future research directions.15

2. Definition of belief reliability16

In traditional model-based reliability methods, it is assumed that the failure17

behavior of a component or system is characterized by its performance margin18

m, which is modeled by:19

m = gm(x), (1)

where m ≤ 0 indicates that the component or system fails and m > 0 indicates20

normal functioning; gm(·) is developed by modeling the failure process [34].21

Given the probability density functions of the input variables x, denoted by22

fX(x), the reliability index can be calculated as23

Rp = Pr (gm(x) > 0) =

∫
· · ·
∫
gm(x)>0

fX(x)dx. (2)

To differentiate it from belief reliability, the reliability index in (2) is referred24

to as probabilistic reliability in this paper.25
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In the model-based reliability methods, a fundamental assumption is that,1

the reliability model is correct and accurate, so that all the uncertainty comes2

from the random variations in x (aleatory uncertainty). The validity of such an3

assumption heavily depends on the state-of-knowledge we have on the failure4

process. In a lot of practical applications, however, due to the limitation of the5

knowledge, the models in (1) and (2) might not be able to accurately capture6

the actual failure process. Besides, the precise values of the model parameters7

might not be accurately known to us. Therefore, the predicted reliability in-8

dex is subject to an additional source of uncertainty, which arises from lack of9

knowledge and is referred to as epistemic uncertainty [41].10

Belief reliability was proposed as a metric of reliability that explicitly ac-11

counts for epistemic uncertainty in reliability analysis and assessment [10, 35,12

37]. Note that in (1) and (2), the probabilistic reliability Rp can be viewed13

as determined by deterministic designs and aleatory uncertainty in the design14

parameters. Deterministic designs are quantified by design margin md:15

md = gm(xN ) (3)

where xN is the nominal values of the parameters. Aleatory uncertainty is16

measured by Fa, the factor of aleatory uncertainty, which is defined by:17

Fa =
md

ZRp

(4)

where Rp is given by (1) and (2); Zα is the value of the inverse cumulative18

distribution function of a standard normal distribution evaluated at α. Let us19

define equivalent performance margin ME as:20

ME = md + εa, (5)

where md is the design margin in (3) and εa ∼ Normal(0, F 2
a ) quantifies the21

effect of aleatory uncertainty. It is easy to verify that ME ∼ Normal(md, F
2
a )22

and the probabilistic reliability Rp can be calculated as the probability that23

ME > 0, as shown in Figure 1 (a).24
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In belief reliability, epistemic uncertainty is described by introducing a factor1

of epistemic uncertainty, denoted by Fe, whose value is related to the state-of-2

knowledge of the failure processes and is measured based on the effectiveness3

of the engineering analysis and assessment activities for component and system4

reliability performance characterization [10, 37]. An adjustment factor εe ∼5

Normal(0, F 2
e ) is introduced to quantify the effect of epistemic uncertainty on6

the equivalent performance margin:7

ME = md + εa + εe. (6)

Equation (6) indicates that epistemic uncertainty introduces additional disper-8

sion to the aleatory distribution of the equivalent performance margin, as shown9

in Figure 1 (b). Considering (6) and the normality assumption on εa and εe,10

belief reliability is defined as:11

Definition 1 (Belief reliability [37]). The reliability metric12

RB = ΦN

(
md√

F 2
a + F 2

e

)
(7)

is defined as belief reliability, where ΦN (·) is the cumulative distribution function13

of a standard normal random variable.14

It can be shown from (7) that as Fe → 0, RB → Rp, where Rp denotes15

the conventional model-based reliability metric calculated under the same con-16

ditions. This is natural, since Fe → 0 indicates that there is no epistemic17

uncertainty and, therefore, the failure behavior can be accurately determined18

by the reliability models in (1) and (2).19

In practical application, we always have md > 0 and Fe ≥ 0 [37]. It is easy20

to verify from (7) that21

RB ≤ Rp, (8)

which shows that using belief reliability yields a more conservative evaluation22

result than using the probability-based reliability metric. The reason is that23

belief reliability considers the effect of insufficient knowledge on the estimated24

6

Zhiguo ZENG
Highlight



reliability, while the probability-based reliability metric implicitly assumes that1

knowledge is complete. It is the additional uncertainty caused by the insufficient2

knowledge that reduces our confidence on the reliability estimation.3

3. Uncertainty theory as the mathematical foundation of belief reli-4

ability5

In this section, we discuss the mathematical foundations of belief reliabili-6

ty and show that the new reliability metric should be modeled by uncertainty7

theory. Uncertainty theory is reviewed in subsection 3.1. In subsection 3.2, we8

explain the reasons to choose uncertainty theory as the mathematical founda-9

tion, and then define belief reliability as an uncertain measure.10

3.1. Preliminaries of Uncertainty Theory11

The first important concept in uncertainty theory is that of an event. Let Γ12

be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an13

event.14

In uncertainty theory, the belief degree of an event is measured by its un-15

certain measure. An uncertain measure is a set function M from L to [0, 1]16

satisfying the following three axioms [21]:17

Axiom 1 (Normality Axiom [21]). M{Γ} = 1 for the univeral set Γ.18

Axiom 2 (Duality Axiom [21]). M{Λ}+ M{Λc} = 1 for any event Λ.19

Axiom 3 (Subadditivity Axiom [21]). For every countable sequence of events20

Λ1,Λ2, · · · ,21

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi}. (9)

The triplet (Γ,L,M) is called an uncertainty space [21]. A product uncertain22

measure was defined by Liu [22] in order to obtain an uncertain measure of a23

compound event, thus producing the fourth axiom of uncertainty theory:24
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Axiom 4 (Product Axiom [22]). Let (Γk,Lk,Mk) be uncertainty spaces for k =1

1, 2, · · · The product uncertain measure M is an uncertain measure satisfying2

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk} (10)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.3

An uncertain variable is a measurable function ξ from an uncertainty space4

(Γ,L,M) to the set of real numbers, i.e. , for any Borel set B of real numbers,5

the set {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B} is an event [21].6

In practice, an uncertain variable is described by the uncertainty distribution7

[21], defined by8

Φ(x) = M{ξ ≤ x},∀x ∈ <. (11)

An uncertainty distribution is said to be regular if its inverse function Φ−1(·)9

exists and is unique for each α ∈ (0, 1) [24].10

The uncertain variables ξ1, ξ2, . . . , ξm are said to be independent if11

M

{
m⋂
i=1

(ξi ∈ Bi)

}
=

m∧
i=1

M{ξi ∈ Bi} (12)

for any Borel sets B1, B2, · · · , Bm of real numbers [22].12

Liu [24] developed operation laws for uncertain variables so that the dis-13

tribution of functions of independent uncertain variables can be achieved. Let14

ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty distri-15

butions Φ1,Φ2, · · · ,Φn, respectively. If the function f(x1, x2, · · · , xn) is strictly16

increasing with respect to x1, x2, · · · , xm, and strictly decreasing with respect17

to xm+1, xm+2, · · · , xn, then, the uncertain variable ξ = f(ξ1, ξ2, · · · , ξn) has an18

inverse uncertainty distribution19

Ψ−1(α) = f
(
Φ−11 (α),Φ−12 (α), · · · ,Φ−1m (α),Φ−1m+1(α), · · · ,Φ−1n (α)

)
. (13)

3.2. Belief reliability as an uncertain measure20

Belief reliability measures the degree to which we believe that a component21

or a system can perform its function as designed. In this subsection, we compare22
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four mathematical theories commonly used to model belief degrees, probability1

theory (subjective interpretation [7]), evidence theory [29], possibility theory [8]2

and uncertainty theory [26], and choose among them the most appropriate one3

as the mathematical foundation for belief reliability.4

In practice, how to calculate the belief degree of the intersection of events5

(more formally, the product event) is an important issue, since it is the basis6

of system reliability calculations. Based on how the belief degree of the inter-7

section of events is calculated, the four theories can be divided into two groups.8

Probability theory and evidence theory comprise the first group, where the belief9

degree of the intersection of events is calculated by the product of the individual10

belief degrees (assuming independence among the individual events).11

According to Liu [25], a premise of using the product operation to calculate12

the belief degree of the intersection of events is that the estimated belief degree13

for each individual event is close enough to the long-run cumulative frequency.14

As shown in (8), however, belief reliability is a more conservative reliability mea-15

sure than the probabilistic reliability. If we use probability theory or evidence16

theory to model belief reliability, the conservatism in the component level will17

be distorted by the product operation, which might lead to counter-intuitive re-18

sults when calculating system belief reliability. To illustrate this point, consider19

the following example.20

Example 1. Consider a series system of 2000 components. Suppose for each21

component, md = 9 and Fa = 0. It is easy to verify that both the component22

and the system are unlikely to fail.23

When using belief reliability as the reliability measure, we have to consider24

the effect of epistemic uncertainty, by evaluating our state of knowledge. Sup-25

pose for each component, we have Fe = 3. Then, from (7), the belief reliability26

of each component is RB = 0.9987. If we regard belief reliability as a probability27

measure, the system belief reliability should be calculated by the product of the28

component belief reliabilities:29

RB,S = R200
B = 0.99872000 = 0.074. (14)
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Based on the evaluation result in (14), the system is highly unreliable, which1

contradicts with our intuition.2

Example 1 shows that to model belief reliability, we need a mathematical3

theory whose operation law of product events can compensate for the conser-4

vatism in the component-level belief reliability evaluation. Possibility theory5

provides an alternative solution by assuming that the product belief degree is6

the minimum one among all the individual events [8, 33]. If we regard the com-7

ponent belief reliabilities in Example 1 as a possibility measure, according to8

[8], the system belief reliability is given by9

RB,S =

2000∧
i=1

RB,i = 0.9987, (15)

which avoids the counter-intuitive result in Example 1. However, regarding10

belief reliability as a possibility measure introduces an issue: possibility measure11

does not follow the duality axiom, which might lead to other counter-intuitive12

results [24]. For instance, see Example 2.13

Example 2. Assume that belief reliability RB is a possibility measure. A14

possibility measure Π has the following properties [8]:15

• Π(Ω) = 1, where Ω is the universal set, and16

• Π(U ∪ V ) = Π(U) ∨Π(V ), for any pair of disjoint sets U and V .17

Since ”working” and ”failure” are two disjoint sets and their union is the uni-18

versal set, from the above axioms, it is easy to show that for a given component19

or a system, either the reliability RB = 1 or the unreliability RB = 1 which will20

confuse the decision maker when applied in practice.21

From Examples 1 and 2, we can see that to model belief reliability, we need a22

mathematical theory which can compensate the conservatism in the individual23

belief degree and satisfy the duality axiom. Compared to probability theory,24

uncertainty theory differs in the Product Axiom, where a minimum operator is25

used instead of the product operator, indicating that the uncertainty theory is26

10



capable to compensate for the extra dispersion induced by epistemic uncertainty.1

Compared to possibility theory, uncertainty theory follows the Duality Axiom,2

which prevents the counter-intuitive examples such as that in Example 2. Hence,3

belief reliability is assumed to be an uncertain measure in this paper.4

Definition 2 (Mathematical definition of belief reliability). Let the universal5

set Γ = {γ1, γ2}, where γ1 represents the working state of a system or compo-6

nent, while γ2 represents the failure state. Then, belief reliability RB is defined7

as the uncertain measure of the event Λ1 = {γ1},8

RB = M{Λ1}. (16)

Remark 1. From the Duality Axiom, we can calculate the belief unreliability:9

RB = M{Λ2} = 1−RB , (17)

which can also be seen from Figure 1, since the areas of failure region and safe10

region sum up to 1.11

4. Minimal Cut Set Theorem12

In this section, we show how to calculate the belief reliability of a coherent13

system by proving the Minimal Cut Set Theorem. Coherent system is the14

most widely applied system model in reliability theory, which describes the15

logic of binary monotone systems whose components are all relevant [3, 28].16

Commonly encountered examples of coherent systems include series systems,17

parallel systems, k-out-n:G systems, etc.18

Let ξi, 1 ≤ i ≤ n and ξ denote the state of the ith component and of the19

system, respectively, where20

ξi =

1, if the ith component is working,

0, if the ith component fails.

ξ =

1, if the system is working,

0, if the system fails.

(18)

The boolean variables ξ and ξi, 1 ≤ i ≤ n are referred to as state variables for21

the system and the components, respectively.22
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In coherent systems, ξ is a function of ξi, 1 ≤ i ≤ n:1

ξ = φ(xξ) = φ(ξ1, ξ2, · · · , ξn), (19)

where xξ = [ξ1, ξ2, · · · , ξn] is the state vector of the components. The function2

φ(·) in (19) is the structure function of the coherent system.3

The state variables ξ, ξi, 1 ≤ i ≤ n are all Boolean uncertain variables. Since4

ξ can be determined by ξ1, ξ2, · · · , ξn via the structure function, ξ is a function5

of uncertain variables. Hence its uncertainty distribution can be obtained via6

the operation laws of uncertain variables [26]. Following the operation law for7

Boolean uncertain variables, Liu [23] proved the Reliability Index Theorem for8

coherent systems:9

Theorem 1 (Reliability Index Theorem [23]). Assume that a system contains10

uncertain elements ξ1, ξ2, · · · , ξn and has a structure function φ. If ξ1, ξ2, · · · , ξn11

are independent uncertain elements with reliability indices a1, a2, · · · , an, respec-12

tively, then, the system reliability index a is13

a =


sup

φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi), if sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) < 0.5

1− sup
φ(x1,x2,··· ,xn)=0

min
1≤i≤n

νi(xi), if sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) ≥ 0.5

(20)

where xi, i = 1, 2, · · · , n take value either 0 or 1, and νi are defined by14

νi(xi) =

 ai, if xi = 1

1− ai, if xi = 0.
(21)

The proof of Theorem 1 can be found in [23].15

Directly applying Theorem 1 to calculate belief reliability of a coherent sys-16

tem requires enumerating all possible combinations of ξi, which is tedious and17

hard to apply in practice. In order to simplify the evaluation processes, we de-18

velop a system belief reliability evaluation method for coherent systems based19

on the concept of minimal cut sets.20

Definition 3 (Minimal cut set). Suppose x = [x1, x2, · · · , xn] is the state vector21

of a coherent system whose structure function is φ. A vector xa is called a22

12



minimal cut vector if φ(xa) = 0 and φ(xb) = 1, ∀xb > xa. By xb > xa, we1

mean xb,i ≥ xa,i, 1 ≤ i ≤ n and there is at leat one i, xb,i > xa,i.2

Suppose xC is a minimum cut vector. Let C(xC) = {i : xi = 0}. Then,3

C(xC) is referred to as a minimum cut set.4

A minimal cut set is the smallest combination of components which will5

cause the systems failure if they all fail. In [36], the authors used minimal cut6

sets to reduce the computational costs in system belief reliability calculations.7

However, their method requires a strict assumption that all the minimal cut8

sets are independent. In this paper, we show that the restriction is unnecessary,9

by proving the Minimal Cut Set Theorem, which only requires independence10

among the components.11

Theorem 2 (Minimal Cut Set Theorem). Consider a coherent system com-12

prising n independent components with belief reliabilities RB,i, i = 1, 2, . . . , n. If13

the system contains m minimal cut sets, C1, C2, . . . , Cm, then, the system belief14

reliability is15

RB,S =
∧

1≤i≤m

∨
j∈Ci

RB,j . (22)

Proof. Without loss of generality, let us assume that the ith minimal cut set Ci

contains ni components. Let us also assume

RB,11 ≥ RB,12 ≥ · · ·RB,1j ≥ · · · ≥ RB,1n1
,

RB,21 ≥ RB,22 ≥ · · ·RB,2j ≥ · · · ≥ RB,2n2 ,

...

RB,m1 ≥ RB,m2 ≥ · · ·RB,mj ≥ · · · ≥ RB,mnm ,

and

RB,11 ≥ RB,21 ≥ · · ·RB,j1 ≥ · · · ≥ RB,m1,

where RB,ij denotes the belief reliability of the jth component in the ith minimal16

cut set. In order to prove (22), we only have to prove17

RB,S = RB,m1. (23)
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Equation (23) comes from the fact that RB,11, RB,21, · · · , RB,m1 are the maxi-1

mum component belief reliabilities for each minimal cut set, and RB,m1 is the2

minimum among RB,11, RB,21, · · · , RB,m1.3

The proof breaks into two cases:4

1. If RB,m1 < 0.5:5

Since φ(x1, x2, · · · , xn) = 1 indicates that at least one component in each6

minimal cut set is working, it is easy to verify that7

sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) = min
1≤i≤m

{
max

φi(x1,x2,··· ,xni
)=1

min
1≤j≤ni

ν(xij)

}
(24)

where φi(x1, x2, · · · , xni
) = max1≤j≤ni

xij .8

Since RB,m1 ≥ RB,m2 ≥ · · ·RB,mj ≥ · · · ≥ RB,mnm
, we have9

max
φm(x1,x2,··· ,xnm )=1

min
1≤j≤nm

ν(xij) = min

(
RB,m1, min

2≤j≤nm

(1−RB,mj)
)

= RB,m1. (25)

For 1 ≤ i ≤ m− 1, if RB,i1 ≥ 0.5, from Lemma 1 in Appendix A, we have10

11

max
φi(x1,x2,··· ,xni

)=1
min

1≤j≤ni

ν(xij) ≥ 0.5 > RB,m1; (26)

if RB,i1 < 0.5, then, like (25), we can prove that12

max
φi(x1,x2,··· ,xni

)=1
min

1≤j≤ni

ν(xij) = RB,i1 ≥ RB,m1. (27)

Substituting (26) and (27) into (24), we have13

sup
φi(x1,x2,··· ,xni

)=1

min
1≤j≤ni

ν(xij) = RB,m1 < 0.5. (28)

Note that belief reliability is a reliability index. Then, from Theorem 1,14

RB,S = RB,m1.15

2. If RB,m1 ≥ 0.5:16

Since RB,11 ≥ RB,21 ≥ · · ·RB,j1 ≥ · · · ≥ RB,m1 ≥ 0.5, from Lemma 1, we17

have18

sup
φ(x1,x2,··· ,xni

)=1

min
1≤j≤ni

νi(xi) ≥ 0.5. (29)
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Since φi(x1, x2, · · · , xni) = 0 indicates that at least in one minimal cut1

set, all the components fail, we have2

sup
φ(x1,x2,··· ,xn)=0

min
1≤i≤n

ν(xi) = max
1≤i≤m

min
1≤j≤ni

(1−RB,ij)

= max
1≤i≤m

(1−RB,i1) = 1−RB,m1. (30)

Then, from Theorem 1,3

RB,S = 1− sup
φ(x1,x2,··· ,xn)=0

min
1≤i≤n

ν(xi) = RB,m1. (31)

4

Example 3 (Belief reliability of a series system). Consider a series system com-5

prising n independent components with belief reliabilities RB,i, i = 1, 2, . . . , n.6

It is easy to show that the system has n minimal cut sets, C1 = {1}, C2 =7

{2}, . . . , Cn = {n}. Therefore, from Theorem 2, the belief reliability of the8

system is9

RB,S =
∧

1≤i≤n

RB,i. (32)

Reference [23] also calculates the belief reliability of a series system using10

the Reliability Index Theorem. The result in (32) is the same as that from using11

Theorem 1 ([23]). However, using Theorem 1 requires n · 2n comparisons, while12

using Theorem 2 requires only n comparisons. Therefore, the computational13

costs can be greatly reduced by using the Minimal Cut Set Theorem.14

Example 4 (Belief reliability of a parallel system). Consider a paralell sys-15

tem comprising n independent components with belief reliabilities RB,i, i =16

1, 2, . . . , n. It is easy to show that the system has one minimal cut set, C1 =17

{1, 2, . . . , n}. Therefore, from Theorem 2, the system belief reliability is18

RB,S =
∨

1≤i≤n

RB,i. (33)

Reference [23] also calculates the belief reliability of a parallel system using19

the Reliability Index Theorem. The result in (33) is the same as that from using20

Theorem 1 ([23]). However, using Theorem 1 requires n · 2n comparisons, while21

15



using Theorem 2 requires only n comparisons. Therefore, the computational1

costs can be greatly reduced by using the Minimal Cut Set Theorem.2

Example 5 (Belief reliability of a k-out-n:G system). Consider a k-out-n:G3

system comprising n independent components with belief reliabilities RB,i, i =4

1, 2, . . . , n. It is easy to show that the system has C
(k+1)
n minimal cut sets.5

Each minimal cut set contains k + 1 components arbitrary chosen from the n6

components. Therefore, from Theorem 2, the belief reliability of the system is7

RB,S = RB,k. (34)

Reference [23] also calculates the belief reliability of a k-out-n:G system using8

the Reliability Index Theorem. The result in (34) is the same as that from using9

Theorem 1 ([23]). However, using Theorem 1 requires n · 2n comparisons, while10

using Theorem 2 requires only n comparisons. Therefore, the computational11

costs can be greatly reduced by using the Minimal Cut Set Theorem.12

5. Fault tree analysis using belief reliability13

In this section, we show how to calculate system belief reliability based on14

fault tree models. For this, we first show that Theorem 2 also applies to cut15

sets. A vector xCS is a cut vector if φ(xCS) = 0. Then, CS = {i : xCS,i = 0} is16

defined as a cut set. All minimal cut sets are cut sets; whereas, a cut set might17

be necessarily be a minimal cut set since it might contain redundant elements.18

If a cut set CS comprises of all the elements of a minimal cut set C and some19

redundant elements, C is said to be contained in CS.20

Theorem 3 (Cut Set Theorem). Suppose that a coherent system has m mini-21

mal cut set CS1, CS2, · · · , CSm and (l −m) cut sets CSm+1, CSm+2, · · · , CSl22

that contain some minimal cut sets. Then, the system belief reliability can be23

calculated by24

RB,S =
∧

1≤i≤l

∨
j∈CSi

RB,j . (35)

25

16
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Proof. Let1

RB,MCS =
∧

1≤i≤m

∨
j∈CSi

RB,j . (36)

Without loss of generality, let us assume that CSm+1 contains CS1 and belief2

reliabilities of the redundant components are RB,R,1 ≥ RB,R,2 ≥ RB,R,nR
. Let3

RB,1 denote the highest belief reliability among the components in CS1.4

If RB,R,1 ≤ RB,1, immediately we have5

RB,MCS =
∧

1≤i≤m+1

∨
j∈CSi

RB,j . (37)

6

If RB,R,1 > RB,1, (37) also holds since7 ∨
j∈CSm+1

RB,j = RB,R,1 > RB,1. (38)

8

Similarly, we can prove that9 ∧
1≤i≤l

∨
j∈CSi

RB,j = RB,MCS . (39)

10

From Theorem 2, RB,MCS = RB,S . Hence, the theorem is proved.11

The cut sets required in (35) can be enumerated from the fault tree mod-12

el using the MOCUS algorithm [11]. System belief reliability can, then, be13

calculated by the following algorithm:14

An engineering system, the left leading edge flap (LLEF) control subsystem15

of the F-18 air fighters [9], is used to demonstrate the developed system belief16

reliability analysis method. The schematic of the system is given in Fig. 2,17

where FCC represents flight control computer, CH represents channel, HSA18

represents hydraulic servo- actuator, LLEF represents left leading edge flap and19

RLEF represents right leading edge flap [9].20

The failure behavior of the system can be described by a fault tree, as shown21

in Fig. 3 [9]. In Fig. 3, the basic events 1 − 9 represent the failure of HSA-A,22

17
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Algorithm 1 Belief reliability analysis based on fault tree

1: Do a depth-first-search for the logic gates in the fault tree.

2: For each logic gate, calculate the belief reliability for its output event:

RB,out =


∧

1≤i≤n

RB,in,i, for an OR gate,

∨
1≤i≤n

RB,in,i, for an AND gate,
(40)

3: RB,S ← RB,out,TE , where TE represents top event.

4: return RB,S .

left asymmetry control unit, LLEF, CH1, CH2, CH3, CH4, FCC-A and FCC-B,1

respectively.2

The belief reliability of the components can be evaluated using the proce-3

dures in [37]. Suppose the component belief reliabilities areRB,1 = 0.9688, RB,2 =4

0.9200, RB,3 = 0.9500, RB,4 = 0.9000, RB,5 = 0.8000, RB,6 = 0.8800, RB,7 =5

0.9600, RB,8 = 0.9700, RB,9 = 0.9500, respectively. From Algorithm 1, the be-6

lief reliability of the system is7

RB,S = RB,1 ∧RB,2 ∧RB,3 ∧ (41)

(RB,5 ∧RB,8) ∨ (RB,6 ∧RB,9) ∧

(RB,4 ∨RB,5 ∨RB,6 ∨RB,7)

Then, from (41), the belief reliability of the LLEF control system is RB,S =8

RB,6 = 0.8800.9

The structure function-based method is also used to evaluate the system10

belief reliability. To do this, all the possible combinations of the system states11

need to be enumerated, which, in this case, are 29 = 512 states. Then, the12

system belief reliability is calculated based on (20). The calculated system belief13

reliability is RB,S = 0.8800, which is the same as the one from Algorithm 1.14

According to (20), the structure function-based method requires n× 2n = 460815

comparisons, where n is the number of components. Algorithm 1, however,16

requires only 10 comparisons according to (41). The results demonstrate that17

18
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using the developed methods can help to improve the computational efficiency1

of system belief reliability analysis.2

6. Conclusion3

In this paper, belief reliability was defined as an uncertain measure in uncer-4

tainty theory, due to the explicit representation of epistemic uncertainty. The5

Minimal Cut Set Theorem was proved, which shows how to calculate the be-6

lief reliability for coherent systems based on minimal cut sets. A system belief7

reliability analysis method is, then, developed based on fault tree models and8

applied on some numerical case studies. A comparison to the existing structure9

function-based method shows that the developed methods reduces the compu-10

tational costs in system belief reliability analysis.11

In this paper, we only consider binary systems. Many practical systems,12

however, are multi-state. In the future, the belief reliability evaluation method13

will be extended to multi-state system models. Also, the belief reliability con-14

sidered in this paper is independent of time. How to model the time-dependent15

belief reliability is another future research direction.16
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Appendix A. Lemma 1 and its proof24

Lemma 1. Consider a coherent system comprising n independent components25

with belief reliabilities RB,i, i = 1, 2, · · · , n, where RB,1 ≥ RB,2 ≥ · · · ≥ RB,n.26

23



If the structure function of the system φ is:1

φ(x1, x2, · · · , xn) = max
1≤i≤n

xi, (A.1)

and there is at least one RB,i such that RB,i ≥ 0.5, then we have2

sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) ≥ 0.5. (A.2)

Proof. The proof breaks into two cases:3

1. If RB,n ≥ 0.5:4

Since φ(1, 1, · · · , 1) = 1, we have5

sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) ≥ min
1≤i≤n

νi(1) = RB,n ≥ 0.5. (A.3)

2. If Rn < 0.5:6

Without loss of generality, we assume that there exists a k, k ∈ [1, n− 1],7

such that RB,k ≥ 0.5. Since Rn < 0.5, there exists a j ∈ (k, n), where8

Rj ≥ 0.5 ≥ Rj+1. It is easy to verify that φ(x1, x2, · · · , xn) = 1 where9

xi =

1, i = 1, 2, · · · , j

0, i = j, j + 1, · · · , n.
(A.4)

Besides, for the xi, 1 ≤ i ≤ n in (A.4), we have10

min
1≤i≤n

νi(xi) = min

(
min
1≤i≤j

νj(1), min
j+1≤i≤n

νj(0)

)
≥ 0.5. (A.5)

Therefore,11

sup
φ(x1,x2,··· ,xn)=1

min
1≤i≤n

νi(xi) ≥ 0.5. (A.6)
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(a) Aleatory distribution of the performance margin

(b) Effect of epistemic uncertainty

Figure 1: Epistemic uncertainty effect on the aleatory distribution of the performance margin
(Adapted from [37])
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Figure 2: Schematic diagram of the F-18 LLEF [9]
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