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Abstract

Anomaly detection algorithms face several challenges, including processing

speed and dealing with noise in data. In this thesis, a two-layer cluster-

based anomaly detection structure is presented which is fast, noise-resilient

and incremental. In this structure, each normal pattern is considered as

a cluster, and each cluster is represented using a Gaussian Mixture Model

(GMM). Then, new instances are presented to the GMM to be labeled as

normal or abnormal.

The proposed structure comprises three main steps. In the first step, the

data are clustered. The second step is to represent each cluster in a way

that enables the model to classify new instances. The Summarization based

on Gaussian Mixture Model (SGMM) proposed in this thesis represents each

cluster as a GMM.

In the third step, a two-layer structure efficiently updates clusters using

GMM representation while detecting and ignoring redundant instances. A

new approach, called Collective Probabilistic Labeling (CPL) is presented

to update clusters in a batch mode. This approach makes the updating

phase noise-resistant and fast. The collective approach also introduces a new

concept called ’rag bag’ used to store new instances. The new instances

collected in the rag bag are clustered and summarized by GMMs. This

enables online systems to identify nearby clusters in the existing and new

clusters, and merge them quickly, despite the presence of noise to update the
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model.

An important step in the updating is the merging of new clusters with ex-

isting ones. To this end, a new distance measure is proposed, which is a mod-

ified Kullback-Leibler distance between two GMMs. This modified distance

allows accurate identification of nearby clusters. After finding neighboring

clusters, they are merged, quickly and accurately. One of the reasons that

GMM is chosen to represent clusters is to have a clear and valid mathematical

representation for clusters, which eases further cluster analysis.

In most real-time anomaly detection applications, incoming instances are

often similar to previous ones. In these cases, there is no need to update

clusters based on duplicates, since they have already been modeled in the

cluster distribution. The two-layer structure is responsible for identifying

redundant instances. In this structure, redundant instance are ignored, and

the remaining new instances are used to update clusters. Ignoring redundant

instances, which are typically in the majority, makes the detection phase fast.

Each part of the general structure is validated in this thesis. The ex-

periments include, detection rates, clustering goodness, time, memory usage

and the complexity of the algorithms. The accuracy of the clustering and

summarization of clusters using GMMs is evaluated, and compared to that of

other methods. Using Davies-Bouldin (DB) and Dunn indexes, the distances

for original and regenerated clusters using GMMs is almost zero with SGMM

method while this value for ABACUS is around 0.01. Moreover, the results

show that the SGMM algorithm is 3 times faster than ABACUS in running

time, using one-third of the memory used by ABACUS.

The CPL method, used to label new instances, is found to collectively

remove the effect of noise, while increasing the accuracy of labeling new

instances. In a noisy environment, the detection rate of the CPL method

is 5% higher than other algorithms such as one-class SVM. The false alarm
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rate is decreased by 10% on average. Memory use is 20 times lesser that that

of the one-class SVM.

The proposed method is found to lower the false alarm rate, which is

one of the basic problems for the one-class SVM. Experiments show the false

alarm rate is decreased from 5% to 15% among different datasets, while the

detection rate is increased from 5% to 10% in different datasets with two-

layer structure. The memory usage for the two-layer structure is 20 to 50

times less than that of one-class SVM. One-class SVM uses support vectors in

labeling new instances, while the labeling of the two-layer structure depends

on the number of GMMs. The experiments show that the two-layer structure

is 20 to 50 times faster than the one-class SVM in labeling new instances.

Moreover, the updating time of two-layer structure is 2 to 3 times less than

one-layer structure. This reduction is the direct result of ignoring redundant

instances and using two-layer structure.
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Chapter 1

Introduction

Anomaly detection involves determining deviation from normal behaviour

[Han et al., 2006] [Chandola et al., 2009]. Anomalies exhibit behaviors that

do not follow the normal patterns. Other terms like outliers, exceptions,

faults, and defects are used in different applications to refer to anomalies.

Anomaly detection methods are used in many applications, such as net-

work security and fraud detection. Some methods are generic, and some

are application-specific. In network security, anomaly detection includes the

detection of possible network attacks [Teodoro et al., 2009]. With the in-

creasing prevalence of such attacks in online applications, a reliable and fast

approach is needed to cope with difficulties in these applications [Zhou et al.,

2010] [Teodoro et al., 2009]. For credit card fraud detection, an anomaly

detection system monitors all transactions and reports unusual transactions

to the credit card company [Van and Faisal, 2011]. In medical applications,

anomaly detection techniques are used to find abnormal activity in the human

body, such as that caused by malignant tumors [Lin et al., 2005]. Anomalous

patterns can cause serious and irreversible damage, and immediate action is

needed to cope with them.
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CHAPTER 1. INTRODUCTION 2

1.1 Motivation and Objectives

Anomaly detection systems must not only find previously known anoma-

lies, but also new unknown anomaly patterns [Chandola et al., 2009]. Most

anomaly detection approaches are signature-based, a method which is not

able to detect new attacks. Signature-based methods work by matching in-

coming behavior with previously known signatures of attacks. As such, they

are able to detect a number of known attacks. To be able to detect unknown

attacks, a boundary can be created for each normal pattern. All instances

outside the boundary of normal patterns are deemed to be anomalous and

detection does not depend on a limited set of restricted rules.

The issue in anomaly detection is a lack of labeled data [Smith et al.,

2002]. In all applications what is mainly known are normal behaviours along

with a limited number of anomalous behaviors. In most anomaly detection

applications, the data are imbalanced and unlabeled. Because of this lim-

itation, supervised methods are not applicable; instead unsupervised and

semi-supervised methods are better alternatives. Therefore, the attention

draws toward cluster-based approaches.

In cluster-based approaches for anomaly detection, normal behaviors are

modeled as a set of clusters, without requiring any previous knowledge of

anomalous instances. The challenge is determining whether the new in-

stances should be classified as normal or anomaly. In spherical-shape cluster-

ing methods, each cluster is represented by a radius and a center. For each

new instance, the distance of the new instance to the center of a cluster is

calculated. If the distance is less than the radius of the cluster, the instance

is considered to be normal; otherwise, it is abnormal.

There are several problems with this approach. In a system with a set

of normal patterns, detection of the number and shape of the patterns is
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challenging. Also, in many applications, finding a rigid boundary for a normal

class is difficult, and current approaches do not preserve the exact shape or

even a good approximation of the cluster. Moreover, in most applications

such as network security, attacks appear similar to normal patterns, and it

is difficult to distinguish them.

Unsupervised methods, such as those involving clustering are among the

best options for detecting boundaries of normal patterns [Mohammadi et al.,

2014]. However, normal patterns change over time, and a roster of recog-

nized normal patterns may not be valid in the future. This introduces a

requirement for an incremental structure to able to update normal patterns.

Another challenge in this area is the presence of noise. Although anoma-

lous instances differ from normal ones, they do not show the random behavior

of noise instances. Noise is random behavior in data that does not follow any

pattern, while anomalous behaviors are not random and they follow specific

patterns [Han et al., 2006]. Noisy instances are an inseparable part of real-

world datasets. They affect the border of normal and abnormal instances to

the point that it becomes difficult to distinguish noisy instances from abnor-

mal instances. A major responsibility of anomaly detection methods is to

mitigate the effect of noise on system performance.

1.2 Contributions

In this thesis, a two-layer cluster-based structure is presented to deal with

the aforementioned problems. In the two-layer structure, normal behaviors

are represented by a set of clusters, and all instances contained within the

boundaries of the clusters are considered to be normal. These clusters are

employed to label incoming instances as either normal or anomaly.

The structure has five main functional phases:
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• Clustering data

• Representing clusters as Gaussian Mixture Models(GMMs)

• Collecting data in a ’rag bag’ and labeling them collectively

• Updating clusters incrementally

• Creating coarse and fine-level clusters

Normal instances are clustered using a clustering algorithm, with each

cluster represented by a GMM. Each new instance is fed into the GMMs

of the clusters, and if the assessed membership value to one of the clusters

exceeds a threshold, the instance is labeled as normal; otherwise, it is deemed

anomaly.

In the third phase, new instances are collected in a storage called a ’rag

bag’ and clustered. These clusters are represented by GMMs consistent with

the representation of current clusters, which makes the updating faster and

easier.

To make this updating phase faster, the clusters are represented in two

levels, coarse and fine. The coarse level is more general, with a less complex

representation of clusters in terms of GMMs. The fine level is more detailed,

with specific representation of clusters. Instances with high membership

value for a cluster are ignored, since they are already represented in the

current distribution of clusters. This decision is made in the coarse level,

with less computation required. Further analysis is done in the fine level to

specify the membership value for new instances.

Cluster-based representation brings many benefits for anomaly detection

systems. Since there are no labeled data in anomaly detection, clustering of

normal behaviors is effective. Nonetheless, clustering has its own challenges
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and problems. Many existing cluster-based methods use non-convex cluster-

ing approaches such as k-means, which do not preserve the original shape

of each cluster. Furthermore, the number of clusters has to be determined,

despite there being no information about it available beforehand. To solve

these problems, this thesis proposes using a Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) clustering approach, which is able to

find arbitrary-shape clusters [Ester et al., 96]. DBSCAN fulfills two crucial

requirements of anomaly detection methods:

• More precise boundaries for clusters are defined which improves

anomaly detection accuracy.

• There is no need to know the number of clusters ahead of time. This is

an essential feature, since there is limited knowledge about the number

of normal profiles and their distributions.

Arbitrary-shape clustering methods are able to create an accurate bound-

ary for clusters of any shape. However, there is a need to represent a cluster

in a way that enables proper labeling of new instances. To label a new in-

stance, the distance of the new instance to each cluster center is calculated.

Using a threshold, the instance is labeled as being either inside or outside

of the cluster. This approach is simplistic and inaccurate, since it models

the cluster border with a simple circle, ignoring the original shape of the

cluster. Finding an optimum way to represent clusters is another challenge

for cluster-based methods. All cluster attributes need to be preserved, such

as shape, instance distribution and instance scattering.

A solution for this problem is to preserve the whole set of instances that

a cluster comprises, and find the distance of a new instance to all cluster

members. In this way, all instances are considered in assessing the distance.

This approach improves the accuracy by not limiting the shape of cluster
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to a circle. It is important to note that keeping all instances is a time and

memory-consuming process, and it is not feasible in many applications.

To mitigate this performance problem, a summarization approach is pre-

sented in Chapter 4, which summarizes the data in each cluster. This ap-

proach preserves all data characteristics.

• The proposed approach, Summarization based on GMM (SGMM), rep-

resents each cluster as a GMM. SGMM is able to summarize clusters in

such a way that all cluster features (such as the cluster shape, instance

scattering and instance distribution) are preserved using a probabilistic

model. Compared to other models, by SGMM the membership values

of the instances to a cluster are calculated with a relatively low com-

putational cost. However, finding a proper GMM for a cluster remains

a challenging task. The SGMM algorithm finds the number of GMM

components automatically, and determines all GMM parameters.

Typically normal behavior changes over time, and so an updating phase is

an essential system feature. The two-layer structure presented in this thesis

enables updating current clusters with newly extracted patterns. However,

with rapid arrival rates of incoming instances in real-time applications, up-

dating current clusters for every new instance is not efficient.

• A novel approach is proposed using the two-layer structure to perform

the updating task. In two-layer structure instead of updating clusters

with each new instance, new instances are collected in a rag bag. The

new approach is described in Chapter 5 called Collective Probabilistic

Labeling (CPL). New instances are collected and clustered. Each clus-

ter is then represented by a GMM using the SGMM approach. The

new clusters are merged with the closest current cluster. To find the
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the closest cluster, a new distance measure is proposed in Chapter 6,

to measure the distance of two GMMs.

After identifying nearby clusters, the next step is to update the clusters

using the newly created clusters. Since everything is presented in the form

of GMMs, updating clusters is quick. Each cluster is a GMM with a set of

parameters. With every new GMM created in the rag bag the parameters of

current clusters are updated, as it is described in Chapter 6.

• In the two-layer structure after finding nearby clusters, new GMMs are

merged with current GMMs. GMM mean, covariance and weights are

updated: this updating is a fast operation as it involves only simple

calculations.

In online systems there tend to be many redundant instances: most of

the data that arrive at the system every second are similar to previously

seen data. There is no point in updating the system with these instances,

since the data distribution already includes these data. With this in mind,

the proposed system removes those instances that have a high membership

value for one of the clusters; there is no need to update the cluster with that

instances. This approach saves time and space for the updating step.

• The proposed two-layer structure is designed to reduce computation

needs. The coarse-level, with less computation required, decreases the

time of assigning the membership value. The redundant instances men-

tioned above are mainly labeled in the coarse level, thereby with less

cost.

• The fine level is used to investigate instances that are new where the

determination of their membership value needs more detailed calcula-

tion.
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The two-layer approach presents an incremental structure that solves the

mentioned issues. The proposed structure is faster and more accurate than

other anomaly detection approaches. The closest performance to the pro-

posed method was for one-class SVM, that has training time of between

O(n2) and O(n3) based on optimization and kernel function, while the com-

plexity of our algorithm is O(n2) in the worst-case, where n is the size of

dataset.

1.2.1 Evaluation of the Method

Both synthetic and real datasets are used in the experiments. The real

datasets include datasets from the UCI repository as well as a real network

datasets collected in the lab. Experimental results are obtained with Matlab

running on a machine with an Intel 3.4 GHz CPU and 4GB of memory. The

algorithms are evaluated based on these criteria:

• The accuracy of the anomaly detection method is evaluated based on

ROC of false alarm and detection rates. The ROC curve is created by

changing the input parameters for each algorithm.

– The Detection Rate (DR) shows percentages of anomalous in-

stances that are detected correctly. The False Alarm rate (FA)

is the proportion of normal instances incorrectly deemed abnor-

mal .

• The clustering ’goodness’ is another factor considered to verify that

the cluster accuracy is not decreased over time by the incremental ap-

proach. Dunn [k. Dunn and Dunn, 1974] and Davies-Bouldin (DB)

[Davies and Bouldin, 1979] are two indexes used to evaluate the good-

ness of clusters.
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• Memory usage of the algorithms, based on the number of parameters

that each method preserves for a trained model.

• Running time of algorithms for clustering and cluster summarization.

• The computational complexity of the algorithms for the training and

testing phases is another measure used to compare algorithms.

In each dataset, some classes are chosen as normal and the rest as ab-

normal. The abnormal instances are then considered as the testing dataset.

Then, normal classes are divided into two parts, one of which is the training

set with the rest is added to the testing set. This means that the train-

ing dataset consists only of normal instances, but the testing dataset is a

combination of normal and abnormal instances. The proposed algorithms

are compared with prominent anomaly detection algorithms of five different

categories:

• Proximity based methods: Local Outlier Factor (LOF) [Breunig

et al., 2000]

• Cluster-Based Methods: Cluster Based Local Outlier Factor

(CBLOF) [He et al., 2003]

• Classifcation: One-class SVM [Scholkopf et al., 2001]

• Artificial immune system: positive selection [Ebner et al., 2002],

real value negative selection [Ji and Dasgupta, 2004], Simple Proba-

bilistic Artificial Immune system approach (SPAI) [Mohammadi et al.,

2014]

• Statistical methods : Gaussian Mixture Model (GMM) [Hajji, 2005]
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1.2.2 Structure of the Thesis

The structure of thesis is as follows. In Chapter 2, anomaly detection meth-

ods and recent advances in this area are reviewed. The methods are grouped

into six categories, and the most influential approaches in each category are

described in detail. In Chapter 3, the general structure of two-layer cluster-

based anomaly detection method is introduced; all components of the two-

layer structure are discussed in this chapter as well.

In Chapter 4, the SGMM is explained in detail. Some experimental results

are presented in this chapter, to clarify the effectiveness of using the SGMM

in summarizing the data and labeling new incoming instances.

Chapter 5 presents the collective labeling step, done to label and update

clusters, which is one of the main parts of the two-layer structure. Issues and

problems associated with collective labeling are discussed in this chapter, and

experimental results are presented to show the validity of collective labeling.

Chapter 6 describes the GMM-based incremental approach to update

clusters. Details of the updating stage and the effect of collective updating

are discussed in this chapter.

Chapter 7 synthesizes the components of the two-layer structure, and

presents the general two-layer structure based on the proposed approaches

from previous chapters. In Chapter 7 a description is given of how clusters

can be represented in two levels; coarse and fine. The capability to ignore

redundant instances, and remove noise effects are discussed in this chapter.

The experimental results cover extensive testing of the two-layer structure.

Finally, the conclusion and proposals for future work are presented in Chapter

8.
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1.3 Published Papers

• A fast and noise resilient cluster-based anomaly detection [E.Bigdeli

et al., 2015a]

• Incremental Cluster Updating Using Gaussian Mixture Model

[E.Bigdeli et al., 2015c]

• A Fast Noise Resilient Anomaly Detection using GMM-based Collective

Labelling [E.Bigdeli et al., 2015b]

• Summarizing Arbitrary shape clustering using Guassian mixture model

[E.Bigdeli et al., 2014b]

• Cluster Summarization with Dense Region Detection [E.Bigdeli et al.,

2014a]



Chapter 2

Literature Review

An anomaly is defined as a significant deviation from behaviors that are

normal patterns. There are three different types of anomalies; individual,

contextual, and collective.

Individual Anomalies

This type of anomaly can be detected by comparing an individual instance

with the rest of data. As depicted in Figure 2.1, A1, A2, A3 and A4 represent

individual anomalies, as they are far from the area of normal instances, N1,

N2, N3. Detecting individual anomalies is easier than a group of anomalous

instances and most algorithms detect individual anomalies.

Contextual Anomalies

A contextual or conditional anomaly is defined as anomaly based on a

specific condition or context. A simple example is seasonal outdoor tem-

peratures. A temperature of 28C is normal during summer but it would

be considered abnormal during winter. Another example can be seen in a

person’s annual credit card activity. Each person spends an average amount

during most of the year, while expenses increase during vacation times like

Christmas. A high volume of transactions is expected during holidays, since

12
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Figure 2.1: Individual anomalies in data space

people buy gifts or go on a long trips [Song et al., 2007]. Contextual anomalies

are important considerations in time series [Basu and Meckesheimer, 2007]

and spatial data [Kou et al., 2006].

Collective Anomalies

In some applications, the source of anomalies is a set of instances rather

than a single one. Such a set is referred to as a collective anomaly. Figure

2.2 depicts an example of a collective anomaly in a time series. The area

highlighted in red circle shows values that deviate from the normal pattern,

although any single value in this region does not by itself abnormal behavior.

Normal behaviors may exhibit different patterns in different periods of

time, because of variation in applications, users and functionality. Statistical

methods may not work well in such a system. This is because a general

normal model, based on a single behavior, is generated, with each single
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Figure 2.2: Collective anomalies in a time series

deviation considered to be anomalous. A single model is not representative

of all potential normal behaviors. Research in the area of network intrusion

detection shows that there is a set of normal behaviors for which using only

a single border to distinguish normal from abnormal instances is not possible

[Smith et al., 2002] [Mohammadi et al., 2014] [He et al., 2003]. Furthermore, a

lack of labeled data makes the problem more complicated. A set of abnormal

behaviors that is already known is limited to just the primary knowledge of

the normal patterns, and cannot be used in conjunction with a supervised

method for training a classifier. Most research efforts in this area focus on

semi-supervised and unsupervised methods.

In this chapter, a literature review of anomaly detection methods is pre-

sented. In the first Section, well-known anomaly detection methods are pre-

sented including promising cluster-based methods. Since the cluster-based

anomaly detection methods are the focus of this thesis, clustering approaches
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with their pros and cons are reviewed in Section 2.2. Cluster summarization

and finding a proper representation of clusters, is the other focus of this thesis;

the literature review of cluster summarization approaches is presented in Sec-

tion 2.3. The proposed framework of this thesis is an incremental approach

for anomaly detection and therefore, the incremental clustering approaches

are reviewed in Section 2.4.

2.1 Anomaly Detection Approaches

In this section primary works in the area of anomaly detection are catego-

rized, and for each category prominent works in the literature are reviewed.

There are six main categories of anomaly detection algorithms: rule-based,

statistical, proximity-based, Artificial Immune System(AIS), supervised and

unsupervised methods. Each method is discussed including an analysis of

their strengths and weaknesses.

2.1.1 Rule-based Methods

Rule-based or knowledge-based anomaly detection methods are among the

first-developed and basic anomaly detection methods. In these methods, first,

a set of rules for detecting anomalous behavior is extracted. If newly-captured

behavior fits one of the rules, it is considered to be an anomaly [Ndousse

and Okuda, 1996] [Sajja and Akerkar, 2010]. In the first step of rule-based

methods, an algorithm such as decision tree, RIPPER and etc. is used to

find the rules. Based on the quantity of training data, and the number

of instances that are correctly classified by each rule, a confidence level is

assigned to each extracted rule. For each new instances, the rules database

is searched, and the best match is found. The inverse of the confidence level
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of the best-match rule is used as the anomaly score for new instance. [Fan

et al., 2001] [Salvador and Chan, 2003].

A lack of labeled data in anomaly detection applications leads to unsu-

pervised approaches for rule extraction. Some rule-extraction methods are

user-dependent and rules are generated by an expert. The other approach

is association rule mining which finds the rules in a dataset using a list of

transactions from the current databases [Mahoney and Chan, 2003] [Qin and

Hwang, 2004]. Anomaly detection methods based on association rule mining

are applied in credit card fraud detection [Brause et al., 1999] and network

security [Tandon and Chan, 2007].

Advantages and Disadvantages of Rule-based Methods

Rule-based methods include two steps. The first step is a training phase to

define rules. The second step is a testing or detection phase to label new

incoming instances. The time required for training varies according to the

algorithm. The best training algorithm is association rule mining, but all

algorithms for rule mining are time-consuming. The complexity of these

algorithms is increased with the number of transactions, transactions width

and the size of the item set [Shinichi and Jun, 2000] [Wijsen and .Meersman,

1998].

Since known anomalous behaviors are defined as a set of rules, this

method is reliable in detecting the recurrence of previously known anomalies.

This is why most of the current Intrusion Detection Systems (IDSs) use this

approach. However, a major drawback is that these methods are not capable

of detecting new and unseen anomalies. Moreover, the rule-based methods

mainly rely on an expert’s opinion, which may not be accurate, due to lim-

ited knowledge about any new anomalous behaviors. In the detection of new

anomalous instances, a database of all normal rules has to be searched to
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find a matching case, which can take considerable time. The detection time

is increased based on the size of database, which is inappropriate for online

applications. This problem is called ’utility problem’ [Minton et al., 1987]

which indicates that the performance is decreased due to the time wasted

trying to apply learned rules in situations that rules are incapable of solving

them [Mooney, 1989].

Instead of just relying on expert knowledge and creating limited rules,

another approach is to use some mathematical representation of normal be-

havior, such as statistical models based on various features of the dataset.

2.1.2 Statistical Methods

The assumption of statistical methods is that normal behaviors are gener-

ated based on a stochastic model. With statistical models, anomalies are

in the low-probability regions. In statistical methods, some dataset features

allow distinguishing normal and abnormal behaviors. For example, for net-

work traffic, packet length and flow size are some features of the dataset.

All statistic parameters, such as mean and variance are calculated for all

extracted features, and a model is fitted to the data. For anomaly detec-

tion, a statistical model is fitted to normal data, and a statistical inference

test detects any abnormal behavior. Thatte et al. use packet-size statistics

and traffic rates to build a statistical model, and then employ the sequential

probability ratio test (SPRT) in the detection phase [Thatte et al., 2011].

Another group of methods in this category works by considering normal

behavior as a time series, combining it with signal processing techniques for

anomaly detection purposes [Leng et al., 2009].

In another work by Hajji [Hajji, 2005], normal data are considered to be

generated by a set of normal distributions, and all parameters of the model
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are generated based on the existing data. Any deviation from these models

is considered to be an anomaly.

To find a statistical model for data, two sets of techniques are applied to

the dataset.

• Parametric techniques assume an underlying distribution for data and

then estimate the parameters of the distribution.

• Non-parametric techniques don’t consider any underlying distribution

for data.

Parametric Techniques

Parametric methods assume that data are generated based on a parametric

distribution, with a probability density function f(x, θ), where x represents

the data and θ is the parameter of the model. Parametric techniques are

divided into two categories, Gaussian-based and regression-based models.

Gaussian-based Model

The basic assumption is that the data are generated based on a Gaussian

distribution. Various statistical tests are applied to detect any deviation.

Box Plot Test : Using a Gaussian distribution for data, a simple statistical

test for anomaly detection is the box plot test [Horn et al., 2001]. As shown

in Figure 2.3, minimum, maximum, median, upper quartile Q3 and lower

quartile Q1 are specified for a dataset. Inter-Quartile Range (IQR) is the

region in Q3 − Q1. Each instance outside of upper quartile Q3 and lower

quartile Q1 is considered as anomaly. All instances in the region of Q−1.5×
IQR and Q + 1.5 × IQR are in the confidence interval of µ + 3 × σ of a

normal distribution with mean µ and standard derivation σ.
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Figure 2.3: Box Plot

Grubb’s Test : Grubb’s test assumes the dataset has a normal distribution.

A z score is calculated in a univariate dataset for each instance x, as follows:

[Laurikkala et al., 2000]:

z =
|x− x|
s

(2.1)

x is mean and s is the standard deviation. A new instance is deemed to

be anomalous if the z score of an instance is:

z >
N − 1√
N

√√√√ t2
α/(2N),N−2

N − 2 + t2
α/(2N),N−2

(2.2)

where N is the data size and t2α/(2N),N−2 denotes the critical value of the

t−distribution with (N − 2) degrees of freedom and a significance level of
α

2N . Grubb’s test shows the absolute deviation from the mean. The level
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of deviation is defined based on the critical value, which can be calculated

for any desired confidence level from the t-statistic (which is typically set to

95%).

For multivariate data, the z score is computed based on the Mahalanobis

distance for instance x as follows:

z = (x− x)′s−1(x− x) (2.3)

x is the mean and s is the covariance of the dataset. The same test is

applied to z to determine anomalous score.

χ2 statistic: Another test to detect anomalous samples is the chi-square

test. χ2 is calculated for each instance xi as follows:

χ2 =

n∑
i=1

(xi − Ei)2/Ei (2.4)

Ei is the expected value for instance xi, and n is the total number of

variables. Each instance xi with a large χ2 is anomalous. χ2 depicts deviation

from the expected value. The χ2 statistic is used, for example, to detect

anomalous operating systems calls [Ye and Chen, 2001].

Regression-based Model

This approach is mainly used for time series anomaly detection. In this

technique a regression model is fitted to data and deviation from the model

considered as anomaly. The deviation is defined based on the difference be-

tween the predicted value and the observed value. There are various meth-

ods available to fit the regression model. The most well-known approaches
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are; Moving Average (MA) [Chatfield, 2004], Autoregression (AR) [Chat-

field, 2004], Autoregressive Moving Average (ARMA) [Pincombe, 2005] and

Autoregressive Integrated Moving Average (ARIMA) [Moayedi and Masnadi-

Shirazi, 2008].

Autoregression (AR): This method calculates the value y(t) at time t,

based on previous outputs y(t− r), 1 ≤ r ≤ m:

y(t) =

m∑
i=1

a(i)y(t− i) + ε(t) (2.5)

a(i) is the autoregressive coefficient and ε(t) is the noise at time t.

Moving Average (MA): This method predicts the value for output y(t),

based on the input values x(t− r), 1 ≤ r ≤ m:

y(t) =

m∑
i=1

b(i)x(t− i) + ε(t) (2.6)

b(i) is the autoregressive coefficient and ε(t) is the noise at time t.

Autoregressive Integrated Moving Average (ARIMA): This method com-

bines the AR and MA.

Non-parametric Techniques

Non-parametric techniques do not have any predefined assumptions on the

dataset. These methods work with the original data with no predefined

distribution model.

Histogram Method :

Histogram-based methods create and maintain a dataset histogram. New



CHAPTER 2. LITERATURE REVIEW 22

instances is compared to all the bins of the histogram, and if it does not

match one of the bins, it is considered as anomalous. This method is used

to detect network intrusion [Yamanishi et al., 2004] and fraud [Fawcett and

Provost, 1999]. Variability in defining the size of the bins can lead to a

general or specific model.

Kernel Function-based Method :

This method is based on Parzen window estimation. Probability Dis-

tribution Functions (PDF) for normal instances are estimated using kernel

functions. Any new instance in the low probability area is deemed anoma-

lous [Chow and Yeung, 2002].

Advantages and Disadvantages of Statistical Methods

The computational complexity of statistical methods strongly depends on

the algorithm used in the model creation step. Most of the algorithms in

this category are highly complex. For example, complexity of Expectation

Maximization (EM) algorithm to find Gaussian mixtures is linear (in each

iteration), but it needs a considerable number of iterations to converge. More-

over, these methods need to have entire dataset available and then set the

model parameters based on the entire normal dataset. This shortcoming

makes the method slow, and undesirable in online applications.

The advantage of these methods is that if the distribution assumption for

statistical methods holds true, there is statistical justification and a confi-

dence interval in anomaly detection. Moreover, in statistical methods there

is no need to have labeled data.

There are some problems associated with these methods. First assuming

a specific distribution for data may not be valid for many real datasets.

Second, these models are usually fixed, while the nature of recent data is

dynamic, and an adaptive model may be needed to represent their behavior



CHAPTER 2. LITERATURE REVIEW 23

over time.

2.1.3 Proximity-based Methods

Proximity-based methods assume that normal instances are in a dense area

of data, while anomalous instances are in sparse regions, and far from dense

regions. The key factor in this method is a reliable definition of the distance

metric. In the case of continues numeric values for features in the dataset this

distance will be the Euclidean distance. However, for categorical values, the

distance is calculated in new forms, since there are no numeric values available

to determine Euclidean distance [Boriah et al., 2008]. In most applications,

there is a combination of both continuous and categorical values. There

are approaches that can combine the similarity of continuous attributes with

similarity of categorical ones [Otey et al., 2006] [Tan et al., 2005]. Proximity-

based methods can be classified into two groups: distance-based and density-

based methods.

Distance-based Methods

Distance-based methods assume that abnormal instances are remote from

normal instances, based on a distance measure. Distance-based methods

are of two main types: K-Nearest-Neighbors-based (KNN) and grid-based

methods.

K-Nearest-Neighbors (KNN)

This is the most well-known distance-based method [Sricharan and III,

2011] [Zhou et al., 2010] [Orair et al., 2010]. KNN-based methods find the

distance of each new instance to its K-nearest neighbors. If the distance of a

new instance to its K-nearest neighbors exceeds a threshold, it is considered

anomalous.
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KNN-based approaches can themselves be divided into two groups. In

the first, distances from each instance to all other instances are calculated,

and a fixed radius r is considered. For each instance Oi, if the number of

instances with distance less than r to Oi, is less than a threshold π, Oi is

considered as anomalous; otherwise, it is normal [Zhang and Wang, 2006].

Based on threshold π and a radius r, instance Oi is anomaly if:

‖{Oj |dist(Oi, Oj) < r}‖
‖D‖

≤ π (2.7)

The numerator represents the size of the set of neighbors of Oi with

distance less than r, and ‖D‖ is the size of the dataset. If the number of

neighbors is greater than a threshold π, the instance is normal; otherwise, it

is abnormal.

For the second group of KNN-based approaches, distances from instance

Oi to all other instances are calculated, and the K-nearest neighbors of Oi

are determined. The average distance to all K-nearest neighbors of Oi is

computed, and if the average distance is less than a threshold, Oi is consid-

ered as anomalous [Knorr et al., 2000]. Taking the average is not the only

approach available; one alternative uses the sum of the distances from a new

instance to its K-nearest neighbors [Zhang and Wang, 2006].

KNN is categorized as a ’lazy’ classifier, since there is no training phase,

and therefore no need to have any knowledge about the data. However, due

to the large number of computations required to find the distances from a

new instance to all other instances, KNN is time-consuming. Higher-level

structures like hyper-grid have been tried to address this problem, and make

it faster, but, it is still not fast enough for online applications [Xie et al.,

2013].
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Instead, the KNN method can be applied to subset of the data. This

method reduces the computation time, with compromising accuracy [Wu and

Jermaine, 2006]. Also, partitioning techniques can be applied to the dataset

to prune non-anomalous areas. In this approach, the upper and lower bounds

of the distance of each instance to its K-nearest neighbors in each partition

are found, which are used to prune the non-anomalous area [Ramaswamy

et al., 2000].

Grid-based Method

In the grid-based approach, the data space is divided up into grids with

diagonals of length r
2 . Two levels are defined for neighboring cells:

• For cell C, the Clevel1 cell is the cell that, for any Oi ∈ C and for any

Oj ∈ Clevel1 , dist(Oi, Oi) < r.

• For cell C, the Clevel2 cell is the cell that for any Oi ∈ C and for any

Oj ∈ Clevel2 , dist(Oi, Oi) > r.

Figure 2.4 depicts a data space with cells in two levels. All cells in the

immediate neighborhood of cell C are considered to be in level1 and the rest

in level2. The cell C is specified in red in Figure 2.4, with level1 (L1) the

darker shade and level2 (L2) the lighter shade.

Based on the two levels defined for the neighbors of a cell C, anomalous

instances are detected. Consider a to be the number of instances in cell C,

b1 the number of instances in level1and b2 the number of instances in level2.

n is the total number of instances. These two rules are used to determine the

number of neighbors for each cell C and accordingly specify the normal and

anomalous instances in the dataset. If the number of neighbors with distance

less than r is more than a threshold π, then all instances in cell C are normal.
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Figure 2.4: Grid of data space with two levels

If the number of neighbors with distance r is less than a threshold, then all

instances in cell C are anomalous.

• All instances in cell C are considered as anomaly if a+b1 +b2 < πn+1.

• All instances in cell C are not anomaly if a+ b1 > πn.

The first rule indicates that for every instance Oi in cell C, there are

at least πn instances with distance less than r in the neighborhood, and

therefore, instances in cell C are not outliers. The second rule specifies all

instances in cell C as outliers, since the number of neighbors with distance

less than r is less than the threshold πn.

The advantage of using a grid structure is that the whole cell can be

labeled as normal or anomaly without checking each instance individually.

Moreover, a limited number of cells can be checked instead of the entire
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dataset.

Density-based Methods

The second group of proximity-based anomaly detection methods is density-

based. The basic assumption for these methods is that if the density around

an instance is less than a threshold, then that instance is anomalous. While

this method works well for some datasets, assumption about global density

may not be appropriate for all applications. Consider clusters with different

densities, as depicted in Figure 2.5. Based on distance-based methods, a1

and a2 would not be anomalies. Using a density-based method, if the same

threshold is considered for the density of instances, not only a1 and a2 but

also the entire cluster C1 would be considered as anomaly. To solve this

problem the concept of local density is introduced.

 

C1 

C2 

C3 

a1 
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a4 

Figure 2.5: Cluster with different densities
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Breunig introduced a Local Outlier Factor (LOF), which combines the

density of an instance and its neighbors to find the local density factor [Bre-

unig et al., 2000]. For each instance in the dataset, an outlier factor is

computed, being a combination of the density of instance Oi and its relative

density. In turn, the relative density of an instance is computed using the

density of the neighbors of Oi. To find the relative density, LOF defines

k−distance for Oi. k−distance of Oi, distk(Oi) is the distance between Oi

and its k-nearest neighbor. More, precisely in data space D, distk(Oi) is the

distance of Oi to instance p ∈ D if:

• There are at least k instances Oj ∈ D with dist(Oi, Oj) ≤ dist(Oi, p)

• There are at most k − 1 instances Oj ∈ D with dist(Oi, Oj) <

dist(Oi, p)

Based on distk(Oi), the k-distance neighborhood of Oi is defined using:

Nk(Oi) = {Oj |Oj ∈ D, dist(Oi, Oj) ≤ distk(Oi)} (2.8)

The average distance to all members of Nk(Oi) can be a local density

estimation. However, since fluctuations can be high in all distances, the

definition of reachability distance is introduced. For two instances Oi and

Oj the reachability distance is defined as:

reachdistk(Oi ← Oj) = max{distk(Oi), dist(Oi, Oj)} (2.9)

Based on this, the definition of local reachability density is defined:



CHAPTER 2. LITERATURE REVIEW 29

lrdk(Oi) =
‖Nk(Oi)‖∑

Oj∈Nk(Oi)
reachdistk(Oj ← Oi)

(2.10)

The inverse of the distance is an indicator of density in a local reachability

density. In this definition for density, there is no parameter for the number

of neighbors, and density is defined based on the distances of instance Oi

and its neighbors.

The (LOF) is defined as follows:

LOFk(Oi) = (2.11)∑
Oj∈Nk(Oi)

lrd(Oj)
lrd(Oi)

‖Nk(Oi)‖
=

∑
Oj∈Nk(Oi)

lrd(Oj).
∑

Oj∈Nk(Oi)

reachdistk(Oj ← Oi)

In this formula, the local reachability densities of Oi and its neighbors are

considered. Therefore, the density is compared to that of its neighbors, and

the local density is considered rather than the global density. The average of

the ratio of the local reachability density of Oi and its neighbors specifies the

local outlier factor. With a low local reachability density for Oi and a high

local reachability density for its k-nearest neighbors, the LOF value would be

high. A high value for the LOF indicates that the local density of instance

Oi is less than its neighbors.

To determine the outlier instances, density is calculated for each instance

(which makes the algorithm slow). Density-based methods are categorized

as static methods. To use them in online applications, a snapshot of the data

is taken in different times, and anomalies are then classified. There has been
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limited research [Kim and Han, 2009] in this area toward making density-

based methods dynamic and thus suitable for use in online applications.

Advantages and Disadvantages of Proximity-based Methods

All proximity-based methods have high computational complexity: their de-

tection time is on the order of O(n2). These methods find the distance from

each instance to all other instances in the dataset. The time complexity of

this step is O(n2). Using methods like that of the K−d tree is not sufficiently

efficient since the computational complexity of these methods increases with

the number of features. In some cases sampling techniques are applied, but

they decrease accuracy. The relatively long detection time of proximity-based

approaches are the main reason that they are considered unsuitable for online

applications.

All proximity-based methods are considered to be unsupervised methods.

Since there are no labeled data in the anomaly detection area, such a method

is the best choice. However, since these methods compare each instance to all

other instances (while the entire data is not available) and instances arrive

over time, there would be no possibility of finding the outliers in an online

context. Furthermore, there is neither enough time or space to collect the

whole dataset and label new instances. The high computational complexity

noted above makes this even worse. Another problem is related to the dis-

tance measures. In some application defining a proper distance measure can

be difficult.
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2.1.4 Artificial Immune Systems for Anomaly Detec-

tion

Approaches based on the concept of an Artificial Immune System (AIS) are

inspired by immune systems and are used to solve problems in various do-

mains, including anomaly detection applications. The two main algorithms

used for anomaly detection involve negative and positive selection.

Negative Selection Algorithm

The use of a negative selection algorithm for anomaly detection was first

introduced by Forrest et al. [Forrest et al., 1994]. The basic idea is to generate

a number of detectors in the complementary space of normal instances. These

detectors are employed to detect and classify new instances as normal or

anomaly. Given a data space U and a set of normal instances N , the anomaly

space A is defined as:

U = N ∪ A and N ∩ A = ∅ (2.12)

The number of detectors chosen, and how they are generated, are key

attributes for negative selection. A simple detector for a negative selection

algorithm uses a circle-based approach. Each generated detector is at the

center of a circle of a given radius. All circles act as detectors, and each new

instance is compared to these detectors. If a new instance is in the area of a

detector, it is considered as anomaly [Hofmeyr and Forrest, 2000] [Balthrop

et al., 2002] [Singh, 2002].

The initial negative selection algorithm employs the same radius around

each detector, which is highly restrictive. To solve this problem, a new
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version of the algorithm called Real-Value Negative Selection (RVNS) was

developed [Ji and Dasgupta, 2004]. This algorithm generates detectors with

variable radii. For each normal instance in the data space, a circle with a

specific radius is considered. Each generated detector is first checked against

all other normal instances. If the detector is not in the area of normal circles,

a radius is set for it. The radius is the distance of the new detector to its

closest normal instance.

Figure 2.6 depicts the RVNS output. The dark-shaded circles are the

normal instances. The other circles are detectors with variable radii. The

radii are extended until they reach the boundaries of the closest circles. There

are RVNS extensions that adapt the detector generation method and radii to

find better representatives for anomalous instances [Aickelin et al., 2004] [Wu

and Liang, 2005].

 

Figure 2.6: Real-Value Negative Selection with different radius for detectors
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Positive Selection Algorithm

The positive selection algorithm is inspired from the biological immune sys-

tem. In anomaly detection applications, this algorithm works only with

normal instances [Ebner et al., 2002] [Stibor et al., 2005]. The positive selec-

tion steps are depicted in Figure 2.7. Some normal instances are selected as

representative of normal behavior. Each selected instance, and the area in

its neighborhood, is considered in the detection of normal instances. A circle

of radius r around each normal instance specifies an area that is considered

as normal. The area of all these circles is considered as the normal area.

Each new instance is compared to all normal instances; if the new instance

is not in the area of one of the normal instances, it is considered as anomaly,

otherwise it is labeled as normal.

 

Normal Instances Positive instances with boundaries 

New anomaly instance  
New normal instance 

Anomaly 
Normal 

Figure 2.7: Positive selection with uniform detector radius
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2.1.5 Supervised Approaches

Supervised approaches train a model using labeled data, and then employ the

trained model to classify new instances. The assumption of these approaches

is that the model is able to distinguish normal and abnormal instances in the

given feature space. Supervised approaches can be divided into two groups:

one-class and multi-class classification methods.

One-class classifiers are trained based on normal instances. In the training

phase, the model is trained to separate the area of normal class from the rest

of the data space. Figure 2.8 depicts a decision boundary for a normal class.

Multi-class classifiers are trained based on multiple normal classes and

learn to classify each new instance against the other classes. The new instance

is classified as anomaly if it does not belong any class [Stefano and Vento,

2000].

 

Figure 2.8: Normal class boundary
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Neural Network Classifier

Neural network classifiers are used for anomaly detection in both multi-class

and one-class modes. The multi-class types of neural networks are trained

with multiple classes, with each new instance accepted or rejected based on

a trained model [Odin and Addison, 2000].

Replicator Neural Networks (RNN) are trained with one-class labeled

data [Hawkins et al., 2002]. The same input and output are considered for

neural networks. Replicator neural networks label new instances xi based on

factor δ, defined as follows:

δ =
1

n

n∑
j=1

(xij − oij)2 (2.13)

n is number of features, and oij the reconstructed output of RNN. If the

distance between the reconstructed output and the original input exceeds a

threshold, it is labeled as anomaly.

Supervised approaches like neural networks have been used for anomaly

detection but a lack of labeled data renders some models insufficiently accu-

rate [Han and Cho, 2006]. Shon and Moon employed a Self-Organized Fea-

ture Map (SOFM) to decrease the false alarm rate of neural networks [Shona

and Moon, 2007].

Support Vector Machines

Since, the data on which anomaly detection is based are usually imbalanced

and unlabeled, one-class classifiers are typically used in this area. The known

behaviors that are derived from normal instances form the major part of each

dataset. The number of known anomalous instances is typically small, and
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can make the data imbalanced. This led to the introduction of a new ver-

sion of SVM called one-class SVM. This is a classifier trained only using

the data of one class, separating the data of this class from other, unseen,

classes [Scholkopf et al., 2001]. This approach is accurate because it charac-

terizes boundaries over all normal instances. However, finding these bound-

aries has its own cost. In creating these boundaries, there is a need to pre-

serve many support vectors which is impossible in many applications [Keerthi

et al., 2006]. In particular, the number of support vectors increases with the

dimensions of the data. Various methods can be used to decrease the time

and memory complexity of a one-class SVM, but this is not efficient enough

since it decreases the accuracy [Amer et al., 2013]. Another problem associ-

ated with SVM is a high false-alarm rate. To alleviate this problem, some

approaches combine KNN with one-class SVM, but this undesirably increases

the complexity [Chen et al., 2013].

2.1.6 Unsupervised Approaches

An unsupervised approach works with unlabeled data, which is a typical

feature of datasets for which anomaly detection is applied. There are two

sets of approaches in this category:

• Autoencoders

• Cluster-based approaches

In the following sections, the most well-known and recent approaches in each

category are reviewed.
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Autoencoders

The autoencoder (also known as auto-associative neural network) is a type of

neural network used for novelty detection. The network is trained only with

normal instances, and novelties are detected based on the trained model.

By using the same input and output, the neural network is trained to be

consistent in dealing with normal data. Since the network is trained with

normal instances, the weights are based on normal patterns, and any new

and abnormal pattern is inconsistent with the network. In other words, the

input cannot be reconstructed for anomalous new instances [Japkowicz et al.,

1995].

Autoencoders were first used for dimensionality reduction [Ranzato et al.,

2006] [Bengio et al., 2007] [Bengio and LeCun, 2007]. Autoencoders learn

the same features as Principle Component Analysis (PCA). The autoencoder

structure is represented in Figure 2.9. An autoencoder has three layers:

input, hidden and output layer. For a network with input with dimension

D, D = {1, . . . , n}, the number of hidden units is defined based on the

application and the type of transformation needed to be applied on data.

The output X̂ is the same as the input, or is a close estimation of it.

The output of the first layer is:

hj = σ(
∑
i

W 1
jixi + b1j) (2.14)

and that of the second is:

x̂i = σ(
∑
j

W 2
ijhj + b2i ) (2.15)
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h3 

Figure 2.9: A simple autoencoder

where W1 and W2 are the weight matrices, b1 and b2 are the bias for level

1 and 2 in the structure. σ(.) is activation function. In some approaches, W1

and W2 are optionally considered identical(’tied weights’).

The goal is to reconstruct the input while minimizing the error, L(xz) =

‖x− z‖2. To do so, a minimization function is used to find optimal weights

and bias:
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J(θ) =
1

2N

N∑
n

∑
i

(x
(n)
i − x̂

(n)
i )

2
+
λ

2

∑
l

∑
i

∑
j

(W l
ij)

2
(2.16)

+β
∑
l

∑
j

KL(ρ‖plj)

where plj is the mean activation for unit j in layer l, ρ is the desired mean

activation, andN is the number of training instances. KL is Kullback-Leibler

divergence [Kullback and Leibler, 1951]. The first term is an average sum-

of-squares error term that minimizes the reconstruction error. The second

term is a regularization term (also called a weight decay term) that tends to

decrease the magnitude of the weights, and helps prevent overfitting. The

weight decay parameter λ controls the relative importance of the two terms. ρ

is a sparsity parameter and typically has a small value: the average activation

of each hidden neuron j should be close to 0.05. The third term is the sparsity

penalty term, toward having each unit being only partially activated. The

sparsity constraint on the hidden units allows the autoencoder to discover

structures of interest in data with a large number of hidden units.

The performance of autoencoders employed for dimensionality reduction

can be compared to that of linear and kernel PCA. Autoencoders outperform

the two PCA types, and increase the accuracy [Sakurada and Yairi, 2014].

Marais et. al. [Marais and Marwala, 2007] used autoencoders to detect

internet worms. They applied autoencoders to detect the novelty on an

specific dataset and it detects any novelty in data while it can be a normal

behavior that has not been considered in the original data.

Wu and Guo [Wu et al., 2015] employed deep networks to design an

adaptive framework for sensing and modeling a dynamic target through con-

sideration of system resource constrains. They have used a model for novelty
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detection in analyzing traffic accidents and human brain function. Their

approach involves creation of a framework and subsequent novelty detection.

A significant problem with autoencoders is overfitting. A Structured De-

noising Autoencoder (StrDA), can use incomplete prior information to reduce

the effect of overfitting. StrDA decreases overfitting while the false-alarm rate

is still high [Tagawa et al., 2014].

Advantages and Disadvantages

Autoencoders are complex but accurate models, which have been recently

applied to diverse anomaly detection problems. As noted autoencoders al-

ways overfit and generate a high false-alarm rate. Another issue arises from

the chosen structure of the network, data representation and transformation

methods. The number of hidden units and the activation function need to

be chosen in a way such that the input are reconstructed in the output.

Moreover, excessive training time is an issue for all types of neural networks.

Cluster-based Approaches

Cluster-based anomaly detection methods are divided into three categories.

In the first category, if an instance does not belong to any cluster, it is

considered anomalous. The DBSCAN algorithm introduced by Ester et al.

finds clusters and anomalies simultaneously [Ester et al., 96]. In this algo-

rithm, those instances which are not connected to any cluster are considered

anomalous. DBSCAN algorithm is discussed in more detail in section 2.2.4.

A disadvantage of this method is that it needs to have the entire dataset

to find anomalous instances. In online applications, data arrives over time,

and it is not practical to store all data. Rock [Guha et al., 2003] and SNN

clustering [Ertoz et al., 2003] are two other types of clustering algorithms

that do not force the entire data instances to be attached to a cluster. Those

instances that do not belong to any cluster are labeled as anomaly.
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In the second category for cluster-based methods, instances with distance

less than a threshold to their closest cluster are considered as anomaly. It

means that those instances that are far away from all clusters and they do

not belong to any cluster are considered as anomaly. In the first cluster-

based approach, detection of anomalous instances is done at the same time

as cluster creation, while in the second approach clusters are generated first

and then anomalies are detected.

Different clustering approaches, such as k-means, (EM) and Self Organiz-

ing map(SOM) [Keogh and Smyth, 1997] have been used to create clusters for

anomaly detection [Smith et al., 2002]. By finding a center for each cluster,

and setting up a threshold, any instance with a distance greater than that of

the threshold to the center of clusters are deemed anomalous. However, rep-

resenting the whole cluster using the center is inaccurate. Another problem

with these methods is that the number of clusters is large, and to find the

closest cluster to a new instance, all clusters must be checked. Mohammadi

et al. [Mohammadi et al., 2014] presented the idea of using priority to rank

the clusters in the testing phase, which makes the checking procedure faster.

In the third category for cluster-based anomaly detection, any instance

that belongs to a small and sparse cluster is considered as anomaly. The

well-known method in this category involves the Cluster-Based Local Outlier

Factor (CBLOF) [He et al., 2003]. The CBLOF, is calculated based on the

distance from each instance to the center of the cluster, and the distance

of the cluster itself to other clusters. Variations of this approach have been

proposed, using different distances and parameters to improve CBLOF [Pires

and Santos-Pereira, 2005] [Eskin et al., 2002].
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Advantages and Disadvantages of Cluster-based Approaches

Complexity of clustering depends on the chosen clustering algorithm. Most

of the algorithms that find distances for all pairs of instances in a dataset

have quadratic complexity.

Clustering-based approaches do not need labeled data to find anomalous

instances. The result strongly depends on the clustering algorithm, and even

more so on the cluster representation. As mentioned earlier, representing

clusters by their centers or relying on their size and density can lead to many

abnormal instances not being found.

Cluster-based approaches are interesting and applicable in anomaly de-

tection system due to some reasons. First, there are unknown patterns that

are encountered over time, and so unknown in the first training step. There-

fore, using clusters that create boundaries around known patterns, separating

them from unknown patterns, is the best solution. Moreover, in the absence

of labeled data, unsupervised methods are the best choice. As a result, the

focus of this thesis is on cluster-based methods. Since clustering is the main

part of these methods, clustering algorithms will be reviewed as well.

2.2 Clustering Approaches

The algorithms available for clustering can be categorized into four groups:

partition-based, hierarchical, spectral-based and density-based clustering

[Han et al., 2006].

2.2.1 Partition-based Clustering Methods

K-means is a famous algorithm in the area of partition-based clustering. K-

means receives the number of clusters as an input, iteratively determines
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the centers of clusters and assigns instances to each center based on the

distance from the instance to the centers of clusters. The centers of k-means

are artificial, and they are not part of input instances [MacQueen, 1967]. K-

median is another version of k-means, finding centers from available instances

[Jain and Dubes, 1988]. The K-medoid algorithm is similar to k-means,

defining clustering as an optimization problem, and trying to find the best

centers for clusters in an iterative mode that makes this clustering algorithm

more complex and time-consuming [Kaufman and Rousseeuw, 1987].

Advantages and Disadvantages

Partition-based algorithms are among the oldest used in clustering. The

complexity of these algorithms mainly depend on stopping criteria and the

number of iterations. These algorithms are sensitive to noise, and the clus-

ters are changed by the presence of noise. More importantly, these methods

represent clusters with a center and a radius. This spherical representation

loses interesting information, such as cluster shape and density distribution.

Furthermore, in these algorithms there is a need to know the number of clus-

ters before clustering can be done. In many applications, such information

is not available.

2.2.2 Hierarchical Clustering Methods

Hierarchical clustering methods group data into a hierarchy, or tree, of clus-

ters. Hierarchical clustering methods can be divisive or agglomerative, de-

pending on whether a bottom-up or top-down strategy is chosen. The Ag-

glomerative NeSting (AGNES) method starts by considering each instance

as a cluster, then combining them into a hierarchy of clusters [Kaufman,

1990]. Divisive ANAlysis (DIANA) works in top-down mode, starting with

all instances in one cluster before dividing them into clusters [Kaufman,
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1990]. The chameleon algorithm creates a graph of an entire dataset using

the KNN algorithm, then partitioning it into smaller sub-graphs. Sub-graphs

are combined to create clusters and their related hierarchy [Karypis et al.,

1999].

Advantages and Disadvantages

Considering clusters to be a hierarchy saves time in finding a proper clus-

ter for each new instance. Also, it characterizes a logical hierarchy associated

with a dataset. However, the basic problem in this algorithm is the challenge

of finding a measure to use in dividing or combining clusters. For many

applications, such a measure is difficult to find.

2.2.3 Spectral-based Clustering

All algorithms in this category are also called grid-based methods that divide

the space of instances into cells, then algorithms use these cells to cluster

data. STING [Wang et al., 1997] and CLIQUE [Agrawal et al., 1998] are two

well-known spectral-clustering algorithms. Based on some parameters such

as cell distribution, density and distance, cells are merged and clustered.

Advantages and Disadvantages

These algorithms are able to create arbitrary-shaped clusters, but a major

drawback of these methods is the complexity involved in creating an efficient

grid. The size of the grid varies with different dimensions, and setting grid

size and merging the grids to find clusters is difficult. These problems make

these algorithms inaccurate in many cases.

2.2.4 Density-based Clustering Methods

In the area of arbitrary-shape clustering, density-based methods are more in-

teresting; DBSCAN [Ester et al., 96] and DENCLUE [Hinneburg and Gabriel,
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Figure 2.10: Connecting core points to create a cluster

2007] are the most famous ones. In density-based methods, clusters are cre-

ated by connecting center of dense regions called core points. In DBSCAN

algorithm, a point p is a core point if at least k points are within distance r

of it, and those points are said to be directly reachable from p.

DBSCAN starts from a random point p1 and if it is a core point, all of its

neighbors are added to a new cluster C and marked as visited. If point p2

in the neighborhood of core point p1 is also a core point, all neighbors of p2

are added to the cluster C. DBSCAN continues adding objects to C until C

can no longer be expanded. The idea of connecting core point are depicted

in Figure 2.10.

Advantages and Disadvantages

Density-based clustering algorithms are used to find arbitrary-shape clus-

ters without having the number of clusters as an input parameter. However,

a major concern for these algorithms is processing time. Based on the preva-

lence of real-time applications, there is interest in speeding up these algo-

rithms, particularly for online applications [Guha et al., 2003] [Bifet et al.,

2009] [Aggarwal et al., 2003].
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2.2.5 Trajectory Clustering Methods

Most clustering approaches are used to cluster point data. However, there are

some applications in which data associated with moving objects’ trajectories

are collected from satellites by tracking facilities, and need to be clustered.

The algorithm proposed by Gaffney represents a set of trajectories as a

regression mixture model, with the EM algorithm employed to cluster data

[Gaffney and Smyth, 1999] [Gaffney et al., 2006]. Another algorithm in

this category is TRACLUS, which finds sub-trajectories in the trajectory

data. The TRACLUS algorithm clusters data in two phases: partitioning

and grouping. In the first phase, a formal trajectory is partitioned using the

minimum description length (MDL). In the second phase, a density-based

line-segment clustering algorithm is applied [Lee et al., 2007].

2.3 Cluster Summarization

In anomaly detection methods, the number of clusters is unknown and clus-

ter shapes are arbitrary. Of the methods reviewed, density-based clustering

method is the best choice. The main challenge with all clustering methods

is how to represent a cluster with minimum space. Summarization eases the

complexity of arbitrary-shape clustering methods. K-means uses a simple

representation using a center and radius, to summarize a cluster. A naive

way to represent an arbitrarily-shaped cluster would be to represent each

cluster using all cluster members. This approach is not practical, and it does

not properly represent cluster properties. Summarization does not capture

how data is distributed in the cluster.

There are different ways to summarize arbitrary shape clusters [Yang

et al., 2011] [Cao et al., 2006] [Chaoji et al., 2011]. These algorithms use

the general idea behind the clustering methods for arbitrary shape clusters.
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In summarization, the idea is to detect dense regions and to summarize the

regions using core points. A set of proper features is then considered to

summarize the dense regions and their connectivity. Chen and Tu [Yang

et al., 2011] created a grid for each cluster; based on the idea of connecting

dense regions, the core or dense cells are kept, along with their connections

and related features. In all summarization approaches, these features play

a crucial role. In the proposed approach by Song and Wang, the location,

range of values and status connection vectors of cells are kept to find and

connect dense cells [Yang et al., 2011]. The grid-based approach has some

drawbacks. First, creating grids on each cluster is time consuming. Second,

considering all grids means expending a lot of processing time and memory

space, which is impractical in many cases.

Cao et al. [Cao et al., 2006] used core points to generate the cluster sum-

mary. The most significant drawback of this work is that the number of core

points is large and in some cases is equal to the number of input instances.

Moreover, a fixed radius specifies the neighborhood, that does not represent

the distribution of instances in each cluster [Cao et al., 2006]. Chaoji et al.

represent a density-based clustering algorithm named ABACUS for creat-

ing arbitrary-shape clusters [Chaoji et al., 2011]. The summarization part

of their approach is based on finding core points and the relative variance

around points. In most of arbitrary-shape clustering methods, two parame-

ters are needed: the number of neighbors, and a radius. The most interesting

and noticeable part of the work of Chaoji et al. is that the number of neigh-

bors is the algorithm’s only parameter, and that the radius is generated using

the data distribution. The significant drawback of their method is that the

algorithm may generate many core points.

In all these summarization approaches, the focus is on preserving cluster

members; any usage of clustering for classification is not considered. The



CHAPTER 2. LITERATURE REVIEW 48

approach in this thesis is to summarize clusters using GMM. This approach

covers both requirements: it is a good representation of a cluster, and it can

be used for classification.

2.4 Incremental Cluster Updating

A well-known algorithm for clustering data in online applications is BIRCH,

introduced by Zhang et al [Zhang et al., 1997]. The BIRCH algorithm creates

a hierarchical structure of clusters in the form of a tree which makes this

algorithm fast for searching. In spite of this, there are some disadvantages.

Creating a hierarchy of data is usually a difficult task, which involves setting

many parameter. As well, updating a tree structure is not a straightforward

task. Moreover, BIRCH employs the idea of a center and a radius to define

a cluster, which makes it inappropriate for non-convex clusters. In addition,

center-based approaches are sensitive to noise, and have low accuracy in

clustering new instances.

STREAM [O’Callaghan et al., 2002] is an incremental algorithm that

develops weighted medians over time. In this algorithm, the LSEARCH is

used to find cluster medians. Each new data instance is added to the set

of current medians, and LSEARCH is applied to find new medians. For

accurate clustering, a large number of medians need to be preserved, which

is not appealing for an online environment.

Clustream [Aggarwal et al., 2003] is an incremental algorithm that com-

bines the ideas of BIRCH and STREAM in a framework. Clusters are up-

dated in pyramidal time steps, with existing clusters replaced by new ones.

Clustream manifests the same problems as BIRCH and STREAM.

In the area of density-based clustering algorithms, DenStream [Cao et al.,

2006] is used to make DBSCAN an incremental clustering algorithm. Using
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DBSCAN as the main algorithm for initialization and updating stages, each

new instance is assigned to a cluster, where the distance is less than a ra-

dius to a core micro-cluster. The core micro-clusters are connected through

density, a reachable concept that involves using the entire dataset in the up-

dating step. Dealing with the whole dataset makes the algorithm slow, and

unsuitable for online applications.

Grid-based algorithms can also be adapted for use in incremental and

online environment [Chen and Tu, 2007]. This is similar to DenStream,

finding dense cells of grid and connecting them. In addition to the problems

mentioned earlier for DenStream, constructing a grid on the whole data space

has its own limitations.

Incremental GMM algorithms are another group of incremental clustering

algorithms. These assume that all data is generated based on a GMM [Hajji,

2005]. In this group, a single GMM is found for the entire dataset. After

generation of the first GMM, each new instance is fed to the current GMM,

and the GMM is updated based on the new instance [Song and Wang, 2005]

[Declercq and Piater, 2008] [Hennig, 2010].

The approach in this thesis is a combination of GMM-based incremental

clustering and traditional incremental clustering algorithms. A new struc-

ture is introduced, which is fast and accurate for online data clustering, as

explained in the next chapter.

2.5 Summary

In this chapter, anomaly detection methods are reviewed. The pros and cons

of various methods are discussed, toward finding promising approaches. Rule-

based methods are generally not good candidates, since they are restricted

to a set of rules, and these rules are not able to detect new and previously
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unseen anomalies.

Statistical methods are time-intensive, and also require specific assump-

tions about data distribution that may not be valid for all applications. How-

ever, with accurate mathematical models, there can be statistical justification

and a specified confidence interval in anomaly detection. Proximity-based

methods are suitable for all types of datasets for detecting anomalies, with-

out the need to create a model. These approaches do not require labeled data,

but their need to work with the entire dataset makes them time-consuming

for detection.

Artificial Immune Systems (AIS) approaches rely on generating many self

and non-self detectors to represent normal and abnormal patterns, for use

in labeling new instances. AIS-based approaches employ many instances for

labeling new instances, making them slow for detection. Also, using a subset

of instances to represent the entire normal and abnormal pattern is not an

accurate approach. An advantage of AIS methods is their allowance for the

possibility of having different normal patterns in a dataset.

Supervised approaches rely on labeled data to train a model for anomaly

detection. In the presence of labeled data, these methods can be among the

most accurate ones. On the other hand, unsupervised approaches that do not

require any assumptions about a dataset, and do not require labeled data, and

so are good candidate for anomaly detection applications. In unsupervised

methods, clustering approaches consider each cluster as representative of a

normal pattern in a dataset. Clusters are used to separate the border of

the normal pattern from the rest of the data. This approach is similar to

AIS-based methods, with the difference that not every instance is used to

represents normal patterns. As a result, the clustering approach is fast and

accurate in terms of creating a suitable boundary with clusters.

Among the clustering approaches, DBSCAN [Ester et al., 96] is a good
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candidate, since it generates arbitrary shape clusters that lead to more ac-

curate boundaries for clusters. However, other clustering approaches may be

more appropriate, based on the application and its requirements.

Clusters are used to represent normal patterns, but the goal is to also use

them in labeling new instances. A limitation of cluster-based approaches is

that they do not consider any proper representation for clusters in specifying

the associated area of each cluster. In most approaches, the center of a

cluster is considered as representative of the clusters, or the entire set of

cluster members. Anomalies are specified based on their distance to the

centers or to all cluster members. However, using a center can be inaccurate,

and processing the entire set of cluster members is time-consuming. Various

cluster summarization methods are available to mitigate this problem.

ABACUS as cluster summarization approach uses the idea of finding

dense regions inside clusters to summarize clusters. This method is a time-

consuming method, since it uses many iterations to find the best represen-

tation for clusters. Instead, a summarization based on GMMs can be in-

troduced to decrease the computation time. Using a GMM representation

combined with a clustering approach overcomes inherent issues of cluster-

based and statistical approaches. A strength of GMM-based approach is the

statistically-justified probabilistic model used in the detection phase, which

makes later updating of the model fast and easy.

For use in an online application, any model needs to be updatable. Hi-

erarchical clustering approaches such as BIRCH [Zhang et al., 1997] and

STREAM [O’Callaghan et al., 2002] are fast in terms of labeling new in-

stances. However, they suffer from the difficulty of the need to create a hier-

archy in the first place, and also that updating the hierarchical structure is

time-consuming. Processing by an incremental DBSCAN is time-consuming

as well. The GMM-based approaches are fast in labeling new instances, with
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simple and accurate updating strategies to update GMMs. However, use

of a single GMM for an entire dataset is typically inaccurate; using an in-

cremental approach for GMMs in combination with clusters mitigates the

problem.

The approach proposed in this thesis combines the strengths of different

approaches to introduce an innovative anomaly detection system.



Chapter 3

Incremental Clustering Architecture

In this chapter, the general structure of the proposed model for anomaly

detection is presented. Four steps are considered to design the online anomaly

detection method. The fellow chart in Figure 3.1 shows these four steps. In

the proposed structure, first the normal dataset is clustered. Each cluster

is representative of a normal pattern. The employed clustering approach is

arbitrary shape clustering method. To use clusters as classifiers, each cluster

is represented by GMMs. Detection phase uses GMMs to find the similar

clusters, and accordingly, label new instance as normal or abnormal. Last

step is to update model with an incremental updating approach. Each step

is discussed in more details in this chapter.

 

Data Clustering 
Detection 

(labeling) 
Updating  

Arbitrary shape 

clustering  

Cluster 

Representation  

Gaussian 

Mixtures based   

Membership 

value to GMMs    
Incremental 

updating    

Figure 3.1: The four steps to design online anomaly detection system
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The structure of the proposed method for clustering and cluster repre-

sentation phases is shown in Figure 3.2. In the first step, data are clustered

using a clustering method. Then each cluster is represented using a GMM

to fulfill two purposes. First, each cluster is summarized in a way such that

the main components of each cluster are preserved, but without keeping a

direct record of all instances in each cluster. Second, the generated GMM

for each cluster is considered an accurate model, that can be used to classify

incoming instances either normal or anomaly. Clustering, allows the borders

of normal classes to be defined without needing labels. Following clustering

and GMM representation, a model is trained using normal instances.

 

Cluster Data Find GMM components 

Represent clusters with GMM 

Figure 3.2: Clustering a normal dataset, and representing each cluster by

a GMM
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Clusters are created using an arbitrary shape clustering method. These

methods are able to detect the actual shape of each cluster or at least precise

estimation. One way of preserving the shape and the distribution for each

cluster is to keep a record of all instances in each cluster, which requires a

large volumes of memory and time. As mentioned, GMM can be used as

an effective means to represent clusters. By employing GMM, the proposed

algorithm is able to represent the true shape of each cluster, without keeping

the entire set of instances in memory.

Each GMM consists of a number of Gaussian distributions, with the quan-

tity determined as an input parameter. In Chapter 4, a new method is given

for finding the number of components for each GMM automatically.

After representing each cluster as a GMM, the proposed structure will be

able to detect anomalies. The GMM is a probabilistic model, which is used

to assign a membership value and so specify whether a new instance belongs

to the current clusters set. As shown in the Figure 3.3, if the membership

value of an instance exceeds a threshold for a particular cluster, the instance

is considered normal, and otherwise an anomaly.
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Figure 3.3: Labeling new instances as normal or anomaly
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The model described thus far is the most simplistic cluster-based model.

In the next section, some modifications for improvement are proposed.

3.1 Clustering Normal Behavior

Based on the requirements of an application and the nature of data, different

kinds of clustering algorithms can be applied, each with advantages and

disadvantages.

In the proposed model, arbitrary shape clustering methods are used to

determine more accurate shapes for each cluster. Arbitrary shape clustering

methods are useful here, because they generate clusters and the number of

clusters simultaneously with no need to know the number of clusters. More

importantly, in anomaly detection applications, more accurate boundaries of

clusters need to be generated; arbitrary shape clustering methods are among

the best choices for this task.

There are two categories of arbitrary shape clustering methods; spectral-

based and density-based clustering [Han et al., 2006].

In spectral clustering, STING [Wang et al., 1997] and CLIQUE [Agrawal

et al., 1998] are prominent ones. They generate arbitrary shape clusters by

connecting dense regions using a grid structure. The presence of the grid

structure increases system complexity; it is difficult to manage, especially in

an online environment.

Because of this problem, density-based methods are often superior. The

most frequently used method is DBSCAN [Ester et al., 96]. Its general

approach is to connect dense data regions. This has its own particular limi-

tations. To record the shape of a cluster, either a majority of instances are

stored, or the boundary of each cluster is detected. Either way, the memory
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complexity and performance requirements for these methods are not negli-

gible. Moreover, a technique is needed that not only preserves the shape of

the cluster, but also retains valuable information about that cluster for use

in further investigation.

The SGMM method that is presented in Chapter 4 overcomes this limi-

tation, and enables arbitrary shape clustering methods to be used in online

applications. SGMM represents each cluster as a GMM, consisting of a set of

normal distributions that reasonably represents different kinds of datasets.

The SGMM method has similarities to some GMM-based probabilistic

methods. In a method presented by Hajji, the EM algorithm is applied to

the entire dataset and the entire data is represented by a single GMM [Hajji,

2005]. In our approach, instead of dealing with the entire dataset, clustering

is applied first, with each cluster represented by a distinct GMM. A first

advantage of this approach is decreased complexity, since there is no need to

deal with the entire dataset concurrently. Moreover, a GMM for each cluster

is found in parallel and independently.

Estimating a separate GMM for each cluster is easier and more accurate

than estimating a single GMM for the entire set of instances. This is because

different parts of the data come from different distributions, and separating

them makes them independent and more accurate. In the EM algorithm, the

number of GMM components should be determined as an input parameter,

while the number of Gaussians is chosen automatically by the clustering al-

gorithm. The SGMM algorithm is itself an automatic approach, which finds

the number of GMM components in each cluster. Taken together, a combi-

nation of a clustering method (such as DBSCAN) and the SGMM method

creates a more accurate representation of the range of normal behaviors in

the dataset.

However, cluster updating is still required, and is described in the next
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section.

3.2 Incremental Cluster Updating

To update clusters represented by GMMs the Collective Probabilistic La-

beling (CPL) approach is proposed. In this approach instead of updating

clusters with each new instance, new instances are collected, and the clusters

are updated based on a set of new instances. As shown in step 1 of Figure

3.4, initial data are clustered, and represented by GMMs. Thereafter, new in-

stances are collected in a bag called rag bag and are clustered. In step 2, both

current and new clusters are represented by GMMs. With an incremental

approach presented in Chapter 6 close clusters are found and merged. The

processes of finding distances and merging clusters requires many detailed

steps, which are discussed in Chapters 5 and 6. The clusters are updated as

shown in step 3. The shape of the updated clusters changes, representing a

new shape and structure consistent with the most recent data.

3.3 Two-Layer Cluster-based Structure

The structure presented in Figure 3.4 is a general view of the whole updat-

ing structure we present in this thesis. A significant challenge for effective

clustering in an online environment is to find a fast way to update existing

clusters based on new instances. A two-layer structure is proposed, which is

able to perform updates in an efficient way.

The two-layer structure is depicted in Figure 3.5. As shown in this figure,

there are two layers in this structure; fine and coarse. In the coarse level, each

cluster is represented by a GMM with m components and in the fine level by
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Step 1) Clustering data in a rag bag 
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Figure 3.4: Cluster updating steps
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Figure 3.5: Two-layer clutter-based structure

n components, where n > m. The coarse level is generic and the fine level

specific and thereby more accurate and computation-intensive in estimating

the shape of each cluster, instance scattering and instance distribution. In

the training phase, clusters are estimated in both coarse and fine levels with

m and n components. This means that each cluster is presented in two

different ways, one of which is more accurate than the other, but it involves

more computation to classify new instances.

The role of the rag bag is to keep new instances which do not manifest

any known behavior. The instances with a membership value less than a

predetermined threshold of existing cluster GMMs are kept in rag bag. To

distinguish these instances, the proposed method employs thresholds in both

the coarse and fine levels.

The two-layer structure has two main responsibilities. First, it labels

incoming instances and identifies them as normal or abnormal. Second, the



CHAPTER 3. INCREMENTAL CLUSTERING ARCHITECTURE 61

structure is used to update the current clusters. This updating strategy is

accurate, fast and noise resistant.

Each new instance is fed first to coarse level; if the instance can be as-

signed to a cluster with high probability, the instance does not need to be

send to the fine level. If the membership value of a new instance to clusters

is below a threshold, it is sent to the rag bag directly. If further exploration

is needed, the new instance is sent to the fine level. If the instance belongs

to one of the clusters and has a high membership value, the instance is la-

beled as normal and we ignore the instance in updating. However, if the

instance does not belong to one of the clusters, it is sent to the rag bag; it

may be used to update the clusters offline to save time. Most instances tend

to be redundant instance (duplicates of known ones) and so are assigned to

a cluster because of a high membership value.

In summary, the two-layer structure has five components:

• To cluster the first chunk of normal instances and each new batch of

data:

– As discussed in the Chapter 4, we used density-based clustering

approaches to cluster data. However, any other clustering method

can be used in this structure and it is not dependent on clustering

approach.

• Representing clusters with GMMs:

– The GMM representation of data eases the complexity of storing

clusters in memory, presents a good summary of clusters, and

allows clusters to be updated efficiently and quickly.

– A new SGMM algorithm is presented in Chapter 4, representing

each cluster as a GMM.
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• Collecting data in a rag bag and labeling them collectively:

– In two-layer structure instances are collected, and then used to

update clusters; this needs a new approach to label a collection of

instances.

– In Chapter 5, a new CPL algorithm is presented to add new data

to a cluster and label them based on their proximity to one of an

existing cluster.

– A new cluster distance measure is introduced in chapter 5.

• Updating clusters incrementally:

– The incremental clustering approach based on GMM representa-

tion of clusters is presented Chapter 6.

• To create coarse and fine-level clusters:

– The coarse and fine levels are created to speed up the updating

procedure as discussed in Chapter 7.

The whole structure puts these components together and it creates an

incremental approach for cluster updating for anomaly detection application.

In the following Chapters, all steps mentioned above are discussed with more

details.



Chapter 4

Cluster Representation using GMM

As mentioned in the previous chapter, clusters are the main components

of the proposed anomaly detection method. In this method, clusters are

employed to label new, incoming instances. Each new instance is compared

to existing clusters, and the closest one is chosen as a cluster that the new

instance belongs to.

There are various options for assigning a new instance to a cluster. One

way is to create a boundary for each cluster. If the new instance is inside

the boundary of a cluster, then the new instance belongs to that cluster.

Finding the boundary of arbitrary shape clusters is a complex and time-

consuming process, especially in high-dimensional problems. Moreover, it is

necessary to consider many faces to keep the borders of clusters created by

a convex in higher dimensions, and the number of faces grows exponentially

with dimension [Kersting et al., 2010] [Hershberger et al., 2009].

Figure 4.1a shows that for even a simple cluster in a two-dimensional

space, there is a need to find many vectors to distinguish the inside and

outside of the cluster. Another approach to label a new instance is to use

simple cluster representation. Clustering algorithms such as k-means use cen-

ters and radius to represent clusters. Using this representation, the distance

63
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(a) (b) (c) 

     r 

Figure 4.1: Approaches for cluster representation. a) The internal area of

the cluster is separated from the outside using boundary vectors. b)

K-means cluster, with center specified by the red circle, and having

radius r. C) A cluster represented by sets of circles with equal radii.

of a new instance to the center of a cluster is calculated. If this distance

is less than the radius of the cluster, the new instance is attached to that

cluster [Mohammadi et al., 2014] [Gaddam et al., 2007].

K-means and partition-based clustering methods are sensitive to noise.

Moreover, these methods require knowledge of the number of clusters, which

is usually not available in anomaly detection applications. Figure 4.1b shows

a cluster found by the k-means algorithm, with the entire area in the cir-

cle considered within the cluster area. Any instance that lies in this area

is deemed as normal. Since the boundary is inaccurate, the detection of

anomalies would be open to error.

To overcome these problems, arbitrary shape clustering methods are used.

In particular, DBSCAN was chosen, since it is less complex and faster than
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other methods of this type [Ester et al., 96]. Arbitrary shape clustering

methods are theoretically ideal but the representation and analysis of each

cluster can still cause many problems. Representing each cluster in such

a way that all cluster characteristics are correctly recorded is a challenging

task. Preserving all instances of all clusters is not feasible for a large quantity

of data, or in online applications with a large arrival rate for new instances.

A simple way to preserve the shape and specify the border of a cluster

is to define a circle enclosing each instance in a cluster. First, instances are

selected as the centers, and a radius r is chosen. Contained instances near

the center (distance less than the given threshold, r) are removed from the

dataset, and the centers are used to represent the set of removed instances.

This approach keeps centers and radii in place of instances. To label a new

instance, it is compared with all centers, and if the instance is inside the

boundary of one of the centers, the new instance is assigned to that cluster.

Otherwise, it is outside the area of all the clusters and consequently it is

anomaly [Cao et al., 2006]. This structure is represented in Figure 4.1c, in

which to preserve accuracy, the radius of each circle is kept small.

There are drawbacks using circle-based summarization. To keep a firm

and rigid boundary, the radius should be minimized, which keeps many in-

stances as depicted in Figure 4.1c. The boundary is well-preserved with all

instances in the cluster but the clusters lose their generality. Since new in-

stances are classified by comparison with all circles inside each cluster, the

decision is binary, and there is no probabilistic value available to categorize

a new instance as an anomaly or normal.

Considering all problems, we present our approach to represent each clus-

ter. The crucial point to keep in mind for cluster representation is the need

to preserve cluster features, while keeping the generated summary as small

as possible. Our proposed approach is to represent each cluster as a GMM.
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Figure 4.2: Circle and ellipse-based representation

From a geometrical point of view, a GMM-based representation with the

elliptical shape allows more flexibility than circles. Figure 4.2 shows the

boundaries created using both approaches. Unlike the circle-based model, in

the GMM-based model, there is a probabilistic representation of clusters, and

consequently the prediction used for attachment of an instance to a cluster

is probabilistic. In such a probabilistic model, the probability of attachment

of a point to a cluster in the boundary of clusters is less than the center of

the cluster.

In the following sections of the chapter, fundamental concepts are first

described and then the algorithm is explained that is used to find a suitable

GMM for each cluster.
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4.1 Background

In this section, a formal definition of GMM is presented.

Definition 1. A Gaussian Mixture Model is a combination of sets of normal

distributions. Given a feature space f ⊆ Rd, a Gaussian Mixture Model

G : f → R with n components is defined as:

G(x) =

n∑
i=1

wiNµi,σi(x)

Nµi,σi(x) =
1√

(2Π)d‖σi‖
e

1

2
(x−µi)σ

−1
i (x−µi)

T

(4.1)

A GMM with n components is defined with a set of centers µi, with

covariance around these centers σi where i = {1, · · · , n}. All centers and

their related covariance are combined using the weights wi, i = {1, ..., n},
generated based on the number of neighbors that belongs to each center

point.

How can a proper GMM be found for each cluster? Each cluster con-

sists of a set of instances. A collection of these instances generates different

distributions in each cluster. In other words, each cluster consists of sets

of regions that are connected, using some common instances among these

regions. The goal of density-based clustering algorithms is to connect dense

regions to from a cluster. This fact gives an idea of how to represent each

cluster. Each cluster with a set of dense regions is represented by the centers

of these regions and their related statistical information. In density-based

clustering methods, centers of dense regions are called core points. The pro-

posed algorithm in this chapter SGMM, finds the core points in each cluster

considering each core point in a cluster as a center of GMM component. To
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clarify the definition of center of the dense region, we define the concept of

core point.

Definition 2. In dataset D for a given k as number of neighbors and radius

r, an instance Oi is a core point if:

{Oi ∈ C|∀Oj ∈ D, ‖d(Oi, Oj) < r‖ ≥ k} (4.2)

where C is a set of core points and (‖‖) indicates the number of instances

with distance less than r from the core point. The chosen magnitudes of k and

r are critical in identifying valid clusters. Core points are used to generate

the backbone and summary of a cluster. In recent work by Chaoji, using a

given k and core points, the backbone of the cluster is detected [Chaoji et al.,

2011]. The same idea is used here, but with concentrating on decreasing the

number of core points, and the time required for finding the core points.

The idea for summarization of each cluster in our algorithm is based on

Gaussian Mixture Model. Since the use of GMMs preserves the distribution

of data using a set of normal distributions, it is a good candidate for summa-

rizing any cluster. An EM algorithm could be applied to each cluster to find

its GMM representation, but the EM algorithm needs to have knowledge of

the number of components for each GMM. Since the number of GMM com-

ponents is unknown, a new algorithm SGMM, is proposed in place of EM.

In SGMM, the number of components is found with a recursive algorithm,

based on which the GMM for each cluster is defined.



CHAPTER 4. CLUSTER REPRESENTATION USING GMM 69

 

First level clustering (arbitrary shape 

clusters) 
Second level of clustering  

cluster sub-clusters 

Figure 4.3: The two-levels of clustering

4.2 Summarization Based on GMM

(SGMM)

Instead of keeping all instances for each cluster, a GMM is used to represent

each cluster. The main contribution in this part is using clustering inside

clustering. In other words, after building clusters, each cluster is itself a

target of another clustering algorithm. The second level of clustering is

applied to summarize the clusters. Figure 4.3 depicts this idea. For each

cluster, a normal distribution is built based on the instances that are placed

in each sub-cluster. By combining the normal distributions of sub-clusters, a

GMM is generated for the entire cluster. Using two -level clustering, enables

the summarization to be more accurate and faster. The SGMM algorithm

find the sub-clusters for each cluster.

The Summarization based on Gaussian Mixture Model (SGMM), has

three main steps, depicted in Figure 4.4. First, a set of instances called core

points are found. These instances are representative of a cluster, and they are
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Figure 4.4: The three SGMM steps used to summarize each cluster

able to generate the original cluster as needed. After detecting the backbone

instances, is absorption step, where the instances attached to the core points

are absorbed and thus represented by the core points. By introducing a new

feature set for each instance, the cluster is summarized while preserving its

original distribution. Finally, each cluster is represented by a GMM. Each of

these steps is described in more detail in the following paragraphs.

Finding Core Points

The algorithm starts with the core point detection phase, with a radius

as an input parameter. The radius is employed to find dense regions. Based

on the input radius, the number of neighbors is found for each instance. A

temporary list is made for possible core points; at first, all instances are

in the list. Another list contains final core points. Every instance with

more neighbors than other instances is a good candidate to be a core point.

Algorithm starts with an instance with a maximum number of neighbors and

puts it on the list of core points. A chosen instance is representative of all its

neighbors; so the neighbors can be removed from the temporary list of core
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points. After removing the first core point neighbors, the next step is to find

in temporary list the next instance with the maximum number of neighbors.

This instance is added to the list of core points, and then its neighbors are

deleted from the temporary list. These steps are repeated recursively for the

rest of the instances in the temporary list, so identifying all possible core

points. Therefore, by setting a proper radius and after all iterations, the

number of core points has been specified. The core points are representative

of structure and distribution of clusters. the In the following, we present a

new definition for core point based on our goal.

Definition 3. Consider r to be a radius for instance Oi, and N(Oi) the set

of neighbors of instance Oi.

N(Oi) = {Oi ∈ D|dist(Oi, Oj) < r} (4.3)

where dist(Oi, Oj) is the Euclidean distance between instances Oi and Oj

and D is the dataset.

Definition 4. A core point is a point that has more neighbors than all its

neighbors:

{Oi ∈ C|Oj ∈ N(Oi), ‖N(Oi)‖ > ‖N(Oj)‖} (4.4)

where dist(Oi, Oj) is the Euclidean distance between instances Oi and Oj

and D is the dataset.

Algorithm 4.1 shows the pseudocode for the process of finding the core

points.

Absorption and Cluster Feature Extraction

The goal of summarization is to find a good representation of each cluster.
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Algorithm 4.1: Pseudo code for finding the core points

Data: all instances in cluster C

Result: core points of cluster C

for i = 1 : Size(C) do

for j = 1 : Size(C) do

if dist(Oi, Oj) < r then

N[Oi]=N[Oi]+1;

end

end

end

SortedList =Sort(N)

while SortedList 6= empty do

add the next element Oi in SortedList to core points list ;

remove the neighbors of Oi;

update SortedList ;

end

Core points are the only instances that are preserved in each cluster, while

the rest of the instances in the cluster are removed. After finding all core

points in each cluster, the next step is to define a cluster using its core points.

Note that considering only the core points, the cluster distribution cannot be

represented. Therefore, to represent cluster characteristics, the core points

have to be accompanied by a set of related features. A set of features is

necessarily defined for each core point that are a good representative of the

cluster distribution.

Definition 5. (Core point Feature) (CF) Each core point is represented by

a triple CFi =< ci, σi, wi > .

In this definition ci is the core point and σi is the covariance calculated

using the core point and all instances in its neighborhood. wi = n/CS is the

weight of the core point, n is the number of instances in the neighborhood
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of core point ci, and CS is the cluster size. wi shows the proportion of

instances in the neighborhood of the core point ci. Using the features of

each core point, instances scattering around each core point are estimated,

without keeping the entire set of instances in the neighborhood.

GMM Representation of Clusters

After finding the core points and the features, a GMM is generated for

each cluster. Based on all CFi, i = {1, · · · ,m}, a GMM is defined over a

particular cluster. Each component for the GMM is created using a core

point, a covariance and a weight. In the formula in Equation 4.1, µi is the

centre of the ith GMM component, which is set to the coordination of the

core point and therefore, µi = ci. The covariance is set to the covariance of

ith core point covariance, that is σi. The weight assigned to each component

is the weight of the core point and wi in the Equation 4.1 is set to the weight

of the core point ci which is wi.

To use a cluster as a class for classification, the closest cluster to an

incoming instance needs to be identified. In an arbitrary shape cluster, to

find the closest cluster to a new instance, it must be compared with all

instances in the cluster. A GMM-based presentation is used to find the

closest cluster by feeding the new instance to the GMM formula in Equation

4.1 to find the membership value.

Each summarization technique has to preserve the original shape and the

distribution of the data. Data summarization using GMM preserves both.

In SGMM, the centers are selected in such a way that they follow the general

structure of the data. The algorithm begins with dense regions in the cluster,

and then continues to find the most scattered part to cover all instances in the

cluster. In the SGMM method, the core points are the ones that are in the

center of dense regions, and they cover all data. Therefore, for each region

a representative instance is chosen, and a collection of the representative
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Figure 4.5: In the illustration on the left, points highlighted in the dataset

represent the core points detected by the SGMM algorithm. These

points successfully indicate the general structure of the cluster. On

the illustration on the right, the contour-plots represent the GMMs of

cluster.

instances represent the entire cluster.

Figure 4.5 shows the core points generated for a cluster. The cluster in

the figure was generated using Matlab, and the SGMM algorithm applied

to the cluster. The results show that the core points generated by SGMM

follow the general structure of the cluster.

4.3 Experimental Results

The SGMM algorithm is an accurate model in comparison with other clus-

ter summarization approaches. In this section, SGMM performance and

efficiency are compared with that of similar approaches. First, the SGMM

goals are reviewed and then different experiments are described to find the

effectiveness of the method.
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The first goal of the SGMM algorithm is to represent clusters using GMM

to label incoming instances in two-layer structure. Therefore, the first em-

pirical step is to verify the accuracy of the SGMM model in labeling new

instances. The second goal is to function without undue memory needs or

complexity. Since most anomaly detection algorithms are used in an online

environment, it has to be confirmed that our approach consumes less time

and memory in comparison with other algorithms. Furthermore, in some

applications like network security, there is a need to regenerate data in some

periodic fashion to find out the changes that happen during the time. The

SGMM is able to regenerate original data using the relevant GMMs.

Based on these three goals, three sets of experiments were run on different

datasets to assess the capabilities of the SGMM. Both synthetic datasets and

the real datasets were used in the experiments. All experimental results were

generated using Matlab running on a machine with an Intel 3.4 GHz CPU

and 4GB of memory.

The first test was done with a synthetic dataset, the results of which are

shown in Figure 4.6. This dataset is used to visualize the effectiveness of

the proposed algorithm. The figure shows on the left, four clusters and set

of instances used in the testing phase. In the right side of the figure, each

cluster is represented by a GMM depicted with contour plots.

The UCI datasets were used in experiments to evaluate the accuracy

of the algorithm on real datasets. These datasets and their features are

presented in Table 4.1. First, some classes were chosen as normal, with the

rest as abnormal. The abnormal instances were then considered as the testing

dataset. The normal classes were divided into two parts, one of which formed

the training set, and the rest added to the testing set. The training dataset

consisted of only normal instances, with the testing dataset comprised of
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Figure 4.6: Synthetic dataset. Four clusters with arbitrary shape detected

by the DBSCAN algorithm and on the right each cluster is represented

by GMMs.

normal and abnormal instances.

Dataset Dataset size # of features Normal classes Anomalous classes

KDDCUP99 10000 41 1 2, 3, 4, 5

Segment 2310 19 1, 2, 3, 4 5, 6, 7

Synthetic 5000 2 1, 2, 3 4

Table 4.1: Summary of the UCI datasets

4.3.1 Clustering Accuracy

As mentioned, clustering is used as a pre-processing step toward anomaly

detection. The normal data are clustered into clusters which were considered

to represent normal behaviors. Then, a membership value is calculated for
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each new instance. If the new instance belongs to a cluster, the membership

value exceeds the threshold and it is deemed normal, otherwise an anomaly.

Three datasets shown in table 4.1 were used to test the accuracy of anomaly

detection. As far as could be surmised, there has been no previous academic

work published that uses GMM for classification as is done in the proposed

method.

The core points were created using a simple method, that requires less

processing time and memory space. Therefore, there can be a doubt in the

accuracy of categorizing using the clusters created with our method? The

next experiment shows that the approach does not decrease the accuracy of

categorizing using clusters.

Figures 4.7 and 4.8 depict the comparison of the SGMM with other meth-

ods. The only approach that has been used for an arbitrary shape cluster

to label new instance has been to consider all members of clusters, which is

the naive approach. The naive approach simply finds the distance of a new

instance to all cluster members; a cluster that has the minimum distance

to the new instance is the one that the new coming instance should be-

long to. Another experiment was to use the GMM created by the ABACUS

method [Chaoji et al., 2011], which is a well-known method for summariz-

ing arbitrary shape clusters. Using ABACUS method the core points are

specified and used as the centers of GMM components. The ROC curve of

ABACUS depicts the accuracy of GMM created by ABACUS in labeling

new instances. The membership value threshold is the main parameter for

SGMM, ABACUS, and naive approaches based on which, the ROC curve is

produced.

Based on the detection and false alarm rates for the KDDCUP99 dataset,

the ROC curve is depicted in Figure 4.7. It shows that while ABACUS is
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Figure 4.7: False alarm and detection rate for the KDDCUP99 dataset

more time-consuming and finds too many core points, the proposed method

has the same and sometimes better accuracy. The result comes from 30

independent runs; the variance on the best result is less than 1.3 for the

detection rate and 1.5 for the false alarm rate. The results in the figure are

the best ones for each algorithm.

Figure 4.8 shows the results for a synthetic dataset. The accuracy of

SGMM is better than that of both the naive and ABACUS methods. This

result shows that in spite of using clustering in categorizing new instances,

the accuracy is still adequate and comparable to the accuracy of the other

classification methods.

Table 4.2 shows results for other datasets, confirming that summarizing
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Figure 4.8: False alarm and detection rate for the synthetic dataset

and clustering data using the SGMM method outperforms the ABACUS

method. The first value in each ordered pair shown in Table 4.2 is the false

alarm rate, and the second the detection rate. The detection rate is 5%

higher on average and the false alarm rate 3% lower. However, the main goal

is not to increase the accuracy. As will be shown in the next section, the goal

is instead to show that a smaller number of core points can be found in less

time but still getting at least the same result as other methods. The result

in Table 4.2 covers 30 independent runs. The variance of the best result is

less than 1.5% for the detection rate and 1.7% for the false alarm rate. The

results in the figure are the best ones for each algorithm.
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Dataset/Algorithm SGMM ABACUS

Synthetic data (2%, 94%) (1.9%, 87%)

KDDCUP99 (6.3%, 100%) (9.0%, 100%)

Segment (33.8%, 90.3%) (32.8%, 94.5%)

Table 4.2: Accuracy of the SGMM and ABACUS methods in anomaly

detection. The first value in each ordered pair is the false alarm rate,

and the second the detection rate.

4.3.2 Running Time and Memory Usage

Two main concerns in the area of summarization are minimizing the time

spent to find the summary of a cluster, and the number of instances preserved

for it. Table 4.3 shows the time spent to find the summary of a cluster for

different datasets. The table shows that using the SGMM decreases the

time required to summarize each cluster. The SGMM method used only one

iteration to find core points, while the ABACUS method ran many iterations;

therefore, SGMM is faster.

Table 4.4 shows that the SGMM summarized clusters with fewer core

points. The reason lies in the efficiency of the method the SGMM algorithm

uses to find core points. If an instance is a core point, all instances in its

neighborhood are removed from set of possible core points, and are not con-

sidered further. That is why, both the processing time and space complexity

are reduced.

Tables 4.3 and 4.4 show the time and space used by the SGMM and

ABACUS. In terms of time, the SGMM is approximately three times faster
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Dataset/Algorithm SGMM ABACUS

Synthetic 388sec 1261sec

KDDCUP99 222sec 836sec

Segment 7sec 19sec

Table 4.3: Time complexity for the ABACUS and SGMM methods
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Figure 4.9: Running Time of ABACUS and SGMM methods

Dataset/Space SGMM ABACUS

Synthetic 51 120

KDDCUP99 46 272

Segment 52 55

Table 4.4: Number of core points for the ABACUS and SGMM methods

than the ABACUS algorithm. In terms of memory usage, on average the

usage of the SGMM is at least half of the ABACUS method. To show the

difference better the bar charts on Figure 4.9 depicts the time difference as

well.
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4.3.3 Clustering Goodness

To test the ability of the SGMM algorithm in data regeneration, a set of

experiments was set up in which the dataset was summarized as a GMM,

and then the GMM was used to re-generate the dataset. The performance of

the SGMM was compared with that of the ABACUS method, which is a well-

known method for summarizing arbitrary shape clusters [Chaoji et al., 2011].

The difference between the original and regenerated datasets based on core

points shows the strength of the summarization algorithm. Experimental

results show that the SGMM method summarized the dataset better than

the ABACUS method. To visualize the results, synthetic data with four

clusters were generated.

Figure 4.10 from left to right for each row shows the original dataset,

the core points of each cluster and the dataset set regenerated using core

points, using the SGMM (top row) and ABACUS (bottom row) methods.

The figure demonstrates that the core points follow the original structure

of the clusters, and that the regenerated clusters are similar to the original

ones. The summary generated by the SGMM method regenerated the orig-

inal dataset better than the ABACUS method. The difference between the

accuracy of summarization of the two methods is most clearly distinguished

in the cluster with a the shape of a five-pointed star. The SGMM summary

regenerated the data with a star shape, but the ABACUS method could not

regenerate the same shape as accurately. This figure is just for visualization

of the result. To quantitatively assess the efficiency of the algorithms, cluster

validity indexes are used.

There are two main ways to measure the validity of clusters: internal and

external evaluation indexes.

Internal Evaluation
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Figure 4.10: In each row, the first dataset pair is the original dataset,

the second pair is the core points and the third pair is the regenerated

dataset, using the core points generated with the ABACUS and SGMM

methods

The internal evaluation is based on the data, with no ground knowledge.

Internal evaluation is based on high similarity inside clusters and high dis-

similarity among clusters. There are three indexes for internal evaluation of

clusters:

• Davies-Bouldin (DB) index [Davies and Bouldin, 1979]

• Dunn index [k. Dunn and Dunn, 1974]

• Silhouette coefficient [Rousseeuw, 1987]
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External Evaluation

External evaluation is based on some ground knowledge of data, such as

the number of classes that exists in the data. External evaluation indexes

measure how closely the clusters conform to the pre-determined benchmark

classes. The external cluster evaluation indexes include:

• Rand measure [Rand, 1971]

• F-measure [van. Rijsbergen, 1979]

• Jaccard index [Tan et al., 2005]

• Fowlkes-Mallows index [Fowlkesa and Mallowsa, 1983]

• The Mutual Information [Teukolsky et al., 2007]

• Confusion matrix [Stehman, 1997]

Details of these indexes are in given in Appendix A.2. In applications for

which there is ground knowledge available of the data, external evaluation

is better than the other approaches. However, since in most clustering ap-

plications there is no background information, using an internal evaluation

is often better option. Different studies have been set up to find the best

metric for clustering, with the conclusion that the best option is application-

dependent [Rendn et al., 2011] [Bruna et al., 2007].

In anomaly detection applications, there is no background knowledge of

the number of classes. Therefore, internal indexes have been used. Among

the three internal indexes, the Silhouette coefficient has high computational

complexity when used to measure the distances between each two pairs in-

side and outside the clusters. To decrease the computation time and allow

working with larger datasets two metrics were employed; the Dunn and DB

indexes.
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The Dunn index [k. Dunn and Dunn, 1974] is a validity index that iden-

tifies compact and well-separated classes, and is defined by Equation 4.5 for

a specific number of classes:

Dnc = min
i=1,··· ,nc

{ min
j=i+1,··· ,nc

{
dist(ci, cj)

maxk=1,··· ,nc diam(ck)
}} (4.5)

Here nc is the number of classes, and dist(ci, cj) is the dissimilarity func-

tion between two classes ci and cj . A large value of this index indicates

the presence of compact and well-separated classes. In the experiments, the

Dunn index was first calculated for the original datasets. Then, the dataset

was summarized and re-generated using the final core points of GMMs. Dunn

indexes were calculated for the original and regenerated datasets. Finally,

the difference is calculated between the Dunn indexes of the original dataset

and the one that of the regenerated one. The test result shows that the

SGMM method regenerates the data, following the shape and distribution of

the original data. Table 4.5 shows the results of this experiment. Each value

in this table is the average of the results from 30 independent runs.

Dataset/Algorithm SGMM ABACUS

Synthetic data 0.02 0.07

KDDCUP99 0.02 0.03

Segment 0.0 0.01

Table 4.5: Differences of the Dunn indexes for the original and regenerated

datasets

The closer the value to zero, the better the result obtained. The SGMM
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Figure 4.11: Differences of the Dunn indexes for the original and regener-

ated datasets

consistently outperforms the ABACUS method by far. For example in the

case of synthetic dataset, the difference between the indexes for the dataset

generated by the SGMM method and the original dataset is almost 0.02 while

for the ABACUS method the difference is around 0.07. The SGMM method

was superior in recreating the data distribution of the original dataset. To

show the difference better the bar charts on Figure 4.11 depicts the difference

as well.

The experiment was repeated using the DB cluster index, which is a

function of relating the ratio of the sum of within-cluster scatteredness to

the between-cluster separation. The DB index is defined in Equation 4.6:

DB =
1

n

n∑
i=1

max
i6=j

[
Sn(Qi) + Sn(Qj)

Sn(Qi, Qj)

]
(4.6)

n is the number of clusters, Sn is the average distance of all objects of

the cluster to their cluster centre, and Sn(Qi, Qj) is the distance between

clusters centers. The ratio is small if the clusters are compact and far from

each other. Consequently, the DB index will have a small value for good
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clustering. Similar to the test using the Dunn index, distances were found for

the original and regenerated data. Table 4.6 shows the experimental results

in assessing the DB index for different datasets. To show the difference better

the bar charts on Figure 4.11 depicts the difference as well.

Dataset/Algorithm SGMM ABACUS

Synthetic data 0.006 0.01

KDDCUP99 0.1 0.2

Segment 0.04 0.05

Table 4.6: Difference of DB Index for original and regenerated dataset
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Figure 4.12: Difference of DB Index for original and regenerated dataset

Results based on assessing the Dunn and DB indexes show that the

SGMM method generates a more accurate summary of datasets, and in case

of regenerating the original dataset, the SGMM is better at creating the

original pattern. More extensive results are shown the in Appendix A.3.
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4.4 Conclusion

In this chapter, a new approach was presented for summarizing the arbitrary

shape clusters, which can be used to generate accurate clusters and requir-

ing less expenditure of time and memory. The proposed SGMM algorithm,

represents each cluster with a GMM using sets of core points. Each GMM is

representative of the distribution of the set of members in a cluster.

Moreover, the SGMM is able to successfully identify the closest cluster

for each incoming instance. Experimental results based on evaluating Dunn

and DB indexes confirmed that the distribution of clusters is preserved after

summarization. The regeneration ability of the SGMM method to regenerate

clusters was empirically found to be better than that of the ABACUS. The

ROC curves presented in the experimental results show that while the time

and memory requirements were three times less than those of the ABACUS

method, the accuracy of labeling new instances was the same as that of

ABACUS. In some cases, the detection rate was increased 5% and the false

alarm rate was decreased 3%.



Chapter 5

Collective Labeling

The central part of the two-layer structure introduced in Chapter 3 is the

updating phase. From Figure 3.5, all clusters are represented as GMMs,

which makes everything in the two-layer structure based on GMMs. All

clusters are updated on detection of any concept drift. With GMMs used to

represent clusters the updating phase must be GMM-based.

A simple method for updating each cluster is to update it for each new

coming instance. The main problem with this approach is that it is time-

consuming, as well as being sensitive to noise. To mitigate this problem

instead of updating clusters with each new instance, these new instances

are collected and then are used to update clusters. Based on the two-layer

structure, all new instances are sent to the rag bag to be used in updating.

This structure saves time by collective updating. To update clusters with

new instances, all data in the rag bag are themselves clustered. Based on

these clusters, a GMM is estimated in the same way in the training phase.

Then the GMMs in the rag bag are merged to current GMMs.

There are three possible actions in updating phase:

• Merge a cluster with a cluster in the rag bag

89
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• Add a new cluster

• Remove a cluster

All new instances must first find their closest cluster. In this case, instead

of labeling instances separately, the whole new cluster gets a label. Therefore,

there is a need to measure the distances for clusters in the rag bag and all

current clusters. A small distance between two GMMs shows that they have

been generated based on the same distribution, and can be considered as

similar behavior. With this knowledge, the clusters in the rag bag can be

labeled by finding the distances between the new GMMs and the current

GMMs. If the similarity between a GMM in the rag bag and one of the

current GMMs is more than a threshold, the cluster in the rag bag have been

generated by the same distribution as that of current cluster. Consequently,

the cluster in the rag bag and its instances are labeled as normal and are

attached to that cluster. In this chapter the approach for labeling a group

of instances collectively is discussed and the details of updating clusters are

presented in the chapter 6.

We propose an approach called Collective Probabilistic Labeling (CPL),

to label clusters. Figure 5.1 depicts the the main idea of the of CPL method

to label clusters, by finding close clusters.

CPL has two main steps:

• Cluster data in the rag bag

• Measure the distance between two clusters, and label the new clusters

With clustering of the data in the rag bag, all new instances in a cluster

are labeled, based on their collective characteristics represented by a GMM.

Therefore, since all instances are labeled based on group behavior, the effects



CHAPTER 5. COLLECTIVE LABELING 91

 

Current clusters Rag bag clusters 

Figure 5.1: Finding the right cluster for new instances collectively

of noise can be reduced using this method. The only computation required

in the CPL method is finding a cluster with similar characteristics to those

of the rag bag clusters, and then assigning a label to the clusters in the rag

bag and, consequently, to its entire instances.

In the clustering phase of new instances, DBSCAN approach is employed,

likewise the training phase. DBSCAN finds the number of clusters automati-

cally while there is no direct knowledge available of the shape and the number

of new clusters. Next, the distance between new and current clusters must be

measured. All clusters are represented using GMMs, and the distance mea-

sure has to quantify the distance between two GMMs. In the next section, a

new approach is described to measure the distance between two GMMs.
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5.1 An Improved GMM Distance Measure

Based on Kullback-Leibler Distance

In the proposed method, new instances are labeled collectively using their

respective GMMs. Finding a proper measurement affects the whole updating

process and can improve the accuracy of the labeling phase. In this section,

we describe the proposed measure which is based on the Kullback-Leibler

distance.

Based on the definition in chapter 4, a GMM is defined as follow:

G(x) =

n∑
i=1

wiNµi,σi(x)

Nµi,σi(x) =
1√

(2Π)d‖σi‖
e

1

2
(x−µi)σ

−1
i (x−µi)

T

(5.1)

Using the Equation 5.1, the Kullback-Leibler distance between two nor-

mal distributions is [Kullback and Leibler, 1951] .

KL (N0|N1) =

1

2

(
tr
(
σ−1

1 σ0

)
+ (µ1 − µ0)Tσ−1

1 (µ1 − µ0)− k − ln
(
detσ0

detσ1

))
(5.2)

whereN0 andN1 are normal distributions based on definition in Equation

5.1. µ and σ are mean and covariance of a normal distribution. det(A) is

determinant of matrix A. tr(A) is the trace of an n− by − n square matrix

A, which is defined to be the sum of the elements on the main diagonal.

The Kullback-Leibler distance is frequently used to measure the distance
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between two normal distributions, not specifically two GMMs. Different

measures were introduced to measure the distance between two GMMs. The

available measures are designed based on a specific application’s require-

ments. For example, variational distance introduced in by Hershey, et.al.

works well in speech recognition [Hershey et al., 2007]. In this method, a

combination of distances of two normal distributions is considered.

A Monte-Carlo method approximates the Kullback-Leibler divergence be-

tween two GMMs through the use of efficiently large sampling techniques.

This method is efficiently applied in image processing applications, in which

the entire set of instances in images need to be considered. Due to the

high computational cost of this approximation, Goldberger et al. [Goldberger

et al., 2003] proposed a matching-based approach for measuring distance

between two GMMs. In this approach, instead of computing the distance

between each two normal components in two GMMs, only the distances of

the closest components are considered, and they are combined using their

relative weights:

DGoldberger (Ga|Gb) =

n∑
i=1

wai

(
KL

(
N a
i |N a

π(i)

)
+ log

(
wai
wb
π(i)

))
Where

π (i) = argminj
(
KL

(
N a
j |N b

j − log
(
wbj
)))

(5.3)

where Ga and Gb are GMMs, Ni is the ith normal distribution with w as

GMM weights .

Since in our structure GMMs are used to estimate the distribution and
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instance scattering in each cluster, a distance function is needed that consid-

ers the entire shape of the cluster (that is all components in each GMM). In

contrast with Goldberger’s method, our proposed method considers all pair-

wise distances of all normal component from both GMMs. A main feature

of the proposed metric is that it is symmetric, whereas the Kullback-Leibler

distance is not. To find a symmetric distance, the distances of the all compo-

nents of the first GMM to the second one, and all components of the second

GMM to the first one are calculated, and an average of two is calculated.

In the proposed distance measurement method, the distance from the

first GMM’s components to the second GMM’s components are found using

the weights of the first GMM, as follows:

D(Ga|Gb) =

n∑
i=1

m∑
j=1

waiKL
(
N b
i |N a

j

)
(5.4)

The distance of the second GMM’s components to the first GMM’s com-

ponents are found using the weights of the second GMM:

D(Gb|Ga) =

m∑
i=1

n∑
j=1

wbiKL
(
N b
i |N a

j

)
(5.5)

The final distance is the average of Equations 5.4 and 5.5.

Dclusters =
1

2
(D (Ga|Gb) +D (Gb|Ga)) (5.6)

In the next section, the proposed collective labeling approach and the

new distance function are evaluated based on different criteria.
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5.2 Evaluation of the CPL Method

In this section, experimental results are presented and the CLB method is

compared with the Basic Probabilistic Anomaly Detection method (BPAD)

[Mohammadi et al., 2014] and two other well-known methods, one-class SVM

[Scholkopf et al., 2001] and LOF [Breunig et al., 2000]. All experimental

results were done in Matlab running on a machine with an Intel 3.4 GHz

CPU and 4GB of memory.

The algorithms were evaluated based on three criteria. The first criterion

is Detection Rate (DR) and the second is the False Alarm Rate (FA). The

third is the memory requirement for each method to find the right cluster

for the new instances. FA and DR are presented with their respective ROC

curves. There is an input parameter for each algorithm, based on which

the ROC curve can be drawn. For LOF, the number of instances in the

neighborhood of the core point is the main parameter. The membership

value threshold is the main parameter for CPL, BPAD, and SVM, based on

which, the ROC curve is produced.

As mentioned in experiments of Chapter 4, the training dataset just con-

sisted only of normal instances, with the testing dataset a combination of

normal and abnormal instances. 5% noise was added to the test dataset to

build noisy datasets. Different datasets (in size and number of features) were

selected from the UCI repository. Table 5.1 shows a summary of the datasets

and their normal classes.

In the first set of experiments, the datasets were used are ’clean’ with

no added noise. Each test result is for running an algorithm 30 times, and

getting the best result. The variance is less than 2% in detection and false

alarm rates. The results in the figure are the best ones for each algorithm.
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Dataset Dataset size Number of features Normal classes Anomalous classes

MagicGamma 19020 10 1, 4 2, 3, 5, 6

Shuttle 43500 9 1, 2, 3 4, 5, 6

Waves 5000 40 1 2, 3

Table 5.1: Summary of datasets used for CPL testing

Figure 5.2 shows the experimental results for the Waves dataset. The

ROC curves in this figure illustrate that the LOF algorithm was not suc-

cessful in either detecting the anomalies or recognizing normal behavior. For

the Waves dataset, and even without any noisy instances, the LOF method

cannot compete with the three other methods. The performance of BAPD,

with DR and FA of 60% and 18% respectively, was better than the one-class

SVM and LOF. The performance of the CPL method is similar to that of

one-class SVM and BAPD. The Waves dataset has 40 features, and since the

one-class SVM does not work well in higher dimensions, its performance was

not good for this dataset.

Figure 5.3 shows the results of the same experiment for the Shuttle dataset

which are similar to those for the Waves dataset. CPL, BPAD, and one-class

SVM are almost the same based on the DR and FA and they all significantly

outperform the LOF. The best result was for the one-class SVM and BPAD,

each with 6% FA and 80% DR followed by CPL with 8% FA and 76% DR.

In the next experiment, the anomaly detection methods were applied

on MagicGamma dataset, with results shown in Figure 5.4. Here, without

adding noise to the datasets, the BPAD method performed better than the

other methods. CPL and the one-class SVM showed the same performance,

and the both methods outperformed the LOF in terms of DR and FA. For
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Figure 5.2: The ROC curves of the BPAD, one-class SVM, LOF and CPL

methods applied to the Waves dataset

further experiments, the LOF was not included because of its poor perfor-

mance in comparison with that of BPAD, CPL and the one-class SVM.

In the following, the performance of the anomaly detection methods was

measured for use on noisy datasets. A level of noise was added to the datasets,

and then DR and FA assessed for these noisy instances. For building the

noisy dataset, some instances were first selected randomly, from which some

features were selected, and a level of noise added to them. The value added to

each feature depended on the maximum and minimum value for the feature.

It is 5% of the maximum-minimum values. Figure 5.5 shows the outcome of

the experiment for the Waves dataset.



CHAPTER 5. COLLECTIVE LABELING 98

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 5 10 15 20 25 

D
et

ec
ti

o
n

 r
a

te
 

False alarm rate 

Shuttle 

BPAD 

one-class SVM 

LOF 

CPL 

  

Figure 5.3: The ROC curves of the BPAD, one-class SVM, LOF and CPL

methods applied to the Shuttle dataset

A comparison between Figure 5.2 and Figure 5.5 (tests with and without

noise on Waves dataset) shows that after adding noise, the detection rate

for all three methods is lower. For CPL, the DR before adding noise (in the

best case on the ROC curve) is 60%, and the FA is 22%. After adding noise,

the DR goes down to 57% and the FA rises to 25%. The same results were

observed for BPAD and the one-class SVM. However, the accuracy reduction

for CPL in a noisy environment is lesser than that of the one-class SVM

and BPAD. This means that with the added noise in the dataset, CPL is

more efficient than one-class SVM and BPAD and they are both more noise-

sensitive than CPL. For CPL method, the instances were labeled collectively,
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Figure 5.4: The ROC curves of the CPL, one-class SVM, LOF and CPL

methods applied to the MagicGamma dataset

and the algorithm labeled the noisy instances correctly as well.

Figure 5.6 shows the experimental results for the noisy Shuttle dataset.

Compared with the clean Shuttle dataset (Figure 5.3), CPL was the best

method followed by one-class SVM and BPAD algorithms, respectively. In

its best point on the ROC curve, CPL shows an 75% detection rate and 10%

false alarm rate. For noisy Shuttle dataset CPL was the best-performing

method.

In the next experiment, the performance of the three anomaly detection

algorithms applied on the noisy MagicGamma dataset was evaluated, with

the results presented in Figure 5.7. With the added noise, the accuracy of

three methods was reduced although the detection and false alarm rate of
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Figure 5.5: The ROC curves of the BPAD, one-class SVM and CPL meth-

ods applied to the noisy Waves dataset

the CPL and one-class SVM were almost the same, and both were better

than those of BPAD.

Based on the results using the three noisy datasets, in the presence of

noise, collective labeling (CPL) is better than the one-class SVM and BPAD.

The computational complexity of the one-class SVM is its major drawback.

In the next section, we compare the memory complexity of CPL and one-class

SVM on different datasets.
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Figure 5.6: The ROC curves of the BPAD, one-class SVM and CPL meth-

ods applied to the noisy Shuttle dataset

5.3 Memory Complexity of CPL and one-

class SVM

The one-class SVM surrounds the area of each class (in case of anomaly de-

tection the normal instances) with some surfaces. By increasing the number

of features, the number of surfaces will be increased exponentially, and this is

a challenging drawback for the one-class SVM. In the previous experiments,

the one-class SVM and CPL methods performed almost the same in terms

of detection and false alarm rate. As such, if the CPL performs better than

the one-class SVM based on memory complexity, it could be concluded that,

in general, CPL is better than one-class SVM.
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Figure 5.7: The ROC curves of the BPAD, SVM and CPL methods applied

to the noisy MagicGamma dataset

Each surface in the one-class SVM is a hyperplane consisting of f points

and each point is a set of f features (f is the dimension of the input dataset).

For determining the self area (normal insatnces area), the one-class SVM

needs to keep a number of instances (support vectors) in memory, with each

instance represented by f features. In the CPL method, each cluster is

estimated by a GMM, where each GMM itself is a set of GMMs. Each

Gaussian consists of a mean and a variance vector, each of which has f

features. As such each Gaussian needs to keep 2f features in memory.

In the next experiment, the memory complexity of CPL is compared with

that of the one-class SVM. Table 5.2 shows the results on Shuttle, Waves,
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DataSet/Algorithm one-class SVM CPL

Waves 1431× 40 = 57240 [(2× 6× 4) + (2× 3× 7)]× 40 = 90× 40 = 3600

Shuttle 17387× 9 = 156483 [(2× 8× 6) + (2× 17× 3)]× 9 = 198× 9 = 1782

MagicGamma 5249× 10 = 52490 [(2× 9× 6) + (2× 11× 3)]× 10 = 174× 10 = 1740

Table 5.2: Memory requirement comparison between CPL and one-class

SVM

and MagicGamma datasets.

For one-class SVM on Waves, the number of instances which should be

kept in memory is 1431, and as the Waves dataset has 40 features, the total

memory usage for one-class SVM is 1431× 40. For CPL, there are two sets

of GMMs, one of which is for training and the other for testing. For the

training set, the clustering algorithm extracts six clusters on each of which

four Gaussian distributions are employed to build the GMM. For the testing

set, there are three clusters, and seven Gaussian distributions are used to

estimate a GMM in each cluster. As such, the used memory for CPL on the

Waves dataset is 90 × 40. CPL memory usage is 15 times lesser than the

one-class SVM on the Waves dataset.

On the Shuttle dataset, the difference in memory usage is more significant:

17389×9 for the one-class SVM and 198×9 for CPL. For MagicGamma, the

memory usage for the one-class SVM is almost 30 times higher than that of

CPL.

In the previous experiment, we illustrated that CPL and the one-class

SVM are almost the same in terms of false alarm and detection rate, however,

in terms of memory complexity; the two algorithms are not comparable. This

illustrates that the CPL performs better than the one-class SVM, BPAD and

LOF methods.
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5.4 Conclusion

In this chapter, a noise-resistant collective labeling approach was presented

to label new incoming collectively. The GMMs were used to summarize data

in arbitrary shape clusters. The proposed CPL method introduce a new

distance metric to measure the distance of new groups of instances with the

current clusters. The new instances are attached to their closest cluster.

A primary advantage of a collective labeling method is that it is noise-

resistant. The proposed collective labeling method was compared with an

individual labeling approaches in terms of detection DR, FA and memory

complexity. The experimental results demonstrate that the CPL approach

outperforms the BPAD, one-class SVM and LOF methods (based on indi-

vidual labeling) in terms of detection and false alarm rate on noisy dataset.

The detection rate was 5% higher and the false alarm rate was 10% lower

over different datasets.

Since the number of support vectors generated by the one-class SVM is

10− 15 times greater than the number of Gaussian mixtures, needed for the

comparisons, the detection time is increased accordingly.



Chapter 6

Incremental Cluster Updating Using

GMM

In an online environment, the nature of incoming data changes over time. In

this context, there is a need for algorithms that are able to update clusters

in response to new trends in data behavior.

A simplistic way to update clusters based on incoming data is to add the

new data to the current data, and then apply the clustering algorithm on

the entire data. This approach is impractical in many online applications.

As an alternative, incremental clustering algorithms are proposed in which

clustering algorithms keep a history of data, and adding new data to the

current cluster in an incremental way.

Incremental clustering algorithms need specific characteristics. First, the

incoming instance has to be processed quickly to find the closest cluster.

Second, the clusters have to be updated quickly to be able to adapt to

the changes in the data. Third, the clusters have to be compact and well-

separated over time, and not grow too fast by adding every incoming instance.

Finally, the incrementally-generated clusters need to be as close as possible

to the clusters generated using the simplistic approach mentioned above.

105
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Incremental clustering algorithms such as STREAM [O’Callaghan et al.,

2002] and Clustream [Aggarwal et al., 2003] update clusters efficiently in

terms of memory use and time complexity. In these algorithms, finding the

closest cluster to a new incoming instance is based on finding the distance

of the new instance to the clusters centers. If the distance to a center is less

than a threshold then, the new instance is assigned to that cluster.

Another design trend for incremental clustering estimates the entire

dataset using a single GMM, in which each GMM component is a repre-

sentative of a cluster. Each new instance is fed to the GMM, and used to

update the GMM. However, use of a single GMM for the entire set of data

has its problems. The model is complex, and the updating step involves

accessing the all instances in the dataset. To overcome this problem, in this

chapter, the advantages of both trends in incremental clustering algorithms

are exploited. In the proposed approach, instead of finding a single GMM

for the entire dataset, using the proposed approach in Chapter 4 each cluster

is represented by a GMM. According to the result on Chapter 4, the GMM

generates the original data with good accuracy.

Moreover, the GMM formula finds the closest cluster to the new instance

with a simple calculation as explained in Chapter 5. From an updating

perspective; the CPL approach instead of updating clusters based on each

new incoming instance, the instances are collected, and a group of instances is

used to update the GMMs. In this way, the updating phase is less sensitive

to noise. Moreover, since updating is done offline, large quantities can be

accommodated, even for online applications.

In the following, we explain the algorithm in more detail. The updating

algorithm presented in this chapter employs the SGMM and CPL as two

main components to update clusters.
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6.1 Cluster Updating Based on GMM

In this section, the proposed method CUGMM (Cluster Updating based on

GMM) is presented in detail.

There are three main steps as shown in Figure 6.1. In the first step,

a clustering algorithm is applied to the input data to partition the dataset

into clusters as shown on the left in Figure 6.1. In the second step, SGMM

algorithm presented in Chapter 4 is employed to estimate the distribution

and shape of each cluster with a GMM. The same procedure is then applied

to the new clusters, and each cluster is represented by a GMM as shown on

the right in Figure 6.1.

In the updating step, the collective labeling approach (CPL) presented in

Chapter 5 is used. In this step, the newly generated clusters are compared

with the existing ones. If the new GMM is close enough to one of the existing

cluster GMMs, they are merged, creating an updated cluster. Otherwise, it

is either added as a new cluster or it is deleted

A GMM representation summarizes a cluster into a set of means and

covariances. That is to say, instead of keeping the entire instances of each

cluster in memory, the GMM is used to estimates the statistical features of

the cluster which requires less memory. As such, there are three advantages of

using GMM to represent a cluster. First, the GMM can be used to regenerate

the original cluster with an acceptable approximation. Second, clusters are

represented in a way that new instances are assigned to the right cluster with

acceptably low processing time. Third, the updating phase is fast because

finding the closest cluster to a new one involves a simple distribution distance

measurement.

In comparison to existing online clustering algorithms that update clus-

ters based on each new instance, the proposed approach updates clusters in a
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Figure 6.1: General structure of incremental cluster updating

batch using the CPL method. The updating procedure consists of two main

steps: finding the two closest clusters, and then merging these close clusters.

6.1.1 Finding Two Closest GMMs

To update clusters, the closest clusters are first identified. The proposed

distance measure introduced in Chapter 5 is employed.
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D(Gb|Ga) =

n∑
i=1

m∑
j=1

wbikl(N b
i |N a

j )

D(Ga|Gb) =

n∑
i=1

m∑
j=1

wbikl(N b
i |N a

j )

Dcluster = (D(Ga|Gb) +D(Gb|Ga))/2 (6.1)

6.1.2 Merging the Two GMMs

After finding the two closest GMMs, the next step is to merge them. Assume

that the two left most GMMs in Figure 6.2 are the two close GMMs. To com-

bine the two GMMs, the two close components in these GMMs are found and

then combined. Based on the Kullback-Leibler measure, the first component

in GMM2 is close to the second component in GMM1, and the second com-

ponent of GMM2 is close to the third component in GMM1. Therefore, in

the updating phase, the second and third components of GMM1 are updated

into a new GMM which becomes the updated version of GMM1.
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Figure 6.2: Merging two GMMs

In the proposed approach, new data instances {x1, · · · , xm} are clustered
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to clusters {C1, · · · , Ck}. The SGMM algorithm finds all equivalent GMMs;

{G1, · · · , Gk}, for clusters {C1, · · · , Ck}. Each GMM consists of a set of

components Gi = {g1
i , · · · , gsi } where s is the number of GMM components.

Each GMM component is represented by gji = {µji , σ
j
i , w

j
i }. Considering that

Ga and Gb are two close GMMs. In Ga the ith component that is gia is close

to jth component of Gb that is gjb . Therefore, the new GMM component is

created based on merging gia = {µia, σia, wia} and gjb = {µjb, σ
j
b , w

j
b}. To update

the current component, three different parameters have to be updated.

The mean of the normal distribution µnew is updated based the µia and

µjb.

µnew =
wiaµ

i
a + wjbµ

j
b

wia + wjb
(6.2)

The covariance is updated based on the covariance, mean and weights of

the two components.

σnew =
wiaσ

i
a + wjbσ

j
b

wia + wjb
+

wiaµaiµ
i
a
T

+ wjbµbjµ
j
b

T

wia + wjb
+ µnewµnew

T (6.3)

The weight is updated based on the current the number of instances of

the two normal distributions that are merged with s and l the total numbers

of components of Ga and Gb.

wnew =
wia + wjb∑s

i=1w
i
a +
∑l

j=1w
j
b

(6.4)
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The updating is based on updating method for Gaussian Mixtures that

is introduced in [Song and Wang, 2005].

6.2 Discussion on the efficiency of the Pro-

posed Method

Summarization is a primary feature of the proposed method. Each Gaussian

represents some instances (a part of the cluster) with a mean and variance

that indicates the scattering for the cluster. The summarization feature of

the proposed method, enables finding the proper clusters for new instances

with only few calculations.

In a noisy environment, there is a high chance of encountering noisy

instances during the updating phase. If the updating process is triggered

whenever a new instance is introduced to the model, noisy instances would

be likely to update model. Noisy instances may then bias or change the

attributes of the clusters. This may culminate in inaccurate clusters that do

not successfully model the real behavior of the normal data.

Summarizing the clusters with a set of core points and estimating the

characteristics of the clusters through GMMs benefits the proposed method

in a noisy environment. The proposed method does not update the exist-

ing model when a single new instance is presented to the model. Instead,

the incoming instances are collected and clustered into some clusters. The

extracted clusters are used to represent the new instances.

In the proposed method, after clustering new instances, the outliers and

any clusters that have a number of the instances less than a given threshold

are removed from the dataset. This prevents clusters from being changed by

noisy input data. In the experimental results section, the performance of the

proposed method in the presence of noise is characterized.
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As mentioned in section 6.1.2, the weight of the final combined component

is calculated based on Equation 6.4 in which the component that has a bigger

weight, will have a larger share in the updated component. In some cases,

the number of noisy instances in the same neighborhood, may be enough to

shape a component of a GMM. In this case, the noisy component should be

close to other clean components in other clusters. If the algorithm decides

to combine two GMMs (one of the GMMs consists of the noisy component),

there will be two approaches available for the algorithm.

First, when the noisy component is not close enough to any components

in the other GMM, and the number of instances in the component is less than

a particular value, the proposed method eliminates the component from its

GMM. In the second approach, if the noisy component is not close to any

component in the other GMM, but the number of instances is not small

enough to be eliminated, the noisy component is removed from the GMM and

form a new GMM (cluster). This new GMM has one component, representing

the entire set of instances in the new cluster. If the newly formed cluster is

not a noisy cluster, by adding new instances it may be able to find a cluster

close enough to be merged, and thereby shape a new cluster. However, if the

newly formed cluster is a noisy cluster, the cluster will remain isolated and

not have a chance to be merged with other clusters.

6.3 Experimental Results

The proposed method was empirically evaluated, based on different criteria

consisting of five metrics: Sum of Squares distance (SSQ), Dunn, DB, SD

and Purity.

First, the data were divided into n parts with the first part is used to
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generate the initial clusters, and the rest added to the existing clusters incre-

mentally in n rounds (iterations). The number of rounds chosen was varied,

based on dataset size. That is to say, in each round a new part of data were

added to the previously seen data, to examine the learning capability of the

proposed method. Some UCI repository datasets were used in the exper-

iments (KDDCup99, Shuttle, MagicGamma), as well as a two-dimensional

synthetic dataset, to visualize the clustering results in each iteration.

6.4 Performance Metrics

The approach presented in this chapter updates clusters incrementally using

the collective labeling approach and GMM representation. The naive ap-

proach to update cluster is to keep all cluster members and then add new

coming instances to the current clusters (this approach is called CWR in

this chapter). The other approach for cluster updating is CluStream that

updates clusters feature set using every new coming instance. Since our ap-

proach does not keep the whole clusters and it updates clusters using GMMs,

the goodness of clusters after each updating should be measured and com-

pared to other algorithms. To validate the quality of updated clusters four

clustering goodness SSQ, Purity, Dunn and DB are employed.

The Sum of Squares distance (SSQ) measures the scattering of instances

based on center nodes [Aggarwal et al., 2003]. SSQ is calculated based on

Equation 6.5:

SSQ =

k∑
j=1

m∑
i=1

(si − Cj)2 (6.5)

where si is an instance in the dataset and Cj is the closest cluster to si.

The purity metric measures clusters homogeneity and finds the instances



CHAPTER 6. INCREMENTAL CLUSTER UPDATING USING GMM114

in each cluster which come from other clusters, based on Equation 6.6.

purity =

k∑
i=1

‖Ti‖
‖Ci‖

;Ti = {si ∈ Cj |label(si) = label(Ci)} (6.6)

In this Equation, label(si) is the actual label of si in the dataset and the

label for cluster label(Ci) is generated based on majority of labels of instances

in clusters Ci.

Dunn [k. Dunn and Dunn, 1974] and DB [Davies and Bouldin, 1979]

indexes are two metrics to measure clustering goodness. These two metrics

are explained in Section 4.3.3 in Chapter 4.

6.4.1 Evaluation based On SSQ

In this section, the results of SSQ for the KDDCup99, Shuttle and Mag-

icGamma dataset using CUGMM and Clustream [Aggarwal et al., 2003] and

Clustering the Whole data in each Round (CWR) are presented.

In CWR, the first part of data is clustered. The second part of the

data is added into the existing one and the clustering algorithm applied to

the whole dataset. That is to say, in each round, the previous clusters are

ignored and the new ones are built based on the entire dataset received by

the current round. This means that there is not an incremental learning

process in CWR which is why it is expected to outperform other algorithms

in most cases. However, the main point is that the CWR is more accurate

than other methods and can be a base for comparisons. The number of

rounds was changed based on the size of the dataset, and five rounds were

selected to depict the results.

Figures 6.3-6.6 show the SSQ result for the CUGMM, Clustream and
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Figure 6.3: SSQ for the KDDCUP99 dataset

CWR in different rounds. The higher the value of SSQ, the lower the clus-

tering accuracy is. Since CWR uses all the data added in each round, it

should have the lowest SSQ and as a result better clustering. In Figures

6.3-6.6, the best approach is the one with lower SSQ and a value close to

that of CWR.

These results characterize the accuracy of clusters by considering each

cluster as a GMM. In Clustream, the clustering is based on considering core

clusters and the distance of a new instance to the center of the cluster. As

shown in the Figure 6.3, the CUGMM shows better performance in clustering

the new incoming instances incrementally, since the results are close to that

of CWR, note that CWR considers the entire set of instances in each round

of clustering, while the CUGMM updates the clusters incrementally.
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Figure 6.4: SSQ for the MagicGamma dataset

Figure 6.4 shows MagicGamma dataset results which confirm that the

CUGMM works better than Clustream algorithm, and it almost equals the

performance of the CWR method. For example, in the first round the

CUGMM SSQ is 6221, 32210 for Clustream and 7100 for the CWR model.

The lower error rate shows that the proposed approach does not lose accuracy

in terms of clustering over time.

Figure 6.5 shows a similar result for the Shuttle dataset from the UCI

repository. In the last round, in which the whole dataset is fed to the system,

the SSQ for the CUGMM algorithm is 677 which is less than the 3275 for the

Clustream. The results in Figure 6.6 for the synthetic dataset introduced in

section 4.3 are almost the same as those of the previous experiments, in which

the CUGMM shows better performance in comparison with CluStream and
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Figure 6.5: SSQ for the Shuttle dataset

 

Figure 6.6: SSQ for synthetic dataset
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negligibly different from CWR.

Figure 6.7 displays the results of applying the proposed algorithm on the

synthetic 2D dataset. In the first round, 20% of the data was used to create

the initial clusters. The rest of the dataset was added to the clusters over 12

rounds. Figure 6.7a shows the entire original dataset, Figure 6.7b the initial

clusters generated with 20% of the data, Figure 6.7c the clusters generated

using the CWR method and Figure 6.7d the final clusters using the CUGMM.

To depict the noise resiliency performance of the proposed method, results

are shown over 12 rounds.
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a) The Original entire dataset b)  Applying clustering on the first portion of original 

data  

c) Applying clustering on the entire dataset d) Clustering data incrementally 

Figure 6.7: Updating initial clusters over 12 rounds with CUSGMM

As depicted in Figure 6.7, most of the noisy instances were removed from

the dataset using the CUGMM while there were many noisy instances in the

result of CWR method. The reason is that in the CUGMM, the number of

noisy instances in a particular area is not big enough to shape a new cluster.

In the next experiment, the proposed method was evaluated using the

Dunn, DB, SD, and Purity indexes. For DB and SD the lowest value shows

the best performance, while for Dunn and Purity the highest is the best

(Table 6.1). As mentioned CWR is more accurate than other methods and
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can be a base for comparisons. In Table 6.1, the best method which is the

closest to CWR is specified for each index.

For the KDDCup99 dataset, in each round the CUGMM algorithm had a

better result than Clustream, and it is close to the results for the CWR. For

the DB index, the CUGMM shows a stable performance over all rounds, while

Clustream and CWR fluctuated between [0.4 − 0.8] and [0.2 − 0.7], respec-

tively. For SD, most of the time the CUGMM showed better results than that

of Clustream, and close to CWR results. The proposed method (CUGMM)

outperformed Clustream, and generated the same clusters as CWR. The re-

sults for the DB index showed that the generated clusters were well-created

in all rounds. The result for the SD confirmed the previous results.

The results for Purity showed that with the CUGMM algorithm, the

purity value inside clusters (based on the label of the data) was higher than

that of Clustream, and close to that of CWR.

6.5 Conclusion

The incremental updating approach represents all clusters using a GMM,

keeping a summary of each cluster, it is updated quickly and more accurately.

Instead of processing each new incoming instance individually, the in-

stances are collected and grouped into clusters. For each cluster, a GMM is

defined to estimate the instances’ scattering and distribution. In the updat-

ing phase, a modified Kullback-Leibler distance is used to find the closest

cluster to the new clusters. After finding a pair of close clusters from current

and new clusters, their corresponding GMMs are merged. A merging strat-

egy is introduced that enables the algorithm to detect noisy instances and

remove them from the rest of the process.

The proposed method was empirically compared with two other clustering
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algorithms, CWR and Clustream using various cluster validity indexes. The

results showed that the updating approach tends to follow the original shape

of clusters over time. The results for different datasets and based on various

factors showed that updating clusters using GMMs is more accurate than

Clustream.

The Sum of SQuared distance (SSQ) is decreased 2 to 5 times on average

for different datasets, in comparison to Clustream and the basic CWR. Based

on different clustering indexes for the clusters, accuracy of the Clustream and

the basic model fluctuated between [0.4, 0.8] and [0.2, 0.7], respectively while

the CUGMM method had more stable clustering in different rounds.
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DataSet/Clustering index Dunn DB SD Purity

KDD CUGMM CUGMM CUGMM CUGMM

CUGMM CUGMM CUGMM CUGMM

CUGMM Clustream CUGMM CUGMM

CUGMM Clustream CUGMM CUGMM

Shuttle Clustream CUGMM CUGMM CUGMM

CUGMM CUGMM CUGMM CUGMM

CUGMM Clustream CUGMM CUGMM

CUGMM CUGMM CUGMM Clustream

MagiccGamma CUGMM CUGMM CUGMM CUGMM

CUGMM Clustream CUGMM CUGMM

CUGMM CUGMM CUGMM Clustream

CUGMM Clustream CUGMM CUGMM

Synthetic
CUGMM CUGMM CUGMM CUGMM

CUGMM CUGMM Clustream CUGMM

CUGMM Clustream CUGMM CUGMM

Clustream CUGMM CUGMM CUGMM

Table 6.1: Performance of clustering based on Dunn, DB, SD, Purity in-

dexes



Chapter 7

Two-Layer Structure

The two-layer structure for updating clusters incrementally was presented

in Chapter 3 with five main components. The whole structure works if the

idea and approach for each component works efficiently. Each part of the

structure is introduced and examined in different chapters. The two-layer

structure puts all these pieces together, and encapsulating an incremental

approach for cluster updating. The goal of creating such a structure is to

update clusters efficiently by removing the noisy instances, while ignoring

redundant instances that are already consistent with the model.

In this chapter the two-layer structure is presented in two layers and the

idea of ignoring redundant instances is discussed.

7.1 Coarse and Fine Levels in Two-Layer

Structure

Figure 7.1 presents the two-layer structure first shown in Figure 3.4 with

added details. Each new instance based on its similarity to the existing

clusters is labeled. If the new instance shows a similarity less than a threshold

to all clusters, it is sent to a rag bag to update the model in a batch mode.

123
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Using the coarse level with simple and lightweight computation, the structure

quickly labels whichever instances are not similar to any known existing

patterns. The coarse level is also able to recognize instances that are quite

similar to previously-seen patterns.

 

       

 

           

 

       

 

Ignore the new instance Check the fine level 

 

Send to rag bag 

Rag bag 

 

 
  

  

   

  

Coarse level 

Fine level 

Figure 7.1: Selecting new distinct objects and put them in rag bag

The fine level is employed for those instances that are ’in the middle’-not

very similar not very different. To make such a model work, some threshold

is required. To do so, all possible cases are considered for new incoming

instances.

All possible cases are divided between the coarse and fine levels as they
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arrive. In Figure 7.1, T1, T2 and T3 are the thresholds and poi is the mem-

bership value for a incoming instance, calculated based on GMM formulas in

Chapter 4.

• Possible incoming instances and outcomes for the coarse level:

– New instance belongs to a cluster with membership value more

than a specified threshold (T1 or upper bound threshold).

∗ In this case, this instance belongs to a specific cluster with

high probability, and there is no need to investigate other

clusters. Also the main point here is that it is not necessary

to use this instance for further updating, because cluster dis-

tribution would not be changed with this instance. The new

instance is labeled with a coarse level, without invoking the

fine level, and so with less computational cost.

– If the membership value for the new instance is less than a speci-

fied threshold (T2 or lower bound threshold)

∗ The instance is considered as a new and unseen instance, and

it is sent to the rag bag directly. In this case, the algorithm

assumes that the instances’ similarity to the region of known

and existing patterns is low and as such, it is either noise or

a new anomalous instance. The detection process is finished

at the coarse level, with no need to go to the fine level.

– If the membership value for an incoming instance is between T1

and T2.

∗ The instance is sent to fine level for more investigations.

• Possible incoming instances and outcomes for the fine level:
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– In the fine level, the new instance is introduced to the clusters, and

based on the generated membership values a decision is made. In

this level, there is a threshold (T3), based on which an instance is

categorized as an unseen pattern or a known instance. If the gen-

erated membership value is higher than T3, the instance belongs

to one of the clusters in the fine level, otherwise it is considered

as new and is sent to the rag bag.

The overall algorithm for two-layer cluster-based structure is presented

in Algorithm 7.1.

7.2 Removing Redundant Instances

A new instance is deemed redundant if it is quite similar to the existing

model. In the two-layer structure, the whole structure is based on clusters,

and each cluster is represented by a GMM. In such a representation, a re-

dundant instance is an instance that has a high membership value for one

of the GMMs. That is to say, this instance is close to the center of one

of the GMMs. This instance has been included in the distribution of data

in the first stage, and there is no point in updating the clusters with this

instance.This assumption is simple, and speeds up the updating procedure.

However, there are some concerns about it. By ignoring such instances,

some information may be missed in the updating stage. These instances

are mainly similar to the initial instances that were used to generate the

clusters. Therefore, these instances are already represented in the model,

with a proper distribution. Updating each cluster with redundant instances

sets a new mean and covariance for each component, which are not very

different from the original mean and covariance.
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Algorithm 7.1: Pseudo-code of the two-layer architecture

Data: cluster GMMs, instance O

Result: maximum probability of attachment of instance O to clusters

pO=probability of attachment instance O to GMMC1
;

for i = 2 to number of clusters do

if pO > T1 then

Ignore instance O;

else

pO = max{probality of attachment to GMMCi
, pO};

end

end

if pO < T2 then

Send it to rag bag;

end

if T2 < pO < T1 then

pO=probability of attachment instance O to GMMC1
in fine level;

for i = 2: number of clusters do

if pO > T3 then

Ignore the instance O;

else
pO =

max{probability of attachment to GMMCi
in fine level, PO};

end

end

else

end

if pO < T3 then

Send it to rag bag;

end
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Another concern is that other instances may be considered as new and

anomaly that were never merged with current clusters. This hypothesis can

be true when instances are considered separately in updating. In the two-

layer approach, new instances are first clustered, and then merged with cur-

rent clusters. The new clusters are representative of new distributions which

can be similar to previous ones, and can be merged with them. Based on

experiments these instances are mainly near the border, and with the effect

of gradually changing the cluster boundaries.

7.3 Setting Thresholds

As shown in Figure 7.1, thresholds need to be set. To set these thresholds,

an approach is needed that specifies the threshold without just using simple

trial and error. To set up thresholds T1 and T2 in the structure, the concept

of the confidence interval in a normal distribution is used as shown in Figure

7.2.

A confidence interval gives an estimated range of values, which is likely

to include an unknown population parameters. The estimated range is cal-

culated from a given set of instance data.

For a population with unknown mean µ and known standard deviation

σ, a confidence interval for the population mean, based on a simple random

instance (SRS) of size n, is:

x± z∗ σ√
n

(7.1)

where z∗ is the upper (1 − C)/2 critical value for the standard normal

distribution and C is the confidence level. This interval is exact only when the

population distribution is normal. For large instances from other population
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Area=C 

Area=1-C/2 

 

Area=1-C/2 

Figure 7.2: A confidence interval for normal distribution

distributions, the interval is deemed approximately correct by the Central

Limit Theorem. The confidence intervals for means and covariance include

the actual value of these parameters.

This idea can be used to set up confidence intervals for membership values

that lead to finding the thresholds. The confidence interval covers most of

distribution and can be used to identify instances that are in the confidence

interval. These members are fed to the GMM formula to determine the

membership values for these instances. The average membership value is

calculated for these instances, and considered to be the membership value

for the redundant instances:

M = {Oi|x− z∗
σ√
n
< Oi < x+ z∗

σ√
n
} (7.2)

M is a set of members Oi that are in the confidence interval of the normal

distribution.

m =

∑
Oi∈M N (Oi)

‖M‖
(7.3)
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N (Oi) is the membership value of instance Oi in normal distribution N ,

‖M‖ is the number of members of set M and m is the average of membership

values for all members of M .

Thus far, this pertains to a single Gaussian distribution. However, we

wish to deal with a set of normal distributions. The thresholds of each

normal distribution are combined to find a threshold for the set of normal

distributions. The confidence interval for each component in the GMM is

shown in Figure 7.3.

 

Figure 7.3: A confidence interval for Gaussian Mixtures

For a GMM with n components, there is a set of members Mi in the

confidence interval of each component in the GMM:

L = {M1, · · · ,Mn} (7.4)

The membership value for each component M1, · · · ,Mn is calculated ac-

cording to Equation 7.3.

L = {m1, · · · ,mn} (7.5)

Each mi in L should be multiplied by the weight wi of the component to

determine the overall membership value for the whole Gaussian.
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T1 =

n∑
i=1

mi × wi (7.6)

By finding instances in the confidence interval, their membership values

can be determined, and they can be combined based on their weights. Each

instance in the confidence interval should have a higher membership value.

Therefore, if the membership value for an instance is greater than this value,

it is considered to be a redundant instance.

There is another threshold that needs to be set: T2 as shown in Figure

7.1. To configure this threshold, a similar approach is used by focusing on

less probable instances. To find these instances, all instances outside of the

confidence interval are considered and their membership value calculated:

M = {Oi|x− z∗
σ√
n
< Oi OR Oi > x+ z∗

σ√
n
} (7.7)

For each component i the set of instances Mi is created, and for each the

average membership value mi is calculated:

mi =

∑
Oi∈Mi

N (Oi)

‖Mi‖
(7.8)

Using the weight wi of each component i , the new threshold is found:

T2 =

n∑
i=1

mi × wi (7.9)

This value is an indicator for instances that are far away from the distri-

bution, and should be sent to the rag bag for the updating stage.

The third threshold T3 is set in the same way as threshold T1.
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7.4 Experimental Results

Experiments described in this section, were used verify that removing redun-

dant instances does not have an effect on the accuracy of the algorithm, and

it is faster than simply updating clusters with every new instance.

Metrics for Comparisons

Accuracy was measured through assessing false alarm and detection rate in

anomaly detection applications. The incremental method was applied to

data for r rounds, and in each round the results were collected. The ROC

curves reported, shows the average accuracy of algorithm for these r rounds.

The results for each algorithm also resulted from running the algorithms 30

times.

Other experimental measurements included the time and space complex-

ity. Space and running time were compared for labeling new instances, and

also for updating the current model.

Finally, we show the visual results of the synthetic data set to depict how

the noise is removed by employing two-layer structure.

Dataset Description

Table 7.1 displays the details of the datasets used in our experiments. As

shown in this table, KDDCUP99, Darpa98, NSLKDD, DataSetMe, IUSTSip

and INRIASip datasets are seven datasets for our experiments.

For each dataset mentioned, the training segment contains only self-

instances, and the test segment includes a combination of self and non-self

instances. In the following, we will describe the details of the datasets.
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An important feature of DatasetMe dataset is that it is specifically gen-

erated for anomaly detection purposes. DatasetMe uses D-ITG as the back-

ground traffic generator. Two separate computers are assigned as the D-ITG

transmitter and receiver, respectively. A computer is assigned as a victim

(i.e. as a destination for all kinds of attacks). The dataset includes different

types of attacks through the Internet on the victim computer. Each instance

of the DatasetMe is the result of analyzing the behavior of the network over

2s. Table 7.2 shows the feature description of the DataSetMe. The features

extracted from the header of the packets. The test dataset held 18 differ-

ent attacks, some of which are well-known attacks from (PacketStrom) and

Nmap (NMap). Other attacks were generated in the lab.

Table 7.3 shows the summary of the NSL-KDD dataset. NSL-KDD is a

dataset suggested to solve the problems of the KDDCUP99 dataset. How-

ever, the new version of the KDDCUP99 dataset still suffers from the same

problems, and may not be a good representative of real networks [McHugh,

2000].

IUSTSip dataset was generated in the lab, and included SIP DoS attacks.

The implementation details of these datasets are discussed in [Asgharian

et al., 2011] and [Asgharian et al., 2012]. In this dataset, different types of

SIP flooding attacks are generated, dumped and labeled. These attacks are

based on INVITE, REGISTER and RINGING messages in SIP.

INRIASip dataset is generated in INRIA France. This dataset includes

INVITE flooding attacks in VoIP networks and also considers the telephony

spam threat (SPIT), as well as normal traffic. Two SIP proxy servers were

used for their test-bed. Anomaly DoS traffic and SPIT traffic are included

in the dataset, and both were used in the experiments [Mohamed. Nassar,

2008] [Mohamed. Nassar, 2009].



CHAPTER 7. TWO-LAYER STRUCTURE 135

N
u

m
b

er
N

am
e

of
fe

at
u

re
s

D
es

cr
ip

ti
on

1
N

u
m

b
er

of
p

ac
ke

ts
N

u
m

b
er

of
in

p
u

t
an

d
ou

tp
u

t
p

ac
ke

ts
in

th
e

re
ce

n
t

2s

2
%
T
C
P

R
at

e
of

th
e

T
C

P
p

ac
ke

ts
in

th
e

re
ce

n
t

2s

3
%
U
D
P

R
at

e
of

th
e

U
D

P
p

ac
ke

ts
in

th
e

re
ce

n
t

2s

4
%
I
G
M
P

R
at

e
of

th
e

IG
M

P
p

ac
ke

ts
in

th
e

re
ce

n
t

2s

5
%
O
th
er

R
at

e
of

th
e

p
ac

ke
ts

th
at

ar
e

n
ot

T
C

P
,

U
D

P
an

d
IG

M
P

in
th

e
re

ce
n
t

2s

6
A

v
gL

en
P

ac
ke

ts
A

ve
ra

ge
le

n
gt

h
of

p
ac

ke
ts

in
th

e
re

ce
n
t

2s

7
R

n
d

S
rc

P
or

t
N

u
m

b
er

of
d

iff
er

en
t

so
u

rc
e

p
or

ts
th

at
ar

e
u
se

d
d

u
ri

n
g

th
e

re
ce

n
t

2s

8
R

n
d

D
es

P
or

t
N

u
m

b
er

of
d

iff
er

en
t

d
es

ti
n

at
io

n
p

or
ts

th
at

ar
e

u
se

d
d

u
ri

n
g

th
e

re
ce

n
t

2s

9
%
A
ck
P
a
ck
et
s

R
at

e
of

th
e

A
ck

P
ac

ke
ts

in
th

e
re

ce
n
t

2s

10
%
S
y
n
P
a
ck
et
s

R
at

e
of

th
e

S
y
n

P
ac

ke
ts

in
th

e
re

ce
n
t

2s

T
a
b
le

7
.2

:
T

h
e

su
m

m
ar

y
of

th
e

D
at

as
et

M
e

d
at

as
et



CHAPTER 7. TWO-LAYER STRUCTURE 136

DataSet Name Type # of features Size

Train + Train 41 125973

Train20%+ Train 41 25192

Test+ Test 41 22544

Test- Test 41 11825

Table 7.3: Summary of the NSL-KDD dataset

The best method was chosen in each category of anomaly detection meth-

ods, and these algorithms were used in the experiments. The list of these

methods is presented in Table 7.4.

Category Method

Cluster-based methods CBLOF

Proximity-based methods LOF

Classification One-class SVM

Artificial immune system RVNS, positive selection, SPAI

Statistical methods Single GMM

Table 7.4: Anomaly detection methods

CBLOF [He et al., 2003] method is a cluster-based anomaly detection

method. This method first clusters the data, it creates a metric based on

the size of the cluster and distance of an instance to the center of its clus-

ter. Based on the value and a threshold the instances are labeled as normal

or abnormal. LOF [Breunig et al., 2000] is another method to find the

anomaly score for an instance. In this approach, the local densities of an
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instance is measured using the local density of the instances in its neighbor-

hood. Real Value Negative Selection (RVNS) [Ji and Dasgupta, 2004] is one

of the most famous algorithms in Artificial Immune systems. In this algo-

rithm, a set of detectors is generated that does not have any overlap with

the normal instances, which are used in the detection step. Positive selection

algorithm considers all normal instances as representatives of normal pat-

terns. By considering a circle around each instance it creates a boundary for

each normal pattern [Seiden and Celada, 1992] [Sim and Lee, 2003]. SPAI

presented by Mohammadi et al. combines the positive selection with Parazen

window to create a new probabilistic approach for anomaly detection [Mo-

hammadi et al., 2014]. Among one-class classification methods, one-class

SVM is among the best and most accurate one [Yuting et al., 2013]. The

last algorithm considered for comparisons is GMM-based approach which is

in the category of statistical approaches Haji [Hajji, 2005]. This considers

the whole normal dataset as a single GMM. Every incoming instance is com-

pared to this GMM, and if it deviates from this distribution, it is considered

abnormal. All mentioned methods were discussed in detail in Chapter 2.

In the following two sections, the results are presented for experiments of

using the two-layer structure for anomaly detection. First, the accuracies of

all algorithms were compared based on false alarm and detection rate. The

results using different datasets confirm that the two-layer structure is better

than the other algorithms, in most cases. However, the main capability of

the two-layer structure is to enable the whole model to be updated quickly

requiring minimum space. This structure was as accurate as the other mod-

els, while being updated over time in batch mode. Removing the burden

of redundant instances in the updating phase improved the updating and

labeling phase.
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False Alarm and Detection Rate

In this section, the results of comparison of the accuracy of the presented

approach with all other algorithms are presented. Tests involved the methods

listed in Table 7.4 on all datasets presented in the previous section.

As with the previous comparisons for anomaly detection, ROC curves are

depicted based on the false alarm and detection rate. Higher detection rate

with low false alarm rate shows better performance.

The first dataset used was KDDCUP99. As shown in Figure 7.4 the

performance of the two-layer approach and one-class SVM were close, and

superior to the other algorithms. The performance of positive selection and

SPAI were almost the same, and both were lower than that of the two-layer

approach. RVNS has less attractive results, since representing the whole

structure of anomalies with a set of artificially generated instances cannot

represent the whole space of anomalous behavior.

The GMM algorithm had less accuracy than other algorithms in terms of

false alarm and detection rate. The main problem with the GMM approach

is that it considers only a single GMM of all the data, which is an overly

general representation of the data and may generate a low detection rate.

CLBLOF and LOF had poor results, in comparison to the other algo-

rithms. The CBLOF algorithm finds outliers by clustering them and calcu-

lating a factor based on the distance of an instance to the center and to other

members of the cluster. The first problem is to consider the center of the

cluster as a representative to measuring the distance. Those factors that use

distance to the center of the cluster are among the poor approaches, since

the center of the cluster cannot represent the clusters’ distribution. LOF

assesses the outlier-ness factor of an instance, using the local density of each

instance. This factor is not applicable to all problems, since it just removes
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noise and not a collection of outliers.

An important aspect of these experiments is that in using the two-layer

structure, clusters are updated over the time while ignoring redundant in-

stances in batch mode. There may be doubt about the potential accuracy

of the model in terms of false alarm and detection rate. However, the re-

sults on the KDDCUP99 and other datasets showed that accuracy does not

deteriorate with incrementally updating clusters while ignoring redundant

instances and employing the batch updating approach. On the other hand,

incremental and batch updating saved time, and the proposed approach was

faster than the others, while still accurate. The following results were from

running the algorithm over 30 independent runs.
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Figure 7.4: ROC curve for KDDCUP99 dataset for different algorithms



CHAPTER 7. TWO-LAYER STRUCTURE 140

In the next experiment, the proposed method was evaluated on the

Darpa dataset, which includes information about sessions. Similar to the

DataSetMe, the Darpa dataset was collected from a real network. All the

BSM files in the dataset were used to assess the proposed method in a prac-

tical scenario, with large amount of data. The training dataset comprised

the first two weeks, with the four remaining weeks the test dataset. As

with the other experiments, the normal instances of the first two weeks were

considered for training.

Figure 7.5 shows the experimental results for the Darpa dataset. The

two-layer structure and one-class SVM performed almost the same, and both

were better than the other algorithms. The proposed method not only out-

performed the other methods, it also reduced the effect of noise and consid-

erably decreased detection and updating time. The detail of time and space

complexity will be discussed in Section 7.4.

In Figure 7.6, the results of the comparison using the NSL-KDD+ dataset

are presented. The accuracy of the two-layer structure and one-class SVM

were better than the other methods. However, the false alarm rate of the

two-layer structure was better than that of one-class SVM. While the one-

class SVM creates a more accurate boundary, it overfits to the data, and

that is why it generated more false alarms. The two-layer structure employs

the strength of clustering and a distribution representation of data to create

a more accurate and less restricted model. The GMMs generated for each

cluster were a good representative of each cluster, with straightforward up-

dating and labeling of new incoming instances. SPAI and positive selection

were the second-best performers.

SPAI and positive selection performance were less than the two-layer

structure, since their approach highly depends on the number of detectors
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Figure 7.5: ROC curve for Darpa dataset for different algorithms

and the radius, which is difficult to determine. Restricting the results to the

detectors that are not representative of the entirety of normal behavior de-

creases the accuracy of the associated predictions. The GMM approach did

not have an interesting result. LOF and CBLOF did not exhibit good accu-

racy; since they are dependent on the clustering and density of the dataset

in different regions of data space.

The fourth dataset used for our experiments is NSL-KDD- dataset.

Again, the two-layer structure and the one-class SVM performed better than

the others (Figure 7.7). This shows that even in applying clustering, GMM
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Figure 7.6: ROC curve for NSL-KDD+ dataset for different algorithms

representation and batch updating, there was not a decrease in the perfor-

mance of the proposed method.

One of the real network datasets available is DatasetMe, which was gener-

ated in the lab for experimental purposes. This dataset represents two main

properties of network data: the redundancy of instances in a short period,

and the appearance of similar applications within a short time. Figure 7.8

shows the result of applying different methods on DatasetMe. The result

shows that the two-layer structure was best among the other methods. It

confirms that on such a real dataset, the clustering and GMM representa-

tion were an excellent representative for normal data. The second best one

was one-class SVM, and its performance was almost the same as that of the
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Figure 7.7: ROC curve for NSL-KDD- dataset for differet algorithms

two-layer with the difference being false alarm rate. The high accuracy of

one-class SVM is based on a large number of support vectors that it gener-

ates. However, it creates an over-fitted model with high detection rate but

also high false alarm rate.

On the other hand, preserving and updating a large number of support

vectors are difficult tasks, especially in incremental and online applications.

The performance of the other methods was less than the two-layer structure

and one-class SVM while suffering from the complexity of applying the mod-

els to online environments. The space and time complexity of the proposed

approach will be discussed in the next section, showing that the two-layer

structure outperformed the other methods.
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There are many repeated instances in this dataset. This redundancy is

a normal behavior of computer networks as explained before. The result

verified that the two-layer approach was successful in reducing the repeated

instances. It also confirmed that reduction does not have any negative effect

on the false alarm and detection rates.
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Figure 7.8: ROC curve for DatasetMe dataset for different algorithms

Another real-world dataset generated was the IUSTSip dataset, with re-

sults shown in Figure 7.9. Similar to the other experiments, the performance

of the proposed method on this dataset was better than the other methods.

The two-layer structure had 94% detection rate and 4% false alarm rate while

the one-class SVM have 90% detection rate and 10% false alarm rate. The

false alarm rate of the approach was better than one-class SVM, since the
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proposed method presents better generalization in comparison to the other

methods. SPAI was the third best method. The other methods were below

average, with high false alarm and less detection rate.

As will be discussed in section 7.4, the computational cost of the proposed

method is lower than SPAI and one-class SVM algorithms. The results of

these experiments confirmed that in real situations, with all types of the

protocol running on the networks, the proposed method worked better than

the other algorithms.
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Figure 7.9: ROC curve for IUTSIP dataset for different algorithms

INRIASip dataset was also used to evaluate the proposed method on

another real SIP-based dataset. The result on this dataset (Figure 7.10)



CHAPTER 7. TWO-LAYER STRUCTURE 146

confirmed that the two-layer structure performed better than the other al-

gorithms in terms of false alarm and detection rate.
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Figure 7.10: ROC curve for INRIASip dataset for differet algorithms

Computational Complexity

The complexity of algorithms consists of space and time complexity. In the

following, the time and space complexity of all mentioned approaches are

discussed and it shown that the space and time complexity of the proposed

approach in terms of labeling new instances and updating stage are better

than other approaches.

Instead of assessing only the running time of algorithms, the approaches

were compared based on their algorithmic complexity.
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The best algorithms in terms of accuracy were selected and compared.

LOF and CBLOF algorithms do not generate sufficiently accurate results.

Moreover, LOF and CBLOF algorithms use the whole data to find the out-

lierness factor for each instance. As a result there is no point in adding them

in our comparisons.

Positive selection and RVNS algorithms use many instances to create an

acceptable result, which sometime goes up to the size of the training data.

Therefore, they are excluded from comparisons.

The GMM algorithm is not accurate enough to consider for further ex-

periments. The SPAI algorithm also uses a large number of instances to

generate accurate results, and it is not comparable to the proposed method

and is excluded from comparisons.

For time and space complexity comparisons, this leaves the one-class SVM

and the two-layer structure. The one-class SVM is a powerful algorithm for

classification. However, its high computational cost in the test phase makes it

difficult to use in large scale applications and online environments [Kang and

Cho, 2014]. Both the training and testing phases of SVM are time-consuming.

Standard SVM training has O(n3) time and O(m) space complexities, where

n is the training set size and m is the number of support vectors [Tsang et al.,

2005]. Test time prediction is linear in the number of features and support

vectors.

There are different approaches toward making SVM fast and applicable

to an online environment. Kang and Cho employed hybrid neural network

(HNN), to speed up the SVM algorithm, although this improvement in speed

decreases the accuracy [Kang and Cho, 2014]. Geebelen et al. presented a

new approach to decrease the number of support vectors by dividing up

the feature space, and obtaining the support vectors with a hard margin

[Geebelen et al., 2012].
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To make it clear, the decision function for labeling new instances, in both

SVM and two-layer structure are discussed in the following.

the decision function for SVM is 7.10:

f(x) = sgn(

n∑
i=1

αiyiK(x, xi) + b) (7.10)

where n is the number of support vectors. The labeling is linear in the

number of support vectors.

The GMM formula is shown in Equation 7.11.

g(x) =

n∑
i=1

wiNµi,Σi(x) (7.11)

where n is the number of GMMs. The labeling is linear in the number of

GMMs components.

As can be seen in Table 7.5, the one-class SVM used a lot of support

vectors to preserve the boundary of a class. There are two problems with

a large number of support vectors. First, labeling new instances would be

time-consuming. Second, the updating stage would be difficult with a large

number of support vectors. However, as shown in Table 7.5 the relative space

complexity of the two-layer structure was small. It represents all datasets

as a set of GMMs and all calculations to label new instances are simple for

finding a membership value for each GMM. Other than fast labeling of new

instances, the updating step would be also fast. According to Equation 7.11,

for KDDCUP99, there were 180 Gaussian components, and the calculation

was repeated 180 times, while using Equation 7.10 one class SVM runs similar

calculation 5106 times.
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DataSet two-layer structure One-class SVM

KDDCUP99 180*3 5106

Darpa98 300*3 47346

NSLKDDP 98*3 3765

NSLKDDM 110*3 4034

DataSetMe 56*3 2068

IUSTSip 287*3 45766

INRIASip 109*3 22344

Table 7.5: Memory usage of the one-class SVM and the two-layer structure

To show the efficiency of two-layer structure in removing redundant in-

stances, the two-layer structure is compared to CUGMM algorithm presented

in Chapter 7. The CUGMM method does not use the idea of two layers and

removing redundant instances. Table 7.6 shows the results of the compar-

isons of two-layer with CUGMM method on different datasets. To show the

difference better the bar charts on Figure 7.11 depicts the difference as well.

As shown in the result, the updating time of two-layer structure is 2 to

3 times less than CUGMM method. This reduction is the direct result of

ignoring redundant instances and using two-layer structure. To show the

difference better the bar charts on Figure 4.11 depicts the difference as well.

To make sure that the accuracy is not decreased the one-layer structure

(CUGMM) is compared to two-layers structure and the results on table 7.7

show that the result is almost the same.
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Dataset/Algorithm two-layer structure CUGMM (one-layer)

KDDCUP99 225sec 845sec

Darpa98 641sec 734sec

NSLKDDM 245sec 634sec

NSLKDDM 245sec 634sec

DataSetMe 125sec 301sec

IUSTSip 388sec 1261sec

INRIASip 325sec 811sec

Table 7.6: Updating time for the two-layer structure and CUGMM methods

Removing Noise

As mentioned, the proposed algorithm is noise-resistant. The first effect of

noise on a dataset is that it decreases the accuracy of the detection algorithm.

In the following, results are shown for the output of the algorithm with

incremental clustering over 10 rounds. The first dataset on the top left of

Figure 7.12 is the original dataset created syntactically. This dataset included

four main clusters, with the rest of the data represented in the data space

being just random noise added to the data. The clusters were generated with

random shape to show the ability of the algorithm to work with different

shapes of clusters. Each cluster was representative of a normal behavior in

the data space.

The top right figure in the Figure 7.12 depicts the result of running of the

algorithm for the first round, which created the initial clusters to be updated

in the next rounds. These clusters were representative of normal clusters

and they followed the shape of the initial normal clusters represented original
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Figure 7.11: Bar chart of updating time for the two-layer structure and

CUGMM methods

dataset. This means that each cluster was representative of the distribution

for each normal behavior.

In the second round more data were added, and these data included

the noise as well. In the third picture in Figure 7.12 in the second round

some data is added to the top left clusters. After updating and merging the

clusters, it is evident that the top left cluster was updated, and that noise

instances added to data were removed. The top left cluster has a more solid

outline, with less noise around its boundary.

During round five of updating, the bottom-left cluster was updated, and

the noise was in the previous figure was removed, with more solid boundaries

generated for that cluster. After five rounds, the algorithm still preserved the

shape of the clusters and made the boundaries of clusters even more concrete

with new incoming instances.

During the seventh round, the top right cluster was getting more instances

and also the algorithm removed more noise around this cluster. Most of the
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Figure 7.12: Incremental clustering in the first three rounds
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Figure 7.13: Incremental clustering in the fourth through seventh rounds
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Figure 7.14: Incremental clustering in the eighth through tenth rounds
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Dataset/Algorithm two-layer structure CUGMM (one-layer)

(DR,FA) (DR,FA)

KDDCUP99 (98, 2) (98, 1)

Darpa98 (96, 3) (94, 4)

NSLKDDM (85, 7) (84, 8)

NSLKDDM (67, 12) (65, 15)

DataSetMe (99, 4) (95, 8)

IUSTSip (95, 2) (95, 1)

INRIASip (96, 2) (95, 4)

Table 7.7: Detection and false alarm rate for two-layer structure and

CUGMM methods

noise instances that are depicted in the first figure were removed, although

with some noise still evident around the clusters.

The result of the incremental algorithm on the ninth round shows that

the bottom right clusters was the same as the original cluster,with little or

no noise around it. Some noise was added to this cluster however, although

there was less noise than in the original data. Moreover, the remaining noise

was mainly visible in the boundaries of clusters.

The noise instance cannot create a distribution close to one of the already

existing clusters. Therefore, in the merging step they are excluded for merg-

ing and are removed. This approach helps to remove any noise that may

make clusters divergent. Moreover, the redundant instances were removed in

each step based on the two-layer architecture. The result on the Figure 7.14

shows that this removal did affect the clusters.
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7.5 Conclusion

This chapter presented the entire two-layer structure for anomaly detection.

In this chapter the idea of removing redundant instances was introduced with

defining the coarse and fine levels. Since the main focus of this thesis is on

presenting a new incremental structure to work in an online environment,

the time a central focus. The addition of the coarse and fine levels helps the

structure to remove redundant instances with simple computations in the

fine level. Most of new instances are removed since, they have already been

accounted in the current model.

To test the accuracy of the structure, the false alarm and detection rate of

the proposed method were compared to those of other methods. The results

show that the proposed method increased the detection rate from 5% to 10%,

and the false alarm rate is decreased 5% to 15% over different data sets. The

closest performance to the proposed method was for one-class SVM, that has

training time of between O(n2) and O(n3) based on optimization and kernel

function, while the complexity of our algorithm is O(n2) in the worst-case,

where n is the size of dataset.

Also as it is mentioned the testing time of supprt vector machine depends

on the number of support vectors it generates. The result shows that to reach

the high accuracy the number of support vectors for one-class SVM is very

high. The experiments show that the two-layer structure is 20 to 50 times

faster than the one-class SVM in labeling new instances.



Chapter 8

Conclusion and Future work

In this thesis, a two-layer structure was presented for anomaly detection.

This two-layer structure first partitions data into some clusters. These

clusters are representative of normal behavior in a data space, with the as-

sumption that everything outside of these boundaries is abnormal. Therefore,

cluster representation is important.

To create boundaries for clusters, arbitrary shape clustering methods are

employed. Other clustering methods were considered as well, and the two-

layer structure does not depend on clustering approach. Labeling incoming

instances with a naive approaches is time-consuming. To solve this problem,

SGMM approach is proposed that represents each cluster as a GMM. GMM

representation of each cluster involves characterizing each cluster using a set

of means, covariances and weights to retain cluster distribution. The SGMM

algorithm presented in Chapter 4 uses a recursive function to find the number

of GMM components of a cluster automatically. With the GMM represen-

tation of a cluster, new incoming instance can be labeled quickly since the

instance is simply fed to a GMM formula and the resulting calculation of

membership value for each GMM is rapid. The GMM is just a summary, but

it is capable of generating the original data accurately. From summarization

157
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perspective, the SGMM is three times faster than the ABACUS method,

and memory usage is half that of the ABACUS method. However, the accu-

racy of the SGMM was not decreased despite the reduced time and memory

requirements.

The two-layer structure is intended for use in an online environment, for

which the main concerns are space and time complexity. To further decrease

the space and time complexity, a collective labeling approach was proposed in

Chapter 5 labels new incoming instances collectively. This enables updating

of clusters using clusters of new instances rather than updates based on

every new incoming instance. Based on collective labeling, new instances

are collected and then added to the appropriate clusters. The major step

in CPL algorithm was how to measure the distance between existing and

new clusters. As mentioned, the SGMM algorithm represents existing and

new clusters as a GMMs. As a result, distribution distance can be used to

measure the distance of new and current clusters, and thereby to find the

closest clusters.

There are various approaches available to measure the distance of two

GMMs which are typically used in the areas of signal and image processing.

A distance measure was presented in Chapter 5 as a means of measuring

distance between two clusters. Experiments on these methods show that

this approach was able to find the closest cluster with high accuracy. The

proposed CPL method increased the detection rate by 5% and false alarm

rate is decreased 10% over different datasets.

In Chapter 6, an incremental updating step was described. This incre-

mental structure uses an SGMM and CPL as its two primary components.

Based on the GMM representation of both current and new clusters, the

updating phase involves merging the two GMMs. This merging is based on

some well-studied formulas, presented in Chapter 6. In the experiments in
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Chapter 6, the whole structure using a GMM-based approach was shown

to outperform other approaches in terms of clustering goodness and accu-

racy in anomaly detection applications. The SSQ was decreased by 15% on

average over different datasets in comparison to Clustream and the basic

model. Based on different clustering indexes the the clusters accuracy of the

Clustream and basic models fluctuated between [0.4− 0.8] and [0.2− 0.7] re-

spectively, while the CUGMM had more stable clustering in different rounds.

The last step was to assemble the pieces of the this structure into two-

layer structure. As mentioned in Chapter 3, the important feature added to

this structure is its ability to remove redundant instances. In many appli-

cations, most of new incoming instances are redundant, and their presence

does not change the distribution. The first layer in two-layer structure labels

redundant instances with a simple calculation, and the second layer sends

new instances to the rag bag. The results show that removing redundant

instances did not negatively affect the accuracy of the algorithm, although

it had a beneficial effect on the speed of the algorithm. Experiments show

the false alarm rate is decreased from 5% to 15% among different datasets,

while the detection rate is increased from 5% to 10% in different datasets

with two-layer structure.

The memory usage for the two-layer structure is 20 to 50 times less than

that of one-class SVM. One-class SVM uses support vectors in labeling new

instances, while the labeling of the two-layer structure depends on the number

of GMMs. The experiments show that the two-layer structure is 20 to 50

times faster than the one-class SVM in labeling new instances. Moreover,

the updating time of two-layer structure is 2 to 3 times less than CUGMM

method. This reduction is the direct result of ignoring redundant instances

and using two-layer structure.

To summarize all design decisions and innovations proposed in the thesis:
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• Presenting a two-layer structure for anomaly detection

• Summarization based on GMM

• Finding number of GMM components automatically

• Collective labeling approach

• Introducing a new distance measure

• Cluster updating using GMM

• Removing redundant instances

• Decrease updating and labeling time

8.1 Limitations and Future Work

Despite these advances, there remain aspects which could be improved. The

overall structure created for anomaly detection is based on a GMM repre-

sentation, which may not be suitable in some applications. The amount of

time needed for clustering and GMM creation in the updating phase is an-

other area for improvement. The updating strategy could be improved by

considering different approaches for merging and splitting clusters. Each of

these is addressed in the following subsections.

8.1.1 Alternate Distribution Models

A Gaussian representation treats each internal cluster component as if gen-

erated from a normal distribution. This kind of representation is suitable

for many datasets, since a mixture of normal distributions is employed for

each cluster. However, other kinds of distribution could be considered. Aside
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from its Gaussian particulars, the entire two-layer structure could be suit-

able for use with other distributions, although a new distance measures and

representations would need to be considered.

8.1.2 Decreasing the Complexity of the Algorithm

Another limitation open to improvement is the running time of the algorithm.

The overall complexity of the algorithm is O(n2), based on finding distances

for all pairs of points. This type of calculation could be improved with using

a KD-tree approach [Moore, 1991]. Another complexity concern is cluster-

ing and GMM creation time for new clusters. To solve this problem, a new

distributed approach for clustering and GMM creation could be used. The

clustering algorithm used here, DBSCAN, has already been implemented in

a distributed version [He et al., 2011]. A new version of SGMM is being im-

plemented using the Hadoop in our research lab (KDD lab) at the University

of Ottawa, which could make the proposed algorithm scalable and suitable

for a large dataset. Note that the new version of SGMM implemented using

Hadoop generated comparable results to the non-distributed version.

8.1.3 Concept Drift Detection

Another avenue for improvement is the structure of the rag bag. In the

updating step, the algorithm reviews the data in the rag bag prior to updating

the current clusters. The proposed approach collects new instances in a rag

bag, using a fixed memory allocation. An alternative could focus on collecting

data in rag bag till detecting concept drift, rather than using a fixed memory

size. Concept drift detection can follow a variety of approaches, which can

be used to find an efficient time to update existing clusters with new clusters

in rag bag. A concept drift measure can be defined based on the distance
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between GMMs in the rag bag and existing GMMs. A simple approach would

be to find the average distance of new GMMs from their closest clusters. If the

distance is found to be above a threshold, the clusters are updated. A method

for comparing a covariance matrix and a mean matrix of GMMs introduced

in [Song and Wang, 2005] could be used to determine the similarity of current

and existing GMMs. This measure could be used as a basis for comparison

and detection of concept drift, and allow identification of a best time for

updating.

8.1.4 Improvements in Updating

The updating phase introduced in this thesis could be improved with better

updating strategies. The strategy in the model described in the thesis uses

a simple merging approach to update clusters. During updating, clusters

can change, and new clusters can be added to each current cluster. A way

to improve the model would be to develop a new strategy for merging and

splitting clusters. In the proposed method, new GMMs are added to current

GMMs, which increases the number of components. Two new approaches

could be used for removing or splitting GMM components.

For the first, those with small weights could be removed, so as to avoid

having GMM component quantities grow unreasonably. Alternatively, cur-

rent GMMs could be split into two or more GMMs, based on the number

of components and their weights. This approach would allow the GMMs to

create new normal patterns in data that are created by time [Arandjelovic

and Cipolla, 2005].

Another approach would deal with merging clusters. As GMMs grow,

they would need to be merged if their boundaries were close; they could

to be merged in such a way as to decrease the complexity associated with
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different clusters [Hennig, 2010].
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Appendix A

A.1 Acronyms

Acronym Definition

AIS Artificial Immune System

AR Autoregression

ARIMA Autoregressive Integrated Moving Average

CPL Collective Probabilistic Labeling

CUGMM Cluster Updating based on GMM

DBSCAN Density-Based Spatial Clustering of Applications with Noise

EM Expectation Maximization

GMM Gaussian Mixture Model

IDS Intrusion Detection Systems

LOF Local Outlier Factor

MA Moving Average

PCA Principle Component Analysis

RVNS Real-Value Negative Selection

SGMM Summarization based on Gaussian Mixture Model

StrDA Structured Denoising Autoencoder
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A.2 Cluster Validity Indexes

The most well-known clustering indexes include:

Silhouette

Silhouette is an internal cluster measure that defines good clustering as

being cohesive and well-separated. The formula for Silhouette is as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(A.1)

For instance i, a(i) is the average dissimilarity of i with all other data

within the same cluster, and b(i) is the lowest average dissimilarity of i to

any other cluster, of which i is not a member.

Rand measure

Rand index measures how similar clustering is to the original classes:

RI =
TP + TN

TP + TN + FN + TN
(A.2)

where TP is the number of true positives, TN the number of true nega-

tives, FP the number of false positives, and FN the number of false nega-

tives.

F-measure

F-measure includes the contribution of false negatives by weighting recall:
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Fβ =
(β2 + 1).P.R

β2.P +R

R =
TP

TP + FN

P =
TP

TP + FP
(A.3)

where P is the precision rate and R is the recall rate. Increasing β allocates

an increasing amount of weight to recall.

Jaccard index Jaccard index finds similarity between the clusters re-

turned by the clustering algorithm and the benchmark classifications.

J(A,B) =
|A ∩B|
|A ∪B|

(A.4)

where A is the cluster, and B is the original class. A higher value indicates

better clustering.

Fowlkes-Mallows index Fowlkes-Mallows index calculates the simi-

larity of clusters and a benchmark classification:

FM =
2

√
TP

TP + FP
.

TP

TP + FN
(A.5)

where TP is the number of true positives, TN the number of true nega-

tives, FP the number of false positives, and FN the number of false nega-

tives. The higher the value, the better the clustering.

Normalized Mutual Information (NMI)

Normalized Mutual Information employs information theory to measure
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how much information is shared between a cluster and a ground-truth clas-

sification:

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

(A.6)

where, I(X, Y ) denotes the mutual information between two random vari-

ables X and Y and H(X) denotes the entropy of X, X will be consensus

clustering while Y will be the true labels.

A.3 Clustering Goodness

The difference in clustering goodness between the original and regenerated

datasets based on different factors is represented in the Table A.1.

A.4 Clustering Performance of Different Al-

gorithms

The results of table A.2 are presented here, with detailed numerical values.
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