
A comparison study of similarity measures for
covering-based neighborhood classifiers

Fu-Lun Liua, Ben-Wen Zhangb, Davide Ciuccic, Wei-Zhi Wud,e, Fan Mina

aSchool of Computer Science, Southwest Petroleum University, Chengdu, Sichuan 610500,
PR China

bDepartment of Computer Science, Sichuan University for Nationalities, Kangding,
Sichuan 626001, China

cDISCo, University of Milano-Bicocca, viale Sarca 336/14, 20126 Milano, Italy
dSchool of Mathematics, Physics and Information Science, Zhejiang Ocean University,

Zhoushan, Zhejiang 316022, PR China
eKey Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province,

Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China

Abstract

In data mining, neighborhood classifiers are valid not only for numeric data
but also symbolic data. The key issue for a neighborhood classifier is how to
measure the similarity between two instances. In this paper, we compare six
similarity measures, Overlap, Eskin, occurrence frequency (OF ), inverse OF
(IOF ), Goodall3, and Goodall4, for symbolic data under the framework of a
covering-based neighborhood classifier. In the training stage, a covering of the
universe is built based on the given similarity measure. Then a covering reduc-
tion algorithm is used to remove some of these covering blocks and determine
the representatives. In the testing stage, the similarities between all unlabeled
instances and representatives are computed. The closest representative or a few
representatives determine the predicted class label of the unlabeled instance.
We compared the six similarity measures in experiments on 15 University of
California-Irvine (UCI) datasets. The results demonstrate that although no
measure dominated the others in all scenarios, some measures had consistently
high performance. The covering-based neighborhood classifier with appropriate
similarity measures, such as Overlap, IOF, and OF, was better than ID3, C4.5,
and the Näıve Bayes classifiers.

Keywords: Classifier, covering-based rough set, representative, similarity
measure.

1. Introduction

Covering-based rough sets [52] and neighborhood rough sets [50] are closely
related methodologies for knowledge representation [8, 25, 35, 55, 59], reduction
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[20, 41, 46, 51], classification [19, 22], and clustering [29, 34]. For knowledge
representation, Zhu [59] proposed topological-based covering construction, Qian
et al. [35] defined multi-granulation rough sets, Zhang et al. [55] presented
composite rough sets, and Chen et al. [8] proposed a rough set model for hybrid
data. For knowledge reduction, Yao et al. [51] classified all approximation
operators into three types, Wang et al. [46] defined two types of characteristic
matrices of coverings, Wang et al. [41] proposed a matrix-based method, and
Lang et al. [20] proposed a varying covering cardinalities method for dynamic
decision information systems. For classification, Li et al. [22] compared multi-
granulation rough sets and concept lattices through rule acquisition, Kumar
et al. [19] combined them with a support vector machine (SVM) and neural
network. For clustering, Prabhavathy et al. [34] proposed an approach based
on coverings instead of partitions. These theories have been combined with
other theories, such as fuzzy sets [26, 43], lattice theory [22, 40], and evidence
theory [7] to provide helpful results.

Covering-based neighborhood classifiers [1, 16, 23, 33, 44, 45, 48] have been
particularly successful in this field. Hu et al. [16] integrated an attribute re-
duction technique with classification learning under a uniform framework of a
neighborhood rough set model. Wang et al. [45] proposed an approach based
on the Kruskal–Wallis rank sum test and neighborhood rough set model for
gene reduction. Wang et al. [44] presented a subclass-weighted neighborhood
classifier for class imbalanced data. Yao et al. [33] constructed a hybrid SVM-
based credit scoring model through a neighborhood rough set. Usiobaifo et al.
[1] proposed a diabetes diagnosis model using a rough set and k-nearest neigh-
bor (kNN) classifier algorithm. Li et al. [23] proposed a neighborhood-based
decision-theoretic rough set model to process numerical data with noise. Xu et
al. [48] proposed an effective collaborative representation-based classification
algorithm.

Recently, Zhang et al. [53] built a representative-based classification (RC)
algorithm for symbolic data by combining model-based and instance-based ap-
proaches. In the training stage, the neighborhood of each labeled instance is
constructed. Unlike Hu et al.’s [15] approach, which only deals with numerical
data, the similarity measure is also valid for symbolic data. These instances of
which neighborhoods are retained after the blocks’ reduction are considered as
representatives. In the testing stage, the distances between unlabeled instances
and representatives are computed. The closest representative or a few repre-
sentatives determine the prediction of the class label of the unlabeled instance.
Compared with instance-based approaches, the new algorithm can store the
classification model (representatives) and reduce the computational complexity.
Compared with model-based approaches, the new algorithm can classify any un-
labeled instance that the existing model could not directly classify; that is, this
algorithm balances classification accuracy and computational capacity. Clearly,
the similarity measure is essential for the performance of the RC algorithm.

In this paper, we compare six similarity measures under the RC algorithm
framework: Overlap [30, 39], Eskin [10], Goodall3 [12], Goodall4 [12], occurrence
frequency (OF ) [17], and inverse OF (IOF ) [17]. As the simplest measure,
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Overlap [39] computes the similarity between two instances by counting the
number of attributes for which they match. Eskin et al. [10] further considered
the number of values taken by an attribute and proposed the Eskin measure.
If two instances mismatch on an attribute that takes many values, the Eskin
measure provides a higher sub-similarity compared with an attribute that takes
only a few values. The Goodall3 measure provides a high sub-similarity to
a match if the value is less frequent. As a variant, Goddall4 [6] provides a
high sub-similarity to a match if the value is more frequent. IOF and OF
are a pair of complementary measures. The IOF measure assigns a low sub-
similarity to mismatches on more frequent values, whereas the OF measure
assigns the opposite sub-similarity. These six measures were chosen for the
control experiment because they are representative of the entire set given in
[6]. Some of the other similarities, such as Goodall1, Goodall2, Smirnov, and
Burnaby, were not compared because they required another subtask for attribute
selection [56].

We selected 15 datasets from the University of California-Irvine (UCI) Repos-
itory of Machine Learning Databases [2]: Zoo, Promoters, Iris, Wine, Sonar,
Ionosphere, Dermatology, Voting, WDBC, Tic-Tac-Toe, Car, Kr-vs-kp, Wave-
form, Mushroom, and Penbased. The experimental results indicated that, while
no one measure outperformed the others for all datasets, the RC algorithm with
an appropriate similarity measure had consistently high performance. Among
the six measures, Overlap, IOF, and OF were better than the others. If the
training set was sufficiently large, the Overlap measure typically had a signif-
icant advantage over the IOF and OF measures. The Eskin measure made
the RC algorithm obtain the highest accuracies on some datasets; however, it-
s performance fell into the medium level. Exceptions were the Goodall3 and
Goodall4 measures, which never achieved the best classification accuracies on
these 15 datasets. By contrast, some datasets were not severely affected by the
similarity measures, such as Zoo, Wine, WDBC, and Penbased. Additionally,
the RC classifier with the Overlap measure even outperformed ID3 [36], C4.5
[37], and the Näıve Bayes [38] classifiers.

The remainder of this paper is organized as follows: In Section 2, we intro-
duce some preliminary information and redefine the neighborhoods. In Section
3, we discuss a representative generation algorithm and RC algorithm. In Sec-
tion 4, we conduct experiments to compare the classification precisions of the
RC algorithm with different similarity measures. Finally, in Section 5, we state
some conclusions from this research, and suggest further study ideas.

2. Preliminaries

In this section, we provide definitions of decision systems, indiscernibility
relations, similarity relations, neighborhoods, and covering. Moreover, we recall
the notion of the minimum threshold [53] that will be used to select represen-
tative elements in the RC algorithm.
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Table 1: Decision system.

U Sgpt Gammagt Alkphos Hepatitis
x1 low low low yes
x2 normal high middle no
x3 high low low no
x4 low low middle yes

2.1. Decision system

The concept of a decision system is widely used in data mining [9, 47] and
machine learning [2, 18, 31, 47]. Decision systems are fundamental for the
classification of rough sets.

Definition 1. A decision system S is a five-tuple:

S = (U,C, d, V = {Va |a ∈ C ∪ {d}}, I = {Ia |a ∈ C ∪ {d}}), (1)

where

1. U is a nonempty finite set of instances called the universe;

2. C is a nonempty finite set of conditional attributes;

3. d is the decision attribute;

4. Va is the set of values for each a ∈ C ∪ {d}; and

5. Ia: U → Va is an information function for each a ∈ C ∪ {d}.

In this paper, we consider decision systems where all attributes are nominal.
Table 1 lists a nominal decision system, where U = {x1, x2, x3, x4}, C = {Sgpt,
Gammagt, Alkphos}, d = Hepatitis, VSgpt = {low, normal, high}, VGammagt =
{low, normal, high}, VAlkphos = {low, middle, high} and VHepatitis = {yes, no}.

2.2. Indiscernibility and similarity relations

Rough set theory is based on the notion of indiscernibility among objects
which, based on conditional attributes, divides instances into classes with the
same characteristics. Formally:

Definition 2. [32] Let S be a decision system and A ⊆ C. The indiscernibility
relation induced by A is

IND(A) = {(x, y) ∈ U × U |∀a ∈ A, Ia(x) = Ia(y)}. (2)

Clearly, IND(A) is an equivalence relation that partitions universe U into e-
quivalence classes: [x]A = {y ∈ U |(x, y) ∈ IND(A)}. The lower and upper
approximations of X ⊆ U are defined as

lA(X) = {x ∈ U |[x]A ⊆ X}, (3)

uA(X) = {x ∈ U |[x]A ∩X 6= ∅}. (4)
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The lower approximation lA(X) represents the elements that definitely be-
long to X up to the available knowledge given by an attributes subset A, whereas
the upper approximation uA, contains those objects that possibly belong to X,
given knowledge A.

Now, let U/{d} = {X1, X2, . . . , X|Vd|}. That is, the universe is partitioned
into |Vd| decision classes. If two instances have the same conditional attribute
values, that is, are indiscernible with respect to C, but different decisions, we call
them contradictory instances. Decision systems with contradictory instances are
inconsistent. For simplicity, in this work, we do not consider such a scenario.
Thus, contradictory instances from U will be removed to form a new universe:
the so-called positive region, formally defined as

POSC(d) =
⋃

Xi∈U/{d}

lC(Xi). (5)

We observe that two instances in U fall into IND(C) if and only if they
have the same values on all attributes in C, according to Definition 2.

2.3. Similarity measures for nominal data

The indiscernibility relation is qualitative and does not comply with more
relaxed requirements than the equality of attributes. Thus, a similarity relation
is often used to describe the indiscernibility of objects and cluster them. Re-
garding nominal attributes, several similarity measures have been defined in the
past several years [6, 13], with the Overlap measure being the most commonly
used. Its popularity is perhaps related to its simplicity and realizability. In this
section, we introduce several other similarity measures for nominal data.

In most cases, similarity measures assign a similarity value to a pair of
instances x and y that belong to the decision system S as follows:

Definition 3. Let S = (U,C, d, V = {Va |a ∈ C ∪ {d}}, I = {Ia |a ∈ C ∪ {d}})
be a nominal decision system. The similarity between x, y ∈ U with respect to
∅ ⊂ A ⊆ C is

sim(x, y,A) =
1

|A|
∑
a∈A

subsima(Ia(x), Ia(y)), (6)

where subsima(Ia(x), Ia(y)) is the per-attribute similarity between two values
of nominal attribute a.

In the following context we also let sim(x, y) = sim(x, y, C). For brevity and
unambiguity, some notations will be redefined. Moreover, we need to identify
the characteristics of a nominal dataset. We enumerate the notation and its
characteristics for a nominal dataset as follows:

• The size of data N is used to represent the number of instances contained
in the decision system, that is, N = |U |. As one of the most important
pieces of information, N is used in all six measures.
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• The distribution of f(v) is defined as the number of times attribute a takes
value Ia(x) = v in decision system S. Note that if v /∈ Va, then f(v) = 0;
that is, it refers to the distribution of the frequency of values. This function
is significant for some measures that are sensitive to frequently occurring
attribute values.

• The distribution of p2(v) is a function that represents another probability
estimate of attribute a to take value Ia(x) = v in S and is given by

p2(v) =
f(v)(f(v)− 1)

N(N − 1)
. (7)

We provide the formulas for the similarity measures used in this paper.

1. Overlap:

subsima(Ia(x), Ia(y)) =

{
1, if Ia(x) = Ia(y);

0, otherwise.
(8)

The Overlap [30, 39] measure is one of most widely used measures because
of its simplicity. It only counts the number of attributes that match in
the two instances. The range of per-attribute similarities for the Overlap
measure is {0, 1}, with a value of 0 occurring when there is no match and
a value of 1 occurring when the attribute values match.

2. Eskin:

subsima(Ia(x), Ia(y)) =

{
1, if Ia(x) = Ia(y)
|Va|2
|Va|2+2 , otherwise.

(9)

Eskin et al. [10] considered the difficulty of matching in an attribute that
takes many values. The Eskin measure still provides similarity values
when this mismatch occurs; that is, this measure provides more weight to
mismatches that occur on attributes that take many values. The range of

per-attribute similarity for mismatches in the Eskin measure is [ 13 ,
N2

N2+2 ],
with the minimum value attained when attribute a takes only two values.

3. IOF :

subsima(Ia(x), Ia(y)) =

{
1, if Ia(x) = Ia(y);

1
1+log f(Ia(x))×log f(Ia(y))

, otherwise.

(10)
The IOF [17] measure assigns a lower similarity to mismatches on more
frequent values. The range of subsima(Ia(x), Ia(y)) for mismatches in the
IOF measure is [ 1

1+(log N
2 )2

, 1]. When a mismatch occurs, Va = 2, Ia(x)

and Ia(y) each occur N
2 times, and there is a minimum IOF similarity

value; if Ia(x) and Ia(y) occur only once, then there is a maximum IOF
similarity value.
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4. OF :

subsima(Ia(x), Ia(y)) =

{
1, if Ia(x) = Ia(y);

1
1+log N

f(Ia(x))
×log N

f(Ia(y))

, otherwise.

(11)
The OF [17] measure provides the opposite weighting of the IOF measure
for mismatches. The range of subsima(Ia(x), Ia(y)) for mismatches in the
OF measure is [ 1

1+(logN)2 ,
1

1+(log 2)2 ], with the minimum value attained

when Ia(x) and Ia(y) occur only once in the dataset, and the maximum
value attained when Ia(x) and Ia(y) occur N

2 times.
5. Goodall3 :

subsima(Ia(x), Ia(y)) =

{
1− p2(Ia(x)), if Ia(x) = Ia(y);

0, otherwise.
(12)

The Goodall3 measure is the same as the Goodall measure [12] on a per-
attribute basis. The main difference is that the Goodall3 measure takes
the average of the per-attribute similarities instead of combining the sim-
ilarities by taking into account dependencies between attributes. The
Goodall3 measure assigns a higher similarity to a match if the value is in-
frequent than if the value is frequent. The range of subsima(Ia(x), Ia(y))
for matches in the Goodall3 measure is [0, 1− 2

N(N−1) ], with the minimum

value attained if Ia(x) occurs only once and the maximum value attained
if Ia(x) is the only value of Va.

6. Goodall4 :

subsima(Ia(x), Ia(y)) =

{
p2(Ia(x)), if Ia(x) = Ia(y);

0, otherwise.
(13)

The Goodall4 measure is a variant of the Goodall measure. The Goodal-
l3 and Goodall4 measures are complementary; thus, the Goodall4 measure
assigns similarity 1 - Goodall3 for matches. The range of subsima(Ia(x), Ia(y))
for matches in the Goodall4 measure is [ 2

N(N−1) , 1], with the minimum val-

ue attained if Ia(x) occurs only once, and the maximum value attained if
Ia(x) is the only value of Va.

These similarity measures focus on different characteristics of the nominal
dataset. A pair of instances have obviously different per-attribute similarity
values for different measures. For example, Table 1 lists a decision system, and
the similarity values computed by different measures of each pair of instances
are listed in Table 2. It is clear that the similarity measures influence the
similarity values. The similarity relation is the first step toward (at least) two
generalizations of rough sets: relation and covering-based.

2.4. Neighborhood and covering rough sets
We now briefly introduce some concepts for covering rough sets. First, we

recall that a covering is a weaker notion of a partition that relinquishes the
requirement that the classes are disjoint.
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Table 2: Similarity matrix.

Overlap Eskin Goodall3 Goodall4 IOF OF
(x1, x1) 1.0000 1.0000 0.8888 0.1111 1.0000 1.0000
(x1, x2) 0.0000 0.8181 0.0000 0.0000 0.8918 0.5092
(x1, x3) 0.3333 0.8787 0.2777 0.0555 1.0000 0.6733
(x1, x4) 0.3333 0.8787 0.2777 0.0555 0.8918 0.7284
(x2, x2) 1.0000 1.0000 0.9444 0.0555 1.0000 1.0000
(x2, x3) 0.0000 0.8181 0.0000 0.0000 0.8918 0.5092
(x2, x4) 0.3333 0.8787 0.2777 0.1111 1.0000 0.6733
(x3, x3) 1.0000 1.0000 0.8888 0.0555 1.0000 1.0000
(x3, x4) 0.3333 0.8787 0.2777 0.0555 0.8918 0.7284
(x4, x4) 1.0000 1.0000 0.8333 0.1666 1.0000 1.0000

Definition 4. Given a universe U , a covering of U is a collection of sets Ci ⊆
P(U) such that ∪Ci = U , where P(U) is the power set of U .

A possible way to obtain a covering is through a similarity (instead of e-
quivalence) relation that clusters objects in similarity (instead of equivalence)
classes.

Definition 5. The neighborhood of x ∈ U with respect to similarity measure
sim : U × U 7→ R and threshold θ ∈ R is

N(x, θ) = {y ∈ U |sim(x, y) ≥ θ}. (14)

Clearly, the size of N(x, θ) is inversely proportional to threshold θ. In the
extreme case of θ equal to zero, all the instances are neighbors of x. Typically,
threshold θ is fixed a priori by the user. We are interested in automatically
assigning this value by selecting the minimum possible value of θ.

Definition 6. Let S = (U,C, d, V, I) be a nominal decision system and U/{d} =
{X1, X2, . . . , X|Vd|}. The minimum possible threshold value for x ∈ Xi is

θ∗x = min{θ|N(x, θ) ⊆ Xi}. (15)

Note that θ∗x is not specified by the user; instead, it is determined by decision
system S and instance x. This determines, in turn, the maximum possible
neighborhood of x.

Definition 7. The maximum neighborhood of x ∈ U is

N∗(x) = N(x, θ∗x). (16)

Fig. 1 illustrates the determination of θ∗x1
with the Overlap measure similari-

ty, where ‘+’ and ‘−’ represent two class labels. The training set is {x1, x2, . . . , x10},
there are five conditional attributes, and the set of candidate similarity values
is {1.0, 0.8, 0.6, 0.4 ,0.2, 0.0}. Fig. 1(a) shows the similarities between x1 and
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all other labeled instances. Fig. 1(b) shows that x5 is the most similar instance
of x1 with a different class label. We call x5 a boundary instance of x1. The
boundary similarity of x1 is simb(x1) = sim(x1, x5) = 0.6. Fig. 1(c) shows the
actual threshold θ∗x1

= simb(x1) + 1/|C| = 0.8; that is, instances with a higher
than or equal similarity to θ∗x1

have the same class labels as x1.

 = 1.0
x1

x2

x6

x4

x7

x3

x5

 = 0.8
 = 0.6

 = 0.4

 = 0.2

 = 0.0

x8

x9

x10

(a) Similarity computation

x1

x2

x6

x4

x7

x3

x5

x8

x9

x10

(b) Boundary determination

x1

x2

x6

x4

x7

x3

x5

*= 0.8

x8

x9

x10

(c) Threshold determination

Figure 1: Illustration of the threshold determination for x1.

Finally, it may occur that in a given covering, block Ci is the union of
some other block or the subset of another block. In some sense, we thus have
redundant information, which is a scenario that we may wish to avoid in ap-
plications. Indeed, several notions of covering reduction have been proposed in
the literature [49]. We are interested in obtaining a so-called genuine covering
[4, 5] by maximizing the size of the neighborhoods and thus eliminating small
(redundant) classes.

Definition 8. Let C = {Ci} be a covering of set U . Set Ci ∈ C is redundant if
it is a subset of another set Cj ∈ C. A reduct of C is the covering obtained by
eliminating redundant sets from C.

3. Algorithm design

In this section, we follow the framework proposed in [53] to design our algo-
rithms for different similarity measures. All algorithms have two subroutines:
representative generation and RC. These subroutines are executed successively.

3.1. Representative generation

In this subsection, we describe the representative generation algorithm. There
are two stages:

1. Neighborhood construction stage. Based on Definition 7, the maximum
neighborhood of each instance is constructed.

2. Representative selection and redundancy removal stage. A greedy ap-
proach is designed to select a set of representatives whose neighborhoods
cover the training set.
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Algorithm 1 Representative generation RG

Input: Decision system S = (U,C, d, I, V ).
Output: Representative instances set Y and covering CR = {(x, θ∗x)|x ∈ Y }.
Constraint: Y ⊆ U and

⋃
CR = POSC(d).

Optimization objective: Minimize |Y |.

1: Y = ∅, CR = ∅;
2: Compute Va, where a ∈ C;
3: Compute f(v), where v ∈ Va;
4: Compute sim(x, y), where (x, y) ∈ U × U ;
5: for (each x ∈ U) do
6: θ∗x = 0;
7: for (each x ∈ U) do
8: for (each y ∈ U) do
9: if ((d(x) 6= d(y)) ∧ sim(x, y) ≥ θ∗x) then

10: θ∗x = sim(x, y);
11: end if
12: end for
13: end for
14: end for
15: for (each x ∈ U) do
16: N∗(x) = ∅;
17: for (y ∈ U) do
18: if (sim(x, y) > θ∗x) then
19: N∗(x) = ∪{y};
20: end if
21: end for
22: end for
23: Compute U/{d} = {X1, X2, . . . , X|Vd|};
24: for (i = 1 to |Vd|) do
25: X = Xi;
26: while X 6= ∅ do
27: Select x ∈ U ∩Xi st. |N∗(x) ∩X| is maximum;
28: Yi = Yi ∪ {x};
29: X = X −N∗(x);
30: end while
31: end for
32: CR = {(x, θ∗x)|x ∈ Y };
33: Return Y and CR.

Algorithm 1 lists the representative generation algorithm. There are four
steps that correspond to data preprocessing, threshold computation, neighbor-
hood computation, and representative selection.
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Lines 1–4 show the data preprocessing step. Different similarity measures
need relevant information about the dataset. We compute the number of values
|Va| of each conditional attribute a ∈ A for the Eskin measure. Distribution f(v)
of each value is computed for the Goodall3, Goodall4, IOF, and OF measures.
Then, the similarity of each pair of instances can be computed.

Lines 5–14 show the process of threshold computation. For each instance
x, we determine the most similar instance y with a different class label, and
sim(x, y) is the boundary similarity. The candidate similarity value nearest to
and greater than sim(x, y) is assigned to threshold θ∗x. This threshold ensures
that the similar instances that have greater similarity values to x have the same
class labels. This process is illustrated in Fig. 1.

Lines 15–22 show the process of neighborhood computation. When the
threshold of instance x is computed, the neighborhood of x is also determined.
Any instance whose similarity to x is greater than θ∗x is a neighbor of x, and all
these neighbors constitute the neighborhood.

Lines 23–31 show the process of representative selection. With the neighbor-
hood of each instance determined, the next issue is to select the representatives
from these labeled instances. To minimize the number of neighborhoods, we
adopt a greedy-based strategy to remove some useless instances. Line 23 indi-
cates that U is divided into several positive areas POSC(d) using the decision
attribute. As Fig. 2 shows, X is the current positive area, which is composed
of several covering blocks (neighborhoods) A–Z, and expressed as a 5 × 5 grid.
Among these covering blocks, block A (3 × 3), block B (3 × 2), and block C
(2 × 2) are the three largest blocks. At the beginning, X is empty, and block
A can cover most grids compared with other blocks. When block A covers X,
block B is the largest block. However, block C is selected to cover the X second
instead of block B because block C can cover four uncovered grids and block B
can cover only three uncovered grids; that is, the number of newly covered grids
determines which block is selected to cover the positive areas POSC(d) instead
of the block size. Lines 26–30 correspond to this greedy covering process. In this
manner, we can always select the most-covered block, and this operation does
not stop until these positive areas are completely covered. Blocks that involve
covering positive areas are retained and other blocks are removed. Thus, the
core instances of these blocks are marked as representatives.

Proposition 1. The computational complexity of Algorithm 1 is O(n2(p+m)),
where n is the number of instances, m is the number of conditional attributes,
and p is the number of representatives.

Proof. The time complexity is determined for the four components of Algo-
rithm 1.

1. Algorithm 1 with different similarity measures has different time com-
plexities. For the Overlap measure, the algorithm does not need extra
statistical information. For the Eskin measure, the algorithm needs the
number of values of each attribute, but this information is provided by the
dataset. However, the other four measures need distribution f(v), which
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Figure 2: Illustration of the greedy selection strategy.

Table 3: Computational complexity of Lines 1–4.

Measure Computation times Computational complexity Note

Overlap nm(n−1)
2 O(n2m) –

Eskin nm(n−1)
2 O(n2m) number of values

Goodall3 nm(n+1)
2 O(n2m) frequency of occurrence

Goodall4 nm(n+1)
2 O(n2m) frequency of occurrence

IOF nm(n+1)
2 O(n2m) frequency of occurrence

OF nm(n+1)
2 O(n2m) frequency of occurrence

is contained in the dataset, and we need to spend more time computing
this statistical information. The similarities of each pair of instances are
computed, that is, every instance needs to be compared with the other
(n− 1) instances on each attribute. It is noteworthy that these measures
are symmetric, that is, sim(x, y) = sim(y, x). Moreover, the time com-

plexity for sim(x, y) computation is O(nm(n−1)
2 ) for all these measures. To

obtain the information of distribution f(v), we need to traverse universe
U and add n×m computations. Thus, the Goodall3, Goodall4, IOF, and
OF measures need more than n×m times computations than the Overlap
and Eskin measures. Despite that, O(n2m) is the computational com-
plexity for all these similarity measures. Table 3 lists the aforementioned
information.

2. As described in Algorithm 1 lines 5–14, the most similar but contradictory
instance determines threshold θ∗. When the similarity matrix has been
computed, we determine threshold θ∗ using a sequential search approach;
that is, there are n similarity values that need to be compared for each
instance. Hence, the time complexity is O(n2) in this step, regardless of
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which similarity measure is adopted.

3. Third, as described in Algorithm 1 lines 15–22, any instance y belongs
to N∗(x) if sim(x, y) > θ∗x. The similarities between instance x and the
other instances should be compared with θ∗x. When the neighborhood of
each instance is determined, there are n× (n− 1) times calculations that
should be performed, and the time complexity is O(n2).

4. A greedy strategy is used to select the representatives. We must compare
the neighborhoods of these instances before we select the first representa-
tive. These different positive areas POS(d) comprise universe U , and to
cover a corresponding positive area, n times calculations should be per-
formed. When we select the second instance, we need to compare the
neighborhoods of the remaining instances. When p representatives are

selected, we need to execute n+ (n− 1) + . . .+ (n− p+ 1) = np(2n−p+1)
2

times comparisons in total. Generally, number of representatives p is far
fewer than number of instances n, and the time complexity in this step is
O(n2p).

2

To summarize, let n be the number of instances, m the number of attributes
in the training set, and p the number of representatives. Because p ≤ n, the
time complexity of Algorithm 1 is

O(n2m) +O(n2) +O(n2) +O(n2p) = O(n2(p+m)). (17)

3.2. Representative-based classification

The RC algorithm considers each representative and its neighborhood as
a decision rule. If a new instance is located in one or a few neighborhoods,
the decision rules of these neighborhoods determine the predicted class label.
Otherwise the rule-based approach [58] is useless. Therefore, the RC algorithm
is inspired by the kNN algorithm; thus, a kNN-like approach is used to solve
this problem.

The core issue of kNN-like algorithms is the distance definition or function.
For most kNN-based classification algorithms, the distance is usually replaced
by a similarity. However, in the RC algorithm, the roles of selected represen-
tatives are different; a powerful representative usually has a greater effect on
classification. The differences are reflected in neighborhood threshold θ∗; a s-
maller threshold means a stronger generalization ability. Let R be the set of
representatives. The distance between unlabeled instance x′ and representative
x ∈ R is

distance(x′, x) =
1

sim(x′, x)
− 1

θ∗x
. (18)

In this Euclidean space, according to Equation 18, a negative distance means
that x′ is located in the neighborhood of x; otherwise x′ is out of the range of
this neighborhood.
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Figure 3: Distance between test instances and representatives.

Moreover, only the closest representatives have the permission to predic-
t the class label. The minimum distance between unlabeled instance x′ and
representatives x is defined as

mds(x′, R) = min{distance(x′, x)|x ∈ R}. (19)

The set of electoral representatives is then

E(x′) = {x ∈ R|distance(x′, x) = mds(x′, R)}. (20)

This distance function considers not only similarity but also minimum neigh-
borhood threshold θ∗, which is an input of the problem. Note that the distance
cannot simply be interpreted as that in Euclidean space. It may be negative or
zero, which means that x′ is in the range of N∗(x). If the distance is positive,
then x′ is beyond the control range.

If there is more than one electoral representative, then they predict the class
label of x′ in concert. For example, three-way decision models [11, 24, 54], the
standard voting method, or other approaches can be implemented to solve this
conflict. In this case, with set of electoral representatives E, the predicted class
label of x′ is

d′(x′) = arg max
1≤i≤|Vd|

|{x ∈ E(x′)|d(x) = i}|. (21)

Note that we select just one representative, but in some other contexts it
could be useful to return to the user the entire list of possible labels as a type of
upper approximation, which is typical of rough set approaches. For instance, a
physician could be interested in knowing not only a specific illness automatically
detected given some clinical tests, but a set of possible illnesses on which to
restrict his/her attention.

In Fig. 3, it is easy to observe that there are three representatives and two
class labels: ‘+′ and ‘−′. As an outlier, x3 does not fall into any neighborhood of
these representatives. However, the distance between x3 and r1 is the shortest,
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Algorithm 2 Representative-based classification RC)

Input: Unlabeled instance x′, set of representatives R, and covering
CR = {(x, θ∗x)|x ∈ R}.
Output: Predicted class label of x′.

1: DIS = 0;
2: MDS = MAX VALUE;
3: E = ∅;
4: for (each x ∈ R ) do
5: Compute sim(x′, x);
6: Compute distance DIS = distance(x′, x) according to Equation (18);
7: if (DIS < MDS) then
8: MDS = DIS;
9: E = {x};

10: else {(DIS = MDS)}
11: E = E ∪ {x};
12: end if
13: end for
14: Compute d′(x′) according to Equation (21);
15: Return d′(x′).

and the class label of x3 is consistent with r1. For x2, it falls into the neigh-
borhood of r2, and has the same class label as r2. Thus, the unlabeled instance
is assigned the class label of the only electoral representative. By contrast, x1
falls into the neighborhoods of r1 and r2 at the same time, and it has the same
shortest distance as r1 and r2. Hence, r1 and r2 are the electoral representatives
to predict the class label of x1 using the vote method.

Algorithm 2 provides the processes for the RC algorithm. The representa-
tive with less than the MDS distance can be viewed as a candidate electoral
representative. Any much closer representative resets electoral representative
set E. Lines 7–12 show that the RC algorithm ensures that only the electoral
representatives can be retained.

Proposition 2. The computational complexity of Algorithm 2 is O(pm), where
p is the number of representatives and m is the number of conditional attributes.

Proof. In Algorithm 2, each unlabeled instance should be compared with all
representatives. The distance between an unlabeled instance and representa-
tives is based on their similarity. Regardless of which similarity measure was
adopted in the training stage, the similarities between an unlabeled instance
and representatives are computed using the Overlap measure. For each similar-
ity calculation, m conditional attributes should be computed. The time cost of
generating this similarity vector is p×m. The time complexity of determining
the electoral representatives is O(p). Thus, there are p × (m + 1) times com-
putations that should be executed, and the time complexity of Algorithm 2 is
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O(pm).

2

4. Experimental evaluation

In this section, we conduct a series of experiments to address the following
questions:

1. What type of similarity measure is more appropriate for the RC algorithm?

2. How do the similarity measures influence the classification?

3. Does the RC algorithm with an appropriate similarity measure outperform
classical classification algorithms?

4.1. Experimental setup

Experiments were undertaken on 15 real-world datasets from the UCI Repos-
itory of Machine Learning Databases [2]. The details about these 15 experi-
mental datasets are listed in Table 4. Among these datasets, Ionosphere, Iris,
Penbased, Sonar, WDBC, Waveform, and Wine are continuous. Because the
RC algorithm was designed for nominal or categorical datasets, the continuous
datasets were pre-discretized using the WEKA [14] software tool. Note that all
these datasets had only one decision attribute, as mentioned previously. When
we counted the number of attributes, the conditional and decision attributes
were included. Moreover, experiments were conducted on a training-testing s-
cenario; the class label of the testing instance was invisible until its class label
was predicted.

The general experiment was same for each dataset. Each dataset was divided
into two parts randomly using a given division percentage: one used for the
training set and the other for the testing set. We linearly increased the scale
of the training sets to obtain their classification trends using the RC algorithm.
For different datasets, we adopted different division percentages. To help this,
the number of instances was used to determine the division strategy. Car, Kr-vs-
kp, Waveform, Mushroom, and Penbased have more than 1,000 instances, and
we varied the proportions for these data from 0.01 to 0.1 in increments of 0.01.
Other datasets were relatively small, and we varied the proportions of them from
0.05 to 0.5 in increments of 0.05. We conducted 100 repeated experiments for
each dataset for each division and computed the average classification accuracy.

4.2. Results

In the training stage, similarities between instances were computed for every
measure. In the testing stage, the conditions for computing the Eskin, Goodall3,
Goodall4, IOF, and OF measure similarities were unavailable. Because only the
set of selected representatives were retained, compared with the training set,
the knowledge of the distribution and frequency of the representatives was com-
pletely different; that is, the similarities between representatives and unlabeled
instances were computed using the Overlap measure.
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Table 4: Description of the 15 UCI datasets.

Data set Domain Instance Attribute Class
Zoo UCI Life 101 17 8
Promoters UCI Life 106 58 2
Iris UCI Life 150 5 3
Wine UCI Physical 178 14 3
Sonar UCI Physical 208 61 2
Ionosphere UCI Physical 351 34 2
Dermatology UCI Life 366 34 6
Voting UCI Social 435 17 2
WDBC UCI Life 569 31 2
Tic-Tac-Toe UCI Game 958 10 2
Car UCI N/A 1,728 7 4
Kr-vs-kp UCI Game 3,196 37 2
Waveform UCI Physical 5,000 22 3
Mushroom UCI Life 8,124 23 2
Penbased UCI Computer 10,992 17 7

Fig. 4 illustrates the average classification accuracies at each given per-
centile. With increasing numbers of training instances and decreasing testing
instances, the classification accuracies should have improved in theory. From
Figs. 4 (a) to (o), all the similarity measures adopted in the RC algorithm
corresponded to this trend, except the Goodall4 measure. For example, with a
large training set, the Goodall4 -based RC algorithm had a lower classification
accuracy, illustrated in Figs. 4 (d), (f), (h), and (i). Moreover, on the remaining
datasets, the classification trends were unusual, and seemed to be independent
of the scale of the training set. The results demonstrate another significant
phenomenon: the classification trend of the Goodall3 -based RC algorithm was
similar to that of other measures, but the values were lower than theirs at each
point (i.e., Zoo, Wine, WDBC, and Mushroom). For the other similarity mea-
sures, there was no common or significant difference between them for either
their accuracy trends or values.

While the changing trend is one important factor, accuracy is as important.
Table 5 lists the accuracy information of these datasets for different similarity
measures. To help the comparison and analysis, the best classification results
are shown in bold. It needs to be stressed that each accuracy value is the aver-
age value of 10 experiments, with the different given division percentages. For
example, 0.8554±0.221 is the average value of 10 accuracies computed when the
scale of the training set is 0.05, 0.1, · · · 0.5. The deviation value describes the
difference between the best and worst accuracies. A higher average accuracy in-
dicates better veracity, and a lower deviation indicates better stability. From the
information in Table 5, the Goodall3 -based and Goodall4 -based RC algorithms
outperformed no other algorithms; there was no dataset that obtained the best
classification using these two algorithms. We found that the Overlap-based RC
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algorithm obtained its best classification results on five datasets and outper-
formed other similarity measures. Additionally, the OF -based, IOF -based, and
Eskin-based RC algorithms obtained the highest accuracies on four, three, and
three datasets, respectively.

The Overlap measure appears to be the most appropriate measure for the
RC algorithm if we count the best results in Table 5. However, this simple
statistical result is not strong evidence to demonstrate the superiority of the
Overlap measure. Through observation, some different measures can obtain
classification results that are very close to the best results. Moreover, the gap
between some accuracies is significant. Thus, we used the mean accuracy and
mean rank to evaluate the performance of these measures. We ranked and
assigned the six similarity measures using their accuracies: the best measure
was assigned 1, the second-best was assigned 2, and so on. Another aspect to
note is that if the difference between two accuracies was less than 1%, then these
two measures had the same ranking and were assigned the same score. Then,
the differences between all of these accuracies were amplified. According to the
mean rank, the IOF measure was followed by the Overlap, OF, Eskin, Goodall3,
and Goodall4 measures. Through statistical analysis, the mean accuracy of the
IOF -based RC algorithm was 0.8568 ± 0.120, and the mean rank was 1.6000.
Among all these measures, IOF was the most appropriate measure for the RC
algorithm. By contrast, the Overlap and IOF measures were comparable with
the OF measure, for both their mean accuracies and mean ranks.

Combining the general conclusions from Fig. 4 and Table 5, we can answer
the first question: The Overlap, OF, and Eskin measures are good candidate
measures, and the IOF measure is more appropriate for the RC algorithm.

The classification differences come from both the training and testing stages.
Figs. 5 and 6 illustrate the similarity measure influences from the training and
testing stages, respectively. In the training stage, the most similar contradictory
instance determined threshold θ of each labeled instance. As Fig. 5 shows, θ∗ri
was 0.6, the next candidate threshold 0.5 was not valid because the 0.5 threshold
made representative r1 contain some contradictory instances that belonged to
N∗(r2) or N∗(r3). Hence, with this similarity measure, four instances were
selected as the representatives. However, another measure generated a candidate
threshold of 0.55, so that N∗(r1) could cover N∗(r4), and finally, three instances
were selected as representatives. In the testing stage, the distances computed
using similarities and thresholds determined the class label prediction. As Fig.
6 shows, unlabeled instance x had the same minimum distance from r1 and
r3 based on the similarity measures. If we replaced the measure, unlabeled
instance x had only one minimum distance from r3, and the class label prediction
was changed. Generally, these different similarity measures calculate different
thresholds and influence the classification.

Because these similarity values were computed from different measures, it is
unfair to compare these values directly. For example, the similarity of the Eskin
measure belongs to [1/3, 1] and the similarity of the Overlap measure belongs
to [0, 1]. Two instances that have an Eskin measure similarity value of 0.5 may
be not more similar than two instances that have an Overlap measure similarity
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value of 0.4. To compare these similarities, we set up an equivalent model of
the above similarities that referred to the Overlap measure. We determined the
boundary instances of one representative using one of these similarity measures,
and we recomputed the Overlap measure similarities between those instances.
Hence, we normalized the similarity values of the boundary instances based on
the Overlap measure. Let the Eskin similarity between a boundary instance x
and a representative y be 0.8, the Overlap similarity might be 0.6. Similarly,
we recomputed the IOF, OF, Goodall3, and Goodall4 measures with respect to
the Overlap measure, which were 0.45, 0.55, 0.51, and 0.55, respectively. Thus,
we compared these different similarities in a fair manner.

For simplicity, we used the largest training set (50% for smaller datasets and
10% for larger datasets) for the experiment and statistics. Fig. 7 illustrated
the initial and converted average values of the thresholds. These converted
thresholds apparently make no great difference compared with the initial values;
however, a small difference can make a widely different classifier. Additionally,
Fig. 7 only shows the average θ values on the largest training set; for the
individual representatives, the differences were more significant. The Goodall4
measure obtained the minimum average thresholds on 13 datasets, except for
Iris and Tic-Tac-Toe. Combined with Table 5, Goodall4 was the worst measure
for the RC algorithm. For other measures, those that obtained the maximum
average threshold almost obtained the best classification accuracies, such as Zoo,
Promoters, Sonar, Ionosphere, Voting, WDBC, Car, Waveform, and Mushroom.
Thus, for the Eskin, Overlap, IOF, and OF measures, the higher the threshold
value, the higher the classification accuracy. We can answer the second question
regarding how the measures influence the classification accuracy by generating
different representatives.

We analyzed the classification trends when the scale of the training set was
continuously enlarged. IOF was the most appropriate similarity measure for
the RC algorithm when the training set was small. To verify whether the
RC algorithm with different similarity measures outperformed other classical
classification algorithms (i.e., ID3, C4.5, and Näıve Bayes), the 10-fold cross-
validation method [3] was applied to all the experimental datasets. Table 6
shows the details of these experiments. The best classification results for the
RC classifier with different measures are shown in italics, and the best classifi-
cation results of the nine classifiers is shown in bold. We ranked and assigned
these classifiers using their values; the strategy was the same as that mentioned
previously. Clearly, Näıve Bayes achieved the highest accuracy on seven out
of the 15 datasets, which was better than ID3 and C4.5. However, the Näıve
Bayes classifier was worse than the Overlap-based RC classifier, considering the
mean accuracy and mean rank. This phenomenon indicates that some classi-
fiers outperformed slightly on some datasets, but had significant disadvantages
on other datasets. For RC-based algorithms, the Overlap, IOF, and OF mea-
sures performed similarly, and the Overlap measure was better than the other
two measures. According to the mean accuracy, the RC algorithm with the
Overlap measure outperformed the classical algorithms: the RC algorithm with
the IOF measure was better than ID3 and Näıve Bayes, and was comparable
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to C4.5. Thus, we can answer the third question regarding whether the RC
algorithm with an appropriate similarity measure is better than some classical
classification algorithms.

Table 6: Average classification accuracies using 10-fold cross-validation.

Data set
Accuracy

RC
ID3 C4.5 Näıve Bayes

Overlap Eskin Goodall3 Goodall4 IOF OF
Zoo 0.9504 0.9286 0.7346 0.5609 0.9453 0.9334 0.9661 0.9241 0.9387

Promoters 0.8496 0.8089 0.8392 0.5000 0.8296 0.8191 0.7440 0.7863 0.9113
Iris 0.9400 0.9593 0.9226 0.7026 0.9566 0.9606 0.9446 0.9366 0.9500

Wine 0.9775 0.9736 0.8818 0.3997 0.9701 0.9787 0.9573 0.9298 0.9882
Sonar 0.9115 0.8687 0.9055 0.7858 0.9066 0.8777 0.7410 0.8366 0.9365

Ionosphere 0.9299 0.8561 0.9148 0.3589 0.9373 0.9162 0.9088 0.9201 0.9017
Dermatology 0.9153 0.9513 0.5683 0.5576 0.9407 0.9608 0.9211 0.9418 0.9784

Voting 0.9292 0.9018 0.9243 0.6088 0.9319 0.9183 0.9361 0.9521 0.9007
WDBC 0.9622 0.9588 0.9045 0.7987 0.9655 0.9620 0.9481 0.9578 0.9583

Tic-Tac-Toe 0.9532 0.9615 0.8622 0.6535 0.9109 0.8948 0.8524 0.8525 0.6963
Car 0.8526 0.6658 0.7017 0.7002 0.7614 0.7799 0.8976 0.9245 0.8560

Kr-vs-kp 0.8573 0.8596 0.6404 0.6540 0.8530 0.8583 0.9964 0.9943 0.8774
Waveform 0.7938 0.7464 0.8019 0.4997 0.7768 0.7480 0.7358 0.7765 0.7934
Mushroom 0.9999 0.9959 0.9176 0.8356 1.0000 1.0000 1.0000 1.0000 0.9547
Penbased 0.9651 0.9662 0.9638 0.1331 0.9643 0.9707 0.9414 0.9496 0.8574

Mean Accuracy 0.9191 0.8935 0.8322 0.5832 0.9100 0.9052 0.8993 0.9121 0.8999
Mean Rank 2.2666 3.9333 5.4000 8.7333 2.6000 3.2666 4.8666 3.9333 3.5333

5. Conclusion and further work

In this paper, we compared the classification accuracy of the RC algorithm
with six similarity measures. For the RC algorithm, classifier generation and
label prediction were based on the similarities between instances. Although
these measures have their own focuses, the core methods of influencing the
classification are the same.

Based on the experimental results in Tables 5 and 6, the RC algorithm with
the Goodall3 measure performed better when the training set was sufficiently
large. However, the RC algorithm with the Goodall4 measure had a poor ability
to classify, regardless of the dataset or scale of the training set. Thus, we can
conclude that the Goodall3 measure is more appropriate for the RC algorithm
when the training set is very large, and the Goodall4 measure is inappropriate for
the RC algorithm. Similarly, the Goodall3, Goodall4, IOF, and OF measures
are all concerned with the frequency of attribute values, and the latter two
outperformed the former two in most cases. Therefore, if the frequency of
attribute values should be considered, then the IOF measure may be the most
appropriate similarity measure for the RC algorithm. The RC algorithm with
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the Eskin measure typically obtained better accuracies on the Zoo, Tic-Tac-
Toe, and Iris datasets. These three datasets have similar or the same number
of values of conditional attributes. When the dataset had the same or similar
numbers of values for each of its conditional attributes, the Eskin measure was
the most appropriate measure for the RC algorithm. By contrast, if there was no
particular requirement, then the Overlap measure was the best choice because
of its stability and universality. Additionally, there was no measure that was
applied to every dataset; an appropriate measure should be analyzed in each
specific case.

In future work, other scenarios can be considered, such as the cost-sensitive
[27, 28, 21, 57] scenario and active learning [42] scenario. We also plan to
compare the similarity measures with inconsistent datasets or missing value
datasets. Finally, we would like to design a mechanism to determine the most
appropriate similarity measure for the RC algorithm.
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Figure 4: Comparison of average accuracies for six similarity measures.
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(g) Dermatology
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(j) Tic-Tac-Toe
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(k) Car

Overlap Eskin Goodall3 Goodall4 IOF OF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The average theta values

T
he

 d
iff

er
en

t s
im

ila
irt

y 
m

ea
su

re
s

 

 

Theta of overlap
Theta of repective measure
   y min
   y max

(l) Kr-vs-kp
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(m) Waveform
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(n) Mushroom
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Figure 7: Comparison of average θ values for six similarity measures.
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