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Abstract

The predictive performance of traditional supervised methods heavily de-
pends on the amount of labeled data. However, obtaining labels is a difficult
process in many real life tasks, and only a small amount of labeled data is
typically available for model learning. As an answer to this problem, the con-
cept of semi-supervised learning has emerged. Semi-supervised methods use
unlabeled data in addition to labeled data to improve upon the performance
of supervised methods.

It is even more difficult to get labeled data for data mining problems
with structured outputs, since several labels need to be determined for each
example. Multi-target regression (MTR) is one type of a structured output
prediction problem, where we need to simultaneously predict multiple contin-
uous variables. Despite the apparent need for semi-supervised methods able
to deal with MTR, only few such methods are available and even those are
difficult to use in practice and/or their advantages over supervised methods
for MTR are not clear.

This paper presents an extension of predictive clustering trees for MTR
and ensembles thereof towards semi-supervised learning. The proposed me-
thod preserves the appealing characteristic of decision trees, while enabling
the use of unlabeled examples. We perform an extensive empirical evalua-
tion in both an inductive and a transductive semi-supervised setting. The
results show that the proposed method improves the performance of super-
vised predictive clustering trees and enhances their interpretability (due to
reduced tree size), whereas in the ensemble learning scenario, it outperforms
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its supervised counterpart in the transductive setting. The proposed meth-
ods have a mechanism for controlling the influence of unlabeled examples,
which makes them highly useful in practice: This mechanism can protect
them against a degradation of performance of their supervised counterparts
– an inherent risk of semi-supervised learning. The proposed methods also
outperform two existing semi-supervised methods for MTR.

Keywords: Semi-supervised learning, Multi-target regression, Structured
outputs, Predictive Clustering Trees, Random forests

1. Introduction1

In supervised learning, the goal is to learn, from a set of examples with2

known labels, a function that outputs a prediction for a previously unseen3

example. Supervised algorithms often need a large amount of labeled data4

to obtain satisfactory predictive performance. However, in many real life5

problems, only a few labeled examples are available to learn from, due to ex-6

pensive and/or time-consuming annotation procedures. The concept of semi-7

supervised learning (SSL) emerged in the 1970’s as an answer to this problem8

[12]. Semi-supervised algorithms use unlabeled examples (often freely avail-9

able in vast amounts), in addition to labeled ones, in order to achieve better10

performance than algorithms using only labeled examples.11

Independently from the development of SSL, the need to mine knowledge12

from structured data was recognized as a machine learning problem of great13

importance [19, 29]. The output (i.e., the target) space is structured in many14

applications of predictive modelling, meaning that the values to be predicted15

are structured (rather than scalar).Multi-target regression (MTR) is a type16

of structured output prediction (SOP) task where multiple continuous vari-17

ables are simultaneously predicted: The structured value to be predicted in18

this case is a tuple of real numbers. MTR has applications in many real19

life problems, with prominent examples in ecology, such as predicting the20

abundance of different species living in the same habitat [17], and predicting21

different properties of forests from remote sensing data [26, 44].22

Since the establishment of SSL as a research topic, the scientific commu-23

nity has devoted a lot of effort to SSL for the classical (i.e., unstructured)24

data mining tasks: classification and regression [53]. Unfortunately, this25

has not been the case for SOP tasks, although the need for SSL is even26

stronger there: The labeling process is even more expensive and laborious27
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in SOP, since several simple/primitive labels (or one structured/complicated28

label) need to be provided for each example. Furthermore, the existing SSL29

methods for SOP largely deal with discrete types of outputs, such as a re-30

cent method proposed by Du [20]. There are only a few examples of SSL31

methods dealing with the task of MTR [35, 23, 31, 10]. In addition these32

have several serious limitations, including (a) applicability only to a certain33

domain, (b) unclear advantage as compared to supervised learning due to in-34

sufficient evaluation, (c) high computational complexity, and (d) high risk of35

performance degradation as compared to the underlying supervised method.36

Finally, none of the available semi-supervised methods for MTR produces37

interpretable models, which often is an important asset in the context of38

knowledge discovery for predictive modelling.39

As an attempt to overcome these limitations, we propose to perform SSL40

for MTR with a popular data mining method - decision trees. More specifi-41

cally, we extend the approach of predictive clustering trees (PCTs) for MTR42

[4, 45], as well as ensembles thereof [28], towards the SSL framework. We43

also thoroughly evaluate the proposed methods on a wide variety of data-sets44

from different domains and extensively discuss their characteristics from sev-45

eral viewpoints, including predictive performance, computational complexity,46

model size, and sensitivity to parameters. Our empirical evaluation shows47

that the proposed extension of PCTs towards SSL improves the predictive48

performance of PCTs and enhances their interpretability. Furthermore, en-49

sembles (i.e., random forests) of semi-supervised PCTs for MTR can improve50

the predictive performance of ensembles of supervised PCTs.51

The remainder of this paper is organized as follows. The next section52

clarifies our motivation and outlines the main contributions of this study.53

Section 3 presents the background of the work, which includes a discussion54

on related work and a brief description of the predictive clustering frame-55

work. Section 4 describes the proposed method, while Section 5 specifies the56

experimental design. The results of the empirical investigations are presented57

and discussed in Section 6. Finally, Section 7 concludes the paper.58

2. Motivation and Contributions59

As already noted in the Introduction, the selection of semi-supervised60

methods for the task of MTR is very limited, even though the need for61

semi-supervised methods is arguably even greater in the context of struc-62

tured output (due to the increased complexity of labeling). Semi-supervised63
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learning for single-target regression, on the other hand, has seen much more64

development [53]. In principle, it is possible to decompose a MTR problem65

into several (local) single-target ones, and then apply some of the available66

semi-supervised methods for single-target regression (i.e., local methods).67

However, the methods that learn to predict all of the target variables simul-68

taneously (i.e., global methods) are typically more computationally efficient,69

produce simpler models, and overfit less than the local methods [26, 28, 33].70

In addition, global models can yield better predictive performance than local71

models [26, 25, 47]. Although recent studies showe that more sophisticated72

local models (where outputs of local models are taken as inputs for other local73

models) for MTR can perform better than state-of-the-art global approaches74

for MTR [42].75

Given the above-mentioned advantages of global methods, in this work,76

we aim to develop global semi-supervised methods for MTR. To this end, we77

consider predictive clustering trees (PCTs) for MTR [4, 45]. PCTs are gen-78

eralization of standard decision trees towards predicting structured outputs,79

such as tuples of continuous/discrete variables, hierarchies of classes, and80

time series. We consider PCTs as a very natural candidate for extension to-81

wards SSL since they are situated at the intersection of predictive modelling82

(supervised learning) and clustering (unsupervised learning).83

More specifically, in contrast to classical decision/regression trees, PCTs84

use a flexible definition of descriptive, target, and clustering attributes. De-85

scriptive attributes are used to divide examples into groups (i.e., define86

splits), clustering attributes to evaluate the quality of candidate splits, and87

target attributes to calculate the predicted values in the leafs of the tree. In88

standard decision trees, there is no distinction between clustering and target89

attributes, i.e., the target attribute is the only attribute used for the purpose90

of split evaluation. In other words, the similarity of examples is explicitly91

enforced only on the target attribute, and splits are selected which divide ex-92

amples into groups of examples with similar values for the target attribute.93

In PCTs, the clustering attributes can overlap with the target and/or the94

descriptive attributes.95

We capitalize on these properties of PCTs to extend them towards SSL:96

We propose to perform SSL with PCTs that would group examples similar in97

both the descriptive and the target space during PCT construction. This can98

be achieved by using descriptive attributes, in addition to target attributes,99

as clustering attributes. Consequently, this allows us to exploit both labeled100

and unlabeled examples (for which only descriptive attributes are known) in101
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tree construction. Such trees would be able to produce clusters compact in102

both the descriptive and the target space. This could be viewed as enforcing103

the popular semi-supervised smoothness assumption which states that if two104

points xi and xj in a high density region are close, then also their outputs105

yi and yj should be close [12]. In fact, in order to benefit from unlabeled106

data, semi-supervised methods have to make assumptions about the distri-107

bution of the unlabeled data with respect to (several) target variables. The108

above-mentioned assumption presupposes a smooth prediction function in109

the highly populated regions.110

We illustrate the benefits of the above-described extension of PCTs to-111

wards SSL on the toy example of modelling a step function f(x) = {1, x ≤112

1.5; 2, x > 1.5 given in Fig. 1. We generated two clusters of 50 data points113

each, where the descriptive space of examples is sampled for two normal114

distributions (N(1, 0.25) for the first cluster and N(2, 0.25) for the second),115

while the target values of examples are generated according to the above116

step function with some random noise added. Data obtained in such a way117

complies with the semi-supervised smoothness assumption. Four points were118

selected at random as labeled examples, while the remaining data points119

were used as unlabeled examples and test examples. The supervised PCT120

positions the split in the middle of a gap between the labeled examples from121

different clusters. However, this split cuts through the dense cluster of (un-122

labeled) data and consequentially the supervised prediction function (i.e.,123

average of the target values of examples in the leafs) has a big change in124

the highly populated region. The semi-supervised PCT, on the other hand,125

positions the split so that is separates well both the labeled and unlabeled126

data, leading to a prediction function that matches the step function more127

closely (i.e., a split is close to 1.5) and results in the lower error as compared128

to the supervised PCT. Note that the semi-supervised PCT ”sees” only the129

descriptive space values of unlabeled examples.130

We argue that, by extending PCTs towards SSL, it is possible to obtain131

predictive models which preserve the appealing characteristics of decision132

trees and are more accurate than the models learned with labeled data alone.133

This would be achieved by exploiting both unlabeled and labeled data on one134

hand, and the properties of global predictive models for SOP on the other.135

The contributions of this paper are summarized as follows:136

• We develop a method for semi-supervised learning of interpretable and137

global models for MTR;138
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Figure 1: A semi-supervised and a supervised PCT built by using toy data. MSE denotes
the means squared error.

• We explore the performance of the proposed semi-supervised trees for139

MTR in the ensemble setting;140

• We perform an extensive empirical evaluation of the proposed method141

on 15 MTR datasets from various domains, investigating several prop-142

erties of the methods: predictive performance, influence of the amount143

of labeled data, model size, and sensitivity to parameters;144

• We explore the use of feature weighting to reduce the influence of ir-145

relevant attributes;146

• We extensively discuss the characteristics of the proposed approach147

from the viewpoint of practical utility and the possible uses of the148

method in fields of data mining other than SSL.149

3. Background150

This work is motivated by research at the intersection between the fields151

of semi-supervised learning and multi-target regression. In the following152

subection, we discuss related work from both research fields, with the focus153
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on limitations of the currently available semi-supervised methods for MTR,154

and on the novelties and contributions of our work with respect to the most155

closely related work. We also provide a description of predictive clustering156

trees for MTR and ensembles thereof, which are the starting point for the157

semi-supervised methods we propose.158

3.1. Related work159

Zhang et al. [51] and Cardona et al. [11] proposed semi-supervised meth-160

ods based on Gaussian processes for a task related to (but different than)161

MTR: multi-task regression. Multi-target regression and multi-task regres-162

sion1 are similar, but some notable differences exist between the two. In163

multi-task learning, we have several tasks of single-target prediction with164

different training sets (with possibly different descriptive attributes) and the165

emphasis is on learning transfer between the tasks. Navaratnam et al. [35]166

have proposed a SSL method for MTR, which is also based on Gaussian167

processes. This method is, however, specialized for application in a specific168

domain, namely computer vision.169

The methods proposed by Gönen and Kaski [23] and Brouard et al. [10]170

are rare examples of semi-supervised methods which can handle both discrete171

and continuous types of structured outputs. Among other types of structured172

output prediction tasks, their methods can also handle MTR. Both methods173

are based on kernels. Gönen and Kaski [23] proposed the Kernelized Bayesian174

Matrix Factorization (KBMF) method, where multiple sources of information175

can be exploited as different kernels in multiple kernel learning. Brouard et176

al. [10] proposed Input Output Kernel Regression (IOKR) which can exploit177

the structure both in the input and the output space by defining different178

kernels for the input and for the output space. A similar principle, i.e., defin-179

ing separate kernels for input and the output spaces, can be obtained with180

the KBMF method,. The competitive advantages of the KBMF and IOKR181

methods in the context of semi-supervised learning for MTR are, however,182

not entirely clear. Namely, the KBMF method has not been tested in its183

semi-supervised version on the task of MTR, while the IOKR method was184

tested on only one MTR dataset. In contrast, we extensively evaluate the185

proposed semi-supervised methods for MTR on a wide variety of benchmark186

1Note that multi-task regression is sometimes referred to as a multi-output regression
which is also a synonym for multi-target regression.
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datasets showing their utility over a variety of domains. Furthermore, the187

KBMF and IOKR methods are arguably difficult to use for non-experts, since188

the user needs to define kernels that are appropriate for the task at hand and189

optimize several parameters, while the semi-supervised methods we propose190

here have only one parameter to tune (which is tuned automatically).191

In a previous study, we have developed a SSL method based on self-192

training of random forests of PCTs for MTR [31], where the most reliable193

predictions on unlabeled data are iteratively used to re-train the model. The194

previous method and the one we propose in this paper are used for the same195

task, i.e., SSL for MTR. However, the two methods are different in the way196

they exploit the unlabeled examples. More specifically, they are based on197

different assumptions of semi-supervised learning: Self-training assumes that198

the most confident predictions are correct, while the method proposed in199

this work assumes smoothness of the prediction function in highly populated200

regions. The next difference comes from the perspective of utility and effi-201

ciency. First, self-training requires repeated re-training of the base model;202

therefore, its computational demand is much higher than the demand of the203

method proposed here. Next, the self-training approach is, in general, prone204

to error propagation, i.e., it can degrade the performance of its base model205

if erroneous predictions enter the training set. The method proposed in this206

work, on the other hand, has a built-in safety mechanism due to which it207

has very low risk of performance degradation (as compared to its supervised208

counterpart).209

Finally, none of the above-mentioned semi-supervised methods for MTR210

produce interpretable models. Interpretable models are, however, of great211

importance in many applications of machine learning where knowledge dis-212

covery is of interest. They can help experts to extract knowledge from the213

data, explain the data, or even form new (testable) hypotheses. Furthermore,214

we postulate that experts which are not familiar with machine learning are215

more willing to trust and use machine learning methods if they can easily un-216

derstand the model and how it produces the predictions. The semi-supervised217

algorithm proposed in this work preserves the interpretability of supervised218

PCTs, while enabling the exploitation of unlabled data.219

The semi-supervised PCTs proposed here are related to the work of Bloc-220

keel et al. [4], who proposed clustering trees which can consider both de-221

scriptive and target attributes in the evaluation of splits. Blockeel et al.222

[4] suggested that, when the class information is missing, considering both223

descriptive and target attributes in the evaluation of splits can improve the224
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predictive performance of clustering trees. The semi-supervised decision trees225

that we propose in this work are similar in nature to the ones proposed by226

Blockeel et al. [4], but there are several key differences. First of all, in experi-227

ments with missing class information, Blockeel et al. [4] did not consider tasks228

of predicting structured outputs. Second, we introduce an additional param-229

eter, by which we control the amount of supervision in the decision trees (i.e.,230

the influence of the target relative to the descriptive attributes). This allows231

us to build fully supervised trees, semi-supervised trees, or fully unsupervised232

trees, depending on the specific needs of the problem at hand. A similar con-233

cept was considered by Ženko [48] who proposed predictive clustering rules234

(PCRs). In the context of learning PCRs for multi-target classification, the235

use of a heuristic was proposed that guides the rule learning process and takes236

into account (with a trade-off parameter) both the descriptive and the target237

attributes. However, Ženko [48] considered learning of such PCRs only in238

a supervised learning context. We recently explored decision trees that use239

both the descriptive and the target attributes for evaluation of splits in the240

context of semi-supervised learning for binary and multi-class classification241

[32], however, it is not clear whether the findings from the simpler tasks will242

transfer also to the MTR task.243

Independently of SSL, MTR receives increasing attention by the research244

community [6]. Several machine learning methods, popular for regression,245

have been implemented also for the task of MTR, such as decision trees [2, 45],246

support vector machines [50], k-nearest neighbors [38] and ensemble-based247

methods [1, 28, 47, 42]. Here, ensemble-based methods present the state-248

of-the-art regarding predictive performance. However, out of the available249

methods for MTR, only decision trees produce interpretable models, which250

is an important property in many domains, such as biology, medicine and251

chemoinformatics. Our study builds upon the work of Struyf and Džeroski252

[45] and Kocev et al. [28], extending the decision tree algorithm of Struyf253

and Džeroski and random forests algorithm of Kocev et al. towards semi-254

supervised learning.255

3.2. Predictive clustering trees for MTR256

The PCT framework views a decision tree as a hierarchy of clusters, where257

the top-node corresponds to one cluster containing all the data. This cluster258

is recursively partitioned into smaller clusters while moving down the tree.259

The PCT framework is implemented in the CLUS system [28, 45], available260

at http://sourceforge.net/projects/clus.261
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PCTs are induced with a standard top-down induction of decision trees262

(TDIDT) algorithm (see Table 1), which takes as input a set of examples263

E and outputs a tree. The heuristic that is used for selecting the tests to264

put in internal tree nodes is the reduction of variance caused by partitioning265

the examples according to the tests. By maximizing the variance reduc-266

tion, the cluster homogeneity is maximized and the predictive performance267

is improved.268

The main difference between the algorithm for learning PCTs and a stan-269

dard decision tree learner is that the former considers the variance function270

and the prototype function (that computes a label for each leaf) as param-271

eters that can be instantiated for a given learning task. So far, PCTs have272

been instantiated for the following tasks [28]: multi-target prediction (which273

includes MTR), hierarchical multi-label classification, and prediction of time-274

series.275

In this article, we focus on the task of MTR, which we formalize as follows.276

Given:277

• A description (or input) space X spanned by D descriptive variables,278

i.e., X = (X1, . . . , XD).279

• A target (or output) space Y spanned by T continuous target variables,280

i.e., Y = (Y1, . . . , YT ).281

• A set of examples E, where each example is a pair consisting of one ele-282

ment from the descriptive space and one element from the target space283

(the example’s label), i.e., E = {(xi, yi) : xi ∈ X, yi ∈ Y, 1 ≤ i ≤ N},284

and N is the number of examples.285

• A quality criterion q.286

Find: a function f : X → Y such that f maximizes q. In this work, the287

function f is represented with decision trees, i.e., PCTs.288

The quality criterion q is based on the reduction of overall variances289

which is calculated as the average of the variances of the target variables290

(see Table 1, procedure BestTest, line 4). For each set of examples E, the291

variance is computed as follows:292

V arf (E) =
1

T
·

T∑
i=1

V ari(E), (1)
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where V ari(E) is the variance of the ith target variable Yi for a set of examples293

E. The variance of the ith target variable is calculated as follows:294

V ari(E) =

∑N
j=1(yi,j)

2 − 1
N
·
(∑N

j=1 yi,j

)2
N

, (2)

where, yj,i is the value of the ith target variable for the jth example, and295

N = |E| is the number of examples. The variances of the targets are nor-296

malized, so that each target contributes equally to the overall variance. The297

normalization is performed by dividing the above estimates (2) with the vari-298

ance of the target variable on the entire available training set.299

In the prediction phase, for each new example, the algorithm identifies300

the leaf it belongs to and returns the value predicted by a prototype function301

associated to that leaf (see Table 1, procedure PCT, line 7). In PCTs for302

MTR the prototype function calculates the mean vector of all target variables303

Y for the training examples that belong to the leaf.304

Table 1: The top-down induction algorithm for PCTs.
procedure PCT
Input: A dataset E
Output: A predictive clustering
tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)

5: return node(t∗,
⋃

i{treei})
6: else
7: return leaf(Prototype(E))

procedure BestTest
Input: A dataset E
Output: the best test (t∗), its heuristic score
(h∗) and the partition (P∗) it induces on the
dataset (E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E

4: h = Varf (E)−
∑

Ei∈P
|Ei|
|E| Varf (Ei)

5: if (h > h∗) ∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

3.3. Ensembles of predictive clustering trees for MTR305

Kocev et al. [28] implemented ensembles of PCTs for structured outputs306

in the CLUS system. The ensembles of PCTs are constructed by using the307

bagging [7] and random forests [9] methods, which are often used in the308

context of decision trees. Bagging is an ensemble method that constructs309

the different classifiers by making bootstrap replicates of the training set310

and using each of these replicates to construct a predictive model. Each311
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bootstrap sample is obtained by randomly sampling training instances, with312

replacement, from the original training set, until an equal number of instances313

as in the training set is obtained. Breiman [7] showed that bagging can give314

substantial gains in predictive performance, when applied to an unstable315

learner (i.e., a learner for which small changes in the training set result in316

large changes in the predictions), such as classification and regression tree317

learners.318

A random forest is an ensemble of trees, where diversity among the pre-319

dictors is obtained by using bootstrap replicates as in bagging, and addition-320

ally by changing the set of descriptive attributes during learning. To learn321

a random forest, the PCT algorithm for tree construction (Algorithm 1) is322

changed to a randomized version of the selection of attributes, which replaces323

the standard selection of attributes. More precisely, at each node in the de-324

cision trees, a random subset of the descriptive attributes is taken, and the325

best attribute is selected from this subset. The number of attributes that are326

retained is given by a function f of the total number of descriptive attributes327

D (e.g., f(D) = 1, f(D) = b
√
D+ 1c, f(D) = blog2(D) + 1c . . . ). By setting328

f(D) = D, we obtain the bagging procedure.329

To construct an ensemble model for MTR, a corresponding type of PCTs330

is used as a base model, i.e., PCTs for MTR. The prediction of an ensemble331

for a new instance is obtained by combining the predictions of all the base332

predictive models from the ensemble. Namely, for the MTR task, predictions333

of the base models are combined by taking their average.334

4. Semi-supervised learning of PCTs for MTR335

In this section, we present the proposed algorithm for semi-supervised336

learning of predictive clustering trees (SSL-PCTs) for MTR. Before describ-337

ing the algorithm in detail, we first need to define the task of semi-supervised338

multi-target regression. We formalize it as follows.339

Given:340

• A description (or input) space X spanned by D descriptive variables,341

i.e., X = (X1, . . . , XD).342

• A target (or output) space Y spanned by T continuous target variables,343

i.e., Y = (Y1, . . . , YT ).344
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• A set of labeled examples El, where each example is a pair consisting of345

one element from the descriptive space and one element from the target346

space (the example’s label), i.e., El = {(xi, yi) : xi ∈ X, yi ∈ Y, 1 ≤ i ≤ Nl},347

and Nl is the number of labeled examples.348

• A set of unlabeled examples Eu, which consists only of elements from349

the descriptive space, i.e., Eu = {xi : xi ∈ X, 1 ≤ i ≤ Nu}, and Nu is350

the number of unlabeled examples.351

• A quality criterion q, e.g., which rewards models with low predictive352

error.353

Find: a function f : X → Y , by using both El and Eu, such that f maximizes354

q.355

Note that, even though the supervised and semi-supervised methods have356

the same goal (i.e., they optimize the same quality criterion q), their success is357

characterized differently. Namely, the success of supervised methods is mea-358

sured by their predictive performance in absolute terms, while the success359

of semi-supervised methods is judged by their predictive performance rela-360

tive to the corresponding supervised methods. A successful semi-supervised361

method should be able to outperform the corresponding supervised method362

while using the same set of labeled examples El and additional set of unla-363

beled examples Eu.364

In semi-supervised learning, there are two different settings: inductive and365

transductive semi-supervised learning. Inductive learning is concerned with366

predicting the labels of examples unseen during learning, while transductive367

learning is concerned with predicting only the labels of unlabeled examples368

in the training set (i.e., labels of examples in Eu). More specifically, the goal369

of inductive SSL is to obtain a predictive model that can be then applied370

to other examples, while the goal of transductive SSL is to obtain the labels371

of the unlabeled examples used during learning. All of the inductive SSL372

methods can be evaluated in both inductive and transductive setting. The373

semi-supervised methods we propose here can work both in the inductive374

and transductive settings.375

Our extension of the supervised PCTs towards SSL for MTR goes along376

two dimensions. The first extension as compared to the classical algorithm for377

the induction of PCTs concerns the input, which, in case of semi-supervised378

PCTs, consists of both the labeled and unlabeled examples. This means that379
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E = El ∪ Eu, where El is the part of the dataset with known labels and Eu380

is the part with unknown labels.381

The second extension concerns, as mentioned before, the variance function382

that takes into account both the target and the descriptive attributes in the383

identification of the best split. This is achieved by adapting the variance384

function used for learning of supervised PCTs, which takes into account only385

the target attributes (Eq. 1). The variance function used to learn semi-386

supervised PCTs, on the other hand, is defined as a weighted sum of the387

variance functions over the target space (V arYf ) and over the descriptive388

space (V arXf ):389

V arf (E) = w · V arYf (E) + (1− w) · V arXf (E), (3)

where w ∈ [0, 1] is the weight parameter that controls how much the target390

space and the descriptive space contribute to the variance function. Conse-391

quently, this controls the amount of supervision employed during the learning392

of semi-supervised PCTs. Values of the parameter w close to 1 emphasize393

more the target space, and consequently labeled examples affect the con-394

struction of the tree more than unlabeled examples (i.e., there is more su-395

pervision). On the other hand, values of w closer to 0 put more emphasis on396

the descriptive space, thus unlabeled examples affect the tree construction397

more than labeled examples and the tree learning algorithm receives less su-398

pervision. The w parameter enables the learning of semi-supervised PCTs399

to range from fully supervised trees (i.e., w = 1) to completely unsupervised400

trees (i.e., w = 0). The ability to control the influence of unlabeled examples401

with the w parameter is very important, since different datasets may require402

different amounts of supervision. This aspect is discussed in more detail in403

Section 6.2.404

The variance of a set of examples E over the target space (V arYf (E)) is405

calculated similarly as in the supervised PCTs (Eq. 1), i.e., as the average406

of the variances of the target variable. However, we re-define the variance407

of individual target attributes (V ari(E)) in order to handle missing values408

(i.e., unlabeled examples):409

V ari(E) =

∑Ki

j=1(yi,j)
2 − 1

Ki
·
(∑Ki

j=1 yi,j

)2
Ki

, (4)

where N is the number of examples, and Ki is the number of examples410
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with known (non-missing) values of the ith attribute. Note that, the number411

of examples with non-missing values is usually the same across all target412

attributes (i.e., Ki = |El|, i ∈ 1, . . . , T ). However, these numbers can differ413

if partially labeled examples are present in the dataset, i.e., examples which414

have known values for some of the target variables, and unknown for the415

others. The above definition of variance (Eq. 4) enables exploitation of such416

examples, i.e., semi-supervised PCTs can learn from, labeled, unlabeled, as417

well as partially labeled examples.418

The descriptive variables can be either numeric or nominal, thus the vari-419

ance of a set of examples E with descriptive space (V arXf (E)) consisting of420

D descriptive attributes is calculated as follows:421

V arf (E,X) =
1

D
·

 ∑
Xi is numeric

V ari(E) +
∑

Xj is nominal

Ginij(E)

 , (5)

where V ari/Ginij is the variance/Gini score of individual numeric/nominal422

descriptive attributes, respectively. V ari is calculated analogously to Eq. 4,423

whereas Ginij is calculated as follows:424

Ginij(E) = 1−
Cj∑
k=1

(
|{e : e ∈ E such that e has class ck}|

Kj

)2

= 1−
Cj∑
k=1

p̂k,

(6)
where Cj is the number class values of descriptive attribute Xj, and p̂k is the425

empirical probability of class value ck estimated by considering only examples426

with a known value for attribute Xj, with Kj being their number.427

As in supervised PCTs, the variances or Gini scores of the individual at-428

tributes are normalized, so that each attribute contributes equally to the over-429

all variance. The normalization is performed by dividing the variance/Gini430

score estimates of the individual attributes in Eqs. 4 and 6 on the set of ex-431

amples in the current tree node with the variance/Gini score of the attribute432

on the entire available training set.433

Note that the proposed algorithm is not limited to using the Gini index434

or variance as impurity measures. In principle, other impurity measures435

could be used. For example, the PCT framework also implements the sum436

of the entropies of class variables, reduced error, gain ratio and m-estimate437

impurity measures. We chose to use the Gini score because it is one of the438
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most popular measures for impurity of nominal variables. The other obvious439

choice would be Information gain: However, Gini score and information gain440

perform very similarly and it is mostly not possible to decide which of the441

two measures to prefer [40]. Similarly, for measuring the impurity of numeric442

variables, we choose variance, because it is the de facto standard used for443

regression trees.444

When building semi-supervised trees, two extreme cases may occur: (1)445

A leaf of the tree may contain only unlabeled examples, and (2) The calcula-446

tion of variance may be necessary for attributes where all the examples have447

missing values or only one example has a known (non-missing) value (e.g.,448

Ki = 0 in Eq. 4). The first extreme opens the question: How to calculate the449

prototype function for such a leaf? In fact, the prototype function of semi-450

supervised PCTs is calculated in the same way as in supervised PCTs, but451

by using only the labeled training examples that belong to the given node.452

We handle the extreme case of no labeled examples in a leaf by returning the453

prototype of the first parent of such a leaf that contains labeled examples.454

Nodes of the tree that contain only unlabeled examples are not divided any-455

more, while in leaf nodes that contain labeled examples we allow no less than456

2 of those. The same criterion is used in supervised PCTs, i.e., the minimum457

number of (labeled) examples in a leaf node is set to 2.458

The second extreme occurs when a candidate split needs to be evaluated,459

such that all the examples in one of the resulting groups/branches have miss-460

ing values for one of the attributes. For example, this occurs when the split461

is performed such that only unlabeled examples travel to one of the branches462

of the decision tree. We handle this extreme by estimating the variance with463

the variance of the parent node2.464

Having presented the induction of SSL-PCTs, we can now extend the465

semi-supervised learning solution to learn random forests of SSL-PCTs. By466

using SSL-PCTs, it is possible to build semi-supervised random forests by467

simply using trees learned with a SSL algorithm to construct the members of468

the ensemble (as described in Section 3.3), instead of using trees learned with469

a supervised algorithm. The only difference is that the bootstrap samples are470

2Note that, the second extreme could be handled differently, e.g., by estimating the
variance with the variance on the entire training set, or by ignoring such attributes in the
calculation of the overall variance (Eq. 3). We have explored these two solutions as well,
but they perform very similarly or slightly worse than the solution that uses the variance
of the parent node.

16



obtained from the whole set of examples E, which includes both labeled and471

unlabeled examples. In semi-supervised ensembles, we modify the bootstrap472

sampling procedure to perform stratified bootstrap sampling, considering the473

proportions of labeled and unlabled examples in the stratification. This is to474

avoid having bootstrap samples made out of only unlabeled examples. We475

denote the semi-supervised random forest build in such a way as SSL-RF,476

while supervised supervised random forest is denoted as CLUS-RF.477

4.1. Feature weighted semi-supervised PCTs for MTR478

Unlike some machine learning methods, such as k-nearest neighbors, PCTs479

(and, more generally, decision/regression trees) are robust to irrelevant fea-480

tures. Only the most informative features are used as tests when build-481

ing (supervised) trees; therefore, irrelevant features are likely to be ignored.482

However, in SSL-PCTs the robustness to irrelevant features may be compro-483

mised, since both target and descriptive features contribute to the evaluation484

of tests. Moreover, as anticipated before, different features can have different485

impact on the predictive capabilities of the learned models. To deal with486

these issues, we propose to use feature weighting to enhance the robustness487

to irrelevant/less relevant features in SSL-PCTs.488

In the literature, methods for feature ranking are used to select the most489

important features, and to discard the irrelevant ones. An importance score,490

which corresponds to the informativeness of a feature, is assigned to each491

descriptive feature. More informative features are associated with a higher492

score, while less informative ones are associated with a lower score. Cunning-493

ham and Delany [16] showed that weighting features with importance scores494

helps the k-nearest neighbors method in dealing with irrelevant features. In495

a similar manner, we use importance scores as feature weights when building496

SSL-PCTs.497

More specifically, for each descriptive attribute Xi, we determine its im-498

portance score σ̂i by using feature ranking for MTR based on a random forest499

of PCTs [27]. The feature ranking of the descriptive variables is obtained500

by exploiting the intrinsic mechanism of random forests: it uses the inter-501

nal out-of-bag (OOB) estimates of the error and noising of the descriptive502

variables to estimate their importance. To create each tree from the forest,503

the algorithm first creates a bootstrap replicate. The samples that are not504

selected for the bootstrap are called OOB samples, and are used to evalu-505

ate the performance of each tree from the forest. The rationale behind this506

method is that if a descriptive variable is important for the output variables,507
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then adding noise to its OOB values will yield an increase of the error of the508

base predictive model.509

This method is executed on the available labeled El portion of the data510

prior to building SSL-PCTs. The obtained importance scores are then nor-511

malized according to the following formula: σi = σ̂i/max(σ̂1, σ̂2, . . . , σ̂D).512

The variance of each descriptive attribute Xi is then multiplied by its nor-513

malized importance score σi in the variance function of SSL-PCTs:514

V arXf (E) =
1

D
·

 ∑
Xi is numeric

σi · V ari(E) +
∑

Xj is nominal

σj ·Ginij(E)

 . (7)

In this way, irrelevant features (i.e., features with low importance score)515

contribute less to the calculation of variance. We denote semi-supervised516

PCTs and semi-supervised random forests where feature weighting is used517

with SSL-PCT-FR and SSL-RF-FR, respectively.518

4.2. Computational complexity analysis519

To analyze the computational complexity of SSL-PCTs, we first recall520

the procedures that contribute to the computational complexity of super-521

vised PCTs. These are as follows: sorting the values of D descriptive at-522

tributes (O(DN logN)), calculating the best split for T target variables523

(O(TDN)), and applying the split to the N (labeled) training examples524

(O(N)). Assuming that the depth of the tree is in the order of O(logN)525

[49], the total computational complexity of constructing a single PCT is526

O(DN log2N) +O(TDN logN) +O(N logN).527

We then consider what changes from supervised PCTs to SSL-PCTs.528

This is, first, the value of N : In the case of semi-supervised PCTs, the529

number of training examples is equal to the number of labeled and unlabeled530

examples combined, i.e., N = Nl + Nu, instead of N = Nl. Second, SSL-531

PCTs consider both D descriptive attributes and T target variables when532

the split is calculated, thus the complexity of this step is O((T + D)DN).533

The total computational complexity of learning a single SSL-PCT is thus534

O(DN log2N)) +O((T +D)DN logN) +O(N logN).535

The upper bound of the computational complexity of global random536

forests of SSL-PCTs is k(O(D′N ′ log2N ′)+O((T +D)D′N ′ logN ′)), where537

N ′ is the size of the bootstrap samples and D′ is the size of the feature sub-538

sets at each tree node and k is the number of base SSL-PCTs. The feature539
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ranking adds the computational cost of random permutations of the values in540

the out-of-bag sample (N ′′ = N −N ′) and sorting the examples through the541

tree. Both operations are performed for each descriptive attribute and their542

cost is O(DN ′′ +D logN). This computational overhead is small compared543

to the overall cost of learning the random forests. Furthermore, note that544

the number of examples here is El, since the feature weights are calculated545

using only the labeled examples.546

5. Experimental design547

5.1. Data description548

We use 15 datatsets with multiple continuous target variables to evaluate549

the predictive performance of the proposed methods. The datasets come550

from several different domains, and vary in their size, number of attributes551

and number of target variables.552

Table 2: Characteristics of the datasets. N : number of instances, D/C: the number of
descriptive attributes (nominal/continuous), T : number of target variables.

Dataset (Reference) Domain N D T
Enb [46, 41] Energy efficiency 768 0/8 2
Eunite [14] Electricity load forecasting 8064 0/34 5
Forestry Kras [21] Ecology 60607 0/160 11
Forestry LIDAR IRS [43] Ecology 2731 0/29 2
Forestry LIDAR LandSat [43] Ecology 6218 0/150 2
Forestry LIDAR Spot [43] Ecology 2731 0/49 2
RF1 [41] Ecology 9125 0/64 8
SCM1D [41] Economy 9803 0/280 16
SCM20D [41] Economy 9803 0/61 16
Scpf [42] Human behavior 1137 19/4 3
Soil quality [17] Ecology 1944 0/142 3
Solar flare 2 [3] Astronomy 1066 10/0 3
Vegetation clustering [22] Ecology 27522 0/66 10
Vegetation condition [26] Ecology 16967 1/39 7
Water quality [5] Ecology 1060 0/16 14

The majority of the data are from the area of environmental sciences. To553

begin with, Forestry Kras, Forestry LIDAR IRS, Forestry LIDAR LandSat554

and Forestry LIDAR Spot datasets concern the task of predicting forest prop-555

erties from remotely sensed data. Second, the task in the RF1 dataset is to556

predict river network flows 48 hours ahead. Next, the Soil quality and Water557
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quality datasets concern habitat modelling of soil and water organisms, re-558

spectively. Finally, Vegetation condition and Vegetation clustering datasets559

are concerned with predicting several indicators of condition of indigenous560

and other vegetation in Victoria, Australia.561

From the domain of economy, we consider the SCM1D and SCM20D562

datasets, where the task is to predict the price of 16 products for the next563

day and their mean price over the next 20 days, respectively.564

The Scpf dataset is concerned with human behavior, namely, with the task565

for prediction of the number of views, clicks and comments that a specific566

issue (i.e., an article) concerning public space and service will receive. The567

data comes from the issues collected in Oakland, Richmond, New Haven and568

Chicago. The task for the Eunite dataset is forecasting of the maximal daily569

electrical load, while the Enb dataset is concerned with predicting the energy570

efficiency of buildings, i.e., heating and cooling load requirements. Finally,571

the Solar flare 2 dataset is concerned with prediction of the occurrence of 3572

types of solar flares, on the basis of observed characteristics of the Sun.573

5.2. Experimental setup and evaluation procedure574

We have proposed semi-supervisd PCTs (SSL-PCT) and feature weighted575

semi-supervised PCTs (SSL-PCT-FR). As a baseline for comparison with576

these methods we use the standard PCT algorithm for MTR, denoted as577

Base-PCT. This is the most reasonable baseline, since the goal is to pre-578

cisely measure the contribution of unlabeled data to the overall performance579

under the same conditions. By comparing to Base-PCTs, we answer the580

main question of this study: Are SSL-PCTs able to improve over standard581

supervised PCTs?. In all of the single-tree experiments, both supervised and582

semi-supervised trees are pruned with the procedure used in M5 regression583

trees [39]. In particular, the pruning procedure compares the error estimates584

obtained by pruning a node or not. The error estimates are based on the585

training cases and corrected in order to take into account the complexity of586

the model in the node.587

We also explore the predictive performance of semi-supervised random588

forests, denoted as SSL-RF and SSL-RF-FR, where SSL-PCTs and SSL-589

PCT-FRs are used as base models, respectively. We compare the SSL-RF590

method with baseline supervised random forests for MTR (i.e., CLUS-RF)591

where Base-PCTs are used as base models. We construct random forests592

consisting of 100 trees. The trees in the random forest are not pruned and593
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the number of random features considered at each internal node is set to594

blog2(D) + 1c, where D is the total number of features [9].595

As additional semi-supervised methods for comparison, we use the self-596

training for MTR [31] and the KBMF method [23]. As a base method for self-597

training, we use CLUS-RF. To select the most reliable predictions during the598

self-training iterations, we use the automatic threshold selection procedure599

AutomaticOOBInitial [31]. As a stopping criteria for the self-training, we600

use the Airbag procedure [30]. This stopping criterion monitors the out-of-601

bag error [8] of an ensemble to automatically stop the self-training procedure602

in the case of predictive performance degradation. For the KBMF method,603

we use the same parameter settings recommended in the original paper [23].604

This method uses twin kernels, the first kernel matrix Kx is calculated by605

using the Gaussian kernel whose width is selected as the square root of the606

dimensionality of the descriptive space (i.e.,
√
D), while the second kernel607

matrix Ky is calculated as the Pearson correlation coefficient between the608

target variables. The number of components R is selected from 1, 2, . . . , 15609

on the basis of the training set performance. The σy parameter and the610

kernel weights (αη, βη, αλ, βλ) are set to one, the standard deviations (σg, σh)611

are set to (0.1, 0.1). For fair comparisons, KBMF is compared with non-612

ensemble PCTs, while the self-training approach, which is based on CLUS-613

RF, is compared with other ensemble methods.614

We use various amounts of labeled data for both the supervised and semi-615

supervised methods to explore the influence of the amount of labeled data on616

the predictive performance of the methods. We perform experiments where617

the ratio of labeled (relative to unlabeled) data ranges as follows: 5%, 10%,618

20% and 30% of labeled examples.619

As discussed in Section 4, in semi-supervised learning two evaluation sce-620

narios exist: Evaluation on unlabeled examples used during learning (i.e.,621

transductive evaluation), and evaluation on examples unseen during learn-622

ing (i.e., inductive evaluation). We evaluate the methods considering both623

scenarions. To this end, we consider a procedure similar to the 10 fold cross624

validation. First, we randomly divide the dataset into 10 folds, where 9 are625

used for training and 1 for testing. Next, from the training folds we randomly626

select the labeled data used for training the predictive models (both super-627

vised and semi-supervised), while the remaining examples (of the training628

folds) serve as unlabeled data (we temporarily remove their labels). Finally,629

the models are tested on the test fold (i.e., inductive evaluation) and on the630

unlabeled examples with their true labels restored (i.e., transductive evalua-631
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tion). The procedure is repeated so that each fold is used exactly once as the632

test set, giving 10 results, which are averaged to obtain a single predictive633

performance estimation.634

Note that the results of transductive and inductive evaluation are not635

directly comparable, since they are obtained on different test sets. Further-636

more, in the inductive evaluation, models that are learned with different637

amounts of labeled data are evaluated on the same test set, thus the results638

are directly comparable, whereas in the transductive evaluation, the test set639

changes as the amount of labeled data changes.640

For each training/test split of the cross validation, we optimize the weight641

parameter w by performing internal 3-fold cross-validation on the available642

labeled part of the training set. During the internal cross-validation pro-643

cedure, semi-supervised methods are supplied with available unlabeled ex-644

amples (without their respective true labels). We consider values of the645

parameter w from 0 to 1 with a step of 0.1.646

We assess the predictive performance of the algorithms by using the av-
erage relative root-mean-square-error (RRMSE), defined as follows:

RRMSE =
1

T

T∑
i=1

√√√√∑Ntest

j=1 (yj,i − ŷj,i)2∑Ntest

j=1 (yj,i − yi)2
,

where T is the number of target variables, yj,i is the value of the ith target647

variable for the jth example of the test set, ŷj,i is prediction of the jth example,648

Ntest is the number of examples in the test set, and yi is the mean value (on649

the training set) of the jth target variable.650

To investigate whether the observed differences in performance among the651

methods are statistically significant, we follow the recommendations given by652

Demšar [18]. More specifically, we use the corrected Friedman test and the653

post-hoc Nemenyi test [36]. We present the result from the Nemenyi post-hoc654

test with an average ranks diagram. The ranks are depicted on an axis, in655

such a manner that the best ranking algorithms are at the right-most side of656

the diagram. The algorithms that do not differ significantly (in performance)657

for a significance level of 0.05 are connected with a line.658

All experiments were performed on a computer cluster which has 44 nodes659

and 984 central processing units (CPUs) in total: 9 nodes with 16 CPUs with660

an AMD Opteron processor at 800GHz on 64 GB of RAM with the Fedora 24661

operating system, 10 nodes with 24 CPUs with an AMD Opteron processor662
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at 1900GHz on 128 GB of RAM with the Fedora 24 operating system, and663

25 nodes with 24 CPUs with an AMD Opteron processor at 1400GHz on664

256 GB of RAM with the Fedora 24 operating system. The methods based665

on the predictive clustering trees are implemented in the Java programming666

language (version 1.6), while the KBMF method is implemented in the R667

programming language.668

6. Results and discussion669

In this section, we present the results of the empirical evaluation of semi-670

supervised and supervised PCTs for MTR. We first analyze the predictive671

performance of the methods by using different amounts of labeled data. We672

then investigate the influence of the weight parameter w, which controls the673

amount of supervision in the models. Furthermore, we discuss the inter-674

pretability and model size of the models. Finally, we analyze the influence675

of unlabeled data on the performance of SSL-PCTs.676

6.1. Analysis of the predictive performances677

In this section, we analyze the predictive performance of the methods678

on the 15 MTR datasets considered in this study, with varying amounts of679

labeled data. We first focus on the single tree methods (i.e., Base-PCT, SSL-680

PCT and SSL-PCT-FR) and the KBMF method, followed by the ensemble681

methods (i.e., CLUS-RF, SSL-RF, SSL-RF-FR and Self-training).682

6.1.1. Single tree methods683

Table 3 presents the results of single tree methods and the KBMF method.684

Clearly, semi-supervised PCTs (i.e., SSL-PCT and SSL-PCT-FR) improve685

over supervised PCTs on most of the datasets for all different amounts of686

labeled data considered. This is observed in both the transductive and the687

inductive evaluation scenarios, though, semi-supervised PCT win over su-688

pervised PCTs on more occasions in the inductive scenario, suggesting that689

semi-supervised PCTs have improved capability to generalize on unseen data.690

The above mentioned observations validate the ability of the proposed semi-691

supervised approach to successfully exploit unlabeled data.692

As mentioned, semi-supervised PCTs win over supervised PCTs on most693

of the datasets considered, but not on all of them. This is not surprising since694

the semi-supervised methods are in general known to be domain-dependent695

[13]. In other words, there are no universally good semi-supervised methods,696
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Table 3: Results (RRMSE) of the single tree and the KBMF methods. For each dataset,
the best result is marked in bold (separately for transductive and inductive evaluation).
The ’•’/’◦’ symbols denote that the SSL-PCTs improve/degrade the performance of Base-
PCT, while W/T/L denotes the number of wins, ties and loses against Base-PCT. DNF
denotes that the method did not finish within 10 days under the available resources.

Transductive evaluation Inductive evaluation
BasePCT SSL-PCT SSL-PCT-FR KBMF BasePCT SSL-PCT SSL-PCT-FR KBMF

5% labeled
Enb 0.447 0.406 • 0.406 • 1.084 0.444 0.409 • 0.409 • 1.073
Eunite 0.885 0.873 • 0.876 • 0.999 1.149 1.075 • 1.091 • 0.999
F. Kras 0.725 0.714 • 0.712 • DNF 0.777 0.743 • 0.744 • DNF
F. IRS 0.479 0.471 • 0.472 • 1.109 0.485 0.478 • 0.481 • 1.118
F. LandSat 0.854 0.831 • 0.846 • 1.177 0.842 0.811 • 0.828 • 1.19
F. Spot 0.504 0.509 ◦ 0.507 ◦ 1.102 0.505 0.504 • 0.508 ◦ 1.12
RF1 0.402 0.402 0.402 0.991 0.941 0.941 0.941 1.054
SCM1D 0.643 0.643 0.643 DNF 0.71 0.71 0.71 DNF
SCM20D 0.846 0.851 ◦ 0.855 ◦ DNF 0.923 0.922 • 0.905 • DNF
Scpf 0.979 0.986 ◦ 0.957 • 1.981 1.01 0.988 • 0.943 • 1.561
Soil Quality 1.017 1.017 1.017 1.213 1.025 1.025 1.025 1.283
Solar Flare 2 1 1 1.002 ◦ 1.645 0.81 0.8 • 0.811 ◦ 1.128
V. Clustering 0.894 0.894 0.896 ◦ DNF 0.942 0.942 0.944 ◦ DNF
V. Condition 0.739 0.728 • 0.73 • DNF 0.753 0.741 • 0.738 • DNF
Water Quality 1 1 1 1.692 1 1 1 1.836

W/T/L: 6/6/3 7/4/4 10/5/0 8/4/3
10% labeled

Enb 0.332 0.332 0.332 1.071 0.32 0.32 0.32 1.014
Eunite 0.842 0.819 • 0.816 • 1 1.101 1.083 • 1.083 • 0.999
F. Kras 0.7 0.689 • 0.687 • DNF 0.757 0.733 • 0.735 • DNF
F. IRS 0.439 0.439 0.439 1.031 0.439 0.439 0.439 1.02
F. LandSat 0.788 0.776 • 0.79 ◦ 1.161 0.78 0.77 • 0.752 • 1.17
F. Spot 0.484 0.482 • 0.481 • 1.027 0.488 0.484 • 0.484 • 1.028
RF1 0.315 0.315 0.315 0.996 0.984 0.984 0.984 1.014
SCM1D 0.602 0.602 0.602 DNF 0.687 0.687 0.687 DNF
SCM20D 0.795 0.804 ◦ 0.801 ◦ DNF 0.893 0.886 • 0.882 • DNF
Scpf 0.933 0.931 • 0.931 • 1.691 0.905 0.891 • 0.904 • 1.387
Soil Quality 0.964 1 ◦ 1.001 ◦ 1.075 1.072 1 • 1.012 • 1.282
Solar Flare 2 1.028 1.021 • 0.992 • 1.322 0.817 0.847 ◦ 0.846 ◦ 1.193
V. Clustering 0.862 0.864 ◦ 0.862 DNF 0.918 0.91 • 0.907 • DNF
V. Condition 0.714 0.71 • 0.711 • DNF 0.719 0.739 ◦ 0.741 ◦ DNF
Water Quality 1 0.981 • 0.983 • 1.672 1 0.994 • 1.002 ◦ 1.799

W/T/L: 8/4/3 7/5/3 9/4/2 8/4/3
20% labeled

Enb 0.241 0.241 0.241 0.734 0.242 0.242 0.242 0.673
Eunite 0.8 0.775 • 0.775 • 1 1.125 1.167 ◦ 1.165 ◦ 1
F. Kras 0.673 0.666 • 0.667 • DNF 0.75 0.727 • 0.741 • DNF
F. IRS 0.398 0.396 • 0.396 • 0.871 0.408 0.405 • 0.405 • 0.824
F. LandSat 0.72 0.714 • 0.72 1.176 0.72 0.706 • 0.72 1.194
F. Spot 0.44 0.429 • 0.428 • 0.84 0.443 0.432 • 0.429 • 0.807
RF1 0.241 0.241 0.241 0.997 0.976 0.976 0.976 1.012
SCM1D 0.557 0.557 0.557 DNF 0.684 0.684 0.684 DNF
SCM20D 0.74 0.74 0.74 DNF 0.925 0.925 0.925 DNF
Scpf 1.074 1.04 • 0.922 • 1.479 0.919 0.834 • 0.881 • 1.17
Soil Quality 0.892 0.892 0.892 0.989 0.964 0.964 0.964 1.312
Solar Flare 2 1.006 0.996 • 0.995 • 2.176 1.288 1.274 • 1.194 • 1.464
V. Clustering 0.833 0.831 • 0.833 DNF 0.898 0.89 • 0.898 DNF
V. Condition 0.698 0.694 • 0.693 • DNF 0.728 0.714 • 0.717 • DNF
Water Quality 0.993 0.973 • 0.977 • 1.6 0.998 0.995 • 0.997 • 1.841

W/T/L: 10/5/0 9/6/0 10/4/1 7/7/1
30% labeled

Enb 0.209 0.209 0.209 0.405 0.231 0.231 0.231 0.463
Eunite 0.774 0.751 • 0.748 • 1 1.179 1.171 • 1.17 • 1
F. Kras 0.657 0.654 • 0.65 • DNF 0.747 0.722 • 0.727 • DNF
F. IRS 0.393 0.392 • 0.393 0.724 0.402 0.4 • 0.401 • 0.673
F. LandSat 0.691 0.715 ◦ 0.704 ◦ 1.122 0.692 0.691 • 0.679 • 1.153
F. Spot 0.42 0.42 0.42 0.718 0.429 0.429 0.429 0.697
RF1 0.283 0.283 0.283 0.997 0.998 0.998 0.998 1.012
SCM1D 0.532 0.532 0.532 DNF 0.667 0.667 0.667 DNF
SCM20D 0.694 0.694 0.694 DNF 0.932 0.932 0.932 DNF
Scpf 0.97 0.913 • 0.912 • 1.426 0.898 0.881 • 0.878 • 1.154
Soil Quality 0.863 0.863 0.863 0.947 1.011 1.011 1.011 1.335
Solar Flare 2 1.024 1.025 ◦ 1.016 • 3.111 1.591 1.427 • 1.178 • 2.985
V. Clustering 0.817 0.815 • 0.815 • DNF 0.875 0.873 • 0.873 • DNF
V. Condition 0.687 0.686 • 0.685 • DNF 0.728 0.715 • 0.709 • DNF
Water Quality 0.983 0.967 • 0.967 • 1.561 0.995 0.988 • 0.988 • 1.814

W/T/L: 7/6/2 7/7/1 9/6/0 9/6/0
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i.e., such that would always perform better than supervised methods. This697

observation is confirmed also in our results. Namely, certain datasets are698

obviously not suitable for semi-supervised PCTs. More specifically, semi-699

supervised PCTs mostly do not improve over supervised PCTs on the fol-700

lowing datasets: Enb, RF1, SCM1D, SCM20D and Soil quality. The other701

10 datasets are, on the other hand, better suited for semi-supervised PCTs.702

The KBMF method performed the worst in most of the experiments,703

though it achieves the best result for Eunite dataset (inductive evaluation).704

Note that, due to the high computational complexity of this method, we705

were not able to complete experiments for datasets with a large number of706

examples. In the experimental evaluation of the KBMF method, we used707

the same parameter settings as the authors of the method [23], i.e., the708

same kernels and their parameters. Possibly, better performance could be709

achieved with different kernels and/or their better parametrization. This710

aspect highlights one advantage of the methods based on decision trees: They711

are very easy to use, since they do not require much of an expert knowledge.712

That is, tree-based methods are not very sensitive to parameters, and the713

values of the parameters that are generally good are known, such as the714

number of trees for ensemble methods, or the number of randomly selected715

features at each node of random forests.716

We next present the average ranks diagrams for single tree methods (Fig-717

ure 2). Note that the KBMF method is not included into the average ranks718

diagrams since the results of this method for some of the datasets are missing719

due to the above mentioned reason.720

We can observe that semi-supervised PCTs (i.e., SSL-PCT and SSL-PCT-721

FR) are always ranked better than the supervised PCTs (i.e., Base-PCT) –722

for all the amounts of labeled data considered in both the transductive and723

inductive evaluation. Statistical significance is obtained when using 20% of724

the labeled data (both SSL-PCT and SSL-PCT-FR) in transductive evalua-725

tion and for 5% (only SSL-PCT) and 30% (only SSL-PCT-FR) of the labeled726

data in inductive evaluation.727

Next, we analyze the effect of feature weighting to the predictive per-728

formance of the proposed semi-supervised PCTs. We can observe that in729

both transductive and inductive evaluation, the SSL-PCT method is ranked730

better than its feature weighted counterpart SSL-PCT-FR for 5% to 20%731

of labeled data. However, as the amount of labeled data is increased to732

30%, SSL-PCT-FR becomes better ranked. Recall that (Section 4.1) feature733

weights are calculated by using the available labeled examples. Thus, it is734
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Figure 2: Average ranks diagrams for the performance of the single tree methods. Each
graph presents the ranking among the algorithms (the algorithms positioned at the right-
most side are the best performing) and the statistical significance of the difference between
pairs of algorithms (if their distance is less than the critical distance (at p-value = 0.05)
there is no statistically significant difference between the two).

possible that as the amount of labeled data increases, better feature weights735

can be calculated, allowing feature weighted SSL-PCTs to perform better736

than SSL-PCTs.737

6.1.2. Ensemble methods738

In the case of single-trees, we observed clear advantage of semi-supervised739

PCTs over supervised ones, however, this is not entirely preserved in the740

ensemble setting. Namely, even though semi-supervised random forests (i.e.,741

SSL-RF ad SSL-RF-FR) can improve over supervised random forests (i.e.,742

CLUS-RF), this is observed at fewer occasions as compared to single tree743

methods. Furthermore, the results show that the improvement of SSL-PCT(-744

FR) over Base-PCT does not guarantee the improvement of SSL-RF(-FR)745

over CLUS-RF, for example as observed on Vegetation Condition dataset.746

The opposite is also observed, i.e., SSL-RF(-FR) can improve over CLUS-RF747

even if SSL-PCT(-FR) does not improve over Base-PCTs, such as on SCM1D748

and SCM20D datasets.749

The self-training method achieves the best result on some of the datasets750

(especially in inductive setting). However, the issue of error-propagation of751

this method is evident. Namely, self-training iteratively uses its own most752

reliable predictions as additional data in the training process. An error, once753

made, can reinforce itself in the subsequent iterations, leading to the degra-754
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Table 4: Results (RRMSE) of the ensemble methods. For each dataset, the best result is
marked in bold (separately for transductive and inductive evaluation). The ’•’/’◦’ symbols
denote that the semi-supervised method improves/degrades the performance of CLUS-RF,
while W/T/L denotes the number of wins, ties and loses against CLUS-RF.

Transductive evaluation Inductive evaluation
CLUS-RF SSL-RF SSL-RF-FR Self-training CLUS-RF SSL-RF SSL-RF-FR Self-training

5% labeled
Enb 0.326 0.303 • 0.31 • 0.328 ◦ 0.335 0.309 • 0.312 • 0.34 ◦
Eunite 0.784 0.775 • 0.774 • 0.785 ◦ 1.063 1.077 ◦ 1.074 ◦ 1.062 •
F. Kras 0.627 0.627 0.627 0.627 0.664 0.664 0.664 0.668 ◦
F. IRS 0.399 0.399 0.396 • 0.402 ◦ 0.404 0.404 0.4 • 0.413 ◦
F. LandSat 0.721 0.727 ◦ 0.723 ◦ 0.734 ◦ 0.724 0.727 ◦ 0.727 ◦ 0.753 ◦
F. Spot 0.437 0.437 0.435 • 0.44 ◦ 0.442 0.442 0.44 • 0.452 ◦
RF1 0.279 0.279 0.279 0.28 ◦ 0.622 0.622 0.634 ◦ 0.623 ◦
SCM1D 0.499 0.493 • 0.492 • 0.503 ◦ 0.587 0.59 ◦ 0.587 0.618 ◦
SCM20D 0.657 0.647 • 0.65 • 0.659 ◦ 0.768 0.769 ◦ 0.768 0.784 ◦
Scpf 0.915 0.915 0.915 0.914 • 0.867 0.867 0.867 0.867
Soil Quality 0.904 0.904 0.903 • 0.916 ◦ 0.963 0.963 0.975 ◦ 0.975 ◦
Solar Flare 2 1.015 1.015 1.015 1.011 • 0.853 0.853 0.853 0.842 •
V. Clustering 0.768 0.768 0.768 0.777 ◦ 0.816 0.816 0.816 0.835 ◦
V. Condition 0.664 0.664 0.664 0.664 0.67 0.67 0.67 0.673 ◦
Water Quality 0.955 0.957 ◦ 0.958 ◦ 0.952 • 0.982 0.98 • 0.979 • 0.975 •

W/T/L: 4/9/2 7/6/2 3/2/10 2/9/4 4/7/4 3/1/11
10% labeled

Enb 0.237 0.241 ◦ 0.241 ◦ 0.241 ◦ 0.245 0.245 0.247 ◦ 0.253 ◦
Eunite 0.738 0.73 • 0.73 • 0.739 ◦ 1.046 1.062 ◦ 1.057 ◦ 1.04 •
F. Kras 0.606 0.606 0.606 0.607 ◦ 0.654 0.654 0.654 0.658 ◦
F. IRS 0.368 0.367 • 0.365 • 0.371 ◦ 0.369 0.37 ◦ 0.366 • 0.38 ◦
F. LandSat 0.65 0.65 0.65 0.664 ◦ 0.643 0.643 0.643 0.678 ◦
F. Spot 0.398 0.398 0.398 0.402 ◦ 0.398 0.398 0.402 ◦ 0.413 ◦
RF1 0.226 0.226 0.226 0.227 ◦ 0.62 0.62 0.62 0.613 •
SCM1D 0.453 0.446 • 0.446 • 0.457 ◦ 0.571 0.576 ◦ 0.573 ◦ 0.598 ◦
SCM20D 0.596 0.57 • 0.573 • 0.598 ◦ 0.76 0.775 ◦ 0.77 ◦ 0.773 ◦
Scpf 0.897 0.897 0.9 ◦ 0.897 0.845 0.845 0.847 ◦ 0.848 ◦
Soil Quality 0.854 0.857 ◦ 0.86 ◦ 0.867 ◦ 0.953 0.96 ◦ 0.951 • 0.958 ◦
Solar Flare 2 1.006 1.01 ◦ 1.006 1.004 • 0.927 0.921 • 0.957 ◦ 0.88 •
V. Clustering 0.739 0.739 0.739 0.739 0.794 0.794 0.794 0.794
V. Condition 0.649 0.649 0.649 0.649 0.658 0.658 0.658 0.662 ◦
Water Quality 0.943 0.946 ◦ 0.942 • 0.94 • 0.969 0.968 • 0.971 ◦ 0.963 •

W/T/L: 4/7/3 5/7/3 2/3/10 2/8/5 4/7/4 4/1/10
20% labeled

Enb 0.182 0.182 0.182 0.191 ◦ 0.205 0.205 0.205 0.218 ◦
Eunite 0.693 0.683 • 0.684 • 0.694 ◦ 1.068 1.08 ◦ 1.077 ◦ 1.054 •
F. Kras 0.586 0.586 0.586 0.587 ◦ 0.647 0.647 0.647 0.65 ◦
F. IRS 0.336 0.336 0.336 0.339 ◦ 0.338 0.338 0.338 0.348 ◦
F. LandSat 0.604 0.604 0.604 0.616 ◦ 0.602 0.602 0.602 0.632 ◦
F. Spot 0.366 0.366 0.364 • 0.369 ◦ 0.373 0.373 0.371 • 0.383 ◦
RF1 0.184 0.184 0.184 0.185 ◦ 0.623 0.623 0.623 0.632 ◦
SCM1D 0.41 0.399 • 0.399 • 0.412 ◦ 0.559 0.568 ◦ 0.572 ◦ 0.58 ◦
SCM20D 0.527 0.489 • 0.484 • 0.528 ◦ 0.758 0.771 ◦ 0.78 ◦ 0.764 ◦
Scpf 0.917 0.921 ◦ 0.925 ◦ 0.915 • 0.819 0.814 • 0.816 • 0.811 •
Soil Quality 0.808 0.808 0.808 0.826 ◦ 0.936 0.936 0.936 0.939 ◦
Solar Flare 2 1.009 1 • 1.001 • 1.007 • 1.408 1.224 • 1.268 • 1.333 •
V. Clustering 0.713 0.713 0.711 • 0.713 0.772 0.772 0.773 ◦ 0.772
V. Condition 0.634 0.634 0.634 0.635 ◦ 0.649 0.649 0.649 0.654 ◦
Water Quality 0.929 0.929 0.927 • 0.928 • 0.961 0.961 0.959 • 0.954 •

W/T/L: 4/10/1 7/7/1 3/1/11 2/10/3 4/7/4 4/1/10
30% labeled

Enb 0.163 0.163 0.163 0.172 ◦ 0.193 0.193 0.193 0.205 ◦
Eunite 0.669 0.661 • 0.661 • 0.67 ◦ 1.071 1.08 ◦ 1.082 ◦ 1.064 •
F. Kras 0.574 0.574 0.574 0.576 ◦ 0.645 0.645 0.645 0.646 ◦
F. IRS 0.324 0.324 0.324 0.327 ◦ 0.326 0.326 0.326 0.335 ◦
F. LandSat 0.588 0.588 0.588 0.593 ◦ 0.582 0.582 0.582 0.596 ◦
F. Spot 0.354 0.354 0.354 0.356 ◦ 0.359 0.359 0.359 0.368 ◦
RF1 0.166 0.166 0.166 0.17 ◦ 0.644 0.644 0.644 0.667 ◦
SCM1D 0.381 0.369 • 0.369 • 0.383 ◦ 0.554 0.563 ◦ 0.563 ◦ 0.568 ◦
SCM20D 0.485 0.439 • 0.44 • 0.486 ◦ 0.757 0.781 ◦ 0.779 ◦ 0.764 ◦
Scpf 0.895 0.901 ◦ 0.886 • 0.896 ◦ 0.815 0.818 ◦ 0.816 ◦ 0.813 •
Soil Quality 0.781 0.781 0.781 0.799 ◦ 0.937 0.937 0.937 0.932 •
Solar Flare 2 1.031 1.023 • 1.02 • 1.027 • 1.617 1.359 • 1.408 • 1.519 •
V. Clustering 0.699 0.699 0.697 • 0.699 0.761 0.761 0.762 ◦ 0.761
V. Condition 0.626 0.626 0.626 0.627 ◦ 0.643 0.643 0.643 0.647 ◦
Water Quality 0.923 0.923 0.923 0.921 • 0.954 0.954 0.954 0.952 •

W/T/L: 4/10/1 6/9/0 2/1/12 1/10/4 1/9/5 5/1/9
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dation of the performance of the base method – this is observed for several755

datasets. This consideration makes the semi-supervised random forests and756

the self-training method somehow complementary, i.e., they usually improve757

CLUS-RF on different datasets.758

We next present the average ranks diagrams for ensemble methods (Fig-759

ure 3). We can observe that semi-supervised random forests (i.e., SSL-FR and760

SSL-FR-FR) are always ranked better than the supervised random forests761

(CLUS-RF). However, this is evident only in the transductive evaluation,762

although statistical significance is not achieved. In inductive evaluation,763

CLUS-RF is ranked better than all of the other semi-supervised ensemble764

methods, suggesting that if there is a need to predict the labels of examples765

that are not available during learning, it is better to use supervised random766

forests. The self-training method is always ranked last, and is also statis-767

tically significantly outperformed by SSL-RF nad SSL-RF-FR for 20% and768

30% of labeled examples in transductive evaluation.769

In the case of ensemble methods, the SSL-RF-FR method is always ranked770

better than the SSL-RF method (considering transductive evaluation), sug-771

gesting that feature weighting is more beneficial for semi-supervised random772

forests than for semi-supervised PCTs. Possibly, this is because the feature773

weights are more relevant for the SSL-RF-FR method, since they are deter-774

mined by using the ”same” method, i.e., random forest feature importance775

procedure (Section 4.1).776

6.2. Influence of the w parameter777

The w parameter controls the amount of supervision in the models. A778

value of w = 0 results in completely unsupervised PCTs, then, as w increases,779

PCTs rely more on labeled and less on unlabeled data, and end in being780

completely supervised for w = 1. The ability to fine tune the SSL-PCTs for781

a given dataset by controlling the amount of influence of unlabeled data is782

very important in practical applications, since several researchers have found783

that semi-supervised learning may perform worse than supervised learning784

[37, 15, 52, 24].785

As clarified before, the success of semi-supervised methods was found to786

be domain dependent, i.e., in SSL there are no universally good methods as787

in supervised learning [13]. Moreover, choosing the appropriate SSL method788

for the problem at hand is still an open question. In other words, when789

performing semi-supervised learning, there is always a danger (to some ex-790

tent) of unlabeled data hurting the predictive performance. Therefore, the791
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Figure 3: Average ranks diagrams for the performance of the ensemble methods. Each
graph presents the ranking among the algorithms (the algorithms positioned at the right-
most side are the best performing) and the statistical significance of the difference between
pairs of algorithms (if their distance is less than the critical distance (at p-value = 0.05)
there is no statistically significant difference between the two).

research community is putting effort into developing safe semi-supervised792

methods [34]. Such methods should never perform worse than their super-793

vised counterparts.794

By the virtue of the w parameter, we provide a safety mechanism for795

SSL-PCTs. In theory, if the optimal value of the parameter w is known,796

SSL-PCTs and SSL-RF will never perform worse than their supervised coun-797

terparts, since Base-PCTs and CLUS-RF are special cases of SSL-PCT and798

SSL-RF obtained with w = 1. However, since the w parameter is opti-799

mized via cross-validation on the available labeled data, it is possible that800

the chosen value of w will not be the right one to achieve the optimal test801

set performance. Thus, in practice, SSL-PCT and SSL-RF can also perform802

worse than Base-PCT and CLUS-RF, though this rarely happened in our803

empirical evaluation. Considering all the experiments in both the transduc-804

tive and the inductive evaluation (Table 3), SSL-PCTs preformed better than805

their supervised counterpart Base-PCT on 57% of occasions, worse on 9% of806

occasions, and the same on 34% of occasions3.807

Figure 4 illustrates the influence of the parameter w on the predictive808

3The wins, ties and loses of SSL-PCTs over Base-PCTs are counted considering all the
different amounts of labeled data over all the datasets that are used in the experimental
evaluation.
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Figure 4: The effect of the w parameter on the performance of the SSL-PCT (red line)
and SSL-RF (orange line) methods on 3 datasets: Foresty Kras, Forestry LIDAR Land-
Sat, SCM1D. The values of the w parameter selected by cross-validation and used in the
experimental evaluation are denoted with colored markers.

performance for 3 different datasets (in the transductive setting). On the809

Foresty Kras dataset (Fig. 4a), SSL-PCTs improve over Base-PCTs for al-810

most any value of the w parameter, though, an optimal value of w changes as811

the amount of labeled data changes. Next, on the Forestry LIDAR LandSat812

dataset, SSL-PCT requires a high amount of supervision, in order to improve813

over Base-PCT. Otherwise, if w is set to a too low value, degradation of per-814
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formance could occur. Finally, the SCM1D dataset (Fig. 4c) is an example815

of a dataset where using the proposed methods does not improve over its su-816

pervised counterparts: Regardless of the value of w, or the amount of labeled817

data, SSL-PCT is not able to improve over Base-PCT. The value of w = 1818

is always chosen, and with that, degradation of the performance is avoided.819

As exemplified in Figure 4, a general recommendation for the value of820

w is difficult to provide, since the optimal value of w varies from dataset to821

dataset, and even within the same dataset as the amount of labeled data822

changes. Hence, this parameter needs to be optimized by internal cross-823

validation for each dataset and each amount of labeled data.824

6.3. Size and interpretability of supervised and semi-supervised trees825

As mentioned previously, interpretability is an important property of pre-826

dictive models in applications where machine learning is not only used for827

predictive modelling, but also for knowledge discovery. The models produced828

by semi-supervised PCTs are readily interpretable, since they are in the form829

of decision trees. To the best of our knowledge, there is currently no other830

semi-supervised method for MTR that produces interpretable models.831

Table 5 presents the model sizes of supervised and semi-supervised trees.832

We can observe that semi-supervised trees are, in almost all of the cases,833

smaller than the supervised trees. Recall that, due to the definition of the834

variance function used to learn semi-supervised PCTs, they group examples835

into clusters that are compact both in the descriptive and the target space,836

while the supervised trees consider only the target space. Obviously, semi-837

supervised trees have a more strict clustering criterion, which likely is a838

reason for the smaller tree size. Furthermore, Table 5 demonstrates that in839

situations with limited availability of labeled data, semi-supervised learning840

of PCTs offers better interpretability (i.e., smaller PCTs), and also, as we841

previously discussed, more accurate trees as compared to supervised learning842

of PCTs. Note that, Table 5 presents the tree sizes of SSL-PCTs, while the843

tree sizes of the feature weighted variant of the algorithm (SSL-PCT-FR) are844

not presented since the conclusion are similar.845

6.4. The influence of unlabeled data846

The semi-supervised PCT learning differs from supervised PCT learn-847

ing in two aspects: (1) it considers both the descriptive and target space to848

evaluate the candidate splits, and (2) it uses unlabeled examples in addition849

to labeled ones. We have demonstrated that semi-supervised PCTs offer850
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Table 5: Model sizes, in terms of number of nodes, obtained with the supervised PCTs
(Base-PCT) and the semi-supervised PCTs (SSL-PCT) on the 15 MTR datasets.

Dataset

Amount of labeled examples
5% 10% 20% 30%

Base SSL Base SSL Base SSL Base SSL
-PCT -PCT -PCT -PCT -PCT -PCT -PCT -PCT

Enb 6.8 4.4 12.6 12.6 29.2 29.2 41 41
Eunite 22.8 15.6 35 33 79 73.6 149.4 113.2
Forestry Kras 154.2 88.8 294 155 554.4 365.6 785 552
Forestry LIDAR IRS 22.6 13 34.6 34.6 60.6 37.6 79.2 46.6
Forestry LIDAR LandSat 17 11.2 33.6 19.2 57.6 39.4 77.8 59
Forestry LIDAR Spot 23.6 13.6 35.2 25.6 65.6 43.4 84.2 84.2
RF1 93 93 224.2 224.2 478.6 478.6 647.4 647.4
SCM1D 37 37 69.8 69.8 160.2 160.2 252.2 252.2
SCM20D 23.8 17 52.2 38.8 139 139 241.2 241.2
Scpf 3.4 1.6 4.2 5.2 6.6 20.6 9.2 33.4
Soil Quality 3.8 3.8 6.6 1 16.4 16.4 26.2 26.2
Solar Flare 2 2 1 2.8 8.8 3.8 24.4 5.2 6.2
Vegetation Clustering 38.2 38.2 76 70.4 154 131.8 217 201.6
Vegetation Condition 23.4 29.4 46.2 52.2 84 96 124.2 138
Water Quality 1 1 1 5 2.2 10.8 3 17.8

Average: 31.5 24.6 61.9 50.4 126.1 111.1 182.8 164.0

predictive performance that is highly competitive to the one of supervised851

PCTs, but we might question whether the improvements stem from the com-852

bination of (1) and (2), or is only (1) sufficient to improve over supervised853

PCTs? To this end, we compare the predictive performance of SSL-PCTs854

to the supervised variant of the algorithm which uses both the descriptive855

and target space to evaluate the candidate splits, but is not supplied with856

unlabeled examples (denoted as SL-PCT). In such a way, we can precisely857

assess the influence of the unlabeled examples, since in both cases de facto858

the same algorithm is used and the only difference comes from the availabil-859

ity of unlabeled data. In the experimental analysis, we optimized the value860

of the w parameter for SL-PCT in the same way as for SSL-PCTs, i.e., via861

internal 3-fold cross validation.862

Figure 5 presents a detailed comparison of improvement/degradation of863

SL-PCT and SSL-PCT over Base-PCT. We can observe that, even with-864

out unlabeled data, the algorithm for semi-supervised learning of PCTs we865

proposed can improve over standard supervised PCTs (Figure 5, points with866

the positive x values). However, SSL-PCT method improves over Base-PCT867
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more frequently and more strongly than SL-PCT (most of the points on Fig-868

ure 5 are above the diagonal), thus, it successfully exploits unlabeled data.869

These observations suggests that the proposed algorithm for semi-supervised870

learning of PCTs might be worthy of attention even in its supervised form,871

though if supplied with unlabeled data it has a better chance to improve the872

standard supervised PCT algorithm.873

7. Conclusions874

In this paper, we propose a method for semi-supervised learning of pre-875

dictive clustering trees and random forests thereof for the task of multi-target876
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Figure 5: Comparison of the predictive performance of SSL-PCT and SL-PCT with
Base-PCT across all datasets and different amounts of labeled data. ∆SSL-PCT and ∆SL-
PCT denote the difference between Base-PCT and SSL-PCT or SL-PCT, respectively.
Negative values mean that Base-PCT is better, while positive values mean the opposite.
SSL-PCT outperforms SL-PCT above the diagonal (dashed line), while SL-PCT outper-
forms SSL-PCT below the diagonal line. SSL-PCT improves over Base-PCT for positive
values of the y-axis, and degrades the performance of Base-PCT for negative values of the
y-axis. The same relations hold for SL-PCT, but for the x-axis.
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regression. We extensively evaluate the proposed methods on 15 multi-target877

regression datasets from different domains and analyze their predictive per-878

formance, model size and sensitivity to parameters.879

We show that semi-supervised predictive clustering trees improve the per-880

formance of standard supervised predictive clustering trees and enhance their881

interpretability (due to the reduced model size). Therefore, in situations882

where unlabeled data are available and labeled data are a limited asset,883

semi-supervised predictive clustering trees should be preferred over super-884

vised predictive clustering trees – if the focus is on the knowledge discovery885

aspect of predictive modelling. Otherwise, if the focus is on the predictive886

performance, semi-supervised random forests may offer better performance887

than supervised random forests in a transductive setting.888

The variant of semi-supervised random forests that weight the descrip-889

tive features by their relevance performed favourably to the variant without890

feature weighting. In the case of single trees, feature weighting was benefi-891

cial for the performance of semi-supervised predictive clustering trees only if892

enough labeled data was available (i.e., at least 30%). Smaller amounts of893

labeled data were apparently insufficient to estimate feature relevance well894

enough.895

The proposed methods represent a step towards ’safe’ semi-supervised896

methods, i.e., methods that would always guarantee better or at least equal897

performance as compared to supervised methods: Due to the built-in safety898

mechanism, they seldom degraded the performance of their supervised coun-899

terparts.900

The proposed methods have some intrinsic properties which could be901

useful in other fields of machine learning besides semi-supervised predictive902

modelling. Namely, as we demonstrated, with this approach it is possible to903

perform unsupervised learning, i.e., (hierarchical) clustering while simulta-904

neously providing symbolic descriptions of the clusters. The method could905

be thus easily compared to methods in this area as well. Next, the method906

has the intrinsic capability of handing partially labeled data - a scenario907

highly relevant for tasks with structured outputs. When some parts of the908

output labels are missing, the corresponding examples are often discarded,909

or completed by missing data imputation. Our approach could be an elegant910

way to avoid both of these (undesired) solutions. Finally, it could be used911

to perform feature ranking for semi-supervised and unsupervised learning by912

including it in algorithms that are based on tree models (e.g., feature ranking913

with random forests).914
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As a direction for future work, we point out the possibility to easily extend915

the proposed approach to other types of structured outputs (other than multi-916

target regression), such as multi-target classification, hierarchical multi-label917

classification and time-series prediction. Therefore, our immediate research918

efforts will follow this direction.919

Acknowledgments920

We acknowledge the financial support of the Slovenian Research Agency,921

via the grant P2-0103 and a young researcher grant to the first author, as well922

as the European Commission, via the grants ICT-2013-612944 MAESTRA,923

ICT-2013-604102 HBP and H2020-ICT-688797 TOREADOR.924

References925
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[29] Kriegel, H.-P., Borgwardt, K., Kröger, P., Pryakhin, A., Schubert, M.,1005

Zimek, A., 2007. Future trends in data mining. Data Mining and Knowl-1006

edge Discovery 15, 87–97.1007

[30] Leistner, C., Saffari, A., Santner, J., Bischof, H., 2009. Semi-supervised1008

random forests. In: Proc. of the 12th Int’l Conf. on Computer Vision.1009

pp. 506–513.1010

[31] Levatić, J., Ceci, M., Kocev, D., Džeroski, S., 2017. Self-training for1011
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